kolibrios-gitea/programs/develop/kosjs/libmujs/jsdtoa.c

748 lines
28 KiB
C
Raw Normal View History

/* Locale-independent implementations of string <-> double conversions. */
#include "jsi.h"
#if defined(_MSC_VER) && (_MSC_VER < 1700) /* VS2012 has stdint.h */
typedef unsigned int uint32_t;
typedef unsigned __int64 uint64_t;
#else
#include <stdint.h>
#endif
#include <errno.h>
#include <assert.h>
#ifndef TRUE
#define TRUE 1
#define FALSE 0
#endif
/*
* format exponent like sprintf(p, "e%+d", e)
*/
void
js_fmtexp(char *p, int e)
{
char se[9];
int i;
*p++ = 'e';
if(e < 0) {
*p++ = '-';
e = -e;
} else
*p++ = '+';
i = 0;
while(e) {
se[i++] = e % 10 + '0';
e /= 10;
}
while(i < 1)
se[i++] = '0';
while(i > 0)
*p++ = se[--i];
*p++ = '\0';
}
/*
* grisu2_59_56.c
*
* Grisu prints the optimal decimal representation of floating-point numbers.
*
* Copyright (c) 2009 Florian Loitsch
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
typedef struct diy_fp_t {
uint64_t f;
int e;
} diy_fp_t;
#define DIY_SIGNIFICAND_SIZE 64
#define D_1_LOG2_10 0.30102999566398114 /* 1 / lg(10) */
static const uint64_t powers_ten[] = {
0xbf29dcaba82fdeae, 0xeef453d6923bd65a, 0x9558b4661b6565f8,
0xbaaee17fa23ebf76, 0xe95a99df8ace6f54, 0x91d8a02bb6c10594,
0xb64ec836a47146fa, 0xe3e27a444d8d98b8, 0x8e6d8c6ab0787f73,
0xb208ef855c969f50, 0xde8b2b66b3bc4724, 0x8b16fb203055ac76,
0xaddcb9e83c6b1794, 0xd953e8624b85dd79, 0x87d4713d6f33aa6c,
0xa9c98d8ccb009506, 0xd43bf0effdc0ba48, 0x84a57695fe98746d,
0xa5ced43b7e3e9188, 0xcf42894a5dce35ea, 0x818995ce7aa0e1b2,
0xa1ebfb4219491a1f, 0xca66fa129f9b60a7, 0xfd00b897478238d1,
0x9e20735e8cb16382, 0xc5a890362fddbc63, 0xf712b443bbd52b7c,
0x9a6bb0aa55653b2d, 0xc1069cd4eabe89f9, 0xf148440a256e2c77,
0x96cd2a865764dbca, 0xbc807527ed3e12bd, 0xeba09271e88d976c,
0x93445b8731587ea3, 0xb8157268fdae9e4c, 0xe61acf033d1a45df,
0x8fd0c16206306bac, 0xb3c4f1ba87bc8697, 0xe0b62e2929aba83c,
0x8c71dcd9ba0b4926, 0xaf8e5410288e1b6f, 0xdb71e91432b1a24b,
0x892731ac9faf056f, 0xab70fe17c79ac6ca, 0xd64d3d9db981787d,
0x85f0468293f0eb4e, 0xa76c582338ed2622, 0xd1476e2c07286faa,
0x82cca4db847945ca, 0xa37fce126597973d, 0xcc5fc196fefd7d0c,
0xff77b1fcbebcdc4f, 0x9faacf3df73609b1, 0xc795830d75038c1e,
0xf97ae3d0d2446f25, 0x9becce62836ac577, 0xc2e801fb244576d5,
0xf3a20279ed56d48a, 0x9845418c345644d7, 0xbe5691ef416bd60c,
0xedec366b11c6cb8f, 0x94b3a202eb1c3f39, 0xb9e08a83a5e34f08,
0xe858ad248f5c22ca, 0x91376c36d99995be, 0xb58547448ffffb2e,
0xe2e69915b3fff9f9, 0x8dd01fad907ffc3c, 0xb1442798f49ffb4b,
0xdd95317f31c7fa1d, 0x8a7d3eef7f1cfc52, 0xad1c8eab5ee43b67,
0xd863b256369d4a41, 0x873e4f75e2224e68, 0xa90de3535aaae202,
0xd3515c2831559a83, 0x8412d9991ed58092, 0xa5178fff668ae0b6,
0xce5d73ff402d98e4, 0x80fa687f881c7f8e, 0xa139029f6a239f72,
0xc987434744ac874f, 0xfbe9141915d7a922, 0x9d71ac8fada6c9b5,
0xc4ce17b399107c23, 0xf6019da07f549b2b, 0x99c102844f94e0fb,
0xc0314325637a193a, 0xf03d93eebc589f88, 0x96267c7535b763b5,
0xbbb01b9283253ca3, 0xea9c227723ee8bcb, 0x92a1958a7675175f,
0xb749faed14125d37, 0xe51c79a85916f485, 0x8f31cc0937ae58d3,
0xb2fe3f0b8599ef08, 0xdfbdcece67006ac9, 0x8bd6a141006042be,
0xaecc49914078536d, 0xda7f5bf590966849, 0x888f99797a5e012d,
