ecf3e862ea
git-svn-id: svn://kolibrios.org@6148 a494cfbc-eb01-0410-851d-a64ba20cac60
830 lines
34 KiB
C
830 lines
34 KiB
C
/*
|
|
* H.26L/H.264/AVC/JVT/14496-10/... motion vector predicion
|
|
* Copyright (c) 2003 Michael Niedermayer <michaelni@gmx.at>
|
|
*
|
|
* This file is part of FFmpeg.
|
|
*
|
|
* FFmpeg is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU Lesser General Public
|
|
* License as published by the Free Software Foundation; either
|
|
* version 2.1 of the License, or (at your option) any later version.
|
|
*
|
|
* FFmpeg is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* Lesser General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU Lesser General Public
|
|
* License along with FFmpeg; if not, write to the Free Software
|
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
|
*/
|
|
|
|
/**
|
|
* @file
|
|
* H.264 / AVC / MPEG4 part10 motion vector predicion.
|
|
* @author Michael Niedermayer <michaelni@gmx.at>
|
|
*/
|
|
|
|
#ifndef AVCODEC_H264_MVPRED_H
|
|
#define AVCODEC_H264_MVPRED_H
|
|
|
|
#include "internal.h"
|
|
#include "avcodec.h"
|
|
#include "h264.h"
|
|
#include "libavutil/avassert.h"
|
|
|
|
|
|
static av_always_inline int fetch_diagonal_mv(H264Context *h, const int16_t **C,
|
|
int i, int list, int part_width)
|
|
{
|
|
const int topright_ref = h->ref_cache[list][i - 8 + part_width];
|
|
|
|
/* there is no consistent mapping of mvs to neighboring locations that will
|
|
* make mbaff happy, so we can't move all this logic to fill_caches */
|
|
if (FRAME_MBAFF(h)) {
|
|
#define SET_DIAG_MV(MV_OP, REF_OP, XY, Y4) \
|
|
const int xy = XY, y4 = Y4; \
|
|
const int mb_type = mb_types[xy + (y4 >> 2) * h->mb_stride]; \
|
|
if (!USES_LIST(mb_type, list)) \
|
|
return LIST_NOT_USED; \
|
|
mv = h->cur_pic_ptr->motion_val[list][h->mb2b_xy[xy] + 3 + y4 * h->b_stride]; \
|
|
h->mv_cache[list][scan8[0] - 2][0] = mv[0]; \
|
|
h->mv_cache[list][scan8[0] - 2][1] = mv[1] MV_OP; \
|
|
return h->cur_pic_ptr->ref_index[list][4 * xy + 1 + (y4 & ~1)] REF_OP;
|
|
|
|
if (topright_ref == PART_NOT_AVAILABLE
|
|
&& i >= scan8[0] + 8 && (i & 7) == 4
|
|
&& h->ref_cache[list][scan8[0] - 1] != PART_NOT_AVAILABLE) {
|
|
const uint32_t *mb_types = h->cur_pic_ptr->mb_type;
|
|
const int16_t *mv;
|
|
AV_ZERO32(h->mv_cache[list][scan8[0] - 2]);
|
|
*C = h->mv_cache[list][scan8[0] - 2];
|
|
|
|
if (!MB_FIELD(h) && IS_INTERLACED(h->left_type[0])) {
|
|
SET_DIAG_MV(* 2, >> 1, h->left_mb_xy[0] + h->mb_stride,
|
|
(h->mb_y & 1) * 2 + (i >> 5));
|
|
}
|
|
if (MB_FIELD(h) && !IS_INTERLACED(h->left_type[0])) {
|
|
// left shift will turn LIST_NOT_USED into PART_NOT_AVAILABLE, but that's OK.
|
|
SET_DIAG_MV(/ 2, << 1, h->left_mb_xy[i >= 36], ((i >> 2)) & 3);
|
|
}
|
|
}
|
|
#undef SET_DIAG_MV
|
|
}
|
|
|
|
if (topright_ref != PART_NOT_AVAILABLE) {
|
|
*C = h->mv_cache[list][i - 8 + part_width];
|
|
return topright_ref;
|
|
} else {
|
|
tprintf(h->avctx, "topright MV not available\n");
|
|
|
|
*C = h->mv_cache[list][i - 8 - 1];
|
|
return h->ref_cache[list][i - 8 - 1];
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Get the predicted MV.
|
|
* @param n the block index
|
|
* @param part_width the width of the partition (4, 8,16) -> (1, 2, 4)
|
|
* @param mx the x component of the predicted motion vector
|
|
* @param my the y component of the predicted motion vector
|
|
*/
|
|
static av_always_inline void pred_motion(H264Context *const h, int n,
|
|
int part_width, int list, int ref,
|
|
int *const mx, int *const my)
|
|
{
|
|
const int index8 = scan8[n];
|
|
const int top_ref = h->ref_cache[list][index8 - 8];
|
|
const int left_ref = h->ref_cache[list][index8 - 1];
|
|
const int16_t *const A = h->mv_cache[list][index8 - 1];
|
|
const int16_t *const B = h->mv_cache[list][index8 - 8];
|
|
const int16_t *C;
|
|
int diagonal_ref, match_count;
|
|
|
|
av_assert2(part_width == 1 || part_width == 2 || part_width == 4);
|
|
|
|
/* mv_cache
|
|
* B . . A T T T T
|
|
* U . . L . . , .
|
|
* U . . L . . . .
|
|
* U . . L . . , .
|
|
* . . . L . . . .
