kolibrios-gitea/contrib/sdk/sources/libstdc++-v3/include/tr1/cmath

1441 lines
36 KiB
Plaintext
Raw Normal View History

// TR1 cmath -*- C++ -*-
// Copyright (C) 2006-2013 Free Software Foundation, Inc.
//
// This file is part of the GNU ISO C++ Library. This library is free
// software; you can redistribute it and/or modify it under the
// terms of the GNU General Public License as published by the
// Free Software Foundation; either version 3, or (at your option)
// any later version.
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// Under Section 7 of GPL version 3, you are granted additional
// permissions described in the GCC Runtime Library Exception, version
// 3.1, as published by the Free Software Foundation.
// You should have received a copy of the GNU General Public License and
// a copy of the GCC Runtime Library Exception along with this program;
// see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
// <http://www.gnu.org/licenses/>.
/** @file tr1/cmath
* This is a TR1 C++ Library header.
*/
#ifndef _GLIBCXX_TR1_CMATH
#define _GLIBCXX_TR1_CMATH 1
#pragma GCC system_header
#include <cmath>
#ifdef _GLIBCXX_USE_C99_MATH_TR1
#undef acosh
#undef acoshf
#undef acoshl
#undef asinh
#undef asinhf
#undef asinhl
#undef atanh
#undef atanhf
#undef atanhl
#undef cbrt
#undef cbrtf
#undef cbrtl
#undef copysign
#undef copysignf
#undef copysignl
#undef erf
#undef erff
#undef erfl
#undef erfc
#undef erfcf
#undef erfcl
#undef exp2
#undef exp2f
#undef exp2l
#undef expm1
#undef expm1f
#undef expm1l
#undef fdim
#undef fdimf
#undef fdiml
#undef fma
#undef fmaf
#undef fmal
#undef fmax
#undef fmaxf
#undef fmaxl
#undef fmin
#undef fminf
#undef fminl
#undef hypot
#undef hypotf
#undef hypotl
#undef ilogb
#undef ilogbf
#undef ilogbl
#undef lgamma
#undef lgammaf
#undef lgammal
#undef llrint
#undef llrintf
#undef llrintl
#undef llround
#undef llroundf
#undef llroundl
#undef log1p
#undef log1pf
#undef log1pl
#undef log2
#undef log2f
#undef log2l
#undef logb
#undef logbf
#undef logbl
#undef lrint
#undef lrintf
#undef lrintl
#undef lround
#undef lroundf
#undef lroundl
#undef nan
#undef nanf
#undef nanl
#undef nearbyint
#undef nearbyintf
#undef nearbyintl
#undef nextafter
#undef nextafterf
#undef nextafterl
#undef nexttoward
#undef nexttowardf
#undef nexttowardl
#undef remainder
#undef remainderf
#undef remainderl
#undef remquo
#undef remquof
#undef remquol
#undef rint
#undef rintf
#undef rintl
#undef round
#undef roundf
#undef roundl
#undef scalbln
#undef scalblnf
#undef scalblnl
#undef scalbn
#undef scalbnf
#undef scalbnl
#undef tgamma
#undef tgammaf
#undef tgammal
#undef trunc
#undef truncf
#undef truncl
#endif
namespace std _GLIBCXX_VISIBILITY(default)
{
namespace tr1
{
_GLIBCXX_BEGIN_NAMESPACE_VERSION
#if _GLIBCXX_USE_C99_MATH_TR1
// types
using ::double_t;
using ::float_t;
// functions
using ::acosh;
using ::acoshf;
using ::acoshl;
using ::asinh;
using ::asinhf;
using ::asinhl;
using ::atanh;
using ::atanhf;
using ::atanhl;
using ::cbrt;
using ::cbrtf;
using ::cbrtl;
using ::copysign;
using ::copysignf;
using ::copysignl;
using ::erf;
using ::erff;
using ::erfl;
using ::erfc;
using ::erfcf;
using ::erfcl;
using ::exp2;
using ::exp2f;
using ::exp2l;
using ::expm1;
using ::expm1f;
using ::expm1l;
using ::fdim;
using ::fdimf;
using ::fdiml;
using ::fma;
using ::fmaf;
using ::fmal;
using ::fmax;
using ::fmaxf;
using ::fmaxl;
using ::fmin;
using ::fminf;
using ::fminl;
using ::hypot;
using ::hypotf;
using ::hypotl;
using ::ilogb;
using ::ilogbf;
using ::ilogbl;
using ::lgamma;
using ::lgammaf;
using ::lgammal;
using ::llrint;
using ::llrintf;
using ::llrintl;
using ::llround;
using ::llroundf;
using ::llroundl;
using ::log1p;
using ::log1pf;
using ::log1pl;
using ::log2;
using ::log2f;
using ::log2l;
using ::logb;
using ::logbf;
using ::logbl;
using ::lrint;
using ::lrintf;
using ::lrintl;
using ::lround;
using ::lroundf;
using ::lroundl;
using ::nan;
using ::nanf;
using ::nanl;
using ::nearbyint;
using ::nearbyintf;
using ::nearbyintl;
using ::nextafter;
using ::nextafterf;
using ::nextafterl;
using ::nexttoward;
using ::nexttowardf;
using ::nexttowardl;
using ::remainder;
using ::remainderf;
using ::remainderl;
using ::remquo;
using ::remquof;
using ::remquol;
using ::rint;
using ::rintf;
using ::rintl;
using ::round;
using ::roundf;
using ::roundl;
using ::scalbln;
using ::scalblnf;
using ::scalblnl;
using ::scalbn;
using ::scalbnf;
using ::scalbnl;
using ::tgamma;
using ::tgammaf;
using ::tgammal;
using ::trunc;
using ::truncf;
using ::truncl;
#endif
#if _GLIBCXX_USE_C99_MATH
#if !_GLIBCXX_USE_C99_FP_MACROS_DYNAMIC
/// Function template definitions [8.16.3].