0xaab37fd7d8f58179, 0xd5605fcdcf32e1d7, 0x855c3be0a17fcd26,
0xa6b34ad8c9dfc070, 0xd0601d8efc57b08c, 0x823c12795db6ce57,
0xa2cb1717b52481ed, 0xcb7ddcdda26da269, 0xfe5d54150b090b03,
0x9efa548d26e5a6e2, 0xc6b8e9b0709f109a, 0xf867241c8cc6d4c1,
0x9b407691d7fc44f8, 0xc21094364dfb5637, 0xf294b943e17a2bc4,
0x979cf3ca6cec5b5b, 0xbd8430bd08277231, 0xece53cec4a314ebe,
0x940f4613ae5ed137, 0xb913179899f68584, 0xe757dd7ec07426e5,
0x9096ea6f3848984f, 0xb4bca50b065abe63, 0xe1ebce4dc7f16dfc,
0x8d3360f09cf6e4bd, 0xb080392cc4349ded, 0xdca04777f541c568,
0x89e42caaf9491b61, 0xac5d37d5b79b6239, 0xd77485cb25823ac7,
0x86a8d39ef77164bd, 0xa8530886b54dbdec, 0xd267caa862a12d67,
0x8380dea93da4bc60, 0xa46116538d0deb78, 0xcd795be870516656,
0x806bd9714632dff6, 0xa086cfcd97bf97f4, 0xc8a883c0fdaf7df0,
0xfad2a4b13d1b5d6c, 0x9cc3a6eec6311a64, 0xc3f490aa77bd60fd,
0xf4f1b4d515acb93c, 0x991711052d8bf3c5, 0xbf5cd54678eef0b7,
0xef340a98172aace5, 0x9580869f0e7aac0f, 0xbae0a846d2195713,
0xe998d258869facd7, 0x91ff83775423cc06, 0xb67f6455292cbf08,
0xe41f3d6a7377eeca, 0x8e938662882af53e, 0xb23867fb2a35b28e,
0xdec681f9f4c31f31, 0x8b3c113c38f9f37f, 0xae0b158b4738705f,
0xd98ddaee19068c76, 0x87f8a8d4cfa417ca, 0xa9f6d30a038d1dbc,
0xd47487cc8470652b, 0x84c8d4dfd2c63f3b, 0xa5fb0a17c777cf0a,
0xcf79cc9db955c2cc, 0x81ac1fe293d599c0, 0xa21727db38cb0030,
0xca9cf1d206fdc03c, 0xfd442e4688bd304b, 0x9e4a9cec15763e2f,
0xc5dd44271ad3cdba, 0xf7549530e188c129, 0x9a94dd3e8cf578ba,
0xc13a148e3032d6e8, 0xf18899b1bc3f8ca2, 0x96f5600f15a7b7e5,
0xbcb2b812db11a5de, 0xebdf661791d60f56, 0x936b9fcebb25c996,
0xb84687c269ef3bfb, 0xe65829b3046b0afa, 0x8ff71a0fe2c2e6dc,
0xb3f4e093db73a093, 0xe0f218b8d25088b8, 0x8c974f7383725573,
0xafbd2350644eead0, 0xdbac6c247d62a584, 0x894bc396ce5da772,
0xab9eb47c81f5114f, 0xd686619ba27255a3, 0x8613fd0145877586,
0xa798fc4196e952e7, 0xd17f3b51fca3a7a1, 0x82ef85133de648c5,
0xa3ab66580d5fdaf6, 0xcc963fee10b7d1b3, 0xffbbcfe994e5c620,
0x9fd561f1fd0f9bd4, 0xc7caba6e7c5382c9, 0xf9bd690a1b68637b,
0x9c1661a651213e2d, 0xc31bfa0fe5698db8, 0xf3e2f893dec3f126,
0x986ddb5c6b3a76b8, 0xbe89523386091466, 0xee2ba6c0678b597f,
0x94db483840b717f0, 0xba121a4650e4ddec, 0xe896a0d7e51e1566,
0x915e2486ef32cd60, 0xb5b5ada8aaff80b8, 0xe3231912d5bf60e6,
0x8df5efabc5979c90, 0xb1736b96b6fd83b4, 0xddd0467c64bce4a1,
0x8aa22c0dbef60ee4, 0xad4ab7112eb3929e, 0xd89d64d57a607745,
0x87625f056c7c4a8b, 0xa93af6c6c79b5d2e, 0xd389b47879823479,
0x843610cb4bf160cc, 0xa54394fe1eedb8ff, 0xce947a3da6a9273e,
0x811ccc668829b887, 0xa163ff802a3426a9, 0xc9bcff6034c13053,
0xfc2c3f3841f17c68, 0x9d9ba7832936edc1, 0xc5029163f384a931,
0xf64335bcf065d37d, 0x99ea0196163fa42e, 0xc06481fb9bcf8d3a,
0xf07da27a82c37088, 0x964e858c91ba2655, 0xbbe226efb628afeb,
0xeadab0aba3b2dbe5, 0x92c8ae6b464fc96f, 0xb77ada0617e3bbcb,
0xe55990879ddcaabe, 0x8f57fa54c2a9eab7, 0xb32df8e9f3546564,
0xdff9772470297ebd, 0x8bfbea76c619ef36, 0xaefae51477a06b04,
0xdab99e59958885c5, 0x88b402f7fd75539b, 0xaae103b5fcd2a882,
0xd59944a37c0752a2, 0x857fcae62d8493a5, 0xa6dfbd9fb8e5b88f,
0xd097ad07a71f26b2, 0x825ecc24c8737830, 0xa2f67f2dfa90563b,
0xcbb41ef979346bca, 0xfea126b7d78186bd, 0x9f24b832e6b0f436,
0xc6ede63fa05d3144, 0xf8a95fcf88747d94, 0x9b69dbe1b548ce7d,