|
|
*/
|
|
|
|
diagonal_ref = fetch_diagonal_mv(h, &C, index8, list, part_width);
|
|
match_count = (diagonal_ref == ref) + (top_ref == ref) + (left_ref == ref);
|
|
tprintf(h->avctx, "pred_motion match_count=%d\n", match_count);
|
|
if (match_count > 1) { //most common
|
|
*mx = mid_pred(A[0], B[0], C[0]);
|
|
*my = mid_pred(A[1], B[1], C[1]);
|
|
} else if (match_count == 1) {
|
|
if (left_ref == ref) {
|
|
*mx = A[0];
|
|
*my = A[1];
|
|
} else if (top_ref == ref) {
|
|
*mx = B[0];
|
|
*my = B[1];
|
|
} else {
|
|
*mx = C[0];
|
|
*my = C[1];
|
|
}
|
|
} else {
|
|
if (top_ref == PART_NOT_AVAILABLE &&
|
|
diagonal_ref == PART_NOT_AVAILABLE &&
|
|
left_ref != PART_NOT_AVAILABLE) {
|
|
*mx = A[0];
|
|
*my = A[1];
|
|
} else {
|
|
*mx = mid_pred(A[0], B[0], C[0]);
|
|
*my = mid_pred(A[1], B[1], C[1]);
|
|
}
|
|
}
|
|
|
|
tprintf(h->avctx,
|
|
"pred_motion (%2d %2d %2d) (%2d %2d %2d) (%2d %2d %2d) -> (%2d %2d %2d) at %2d %2d %d list %d\n",
|
|
top_ref, B[0], B[1], diagonal_ref, C[0], C[1], left_ref,
|
|
A[0], A[1], ref, *mx, *my, h->mb_x, h->mb_y, n, list);
|
|
}
|
|
|
|
/**
|
|
* Get the directionally predicted 16x8 MV.
|
|
* @param n the block index
|
|
* @param mx the x component of the predicted motion vector
|
|
* @param my the y component of the predicted motion vector
|
|
*/
|
|
static av_always_inline void pred_16x8_motion(H264Context *const h,
|
|
int n, int list, int ref,
|
|
int *const mx, int *const my)
|
|
{
|
|
if (n == 0) {
|
|
const int top_ref = h->ref_cache[list][scan8[0] - 8];
|
|
const int16_t *const B = h->mv_cache[list][scan8[0] - 8];
|
|
|
|
tprintf(h->avctx, "pred_16x8: (%2d %2d %2d) at %2d %2d %d list %d\n",
|
|
top_ref, B[0], B[1], h->mb_x, h->mb_y, n, list);
|
|
|
|
if (top_ref == ref) {
|
|
*mx = B[0];
|
|
*my = B[1];
|
|
return;
|
|
}
|
|
} else {
|
|
const int left_ref = h->ref_cache[list][scan8[8] - 1];
|
|
const int16_t *const A = h->mv_cache[list][scan8[8] - 1];
|
|
|
|
tprintf(h->avctx, "pred_16x8: (%2d %2d %2d) at %2d %2d %d list %d\n",
|
|
left_ref, A[0], A[1], h->mb_x, h->mb_y, n, list);
|
|
|
|
if (left_ref == ref) {
|
|
*mx = A[0];
|
|
*my = A[1];
|
|
return;
|
|
}
|
|
}
|
|
|
|
//RARE
|
|
pred_motion(h, n, 4, list, ref, mx, my);
|
|
}
|
|
|
|
/**
|
|
* Get the directionally predicted 8x16 MV.
|
|
* @param n the block index
|
|
* @param mx the x component of the predicted motion vector
|
|
* @param my the y component of the predicted motion vector
|
|
*/
|
|
static av_always_inline void pred_8x16_motion(H264Context *const h,
|
|
int n, int list, int ref,
|
|
int *const mx, int *const my)
|
|
{
|
|
if (n == 0) {
|
|
const int left_ref = h->ref_cache[list][scan8[0] - 1];
|
|
const int16_t *const A = h->mv_cache[list][scan8[0] - 1];
|
|
|
|
tprintf(h->avctx, "pred_8x16: (%2d %2d %2d) at %2d %2d %d list %d\n",
|
|
left_ref, A[0], A[1], h->mb_x, h->mb_y, n, list);
|
|
|
|
if (left_ref == ref) {
|
|
*mx = A[0];
|
|
*my = A[1];
|
|
return;
|
|
}
|
|
} else {
|
|
const int16_t *C;
|
|
int diagonal_ref;
|
|
|
|
diagonal_ref = fetch_diagonal_mv(h, &C, scan8[4], list, 2);
|
|
|
|
tprintf(h->avctx, "pred_8x16: (%2d %2d %2d) at %2d %2d %d list %d\n",
|
|
diagonal_ref, C[0], C[1], h->mb_x, h->mb_y, n, list);
|
|
|
|
if (diagonal_ref == ref) {
|
|
*mx = C[0];
|
|
*my = C[1];
|
|
return;
|
|
}
|
|
}
|
|
|
|
//RARE
|
|
pred_motion(h, n, 2, list, ref, mx, my);
|
|
}
|
|
|
|
#define FIX_MV_MBAFF(type, refn, mvn, idx) \
|
|
if (FRAME_MBAFF(h)) { \
|
|
if (MB_FIELD(h)) { \
|
|
if (!IS_INTERLACED(type)) { \
|
|
refn <<= 1; \
|
|
AV_COPY32(mvbuf[idx], mvn); \
|
|
mvbuf[idx][1] /= 2; \
|
|
mvn = mvbuf[idx]; \
|
|
} \
|
|
} else { \
|
|
if (IS_INTERLACED(type)) { \
|
|
refn >>= 1; \
|
|
AV_COPY32(mvbuf[idx], mvn); \
|
|
mvbuf[idx][1] <<= 1; \
|
|
mvn = mvbuf[idx]; \
|
|
} \
|
|
} \
|
|
}
|
|
|
|
static av_always_inline void pred_pskip_motion(H264Context *const h)
|
|
{
|
|
DECLARE_ALIGNED(4, static const int16_t, zeromv)[2] = { 0 };
|
|
DECLARE_ALIGNED(4, int16_t, mvbuf)[3][2];
|
|
int8_t *ref = h->cur_pic.ref_index[0];
|
|
int16_t(*mv)[2] = h->cur_pic.motion_val[0];
|
|
int top_ref, left_ref, diagonal_ref, match_count, mx, my;
|
|
const int16_t *A, *B, *C;
|
|
int b_stride = h->b_stride;
|
|
|
|
fill_rectangle(&h->ref_cache[0][scan8[0]], 4, 4, 8, 0, 1);
|
|
|
|
/* To avoid doing an entire fill_decode_caches, we inline the relevant
|
|
* parts here.