template<typename _Tp>
inline typename __gnu_cxx::__enable_if<__is_arithmetic<_Tp>::__value,
int>::__type
fpclassify(_Tp __f)
{
typedef typename __gnu_cxx::__promote<_Tp>::__type __type;
return __builtin_fpclassify(FP_NAN, FP_INFINITE, FP_NORMAL,
FP_SUBNORMAL, FP_ZERO, __type(__f));
}
template<typename _Tp>
inline typename __gnu_cxx::__enable_if<__is_arithmetic<_Tp>::__value,
int>::__type
isfinite(_Tp __f)
{
typedef typename __gnu_cxx::__promote<_Tp>::__type __type;
return __builtin_isfinite(__type(__f));
}
template<typename _Tp>
inline typename __gnu_cxx::__enable_if<__is_arithmetic<_Tp>::__value,
int>::__type
isinf(_Tp __f)
{
typedef typename __gnu_cxx::__promote<_Tp>::__type __type;
return __builtin_isinf(__type(__f));
}
template<typename _Tp>
inline typename __gnu_cxx::__enable_if<__is_arithmetic<_Tp>::__value,
int>::__type
isnan(_Tp __f)
{
typedef typename __gnu_cxx::__promote<_Tp>::__type __type;
return __builtin_isnan(__type(__f));
}
template<typename _Tp>
inline typename __gnu_cxx::__enable_if<__is_arithmetic<_Tp>::__value,
int>::__type
isnormal(_Tp __f)
{
typedef typename __gnu_cxx::__promote<_Tp>::__type __type;
return __builtin_isnormal(__type(__f));
}
template<typename _Tp>
inline typename __gnu_cxx::__enable_if<__is_arithmetic<_Tp>::__value,
int>::__type
signbit(_Tp __f)
{
typedef typename __gnu_cxx::__promote<_Tp>::__type __type;
return __builtin_signbit(__type(__f));
}
template<typename _Tp>
inline typename __gnu_cxx::__enable_if<__is_arithmetic<_Tp>::__value,
int>::__type
isgreater(_Tp __f1, _Tp __f2)
{
typedef typename __gnu_cxx::__promote<_Tp>::__type __type;
return __builtin_isgreater(__type(__f1), __type(__f2));
}
template<typename _Tp>
inline typename __gnu_cxx::__enable_if<__is_arithmetic<_Tp>::__value,
int>::__type
isgreaterequal(_Tp __f1, _Tp __f2)
{
typedef typename __gnu_cxx::__promote<_Tp>::__type __type;
return __builtin_isgreaterequal(__type(__f1), __type(__f2));
}
template<typename _Tp>
inline typename __gnu_cxx::__enable_if<__is_arithmetic<_Tp>::__value,
int>::__type
isless(_Tp __f1, _Tp __f2)
{
typedef typename __gnu_cxx::__promote<_Tp>::__type __type;
return __builtin_isless(__type(__f1), __type(__f2));
}
template<typename _Tp>
inline typename __gnu_cxx::__enable_if<__is_arithmetic<_Tp>::__value,
int>::__type
islessequal(_Tp __f1, _Tp __f2)
{
typedef typename __gnu_cxx::__promote<_Tp>::__type __type;
return __builtin_islessequal(__type(__f1), __type(__f2));
}
template<typename _Tp>
inline typename __gnu_cxx::__enable_if<__is_arithmetic<_Tp>::__value,
int>::__type
islessgreater(_Tp __f1, _Tp __f2)
{
typedef typename __gnu_cxx::__promote<_Tp>::__type __type;
return __builtin_islessgreater(__type(__f1), __type(__f2));
}
template<typename _Tp>
inline typename __gnu_cxx::__enable_if<__is_arithmetic<_Tp>::__value,
int>::__type
isunordered(_Tp __f1, _Tp __f2)
{
typedef typename __gnu_cxx::__promote<_Tp>::__type __type;
return __builtin_isunordered(__type(__f1), __type(__f2));
}
#endif
#endif
#if _GLIBCXX_USE_C99_MATH_TR1
/// Additional overloads [8.16.4].