0xc24452da229b021c, 0xf2d56790ab41c2a3, 0x97c560ba6b0919a6,
0xbdb6b8e905cb600f, 0xed246723473e3813, 0x9436c0760c86e30c,
0xb94470938fa89bcf, 0xe7958cb87392c2c3, 0x90bd77f3483bb9ba,
0xb4ecd5f01a4aa828, 0xe2280b6c20dd5232, 0x8d590723948a535f,
0xb0af48ec79ace837, 0xdcdb1b2798182245, 0x8a08f0f8bf0f156b,
0xac8b2d36eed2dac6, 0xd7adf884aa879177, 0x86ccbb52ea94baeb,
0xa87fea27a539e9a5, 0xd29fe4b18e88640f, 0x83a3eeeef9153e89,
0xa48ceaaab75a8e2b, 0xcdb02555653131b6, 0x808e17555f3ebf12,
0xa0b19d2ab70e6ed6, 0xc8de047564d20a8c, 0xfb158592be068d2f,
0x9ced737bb6c4183d, 0xc428d05aa4751e4d, 0xf53304714d9265e0,
0x993fe2c6d07b7fac, 0xbf8fdb78849a5f97, 0xef73d256a5c0f77d,
0x95a8637627989aae, 0xbb127c53b17ec159, 0xe9d71b689dde71b0,
0x9226712162ab070e, 0xb6b00d69bb55c8d1, 0xe45c10c42a2b3b06,
0x8eb98a7a9a5b04e3, 0xb267ed1940f1c61c, 0xdf01e85f912e37a3,
0x8b61313bbabce2c6, 0xae397d8aa96c1b78, 0xd9c7dced53c72256,
0x881cea14545c7575, 0xaa242499697392d3, 0xd4ad2dbfc3d07788,
0x84ec3c97da624ab5, 0xa6274bbdd0fadd62, 0xcfb11ead453994ba,
0x81ceb32c4b43fcf5, 0xa2425ff75e14fc32, 0xcad2f7f5359a3b3e,
0xfd87b5f28300ca0e, 0x9e74d1b791e07e48, 0xc612062576589ddb,
0xf79687aed3eec551, 0x9abe14cd44753b53, 0xc16d9a0095928a27,
0xf1c90080baf72cb1, 0x971da05074da7bef, 0xbce5086492111aeb,
0xec1e4a7db69561a5, 0x9392ee8e921d5d07, 0xb877aa3236a4b449,
0xe69594bec44de15b, 0x901d7cf73ab0acd9, 0xb424dc35095cd80f,
0xe12e13424bb40e13, 0x8cbccc096f5088cc, 0xafebff0bcb24aaff,
0xdbe6fecebdedd5bf, 0x89705f4136b4a597, 0xabcc77118461cefd,
0xd6bf94d5e57a42bc, 0x8637bd05af6c69b6, 0xa7c5ac471b478423,
0xd1b71758e219652c, 0x83126e978d4fdf3b, 0xa3d70a3d70a3d70a,
0xcccccccccccccccd, 0x8000000000000000, 0xa000000000000000,
0xc800000000000000, 0xfa00000000000000, 0x9c40000000000000,
0xc350000000000000, 0xf424000000000000, 0x9896800000000000,
0xbebc200000000000, 0xee6b280000000000, 0x9502f90000000000,
0xba43b74000000000, 0xe8d4a51000000000, 0x9184e72a00000000,
0xb5e620f480000000, 0xe35fa931a0000000, 0x8e1bc9bf04000000,
0xb1a2bc2ec5000000, 0xde0b6b3a76400000, 0x8ac7230489e80000,
0xad78ebc5ac620000, 0xd8d726b7177a8000, 0x878678326eac9000,
0xa968163f0a57b400, 0xd3c21bcecceda100, 0x84595161401484a0,
0xa56fa5b99019a5c8, 0xcecb8f27f4200f3a, 0x813f3978f8940984,
0xa18f07d736b90be5, 0xc9f2c9cd04674edf, 0xfc6f7c4045812296,
0x9dc5ada82b70b59e, 0xc5371912364ce305, 0xf684df56c3e01bc7,
0x9a130b963a6c115c, 0xc097ce7bc90715b3, 0xf0bdc21abb48db20,
0x96769950b50d88f4, 0xbc143fa4e250eb31, 0xeb194f8e1ae525fd,
0x92efd1b8d0cf37be, 0xb7abc627050305ae, 0xe596b7b0c643c719,
0x8f7e32ce7bea5c70, 0xb35dbf821ae4f38c, 0xe0352f62a19e306f,
0x8c213d9da502de45, 0xaf298d050e4395d7, 0xdaf3f04651d47b4c,
0x88d8762bf324cd10, 0xab0e93b6efee0054, 0xd5d238a4abe98068,
0x85a36366eb71f041, 0xa70c3c40a64e6c52, 0xd0cf4b50cfe20766,
0x82818f1281ed44a0, 0xa321f2d7226895c8, 0xcbea6f8ceb02bb3a,
0xfee50b7025c36a08, 0x9f4f2726179a2245, 0xc722f0ef9d80aad6,
0xf8ebad2b84e0d58c, 0x9b934c3b330c8577, 0xc2781f49ffcfa6d5,
0xf316271c7fc3908b, 0x97edd871cfda3a57, 0xbde94e8e43d0c8ec,
0xed63a231d4c4fb27, 0x945e455f24fb1cf9, 0xb975d6b6ee39e437,
0xe7d34c64a9c85d44, 0x90e40fbeea1d3a4b, 0xb51d13aea4a488dd,
0xe264589a4dcdab15, 0x8d7eb76070a08aed, 0xb0de65388cc8ada8,