|
|
* FIXME: this is a partial duplicate of the logic in fill_decode_caches,
|
|
* but it's faster this way. Is there a way to avoid this duplication?
|
|
*/
|
|
if (USES_LIST(h->left_type[LTOP], 0)) {
|
|
left_ref = ref[4 * h->left_mb_xy[LTOP] + 1 + (h->left_block[0] & ~1)];
|
|
A = mv[h->mb2b_xy[h->left_mb_xy[LTOP]] + 3 + b_stride * h->left_block[0]];
|
|
FIX_MV_MBAFF(h->left_type[LTOP], left_ref, A, 0);
|
|
if (!(left_ref | AV_RN32A(A)))
|
|
goto zeromv;
|
|
} else if (h->left_type[LTOP]) {
|
|
left_ref = LIST_NOT_USED;
|
|
A = zeromv;
|
|
} else {
|
|
goto zeromv;
|
|
}
|
|
|
|
if (USES_LIST(h->top_type, 0)) {
|
|
top_ref = ref[4 * h->top_mb_xy + 2];
|
|
B = mv[h->mb2b_xy[h->top_mb_xy] + 3 * b_stride];
|
|
FIX_MV_MBAFF(h->top_type, top_ref, B, 1);
|
|
if (!(top_ref | AV_RN32A(B)))
|
|
goto zeromv;
|
|
} else if (h->top_type) {
|
|
top_ref = LIST_NOT_USED;
|
|
B = zeromv;
|
|
} else {
|
|
goto zeromv;
|
|
}
|
|
|
|
tprintf(h->avctx, "pred_pskip: (%d) (%d) at %2d %2d\n",
|
|
top_ref, left_ref, h->mb_x, h->mb_y);
|
|
|
|
if (USES_LIST(h->topright_type, 0)) {
|
|
diagonal_ref = ref[4 * h->topright_mb_xy + 2];
|
|
C = mv[h->mb2b_xy[h->topright_mb_xy] + 3 * b_stride];
|
|
FIX_MV_MBAFF(h->topright_type, diagonal_ref, C, 2);
|
|
} else if (h->topright_type) {
|
|
diagonal_ref = LIST_NOT_USED;
|
|
C = zeromv;
|
|
} else {
|
|
if (USES_LIST(h->topleft_type, 0)) {
|
|
diagonal_ref = ref[4 * h->topleft_mb_xy + 1 +
|
|
(h->topleft_partition & 2)];
|
|
C = mv[h->mb2b_xy[h->topleft_mb_xy] + 3 + b_stride +
|
|
(h->topleft_partition & 2 * b_stride)];
|
|
FIX_MV_MBAFF(h->topleft_type, diagonal_ref, C, 2);
|
|
} else if (h->topleft_type) {
|
|
diagonal_ref = LIST_NOT_USED;
|
|
C = zeromv;
|
|
} else {
|
|
diagonal_ref = PART_NOT_AVAILABLE;
|
|
C = zeromv;
|
|
}
|
|
}
|
|
|
|
match_count = !diagonal_ref + !top_ref + !left_ref;
|
|
tprintf(h->avctx, "pred_pskip_motion match_count=%d\n", match_count);
|
|
if (match_count > 1) {
|
|
mx = mid_pred(A[0], B[0], C[0]);
|
|
my = mid_pred(A[1], B[1], C[1]);
|
|
} else if (match_count == 1) {
|
|
if (!left_ref) {
|
|
mx = A[0];
|
|
my = A[1];
|
|
} else if (!top_ref) {
|
|
mx = B[0];
|
|
my = B[1];
|
|
} else {
|
|
mx = C[0];
|
|
my = C[1];
|
|
}
|
|
} else {
|
|
mx = mid_pred(A[0], B[0], C[0]);
|
|
my = mid_pred(A[1], B[1], C[1]);
|
|
}
|
|
|
|
fill_rectangle(h->mv_cache[0][scan8[0]], 4, 4, 8, pack16to32(mx, my), 4);
|
|
return;
|
|
|
|
zeromv:
|
|
fill_rectangle(h->mv_cache[0][scan8[0]], 4, 4, 8, 0, 4);
|
|
return;
|
|
}
|
|
|
|
static void fill_decode_neighbors(H264Context *h, int mb_type)
|
|
{
|
|
const int mb_xy = h->mb_xy;
|
|
int topleft_xy, top_xy, topright_xy, left_xy[LEFT_MBS];
|
|
static const uint8_t left_block_options[4][32] = {
|
|
{ 0, 1, 2, 3, 7, 10, 8, 11, 3 + 0 * 4, 3 + 1 * 4, 3 + 2 * 4, 3 + 3 * 4, 1 + 4 * 4, 1 + 8 * 4, 1 + 5 * 4, 1 + 9 * 4 },
|
|
{ 2, 2, 3, 3, 8, 11, 8, 11, 3 + 2 * 4, 3 + 2 * 4, 3 + 3 * 4, 3 + 3 * 4, 1 + 5 * 4, 1 + 9 * 4, 1 + 5 * 4, 1 + 9 * 4 },
|
|
{ 0, 0, 1, 1, 7, 10, 7, 10, 3 + 0 * 4, 3 + 0 * 4, 3 + 1 * 4, 3 + 1 * 4, 1 + 4 * 4, 1 + 8 * 4, 1 + 4 * 4, 1 + 8 * 4 },