using std::acos;
inline float
acosh(float __x)
{ return __builtin_acoshf(__x); }
inline long double
acosh(long double __x)
{ return __builtin_acoshl(__x); }
template<typename _Tp>
inline typename __gnu_cxx::__enable_if<__is_integer<_Tp>::__value,
double>::__type
acosh(_Tp __x)
{ return __builtin_acosh(__x); }
using std::asin;
inline float
asinh(float __x)
{ return __builtin_asinhf(__x); }
inline long double
asinh(long double __x)
{ return __builtin_asinhl(__x); }
template<typename _Tp>
inline typename __gnu_cxx::__enable_if<__is_integer<_Tp>::__value,
double>::__type
asinh(_Tp __x)
{ return __builtin_asinh(__x); }
using std::atan;
using std::atan2;
inline float
atanh(float __x)
{ return __builtin_atanhf(__x); }
inline long double
atanh(long double __x)
{ return __builtin_atanhl(__x); }
template<typename _Tp>
inline typename __gnu_cxx::__enable_if<__is_integer<_Tp>::__value,
double>::__type
atanh(_Tp __x)
{ return __builtin_atanh(__x); }
inline float
cbrt(float __x)
{ return __builtin_cbrtf(__x); }
inline long double
cbrt(long double __x)
{ return __builtin_cbrtl(__x); }
template<typename _Tp>
inline typename __gnu_cxx::__enable_if<__is_integer<_Tp>::__value,
double>::__type
cbrt(_Tp __x)
{ return __builtin_cbrt(__x); }
using std::ceil;
inline float
copysign(float __x, float __y)
{ return __builtin_copysignf(__x, __y); }
inline long double
copysign(long double __x, long double __y)
{ return __builtin_copysignl(__x, __y); }
template<typename _Tp, typename _Up>
inline typename __gnu_cxx::__promote_2<_Tp, _Up>::__type
copysign(_Tp __x, _Up __y)
{
typedef typename __gnu_cxx::__promote_2<_Tp, _Up>::__type __type;
return copysign(__type(__x), __type(__y));
}
using std::cos;
using std::cosh;
inline float
erf(float __x)
{ return __builtin_erff(__x); }
inline long double
erf(long double __x)
{ return __builtin_erfl(__x); }
template<typename _Tp>
inline typename __gnu_cxx::__enable_if<__is_integer<_Tp>::__value,
double>::__type
erf(_Tp __x)
{ return __builtin_erf(__x); }
inline float
erfc(float __x)
{ return __builtin_erfcf(__x); }
inline long double
erfc(long double __x)
{ return __builtin_erfcl(__x); }
template<typename _Tp>
inline typename __gnu_cxx::__enable_if<__is_integer<_Tp>::__value,
double>::__type
erfc(_Tp __x)
{ return __builtin_erfc(__x); }
using std::exp;
inline float
exp2(float __x)
{ return __builtin_exp2f(__x); }
inline long double
exp2(long double __x)
{ return __builtin_exp2l(__x); }
template<typename _Tp>
inline typename __gnu_cxx::__enable_if<__is_integer<_Tp>::__value,
double>::__type
exp2(_Tp __x)
{ return __builtin_exp2(__x); }
inline float
expm1(float __x)
{ return __builtin_expm1f(__x); }
inline long double
expm1(long double __x)
{ return __builtin_expm1l(__x); }
template<typename _Tp>
inline typename __gnu_cxx::__enable_if<__is_integer<_Tp>::__value,
double>::__type
expm1(_Tp __x)
{ return __builtin_expm1(__x); }
// Note: we deal with fabs in a special way, because an using std::fabs
// would bring in also the overloads for complex types, which in C++0x
// mode have a different return type.