0xdd15fe86affad912, 0x8a2dbf142dfcc7ab, 0xacb92ed9397bf996,
0xd7e77a8f87daf7fc, 0x86f0ac99b4e8dafd, 0xa8acd7c0222311bd,
0xd2d80db02aabd62c, 0x83c7088e1aab65db, 0xa4b8cab1a1563f52,
0xcde6fd5e09abcf27, 0x80b05e5ac60b6178, 0xa0dc75f1778e39d6,
0xc913936dd571c84c, 0xfb5878494ace3a5f, 0x9d174b2dcec0e47b,
0xc45d1df942711d9a, 0xf5746577930d6501, 0x9968bf6abbe85f20,
0xbfc2ef456ae276e9, 0xefb3ab16c59b14a3, 0x95d04aee3b80ece6,
0xbb445da9ca61281f, 0xea1575143cf97227, 0x924d692ca61be758,
0xb6e0c377cfa2e12e, 0xe498f455c38b997a, 0x8edf98b59a373fec,
0xb2977ee300c50fe7, 0xdf3d5e9bc0f653e1, 0x8b865b215899f46d,
0xae67f1e9aec07188, 0xda01ee641a708dea, 0x884134fe908658b2,
0xaa51823e34a7eedf, 0xd4e5e2cdc1d1ea96, 0x850fadc09923329e,
0xa6539930bf6bff46, 0xcfe87f7cef46ff17, 0x81f14fae158c5f6e,
0xa26da3999aef774a, 0xcb090c8001ab551c, 0xfdcb4fa002162a63,
0x9e9f11c4014dda7e, 0xc646d63501a1511e, 0xf7d88bc24209a565,
0x9ae757596946075f, 0xc1a12d2fc3978937, 0xf209787bb47d6b85,
0x9745eb4d50ce6333, 0xbd176620a501fc00, 0xec5d3fa8ce427b00,
0x93ba47c980e98ce0, 0xb8a8d9bbe123f018, 0xe6d3102ad96cec1e,
0x9043ea1ac7e41393, 0xb454e4a179dd1877, 0xe16a1dc9d8545e95,
0x8ce2529e2734bb1d, 0xb01ae745b101e9e4, 0xdc21a1171d42645d,
0x899504ae72497eba, 0xabfa45da0edbde69, 0xd6f8d7509292d603,
0x865b86925b9bc5c2, 0xa7f26836f282b733, 0xd1ef0244af2364ff,
0x8335616aed761f1f, 0xa402b9c5a8d3a6e7, 0xcd036837130890a1,
0x802221226be55a65, 0xa02aa96b06deb0fe, 0xc83553c5c8965d3d,
0xfa42a8b73abbf48d, 0x9c69a97284b578d8, 0xc38413cf25e2d70e,
0xf46518c2ef5b8cd1, 0x98bf2f79d5993803, 0xbeeefb584aff8604,
0xeeaaba2e5dbf6785, 0x952ab45cfa97a0b3, 0xba756174393d88e0,
0xe912b9d1478ceb17, 0x91abb422ccb812ef, 0xb616a12b7fe617aa,
0xe39c49765fdf9d95, 0x8e41ade9fbebc27d, 0xb1d219647ae6b31c,
0xde469fbd99a05fe3, 0x8aec23d680043bee, 0xada72ccc20054aea,
0xd910f7ff28069da4, 0x87aa9aff79042287, 0xa99541bf57452b28,
0xd3fa922f2d1675f2, 0x847c9b5d7c2e09b7, 0xa59bc234db398c25,
0xcf02b2c21207ef2f, 0x8161afb94b44f57d, 0xa1ba1ba79e1632dc,
0xca28a291859bbf93, 0xfcb2cb35e702af78, 0x9defbf01b061adab,
0xc56baec21c7a1916, 0xf6c69a72a3989f5c, 0x9a3c2087a63f6399,
0xc0cb28a98fcf3c80, 0xf0fdf2d3f3c30b9f, 0x969eb7c47859e744,
0xbc4665b596706115, 0xeb57ff22fc0c795a, 0x9316ff75dd87cbd8,
0xb7dcbf5354e9bece, 0xe5d3ef282a242e82, 0x8fa475791a569d11,
0xb38d92d760ec4455, 0xe070f78d3927556b, 0x8c469ab843b89563,
0xaf58416654a6babb, 0xdb2e51bfe9d0696a, 0x88fcf317f22241e2,
0xab3c2fddeeaad25b, 0xd60b3bd56a5586f2, 0x85c7056562757457,
0xa738c6bebb12d16d, 0xd106f86e69d785c8, 0x82a45b450226b39d,
0xa34d721642b06084, 0xcc20ce9bd35c78a5, 0xff290242c83396ce,
0x9f79a169bd203e41, 0xc75809c42c684dd1, 0xf92e0c3537826146,
0x9bbcc7a142b17ccc, 0xc2abf989935ddbfe, 0xf356f7ebf83552fe,
0x98165af37b2153df, 0xbe1bf1b059e9a8d6, 0xeda2ee1c7064130c,
0x9485d4d1c63e8be8, 0xb9a74a0637ce2ee1, 0xe8111c87c5c1ba9a,
0x910ab1d4db9914a0, 0xb54d5e4a127f59c8, 0xe2a0b5dc971f303a,
0x8da471a9de737e24, 0xb10d8e1456105dad, 0xdd50f1996b947519,
0x8a5296ffe33cc930, 0xace73cbfdc0bfb7b, 0xd8210befd30efa5a,
0x8714a775e3e95c78, 0xa8d9d1535ce3b396, 0xd31045a8341ca07c,
0x83ea2b892091e44e, 0xa4e4b66b68b65d61, 0xce1de40642e3f4b9,