|
|
{ 0, 2, 0, 2, 7, 10, 7, 10, 3 + 0 * 4, 3 + 2 * 4, 3 + 0 * 4, 3 + 2 * 4, 1 + 4 * 4, 1 + 8 * 4, 1 + 4 * 4, 1 + 8 * 4 }
|
|
};
|
|
|
|
h->topleft_partition = -1;
|
|
|
|
top_xy = mb_xy - (h->mb_stride << MB_FIELD(h));
|
|
|
|
/* Wow, what a mess, why didn't they simplify the interlacing & intra
|
|
* stuff, I can't imagine that these complex rules are worth it. */
|
|
|
|
topleft_xy = top_xy - 1;
|
|
topright_xy = top_xy + 1;
|
|
left_xy[LBOT] = left_xy[LTOP] = mb_xy - 1;
|
|
h->left_block = left_block_options[0];
|
|
if (FRAME_MBAFF(h)) {
|
|
const int left_mb_field_flag = IS_INTERLACED(h->cur_pic.mb_type[mb_xy - 1]);
|
|
const int curr_mb_field_flag = IS_INTERLACED(mb_type);
|
|
if (h->mb_y & 1) {
|
|
if (left_mb_field_flag != curr_mb_field_flag) {
|
|
left_xy[LBOT] = left_xy[LTOP] = mb_xy - h->mb_stride - 1;
|
|
if (curr_mb_field_flag) {
|
|
left_xy[LBOT] += h->mb_stride;
|
|
h->left_block = left_block_options[3];
|
|
} else {
|
|
topleft_xy += h->mb_stride;
|
|
/* take top left mv from the middle of the mb, as opposed
|
|
* to all other modes which use the bottom right partition */
|
|
h->topleft_partition = 0;
|
|
h->left_block = left_block_options[1];
|
|
}
|
|
}
|
|
} else {
|
|
if (curr_mb_field_flag) {
|
|
topleft_xy += h->mb_stride & (((h->cur_pic.mb_type[top_xy - 1] >> 7) & 1) - 1);
|
|
topright_xy += h->mb_stride & (((h->cur_pic.mb_type[top_xy + 1] >> 7) & 1) - 1);
|
|
top_xy += h->mb_stride & (((h->cur_pic.mb_type[top_xy] >> 7) & 1) - 1);
|
|
}
|
|
if (left_mb_field_flag != curr_mb_field_flag) {
|
|
if (curr_mb_field_flag) {
|
|
left_xy[LBOT] += h->mb_stride;
|
|
h->left_block = left_block_options[3];
|
|
} else {
|
|
h->left_block = left_block_options[2];
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
h->topleft_mb_xy = topleft_xy;
|
|
h->top_mb_xy = top_xy;
|
|
h->topright_mb_xy = topright_xy;
|
|
h->left_mb_xy[LTOP] = left_xy[LTOP];
|
|
h->left_mb_xy[LBOT] = left_xy[LBOT];
|
|
//FIXME do we need all in the context?
|
|
|
|
h->topleft_type = h->cur_pic.mb_type[topleft_xy];
|
|
h->top_type = h->cur_pic.mb_type[top_xy];
|
|
h->topright_type = h->cur_pic.mb_type[topright_xy];
|
|
h->left_type[LTOP] = h->cur_pic.mb_type[left_xy[LTOP]];
|
|
h->left_type[LBOT] = h->cur_pic.mb_type[left_xy[LBOT]];
|
|
|
|
if (FMO) {
|
|
if (h->slice_table[topleft_xy] != h->slice_num)
|
|
h->topleft_type = 0;
|
|
if (h->slice_table[top_xy] != h->slice_num)
|
|
h->top_type = 0;
|
|
if (h->slice_table[left_xy[LTOP]] != h->slice_num)
|
|
h->left_type[LTOP] = h->left_type[LBOT] = 0;
|
|
} else {
|
|
if (h->slice_table[topleft_xy] != h->slice_num) {
|
|
h->topleft_type = 0;
|
|
if (h->slice_table[top_xy] != h->slice_num)
|
|
h->top_type = 0;
|
|
if (h->slice_table[left_xy[LTOP]] != h->slice_num)
|
|
h->left_type[LTOP] = h->left_type[LBOT] = 0;
|
|
}
|
|
}
|
|
if (h->slice_table[topright_xy] != h->slice_num)
|
|
h->topright_type = 0;
|
|
}
|
|
|
|
static void fill_decode_caches(H264Context *h, int mb_type)
|
|
{
|
|
int topleft_xy, top_xy, topright_xy, left_xy[LEFT_MBS];
|
|