// With __CORRECT_ISO_CPP_MATH_H_PROTO, math.h imports std::fabs in the
// global namespace after the declarations of the float / double / long
// double overloads but before the std::complex overloads.
using ::fabs;
#ifndef __CORRECT_ISO_CPP_MATH_H_PROTO
inline float
fabs(float __x)
{ return __builtin_fabsf(__x); }
inline long double
fabs(long double __x)
{ return __builtin_fabsl(__x); }
template<typename _Tp>
inline typename __gnu_cxx::__enable_if<__is_integer<_Tp>::__value,
double>::__type
fabs(_Tp __x)
{ return __builtin_fabs(__x); }
#endif
inline float
fdim(float __x, float __y)
{ return __builtin_fdimf(__x, __y); }
inline long double
fdim(long double __x, long double __y)
{ return __builtin_fdiml(__x, __y); }
template<typename _Tp, typename _Up>
inline typename __gnu_cxx::__promote_2<_Tp, _Up>::__type
fdim(_Tp __x, _Up __y)
{
typedef typename __gnu_cxx::__promote_2<_Tp, _Up>::__type __type;
return fdim(__type(__x), __type(__y));
}
using std::floor;
inline float
fma(float __x, float __y, float __z)
{ return __builtin_fmaf(__x, __y, __z); }
inline long double
fma(long double __x, long double __y, long double __z)
{ return __builtin_fmal(__x, __y, __z); }
template<typename _Tp, typename _Up, typename _Vp>
inline typename __gnu_cxx::__promote_3<_Tp, _Up, _Vp>::__type
fma(_Tp __x, _Up __y, _Vp __z)
{
typedef typename __gnu_cxx::__promote_3<_Tp, _Up, _Vp>::__type __type;
return fma(__type(__x), __type(__y), __type(__z));
}
inline float
fmax(float __x, float __y)
{ return __builtin_fmaxf(__x, __y); }
inline long double
fmax(long double __x, long double __y)
{ return __builtin_fmaxl(__x, __y); }
template<typename _Tp, typename _Up>
inline typename __gnu_cxx::__promote_2<_Tp, _Up>::__type
fmax(_Tp __x, _Up __y)
{
typedef typename __gnu_cxx::__promote_2<_Tp, _Up>::__type __type;
return fmax(__type(__x), __type(__y));
}
inline float
fmin(float __x, float __y)
{ return __builtin_fminf(__x, __y); }
inline long double
fmin(long double __x, long double __y)
{ return __builtin_fminl(__x, __y); }
template<typename _Tp, typename _Up>
inline typename __gnu_cxx::__promote_2<_Tp, _Up>::__type
fmin(_Tp __x, _Up __y)
{
typedef typename __gnu_cxx::__promote_2<_Tp, _Up>::__type __type;
return fmin(__type(__x), __type(__y));
}
using std::fmod;
using std::frexp;
inline float
hypot(float __x, float __y)
{ return __builtin_hypotf(__x, __y); }
inline long double
hypot(long double __x, long double __y)
{ return __builtin_hypotl(__x, __y); }
template<typename _Tp, typename _Up>
inline typename __gnu_cxx::__promote_2<_Tp, _Up>::__type
hypot(_Tp __y, _Up __x)
{
typedef typename __gnu_cxx::__promote_2<_Tp, _Up>::__type __type;
return hypot(__type(__y), __type(__x));
}
inline int
ilogb(float __x)
{ return __builtin_ilogbf(__x); }
inline int
ilogb(long double __x)
{ return __builtin_ilogbl(__x); }
template<typename _Tp>
inline typename __gnu_cxx::__enable_if<__is_integer<_Tp>::__value,
int>::__type
ilogb(_Tp __x)
{ return __builtin_ilogb(__x); }
using std::ldexp;
inline float
lgamma(float __x)
{ return __builtin_lgammaf(__x); }
inline long double
lgamma(long double __x)
{ return __builtin_lgammal(__x); }
template<typename _Tp>
inline typename __gnu_cxx::__enable_if<__is_integer<_Tp>::__value,
double>::__type
lgamma(_Tp __x)
{ return __builtin_lgamma(__x); }
inline long long
llrint(float __x)
{ return __builtin_llrintf(__x); }
inline long long
llrint(long double __x)
{ return __builtin_llrintl(__x); }
template<typename _Tp>
inline typename __gnu_cxx::__enable_if<__is_integer<_Tp>::__value,
long long>::__type
llrint(_Tp __x)
{ return __builtin_llrint(__x); }
inline long long
llround(float __x)
{ return __builtin_llroundf(__x); }
inline long long
llround(long double __x)
{ return __builtin_llroundl(__x); }
template<typename _Tp>
inline typename __gnu_cxx::__enable_if<__is_integer<_Tp>::__value,
long long>::__type
llround(_Tp __x)
{ return __builtin_llround(__x); }
using std::log;
using std::log10;
inline float
log1p(float __x)
{ return __builtin_log1pf(__x); }
inline long double
log1p(long double __x)
{ return __builtin_log1pl(__x); }
template<typename _Tp>
inline typename __gnu_cxx::__enable_if<__is_integer<_Tp>::__value,
double>::__type
log1p(_Tp __x)
{ return __builtin_log1p(__x); }
// DR 568.