0x80d2ae83e9ce78f4, 0xa1075a24e4421731, 0xc94930ae1d529cfd,
0xfb9b7cd9a4a7443c, 0x9d412e0806e88aa6, 0xc491798a08a2ad4f,
0xf5b5d7ec8acb58a3, 0x9991a6f3d6bf1766, 0xbff610b0cc6edd3f,
0xeff394dcff8a948f, 0x95f83d0a1fb69cd9, 0xbb764c4ca7a44410,
0xea53df5fd18d5514, 0x92746b9be2f8552c, 0xb7118682dbb66a77,
0xe4d5e82392a40515, 0x8f05b1163ba6832d, 0xb2c71d5bca9023f8,
0xdf78e4b2bd342cf7, 0x8bab8eefb6409c1a, 0xae9672aba3d0c321,
0xda3c0f568cc4f3e9, 0x8865899617fb1871, 0xaa7eebfb9df9de8e,
0xd51ea6fa85785631, 0x8533285c936b35df, 0xa67ff273b8460357,
0xd01fef10a657842c, 0x8213f56a67f6b29c, 0xa298f2c501f45f43,
0xcb3f2f7642717713, 0xfe0efb53d30dd4d8, 0x9ec95d1463e8a507,
0xc67bb4597ce2ce49, 0xf81aa16fdc1b81db, 0x9b10a4e5e9913129,
0xc1d4ce1f63f57d73, 0xf24a01a73cf2dcd0, 0x976e41088617ca02,
0xbd49d14aa79dbc82, 0xec9c459d51852ba3, 0x93e1ab8252f33b46,
0xb8da1662e7b00a17, 0xe7109bfba19c0c9d, 0x906a617d450187e2,
0xb484f9dc9641e9db, 0xe1a63853bbd26451, 0x8d07e33455637eb3,
0xb049dc016abc5e60, 0xdc5c5301c56b75f7, 0x89b9b3e11b6329bb,
0xac2820d9623bf429, 0xd732290fbacaf134, 0x867f59a9d4bed6c0,
0xa81f301449ee8c70, 0xd226fc195c6a2f8c, 0x83585d8fd9c25db8,
0xa42e74f3d032f526, 0xcd3a1230c43fb26f, 0x80444b5e7aa7cf85,
0xa0555e361951c367, 0xc86ab5c39fa63441, 0xfa856334878fc151,
0x9c935e00d4b9d8d2, 0xc3b8358109e84f07, 0xf4a642e14c6262c9,
0x98e7e9cccfbd7dbe, 0xbf21e44003acdd2d, 0xeeea5d5004981478,
0x95527a5202df0ccb, 0xbaa718e68396cffe, 0xe950df20247c83fd,
0x91d28b7416cdd27e, 0xb6472e511c81471e, 0xe3d8f9e563a198e5,
0x8e679c2f5e44ff8f, 0xb201833b35d63f73, 0xde81e40a034bcf50,
0x8b112e86420f6192, 0xadd57a27d29339f6, 0xd94ad8b1c7380874,
0x87cec76f1c830549, 0xa9c2794ae3a3c69b, 0xd433179d9c8cb841,
0x849feec281d7f329, 0xa5c7ea73224deff3, 0xcf39e50feae16bf0,
0x81842f29f2cce376, 0xa1e53af46f801c53, 0xca5e89b18b602368,
0xfcf62c1dee382c42, 0x9e19db92b4e31ba9, 0xc5a05277621be294,
0xf70867153aa2db39, 0x9a65406d44a5c903, 0xc0fe908895cf3b44,
0xf13e34aabb430a15, 0x96c6e0eab509e64d, 0xbc789925624c5fe1,
0xeb96bf6ebadf77d9, 0x933e37a534cbaae8, 0xb80dc58e81fe95a1,
0xe61136f2227e3b0a, 0x8fcac257558ee4e6, 0xb3bd72ed2af29e20,
0xe0accfa875af45a8, 0x8c6c01c9498d8b89, 0xaf87023b9bf0ee6b,
0xdb68c2ca82ed2a06, 0x892179be91d43a44, 0xab69d82e364948d4
};
static const int powers_ten_e[] = {
-1203, -1200, -1196, -1193, -1190, -1186, -1183, -1180, -1176, -1173,
-1170, -1166, -1163, -1160, -1156, -1153, -1150, -1146, -1143, -1140,
-1136, -1133, -1130, -1127, -1123, -1120, -1117, -1113, -1110, -1107,
-1103, -1100, -1097, -1093, -1090, -1087, -1083, -1080, -1077, -1073,
-1070, -1067, -1063, -1060, -1057, -1053, -1050, -1047, -1043, -1040,
-1037, -1034, -1030, -1027, -1024, -1020, -1017, -1014, -1010, -1007,
-1004, -1000, -997, -994, -990, -987, -984, -980, -977, -974, -970,
-967, -964, -960, -957, -954, -950, -947, -944, -940, -937, -934, -931,
-927, -924, -921, -917, -914, -911, -907, -904, -901, -897, -894, -891,
-887, -884, -881, -877, -874, -871, -867, -864, -861, -857, -854, -851,
-847, -844, -841, -838, -834, -831, -828, -824, -821, -818, -814, -811,
-808, -804, -801, -798, -794, -791, -788, -784, -781, -778, -774, -771,
-768, -764, -761, -758, -754, -751, -748, -744, -741, -738, -735, -731,