int topleft_type, top_type, topright_type, left_type[LEFT_MBS];
|
|
const uint8_t *left_block = h->left_block;
|
|
int i;
|
|
uint8_t *nnz;
|
|
uint8_t *nnz_cache;
|
|
|
|
topleft_xy = h->topleft_mb_xy;
|
|
top_xy = h->top_mb_xy;
|
|
topright_xy = h->topright_mb_xy;
|
|
left_xy[LTOP] = h->left_mb_xy[LTOP];
|
|
left_xy[LBOT] = h->left_mb_xy[LBOT];
|
|
topleft_type = h->topleft_type;
|
|
top_type = h->top_type;
|
|
topright_type = h->topright_type;
|
|
left_type[LTOP] = h->left_type[LTOP];
|
|
left_type[LBOT] = h->left_type[LBOT];
|
|
|
|
if (!IS_SKIP(mb_type)) {
|
|
if (IS_INTRA(mb_type)) {
|
|
int type_mask = h->pps.constrained_intra_pred ? IS_INTRA(-1) : -1;
|
|
h->topleft_samples_available =
|
|
h->top_samples_available =
|
|
h->left_samples_available = 0xFFFF;
|
|
h->topright_samples_available = 0xEEEA;
|
|
|
|
if (!(top_type & type_mask)) {
|
|
h->topleft_samples_available = 0xB3FF;
|
|
h->top_samples_available = 0x33FF;
|
|
h->topright_samples_available = 0x26EA;
|
|
}
|
|
if (IS_INTERLACED(mb_type) != IS_INTERLACED(left_type[LTOP])) {
|
|
if (IS_INTERLACED(mb_type)) {
|
|
if (!(left_type[LTOP] & type_mask)) {
|
|
h->topleft_samples_available &= 0xDFFF;
|
|
h->left_samples_available &= 0x5FFF;
|
|
}
|
|
if (!(left_type[LBOT] & type_mask)) {
|
|
h->topleft_samples_available &= 0xFF5F;
|
|
h->left_samples_available &= 0xFF5F;
|
|
}
|
|
} else {
|
|
int left_typei = h->cur_pic.mb_type[left_xy[LTOP] + h->mb_stride];
|
|
|
|
av_assert2(left_xy[LTOP] == left_xy[LBOT]);
|
|
if (!((left_typei & type_mask) && (left_type[LTOP] & type_mask))) {
|
|
h->topleft_samples_available &= 0xDF5F;
|
|
h->left_samples_available &= 0x5F5F;
|
|
}
|
|
}
|
|
} else {
|
|
if (!(left_type[LTOP] & type_mask)) {
|
|
h->topleft_samples_available &= 0xDF5F;
|
|
h->left_samples_available &= 0x5F5F;
|
|
}
|
|
}
|
|
|
|
if (!(topleft_type & type_mask))
|
|
h->topleft_samples_available &= 0x7FFF;
|
|
|
|
if (!(topright_type & type_mask))
|
|
h->topright_samples_available &= 0xFBFF;
|
|
|
|
if (IS_INTRA4x4(mb_type)) {
|
|
if (IS_INTRA4x4(top_type)) {
|
|
AV_COPY32(h->intra4x4_pred_mode_cache + 4 + 8 * 0, h->intra4x4_pred_mode + h->mb2br_xy[top_xy]);
|
|
} else {
|
|
h->intra4x4_pred_mode_cache[4 + 8 * 0] =
|
|
h->intra4x4_pred_mode_cache[5 + 8 * 0] =
|
|
h->intra4x4_pred_mode_cache[6 + 8 * 0] =
|
|
h->intra4x4_pred_mode_cache[7 + 8 * 0] = 2 - 3 * !(top_type & type_mask);
|
|
}
|
|
for (i = 0; i < 2; i++) {
|
|
if (IS_INTRA4x4(left_type[LEFT(i)])) {
|
|
int8_t *mode = h->intra4x4_pred_mode + h->mb2br_xy[left_xy[LEFT(i)]];
|
|
h->intra4x4_pred_mode_cache[3 + 8 * 1 + 2 * 8 * i] = mode[6 - left_block[0 + 2 * i]];
|
|
h->intra4x4_pred_mode_cache[3 + 8 * 2 + 2 * 8 * i] = mode[6 - left_block[1 + 2 * i]];
|
|
} else {
|
|
h->intra4x4_pred_mode_cache[3 + 8 * 1 + 2 * 8 * i] =
|
|
h->intra4x4_pred_mode_cache[3 + 8 * 2 + 2 * 8 * i] = 2 - 3 * !(left_type[LEFT(i)] & type_mask);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* 0 . T T. T T T T
|
|
* 1 L . .L . . . .
|
|
* 2 L . .L . . . .
|
|
* 3 . T TL . . . .
|
|
* 4 L . .L . . . .
|
|
* 5 L . .. . . . .