inline float
log2(float __x)
{ return __builtin_log2f(__x); }
inline long double
log2(long double __x)
{ return __builtin_log2l(__x); }
template<typename _Tp>
inline typename __gnu_cxx::__enable_if<__is_integer<_Tp>::__value,
double>::__type
log2(_Tp __x)
{ return __builtin_log2(__x); }
inline float
logb(float __x)
{ return __builtin_logbf(__x); }
inline long double
logb(long double __x)
{ return __builtin_logbl(__x); }
template<typename _Tp>
inline typename __gnu_cxx::__enable_if<__is_integer<_Tp>::__value,
double>::__type
logb(_Tp __x)
{
return __builtin_logb(__x);
}
inline long
lrint(float __x)
{ return __builtin_lrintf(__x); }
inline long
lrint(long double __x)
{ return __builtin_lrintl(__x); }
template<typename _Tp>
inline typename __gnu_cxx::__enable_if<__is_integer<_Tp>::__value,
long>::__type
lrint(_Tp __x)
{ return __builtin_lrint(__x); }
inline long
lround(float __x)
{ return __builtin_lroundf(__x); }
inline long
lround(long double __x)
{ return __builtin_lroundl(__x); }
template<typename _Tp>
inline typename __gnu_cxx::__enable_if<__is_integer<_Tp>::__value,
long>::__type
lround(_Tp __x)
{ return __builtin_lround(__x); }
inline float
nearbyint(float __x)
{ return __builtin_nearbyintf(__x); }
inline long double
nearbyint(long double __x)
{ return __builtin_nearbyintl(__x); }
template<typename _Tp>
inline typename __gnu_cxx::__enable_if<__is_integer<_Tp>::__value,
double>::__type
nearbyint(_Tp __x)
{ return __builtin_nearbyint(__x); }
inline float
nextafter(float __x, float __y)
{ return __builtin_nextafterf(__x, __y); }
inline long double
nextafter(long double __x, long double __y)
{ return __builtin_nextafterl(__x, __y); }
template<typename _Tp, typename _Up>
inline typename __gnu_cxx::__promote_2<_Tp, _Up>::__type
nextafter(_Tp __x, _Up __y)
{
typedef typename __gnu_cxx::__promote_2<_Tp, _Up>::__type __type;
return nextafter(__type(__x), __type(__y));
}
inline float
nexttoward(float __x, long double __y)
{ return __builtin_nexttowardf(__x, __y); }
inline long double
nexttoward(long double __x, long double __y)
{ return __builtin_nexttowardl(__x, __y); }
template<typename _Tp>
inline typename __gnu_cxx::__enable_if<__is_integer<_Tp>::__value,
double>::__type
nexttoward(_Tp __x, long double __y)
{ return __builtin_nexttoward(__x, __y); }
// DR 550. What should the return type of pow(float,int) be?
// NB: C++0x and TR1 != C++03.
// using std::pow;
inline float
remainder(float __x, float __y)
{ return __builtin_remainderf(__x, __y); }
inline long double
remainder(long double __x, long double __y)
{ return __builtin_remainderl(__x, __y); }
template<typename _Tp, typename _Up>
inline typename __gnu_cxx::__promote_2<_Tp, _Up>::__type
remainder(_Tp __x, _Up __y)
{
typedef typename __gnu_cxx::__promote_2<_Tp, _Up>::__type __type;
return remainder(__type(__x), __type(__y));
}
inline float
remquo(float __x, float __y, int* __pquo)
{ return __builtin_remquof(__x, __y, __pquo); }
inline long double
remquo(long double __x, long double __y, int* __pquo)
{ return __builtin_remquol(__x, __y, __pquo); }
template<typename _Tp, typename _Up>
inline typename __gnu_cxx::__promote_2<_Tp, _Up>::__type
remquo(_Tp __x, _Up __y, int* __pquo)
{
typedef typename __gnu_cxx::__promote_2<_Tp, _Up>::__type __type;
return remquo(__type(__x), __type(__y), __pquo);
}
inline float
rint(float __x)
{ return __builtin_rintf(__x); }
inline long double
rint(long double __x)
{ return __builtin_rintl(__x); }
template<typename _Tp>
inline typename __gnu_cxx::__enable_if<__is_integer<_Tp>::__value,
double>::__type
rint(_Tp __x)
{ return __builtin_rint(__x); }
inline float
round(float __x)
{ return __builtin_roundf(__x); }
inline long double
round(long double __x)
{ return __builtin_roundl(__x); }
template<typename _Tp>
inline typename __gnu_cxx::__enable_if<__is_integer<_Tp>::__value,
double>::__type
round(_Tp __x)
{ return __builtin_round(__x); }
inline float
scalbln(float __x, long __ex)
{ return __builtin_scalblnf(__x, __ex); }
inline long double
scalbln(long double __x, long __ex)