-728, -725, -721, -718, -715, -711, -708, -705, -701, -698, -695, -691,
-688, -685, -681, -678, -675, -671, -668, -665, -661, -658, -655, -651,
-648, -645, -642, -638, -635, -632, -628, -625, -622, -618, -615, -612,
-608, -605, -602, -598, -595, -592, -588, -585, -582, -578, -575, -572,
-568, -565, -562, -558, -555, -552, -549, -545, -542, -539, -535, -532,
-529, -525, -522, -519, -515, -512, -509, -505, -502, -499, -495, -492,
-489, -485, -482, -479, -475, -472, -469, -465, -462, -459, -455, -452,
-449, -446, -442, -439, -436, -432, -429, -426, -422, -419, -416, -412,
-409, -406, -402, -399, -396, -392, -389, -386, -382, -379, -376, -372,
-369, -366, -362, -359, -356, -353, -349, -346, -343, -339, -336, -333,
-329, -326, -323, -319, -316, -313, -309, -306, -303, -299, -296, -293,
-289, -286, -283, -279, -276, -273, -269, -266, -263, -259, -256, -253,
-250, -246, -243, -240, -236, -233, -230, -226, -223, -220, -216, -213,
-210, -206, -203, -200, -196, -193, -190, -186, -183, -180, -176, -173,
-170, -166, -163, -160, -157, -153, -150, -147, -143, -140, -137, -133,
-130, -127, -123, -120, -117, -113, -110, -107, -103, -100, -97, -93,
-90, -87, -83, -80, -77, -73, -70, -67, -63, -60, -57, -54, -50, -47,
-44, -40, -37, -34, -30, -27, -24, -20, -17, -14, -10, -7, -4, 0, 3, 6,
10, 13, 16, 20, 23, 26, 30, 33, 36, 39, 43, 46, 49, 53, 56, 59, 63, 66,
69, 73, 76, 79, 83, 86, 89, 93, 96, 99, 103, 106, 109, 113, 116, 119,
123, 126, 129, 132, 136, 139, 142, 146, 149, 152, 156, 159, 162, 166,
169, 172, 176, 179, 182, 186, 189, 192, 196, 199, 202, 206, 209, 212,
216, 219, 222, 226, 229, 232, 235, 239, 242, 245, 249, 252, 255, 259,
262, 265, 269, 272, 275, 279, 282, 285, 289, 292, 295, 299, 302, 305,
309, 312, 315, 319, 322, 325, 328, 332, 335, 338, 342, 345, 348, 352,
355, 358, 362, 365, 368, 372, 375, 378, 382, 385, 388, 392, 395, 398,
402, 405, 408, 412, 415, 418, 422, 425, 428, 431, 435, 438, 441, 445,
448, 451, 455, 458, 461, 465, 468, 471, 475, 478, 481, 485, 488, 491,
495, 498, 501, 505, 508, 511, 515, 518, 521, 524, 528, 531, 534, 538,
541, 544, 548, 551, 554, 558, 561, 564, 568, 571, 574, 578, 581, 584,
588, 591, 594, 598, 601, 604, 608, 611, 614, 617, 621, 624, 627, 631,
634, 637, 641, 644, 647, 651, 654, 657, 661, 664, 667, 671, 674, 677,
681, 684, 687, 691, 694, 697, 701, 704, 707, 711, 714, 717, 720, 724,
727, 730, 734, 737, 740, 744, 747, 750, 754, 757, 760, 764, 767, 770,
774, 777, 780, 784, 787, 790, 794, 797, 800, 804, 807, 810, 813, 817,
820, 823, 827, 830, 833, 837, 840, 843, 847, 850, 853, 857, 860, 863,
867, 870, 873, 877, 880, 883, 887, 890, 893, 897, 900, 903, 907, 910,
913, 916, 920, 923, 926, 930, 933, 936, 940, 943, 946, 950, 953, 956,
960, 963, 966, 970, 973, 976, 980, 983, 986, 990, 993, 996, 1000, 1003,
1006, 1009, 1013, 1016, 1019, 1023, 1026, 1029, 1033, 1036, 1039, 1043,
1046, 1049, 1053, 1056, 1059, 1063, 1066, 1069, 1073, 1076
};
static diy_fp_t cached_power(int k)
{
diy_fp_t res;
int index = 343 + k;
res.f = powers_ten[index];
res.e = powers_ten_e[index];
return res;
}
static int k_comp(int e, int alpha, int gamma) {
return ceil((alpha-e+63) * D_1_LOG2_10);
}
static diy_fp_t minus(diy_fp_t x, diy_fp_t y)