|
|
*/
|
|
/* FIXME: constraint_intra_pred & partitioning & nnz
|
|
* (let us hope this is just a typo in the spec) */
|
|
nnz_cache = h->non_zero_count_cache;
|
|
if (top_type) {
|
|
nnz = h->non_zero_count[top_xy];
|
|
AV_COPY32(&nnz_cache[4 + 8 * 0], &nnz[4 * 3]);
|
|
if (!h->chroma_y_shift) {
|
|
AV_COPY32(&nnz_cache[4 + 8 * 5], &nnz[4 * 7]);
|
|
AV_COPY32(&nnz_cache[4 + 8 * 10], &nnz[4 * 11]);
|
|
} else {
|
|
AV_COPY32(&nnz_cache[4 + 8 * 5], &nnz[4 * 5]);
|
|
AV_COPY32(&nnz_cache[4 + 8 * 10], &nnz[4 * 9]);
|
|
}
|
|
} else {
|
|
uint32_t top_empty = CABAC(h) && !IS_INTRA(mb_type) ? 0 : 0x40404040;
|
|
AV_WN32A(&nnz_cache[4 + 8 * 0], top_empty);
|
|
AV_WN32A(&nnz_cache[4 + 8 * 5], top_empty);
|
|
AV_WN32A(&nnz_cache[4 + 8 * 10], top_empty);
|
|
}
|
|
|
|
for (i = 0; i < 2; i++) {
|
|
if (left_type[LEFT(i)]) {
|
|
nnz = h->non_zero_count[left_xy[LEFT(i)]];
|
|
nnz_cache[3 + 8 * 1 + 2 * 8 * i] = nnz[left_block[8 + 0 + 2 * i]];
|
|
nnz_cache[3 + 8 * 2 + 2 * 8 * i] = nnz[left_block[8 + 1 + 2 * i]];
|
|
if (CHROMA444(h)) {
|
|
nnz_cache[3 + 8 * 6 + 2 * 8 * i] = nnz[left_block[8 + 0 + 2 * i] + 4 * 4];
|
|
nnz_cache[3 + 8 * 7 + 2 * 8 * i] = nnz[left_block[8 + 1 + 2 * i] + 4 * 4];
|
|
nnz_cache[3 + 8 * 11 + 2 * 8 * i] = nnz[left_block[8 + 0 + 2 * i] + 8 * 4];
|
|
nnz_cache[3 + 8 * 12 + 2 * 8 * i] = nnz[left_block[8 + 1 + 2 * i] + 8 * 4];
|
|
} else if (CHROMA422(h)) {
|
|
nnz_cache[3 + 8 * 6 + 2 * 8 * i] = nnz[left_block[8 + 0 + 2 * i] - 2 + 4 * 4];
|
|
nnz_cache[3 + 8 * 7 + 2 * 8 * i] = nnz[left_block[8 + 1 + 2 * i] - 2 + 4 * 4];
|
|
nnz_cache[3 + 8 * 11 + 2 * 8 * i] = nnz[left_block[8 + 0 + 2 * i] - 2 + 8 * 4];
|
|
nnz_cache[3 + 8 * 12 + 2 * 8 * i] = nnz[left_block[8 + 1 + 2 * i] - 2 + 8 * 4];
|
|
} else {
|
|
nnz_cache[3 + 8 * 6 + 8 * i] = nnz[left_block[8 + 4 + 2 * i]];
|
|
nnz_cache[3 + 8 * 11 + 8 * i] = nnz[left_block[8 + 5 + 2 * i]];
|
|
}
|
|
} else {
|
|
nnz_cache[3 + 8 * 1 + 2 * 8 * i] =
|
|
nnz_cache[3 + 8 * 2 + 2 * 8 * i] =
|
|
nnz_cache[3 + 8 * 6 + 2 * 8 * i] =
|
|
nnz_cache[3 + 8 * 7 + 2 * 8 * i] =
|
|
nnz_cache[3 + 8 * 11 + 2 * 8 * i] =
|
|
nnz_cache[3 + 8 * 12 + 2 * 8 * i] = CABAC(h) && !IS_INTRA(mb_type) ? 0 : 64;
|
|
}
|
|
}
|
|
|
|
if (CABAC(h)) {
|
|
// top_cbp
|
|
if (top_type)
|
|
h->top_cbp = h->cbp_table[top_xy];
|
|
else
|
|
h->top_cbp = IS_INTRA(mb_type) ? 0x7CF : 0x00F;
|
|
// left_cbp
|
|
if (left_type[LTOP]) {
|
|
h->left_cbp = (h->cbp_table[left_xy[LTOP]] & 0x7F0) |
|
|
((h->cbp_table[left_xy[LTOP]] >> (left_block[0] & (~1))) & 2) |
|
|
(((h->cbp_table[left_xy[LBOT]] >> (left_block[2] & (~1))) & 2) << 2);
|
|
} else {
|
|
h->left_cbp = IS_INTRA(mb_type) ? 0x7CF : 0x00F;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (IS_INTER(mb_type) || (IS_DIRECT(mb_type) && h->direct_spatial_mv_pred)) {
|
|
int list;
|
|
int b_stride = h->b_stride;
|
|
for (list = 0; list < h->list_count; list++) {
|
|
int8_t *ref_cache = &h->ref_cache[list][scan8[0]];
|
|
int8_t *ref = h->cur_pic.ref_index[list];
|
|
int16_t(*mv_cache)[2] = &h->mv_cache[list][scan8[0]];
|
|
int16_t(*mv)[2] = h->cur_pic.motion_val[list];
|
|
if (!USES_LIST(mb_type, list))
|
|
continue;
|
|
av_assert2(!(IS_DIRECT(mb_type) && !h->direct_spatial_mv_pred));
|
|
|
|
if (USES_LIST(top_type, list)) {
|
|
const int b_xy = h->mb2b_xy[top_xy] + 3 * b_stride;
|
|
AV_COPY128(mv_cache[0 - 1 * 8], mv[b_xy + 0]);
|
|
ref_cache[0 - 1 * 8] =
|
|
ref_cache[1 - 1 * 8] = ref[4 * top_xy + 2];
|
|
ref_cache[2 - 1 * 8] =
|
|
ref_cache[3 - 1 * 8] = ref[4 * top_xy + 3];
|
|
} else {
|
|
AV_ZERO128(mv_cache[0 - 1 * 8]);