{ return __builtin_scalblnl(__x, __ex); }
template<typename _Tp>
inline typename __gnu_cxx::__enable_if<__is_integer<_Tp>::__value,
double>::__type
scalbln(_Tp __x, long __ex)
{ return __builtin_scalbln(__x, __ex); }
inline float
scalbn(float __x, int __ex)
{ return __builtin_scalbnf(__x, __ex); }
inline long double
scalbn(long double __x, int __ex)
{ return __builtin_scalbnl(__x, __ex); }
template<typename _Tp>
inline typename __gnu_cxx::__enable_if<__is_integer<_Tp>::__value,
double>::__type
scalbn(_Tp __x, int __ex)
{ return __builtin_scalbn(__x, __ex); }
using std::sin;
using std::sinh;
using std::sqrt;
using std::tan;
using std::tanh;
inline float
tgamma(float __x)
{ return __builtin_tgammaf(__x); }
inline long double
tgamma(long double __x)
{ return __builtin_tgammal(__x); }
template<typename _Tp>
inline typename __gnu_cxx::__enable_if<__is_integer<_Tp>::__value,
double>::__type
tgamma(_Tp __x)
{ return __builtin_tgamma(__x); }
inline float
trunc(float __x)
{ return __builtin_truncf(__x); }
inline long double
trunc(long double __x)
{ return __builtin_truncl(__x); }
template<typename _Tp>
inline typename __gnu_cxx::__enable_if<__is_integer<_Tp>::__value,
double>::__type
trunc(_Tp __x)
{ return __builtin_trunc(__x); }
#endif
_GLIBCXX_END_NAMESPACE_VERSION
}
}
namespace std _GLIBCXX_VISIBILITY(default)
{
namespace tr1
{
_GLIBCXX_BEGIN_NAMESPACE_VERSION
// DR 550. What should the return type of pow(float,int) be?
// NB: C++0x and TR1 != C++03.
inline double
pow(double __x, double __y)
{ return std::pow(__x, __y); }
inline float
pow(float __x, float __y)
{ return std::pow(__x, __y); }
inline long double
pow(long double __x, long double __y)
{ return std::pow(__x, __y); }
template<typename _Tp, typename _Up>
inline typename __gnu_cxx::__promote_2<_Tp, _Up>::__type
pow(_Tp __x, _Up __y)
{
typedef typename __gnu_cxx::__promote_2<_Tp, _Up>::__type __type;
return std::pow(__type(__x), __type(__y));
}
_GLIBCXX_END_NAMESPACE_VERSION
}
}
#include <bits/stl_algobase.h>
#include <limits>
#include <tr1/type_traits>
#include <tr1/gamma.tcc>
#include <tr1/bessel_function.tcc>
#include <tr1/beta_function.tcc>
#include <tr1/ell_integral.tcc>
#include <tr1/exp_integral.tcc>
#include <tr1/hypergeometric.tcc>
#include <tr1/legendre_function.tcc>
#include <tr1/modified_bessel_func.tcc>
#include <tr1/poly_hermite.tcc>
#include <tr1/poly_laguerre.tcc>
#include <tr1/riemann_zeta.tcc>
namespace std _GLIBCXX_VISIBILITY(default)
{
namespace tr1
{
_GLIBCXX_BEGIN_NAMESPACE_VERSION
/**
* @defgroup tr1_math_spec_func Mathematical Special Functions
* @ingroup numerics
*
* A collection of advanced mathematical special functions.
* @{
*/
inline float
assoc_laguerref(unsigned int __n, unsigned int __m, float __x)
{ return __detail::__assoc_laguerre<float>(__n, __m, __x); }
inline long double
assoc_laguerrel(unsigned int __n, unsigned int __m, long double __x)
{
return __detail::__assoc_laguerre<long double>(__n, __m, __x);
}
/// 5.2.1.1 Associated Laguerre polynomials.
template<typename _Tp>
inline typename __gnu_cxx::__promote<_Tp>::__type
assoc_laguerre(unsigned int __n, unsigned int __m, _Tp __x)
{
typedef typename __gnu_cxx::__promote<_Tp>::__type __type;
return __detail::__assoc_laguerre<__type>(__n, __m, __x);
}
inline float
assoc_legendref(unsigned int __l, unsigned int __m, float __x)
{ return __detail::__assoc_legendre_p<float>(__l, __m, __x); }
inline long double
assoc_legendrel(unsigned int __l, unsigned int __m, long double __x)
{ return __detail::__assoc_legendre_p<long double>(__l, __m, __x); }
/// 5.2.1.2 Associated Legendre functions.
template<typename _Tp>
inline typename __gnu_cxx::__promote<_Tp>::__type
assoc_legendre(unsigned int __l, unsigned int __m, _Tp __x)
{
typedef typename __gnu_cxx::__promote<_Tp>::__type __type;
return __detail::__assoc_legendre_p<__type>(__l, __m, __x);
}
inline float
betaf(float __x, float __y)
{ return __detail::__beta<float>(__x, __y); }
inline long double
betal(long double __x, long double __y)
{ return __detail::__beta<long double>(__x, __y); }
/// 5.2.1.3 Beta functions.