{
diy_fp_t r;
assert(x.e == y.e);
assert(x.f >= y.f);
r.f = x.f - y.f;
r.e = x.e;
return r;
}
static diy_fp_t multiply(diy_fp_t x, diy_fp_t y)
{
uint64_t a,b,c,d,ac,bc,ad,bd,tmp;
diy_fp_t r;
uint64_t M32 = 0xFFFFFFFF;
a = x.f >> 32; b = x.f & M32;
c = y.f >> 32; d = y.f & M32;
ac = a*c; bc = b*c; ad = a*d; bd = b*d;
tmp = (bd>>32) + (ad&M32) + (bc&M32);
tmp += 1U << 31;
r.f = ac+(ad>>32)+(bc>>32)+(tmp >>32);
r.e = x.e + y.e + 64;
return r;
}
static uint64_t double_to_uint64(double d)
{
uint64_t n;
memcpy(&n, &d, 8);
return n;
}
#define DP_SIGNIFICAND_SIZE 52
#define DP_EXPONENT_BIAS (0x3FF + DP_SIGNIFICAND_SIZE)
#define DP_MIN_EXPONENT (-DP_EXPONENT_BIAS)
#define DP_EXPONENT_MASK 0x7FF0000000000000
#define DP_SIGNIFICAND_MASK 0x000FFFFFFFFFFFFF
#define DP_HIDDEN_BIT 0x0010000000000000
static diy_fp_t double2diy_fp(double d)
{
uint64_t d64 = double_to_uint64(d);
int biased_e = (d64 & DP_EXPONENT_MASK) >> DP_SIGNIFICAND_SIZE;
uint64_t significand = (d64 & DP_SIGNIFICAND_MASK);
diy_fp_t res;
if (biased_e != 0) {
res.f = significand + DP_HIDDEN_BIT;
res.e = biased_e - DP_EXPONENT_BIAS;
} else {
res.f = significand;
res.e = DP_MIN_EXPONENT + 1;
}
return res;
}
static diy_fp_t normalize_boundary(diy_fp_t in)
{
diy_fp_t res = in;
/* Normalize now */
/* the original number could have been a denormal. */
while (! (res.f & (DP_HIDDEN_BIT << 1))) {
res.f <<= 1;
res.e--;
}
/* do the final shifts in one go. Don't forget the hidden bit (the '-1') */
res.f <<= (DIY_SIGNIFICAND_SIZE - DP_SIGNIFICAND_SIZE - 2);
res.e = res.e - (DIY_SIGNIFICAND_SIZE - DP_SIGNIFICAND_SIZE - 2);
return res;
}
static void normalized_boundaries(double d, diy_fp_t* out_m_minus, diy_fp_t* out_m_plus)
{
diy_fp_t v = double2diy_fp(d);
diy_fp_t pl, mi;
int significand_is_zero = v.f == DP_HIDDEN_BIT;
pl.f = (v.f << 1) + 1; pl.e = v.e - 1;
pl = normalize_boundary(pl);
if (significand_is_zero) {
mi.f = (v.f << 2) - 1;
mi.e = v.e - 2;
} else {
mi.f = (v.f << 1) - 1;
mi.e = v.e - 1;
}
mi.f <<= mi.e - pl.e;
mi.e = pl.e;
*out_m_plus = pl;
*out_m_minus = mi;
}
#define TEN2 100
static void digit_gen(diy_fp_t Mp, diy_fp_t delta, char* buffer, int* len, int* K)
{
uint32_t div, p1;
uint64_t p2;
int d,kappa;
diy_fp_t one;
one.f = ((uint64_t) 1) << -Mp.e; one.e = Mp.e;
p1 = Mp.f >> -one.e;
p2 = Mp.f & (one.f - 1);
*len = 0; kappa = 3; div = TEN2;
while (kappa > 0) {
d = p1 / div;
if (d || *len) buffer[(*len)++] = '0' + d;
p1 %= div; kappa--; div /= 10;
if ((((uint64_t)p1)<<-one.e)+p2 <= delta.f) {
*K += kappa; return;
}
}
do {
p2 *= 10;
d = p2 >> -one.e;
if (d || *len) buffer[(*len)++] = '0' + d;
p2 &= one.f - 1; kappa--; delta.f *= 10;
} while (p2 > delta.f);
*K += kappa;
}
int
js_grisu2(double v, char *buffer, int *K)
{
int length, mk;
diy_fp_t w_m, w_p, c_mk, Wp, Wm, delta;
int q = 64, alpha = -59, gamma = -56;
normalized_boundaries(v, &w_m, &w_p);
mk = k_comp(w_p.e + q, alpha, gamma);
c_mk = cached_power(mk);
Wp = multiply(w_p, c_mk);
Wm = multiply(w_m, c_mk);
Wm.f++; Wp.f--;
delta = minus(Wp, Wm);
*K = -mk;
digit_gen(Wp, delta, buffer, &length, K);
return length;
}
/*
* strtod.c
*
* Copyright (c) 1988-1993 The Regents of the University of California.