|
|
AV_WN32A(&ref_cache[0 - 1 * 8],
|
|
((top_type ? LIST_NOT_USED : PART_NOT_AVAILABLE) & 0xFF) * 0x01010101u);
|
|
}
|
|
|
|
if (mb_type & (MB_TYPE_16x8 | MB_TYPE_8x8)) {
|
|
for (i = 0; i < 2; i++) {
|
|
int cache_idx = -1 + i * 2 * 8;
|
|
if (USES_LIST(left_type[LEFT(i)], list)) {
|
|
const int b_xy = h->mb2b_xy[left_xy[LEFT(i)]] + 3;
|
|
const int b8_xy = 4 * left_xy[LEFT(i)] + 1;
|
|
AV_COPY32(mv_cache[cache_idx],
|
|
mv[b_xy + b_stride * left_block[0 + i * 2]]);
|
|
AV_COPY32(mv_cache[cache_idx + 8],
|
|
mv[b_xy + b_stride * left_block[1 + i * 2]]);
|
|
ref_cache[cache_idx] = ref[b8_xy + (left_block[0 + i * 2] & ~1)];
|
|
ref_cache[cache_idx + 8] = ref[b8_xy + (left_block[1 + i * 2] & ~1)];
|
|
} else {
|
|
AV_ZERO32(mv_cache[cache_idx]);
|
|
AV_ZERO32(mv_cache[cache_idx + 8]);
|
|
ref_cache[cache_idx] =
|
|
ref_cache[cache_idx + 8] = (left_type[LEFT(i)]) ? LIST_NOT_USED
|
|
: PART_NOT_AVAILABLE;
|
|
}
|
|
}
|
|
} else {
|
|
if (USES_LIST(left_type[LTOP], list)) {
|
|
const int b_xy = h->mb2b_xy[left_xy[LTOP]] + 3;
|
|
const int b8_xy = 4 * left_xy[LTOP] + 1;
|
|
AV_COPY32(mv_cache[-1], mv[b_xy + b_stride * left_block[0]]);
|
|
ref_cache[-1] = ref[b8_xy + (left_block[0] & ~1)];
|
|
} else {
|
|
AV_ZERO32(mv_cache[-1]);
|
|
ref_cache[-1] = left_type[LTOP] ? LIST_NOT_USED
|
|
: PART_NOT_AVAILABLE;
|
|
}
|
|
}
|
|
|
|
if (USES_LIST(topright_type, list)) {
|
|
const int b_xy = h->mb2b_xy[topright_xy] + 3 * b_stride;
|
|
AV_COPY32(mv_cache[4 - 1 * 8], mv[b_xy]);
|
|
ref_cache[4 - 1 * 8] = ref[4 * topright_xy + 2];
|
|
} else {
|
|
AV_ZERO32(mv_cache[4 - 1 * 8]);
|
|
ref_cache[4 - 1 * 8] = topright_type ? LIST_NOT_USED
|
|
: PART_NOT_AVAILABLE;
|
|
}
|
|
if(ref_cache[2 - 1*8] < 0 || ref_cache[4 - 1*8] < 0){
|
|
if (USES_LIST(topleft_type, list)) {
|
|
const int b_xy = h->mb2b_xy[topleft_xy] + 3 + b_stride +
|
|
(h->topleft_partition & 2 * b_stride);
|
|
const int b8_xy = 4 * topleft_xy + 1 + (h->topleft_partition & 2);
|
|
AV_COPY32(mv_cache[-1 - 1 * 8], mv[b_xy]);
|
|
ref_cache[-1 - 1 * 8] = ref[b8_xy];
|
|
} else {
|
|
AV_ZERO32(mv_cache[-1 - 1 * 8]);
|
|
ref_cache[-1 - 1 * 8] = topleft_type ? LIST_NOT_USED
|
|
: PART_NOT_AVAILABLE;
|
|
}
|
|
}
|
|
|
|
if ((mb_type & (MB_TYPE_SKIP | MB_TYPE_DIRECT2)) && !FRAME_MBAFF(h))
|
|
continue;
|
|
|
|
if (!(mb_type & (MB_TYPE_SKIP | MB_TYPE_DIRECT2))) {
|
|
uint8_t(*mvd_cache)[2] = &h->mvd_cache[list][scan8[0]];
|
|
uint8_t(*mvd)[2] = h->mvd_table[list];
|
|
ref_cache[2 + 8 * 0] =
|
|
ref_cache[2 + 8 * 2] = PART_NOT_AVAILABLE;
|
|
AV_ZERO32(mv_cache[2 + 8 * 0]);
|
|
AV_ZERO32(mv_cache[2 + 8 * 2]);
|
|
|
|
if (CABAC(h)) {
|
|
if (USES_LIST(top_type, list)) {
|
|
const int b_xy = h->mb2br_xy[top_xy];
|
|
AV_COPY64(mvd_cache[0 - 1 * 8], mvd[b_xy + 0]);
|
|
} else {
|
|
AV_ZERO64(mvd_cache[0 - 1 * 8]);
|
|
}
|
|
if (USES_LIST(left_type[LTOP], list)) {
|
|
const int b_xy = h->mb2br_xy[left_xy[LTOP]] + 6;
|
|
AV_COPY16(mvd_cache[-1 + 0 * 8], mvd[b_xy - left_block[0]]);
|
|
AV_COPY16(mvd_cache[-1 + 1 * 8], mvd[b_xy - left_block[1]]);
|
|
} else {
|
|
AV_ZERO16(mvd_cache[-1 + 0 * 8]);
|
|
AV_ZERO16(mvd_cache[-1 + 1 * 8]);
|
|
}
|
|
if (USES_LIST(left_type[LBOT], list)) {
|
|
const int b_xy = h->mb2br_xy[left_xy[LBOT]] + 6;
|
|
AV_COPY16(mvd_cache[-1 + 2 * 8], mvd[b_xy - left_block[2]]);
|
|
AV_COPY16(mvd_cache[-1 + 3 * 8], mvd[b_xy - left_block[3]]);
|
|
} else {
|
|
AV_ZERO16(mvd_cache[-1 + 2 * 8]);
|
|
AV_ZERO16(mvd_cache[-1 + 3 * 8]);
|
|
}
|
|
AV_ZERO16(mvd_cache[2 + 8 * 0]);
|
|
AV_ZERO16(mvd_cache[2 + 8 * 2]);
|
|