template<typename _Tpx, typename _Tpy>
inline typename __gnu_cxx::__promote_2<_Tpx, _Tpy>::__type
beta(_Tpx __x, _Tpy __y)
{
typedef typename __gnu_cxx::__promote_2<_Tpx, _Tpy>::__type __type;
return __detail::__beta<__type>(__x, __y);
}
inline float
comp_ellint_1f(float __k)
{ return __detail::__comp_ellint_1<float>(__k); }
inline long double
comp_ellint_1l(long double __k)
{ return __detail::__comp_ellint_1<long double>(__k); }
/// 5.2.1.4 Complete elliptic integrals of the first kind.
template<typename _Tp>
inline typename __gnu_cxx::__promote<_Tp>::__type
comp_ellint_1(_Tp __k)
{
typedef typename __gnu_cxx::__promote<_Tp>::__type __type;
return __detail::__comp_ellint_1<__type>(__k);
}
inline float
comp_ellint_2f(float __k)
{ return __detail::__comp_ellint_2<float>(__k); }
inline long double
comp_ellint_2l(long double __k)
{ return __detail::__comp_ellint_2<long double>(__k); }
/// 5.2.1.5 Complete elliptic integrals of the second kind.
template<typename _Tp>
inline typename __gnu_cxx::__promote<_Tp>::__type
comp_ellint_2(_Tp __k)
{
typedef typename __gnu_cxx::__promote<_Tp>::__type __type;
return __detail::__comp_ellint_2<__type>(__k);
}
inline float
comp_ellint_3f(float __k, float __nu)
{ return __detail::__comp_ellint_3<float>(__k, __nu); }
inline long double
comp_ellint_3l(long double __k, long double __nu)
{ return __detail::__comp_ellint_3<long double>(__k, __nu); }
/// 5.2.1.6 Complete elliptic integrals of the third kind.
template<typename _Tp, typename _Tpn>
inline typename __gnu_cxx::__promote_2<_Tp, _Tpn>::__type
comp_ellint_3(_Tp __k, _Tpn __nu)
{
typedef typename __gnu_cxx::__promote_2<_Tp, _Tpn>::__type __type;
return __detail::__comp_ellint_3<__type>(__k, __nu);
}
inline float
conf_hypergf(float __a, float __c, float __x)
{ return __detail::__conf_hyperg<float>(__a, __c, __x); }
inline long double
conf_hypergl(long double __a, long double __c, long double __x)
{ return __detail::__conf_hyperg<long double>(__a, __c, __x); }
/// 5.2.1.7 Confluent hypergeometric functions.
template<typename _Tpa, typename _Tpc, typename _Tp>
inline typename __gnu_cxx::__promote_3<_Tpa, _Tpc, _Tp>::__type
conf_hyperg(_Tpa __a, _Tpc __c, _Tp __x)
{
typedef typename __gnu_cxx::__promote_3<_Tpa, _Tpc, _Tp>::__type __type;
return __detail::__conf_hyperg<__type>(__a, __c, __x);
}
inline float
cyl_bessel_if(float __nu, float __x)
{ return __detail::__cyl_bessel_i<float>(__nu, __x); }
inline long double
cyl_bessel_il(long double __nu, long double __x)
{ return __detail::__cyl_bessel_i<long double>(__nu, __x); }
/// 5.2.1.8 Regular modified cylindrical Bessel functions.
template<typename _Tpnu, typename _Tp>
inline typename __gnu_cxx::__promote_2<_Tpnu, _Tp>::__type
cyl_bessel_i(_Tpnu __nu, _Tp __x)
{
typedef typename __gnu_cxx::__promote_2<_Tpnu, _Tp>::__type __type;
return __detail::__cyl_bessel_i<__type>(__nu, __x);
}
inline float
cyl_bessel_jf(float __nu, float __x)
{ return __detail::__cyl_bessel_j<float>(__nu, __x); }
inline long double
cyl_bessel_jl(long double __nu, long double __x)
{ return __detail::__cyl_bessel_j<long double>(__nu, __x); }
/// 5.2.1.9 Cylindrical Bessel functions (of the first kind).
template<typename _Tpnu, typename _Tp>
inline typename __gnu_cxx::__promote_2<_Tpnu, _Tp>::__type
cyl_bessel_j(_Tpnu __nu, _Tp __x)
{
typedef typename __gnu_cxx::__promote_2<_Tpnu, _Tp>::__type __type;
return __detail::__cyl_bessel_j<__type>(__nu, __x);
}
inline float
cyl_bessel_kf(float __nu, float __x)
{ return __detail::__cyl_bessel_k<float>(__nu, __x); }
inline long double
cyl_bessel_kl(long double __nu, long double __x)
{ return __detail::__cyl_bessel_k<long double>(__nu, __x); }
/// 5.2.1.10 Irregular modified cylindrical Bessel functions.