* Copyright (c) 1994 Sun Microsystems, Inc.
*
* Permission to use, copy, modify, and distribute this software and its
* documentation for any purpose and without fee is hereby granted, provided
* that the above copyright notice appear in all copies. The University of
* California makes no representations about the suitability of this software
* for any purpose. It is provided "as is" without express or implied warranty.
*/
/* Largest possible base 10 exponent. Any exponent larger than this will
* already produce underflow or overflow, so there's no need to worry about
* additional digits.
*/
static int maxExponent = 511;
/* Table giving binary powers of 10. Entry
* is 10^2^i. Used to convert decimal
* exponents into floating-point numbers.
*/
static double powersOf10[] = {
10.,
100.,
1.0e4,
1.0e8,
1.0e16,
1.0e32,
1.0e64,
1.0e128,
1.0e256
};
/* Parse a decimal ASCII floating-point number, optionally preceded by white
* space. Must have form "-I.FE-X", where I is the integer part of the
* mantissa, F is the fractional part of the mantissa, and X is the exponent.
* Either of the signs may be "+", "-", or omitted. Either I or F may be
* omitted, or both. The decimal point isn't necessary unless F is present.
* The "E" may actually be an "e". E and X may both be omitted (but not just
* one).
*/
double
js_strtod(const char *string, char **endPtr)
{
int sign, expSign = FALSE;
double fraction, dblExp, *d;
register const char *p;
register int c;
/* Exponent read from "EX" field. */
int exp = 0;
/* Exponent that derives from the fractional part. Under normal
* circumstances, it is the negative of the number of digits in F.
* However, if I is very long, the last digits of I get dropped
* (otherwise a long I with a large negative exponent could cause an
* unnecessary overflow on I alone). In this case, fracExp is
* incremented one for each dropped digit.
*/
int fracExp = 0;
/* Number of digits in mantissa. */
int mantSize;
/* Number of mantissa digits BEFORE decimal point. */
int decPt;
/* Temporarily holds location of exponent in string. */
const char *pExp;
/*
* Strip off leading blanks and check for a sign.
*/
p = string;
while (*p == ' ' || *p == '\t' || *p == '\n' || *p == '\r') {
p += 1;
}
if (*p == '-') {
sign = TRUE;
p += 1;
} else {
if (*p == '+') {
p += 1;
}
sign = FALSE;
}
/*
* Count the number of digits in the mantissa (including the decimal
* point), and also locate the decimal point.
*/
decPt = -1;
for (mantSize = 0; ; mantSize += 1)
{
c = *p;
if (!(c>='0'&&c<='9')) {
if ((c != '.') || (decPt >= 0)) {
break;
}
decPt = mantSize;
}
p += 1;
}
/*
* Now suck up the digits in the mantissa. Use two integers to
* collect 9 digits each (this is faster than using floating-point).
* If the mantissa has more than 18 digits, ignore the extras, since
* they can't affect the value anyway.
*/
pExp = p;
p -= mantSize;
if (decPt < 0) {
decPt = mantSize;
} else {
mantSize -= 1; /* One of the digits was the point. */
}
if (mantSize > 18) {
fracExp = decPt - 18;
mantSize = 18;
} else {
fracExp = decPt - mantSize;
}
if (mantSize == 0) {
fraction = 0.0;
p = string;
goto done;
} else {
int frac1, frac2;
frac1 = 0;
for ( ; mantSize > 9; mantSize -= 1)
{
c = *p;
p += 1;
if (c == '.') {
c = *p;
p += 1;
}
frac1 = 10*frac1 + (c - '0');
}
frac2 = 0;
for (; mantSize > 0; mantSize -= 1)
{
c = *p;
p += 1;
if (c == '.') {
c = *p;
p += 1;
}
frac2 = 10*frac2 + (c - '0');
}
fraction = (1.0e9 * frac1) + frac2;
}
/*
* Skim off the exponent.
*/
p = pExp;
if ((*p == 'E') || (*p == 'e')) {
p += 1;
if (*p == '-') {
expSign = TRUE;
p += 1;
} else {
if (*p == '+') {
p += 1;
}
expSign = FALSE;
}
while ((*p >= '0') && (*p <= '9')) {
exp = exp * 10 + (*p - '0');
p += 1;
}
}
if (expSign) {
exp = fracExp - exp;
} else {
exp = fracExp + exp;
}
/*
* Generate a floating-point number that represents the exponent.
* Do this by processing the exponent one bit at a time to combine
* many powers of 2 of 10. Then combine the exponent with the
* fraction.
*/
if (exp < -maxExponent) {
exp = maxExponent;
expSign = TRUE;
errno = ERANGE;
} else if (exp > maxExponent) {
exp = maxExponent;
expSign = FALSE;
errno = ERANGE;
} else if (exp < 0) {
expSign = TRUE;
exp = -exp;
} else {
expSign = FALSE;
}
dblExp = 1.0;
for (d = powersOf10; exp != 0; exp >>= 1, d += 1) {
if (exp & 01) {
dblExp *= *d;
}
}
if (expSign) {
fraction /= dblExp;
} else {
fraction *= dblExp;
}
done:
if (endPtr != NULL) {
*endPtr = (char *) p;
}
if (sign) {
return -fraction;
}
return fraction;
}