if (h->slice_type_nos == AV_PICTURE_TYPE_B) {
|
|
uint8_t *direct_cache = &h->direct_cache[scan8[0]];
|
|
uint8_t *direct_table = h->direct_table;
|
|
fill_rectangle(direct_cache, 4, 4, 8, MB_TYPE_16x16 >> 1, 1);
|
|
|
|
if (IS_DIRECT(top_type)) {
|
|
AV_WN32A(&direct_cache[-1 * 8],
|
|
0x01010101u * (MB_TYPE_DIRECT2 >> 1));
|
|
} else if (IS_8X8(top_type)) {
|
|
int b8_xy = 4 * top_xy;
|
|
direct_cache[0 - 1 * 8] = direct_table[b8_xy + 2];
|
|
direct_cache[2 - 1 * 8] = direct_table[b8_xy + 3];
|
|
} else {
|
|
AV_WN32A(&direct_cache[-1 * 8],
|
|
0x01010101 * (MB_TYPE_16x16 >> 1));
|
|
}
|
|
|
|
if (IS_DIRECT(left_type[LTOP]))
|
|
direct_cache[-1 + 0 * 8] = MB_TYPE_DIRECT2 >> 1;
|
|
else if (IS_8X8(left_type[LTOP]))
|
|
direct_cache[-1 + 0 * 8] = direct_table[4 * left_xy[LTOP] + 1 + (left_block[0] & ~1)];
|
|
else
|
|
direct_cache[-1 + 0 * 8] = MB_TYPE_16x16 >> 1;
|
|
|
|
if (IS_DIRECT(left_type[LBOT]))
|
|
direct_cache[-1 + 2 * 8] = MB_TYPE_DIRECT2 >> 1;
|
|
else if (IS_8X8(left_type[LBOT]))
|
|
direct_cache[-1 + 2 * 8] = direct_table[4 * left_xy[LBOT] + 1 + (left_block[2] & ~1)];
|
|
else
|
|
direct_cache[-1 + 2 * 8] = MB_TYPE_16x16 >> 1;
|
|
}
|
|
}
|
|
}
|
|
|
|
#define MAP_MVS \
|
|
MAP_F2F(scan8[0] - 1 - 1 * 8, topleft_type) \
|
|
MAP_F2F(scan8[0] + 0 - 1 * 8, top_type) \
|
|
MAP_F2F(scan8[0] + 1 - 1 * 8, top_type) \
|
|
MAP_F2F(scan8[0] + 2 - 1 * 8, top_type) \
|
|
MAP_F2F(scan8[0] + 3 - 1 * 8, top_type) \
|
|
MAP_F2F(scan8[0] + 4 - 1 * 8, topright_type) \
|
|
MAP_F2F(scan8[0] - 1 + 0 * 8, left_type[LTOP]) \
|
|
MAP_F2F(scan8[0] - 1 + 1 * 8, left_type[LTOP]) \
|
|
MAP_F2F(scan8[0] - 1 + 2 * 8, left_type[LBOT]) \
|
|
MAP_F2F(scan8[0] - 1 + 3 * 8, left_type[LBOT])
|
|
|
|
if (FRAME_MBAFF(h)) {
|
|
if (MB_FIELD(h)) {
|
|
|
|
#define MAP_F2F(idx, mb_type) \
|
|
if (!IS_INTERLACED(mb_type) && h->ref_cache[list][idx] >= 0) { \
|
|
h->ref_cache[list][idx] <<= 1; \
|
|
h->mv_cache[list][idx][1] /= 2; \
|
|
h->mvd_cache[list][idx][1] >>= 1; \
|
|
}
|
|
|
|
MAP_MVS
|
|
} else {
|
|
|
|
#undef MAP_F2F
|
|
#define MAP_F2F(idx, mb_type) \
|
|
if (IS_INTERLACED(mb_type) && h->ref_cache[list][idx] >= 0) { \
|
|
h->ref_cache[list][idx] >>= 1; \
|
|
h->mv_cache[list][idx][1] <<= 1; \
|
|
h->mvd_cache[list][idx][1] <<= 1; \
|
|
}
|
|
|
|
MAP_MVS
|
|
#undef MAP_F2F
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
h->neighbor_transform_size = !!IS_8x8DCT(top_type) + !!IS_8x8DCT(left_type[LTOP]);
|
|
}
|
|
|
|
/**
|
|
* decodes a P_SKIP or B_SKIP macroblock
|
|
*/
|
|
static void av_unused decode_mb_skip(H264Context *h)
|
|
{
|
|
const int mb_xy = h->mb_xy;
|
|
int mb_type = 0;
|
|
|
|
memset(h->non_zero_count[mb_xy], 0, 48);
|
|
|
|
if (MB_FIELD(h))
|
|
mb_type |= MB_TYPE_INTERLACED;
|
|
|
|
if (h->slice_type_nos == AV_PICTURE_TYPE_B) {
|
|
// just for fill_caches. pred_direct_motion will set the real mb_type
|
|
mb_type |= MB_TYPE_L0L1 | MB_TYPE_DIRECT2 | MB_TYPE_SKIP;
|
|
if (h->direct_spatial_mv_pred) {
|
|
fill_decode_neighbors(h, mb_type);
|
|
fill_decode_caches(h, mb_type); //FIXME check what is needed and what not ...
|
|
}
|
|
ff_h264_pred_direct_motion(h, &mb_type);
|
|
mb_type |= MB_TYPE_SKIP;
|
|
} else {
|
|
mb_type |= MB_TYPE_16x16 | MB_TYPE_P0L0 | MB_TYPE_P1L0 | MB_TYPE_SKIP;
|
|
|
|
fill_decode_neighbors(h, mb_type);
|
|
pred_pskip_motion(h);
|
|
}
|
|
|
|
write_back_motion(h, mb_type);
|
|
h->cur_pic.mb_type[mb_xy] = mb_type;
|
|
h->cur_pic.qscale_table[mb_xy] = h->qscale;
|
|
h->slice_table[mb_xy] = h->slice_num;
|
|
h->prev_mb_skipped = 1;
|
|
}
|
|
|
|
#endif /* AVCODEC_H264_MVPRED_H */
|