template<typename _Tpnu, typename _Tp>
inline typename __gnu_cxx::__promote_2<_Tpnu, _Tp>::__type
cyl_bessel_k(_Tpnu __nu, _Tp __x)
{
typedef typename __gnu_cxx::__promote_2<_Tpnu, _Tp>::__type __type;
return __detail::__cyl_bessel_k<__type>(__nu, __x);
}
inline float
cyl_neumannf(float __nu, float __x)
{ return __detail::__cyl_neumann_n<float>(__nu, __x); }
inline long double
cyl_neumannl(long double __nu, long double __x)
{ return __detail::__cyl_neumann_n<long double>(__nu, __x); }
/// 5.2.1.11 Cylindrical Neumann functions.
template<typename _Tpnu, typename _Tp>
inline typename __gnu_cxx::__promote_2<_Tpnu, _Tp>::__type
cyl_neumann(_Tpnu __nu, _Tp __x)
{
typedef typename __gnu_cxx::__promote_2<_Tpnu, _Tp>::__type __type;
return __detail::__cyl_neumann_n<__type>(__nu, __x);
}
inline float
ellint_1f(float __k, float __phi)
{ return __detail::__ellint_1<float>(__k, __phi); }
inline long double
ellint_1l(long double __k, long double __phi)
{ return __detail::__ellint_1<long double>(__k, __phi); }
/// 5.2.1.12 Incomplete elliptic integrals of the first kind.
template<typename _Tp, typename _Tpp>
inline typename __gnu_cxx::__promote_2<_Tp, _Tpp>::__type
ellint_1(_Tp __k, _Tpp __phi)
{
typedef typename __gnu_cxx::__promote_2<_Tp, _Tpp>::__type __type;
return __detail::__ellint_1<__type>(__k, __phi);
}
inline float
ellint_2f(float __k, float __phi)
{ return __detail::__ellint_2<float>(__k, __phi); }
inline long double
ellint_2l(long double __k, long double __phi)
{ return __detail::__ellint_2<long double>(__k, __phi); }
/// 5.2.1.13 Incomplete elliptic integrals of the second kind.
template<typename _Tp, typename _Tpp>
inline typename __gnu_cxx::__promote_2<_Tp, _Tpp>::__type
ellint_2(_Tp __k, _Tpp __phi)
{
typedef typename __gnu_cxx::__promote_2<_Tp, _Tpp>::__type __type;
return __detail::__ellint_2<__type>(__k, __phi);
}
inline float
ellint_3f(float __k, float __nu, float __phi)
{ return __detail::__ellint_3<float>(__k, __nu, __phi); }
inline long double
ellint_3l(long double __k, long double __nu, long double __phi)
{ return __detail::__ellint_3<long double>(__k, __nu, __phi); }
/// 5.2.1.14 Incomplete elliptic integrals of the third kind.
template<typename _Tp, typename _Tpn, typename _Tpp>
inline typename __gnu_cxx::__promote_3<_Tp, _Tpn, _Tpp>::__type
ellint_3(_Tp __k, _Tpn __nu, _Tpp __phi)
{
typedef typename __gnu_cxx::__promote_3<_Tp, _Tpn, _Tpp>::__type __type;
return __detail::__ellint_3<__type>(__k, __nu, __phi);
}
inline float
expintf(float __x)
{ return __detail::__expint<float>(__x); }
inline long double
expintl(long double __x)
{ return __detail::__expint<long double>(__x); }
/// 5.2.1.15 Exponential integrals.
template<typename _Tp>
inline typename __gnu_cxx::__promote<_Tp>::__type
expint(_Tp __x)
{
typedef typename __gnu_cxx::__promote<_Tp>::__type __type;
return __detail::__expint<__type>(__x);
}
inline float
hermitef(unsigned int __n, float __x)
{ return __detail::__poly_hermite<float>(__n, __x); }
inline long double
hermitel(unsigned int __n, long double __x)
{ return __detail::__poly_hermite<long double>(__n, __x); }
/// 5.2.1.16 Hermite polynomials.
template<typename _Tp>
inline typename __gnu_cxx::__promote<_Tp>::__type
hermite(unsigned int __n, _Tp __x)
{
typedef typename __gnu_cxx::__promote<_Tp>::__type __type;
return __detail::__poly_hermite<__type>(__n, __x);
}
inline float
hypergf(float __a, float __b, float __c, float __x)
{ return __detail::__hyperg<float>(__a, __b, __c, __x); }
inline long double
hypergl(long double __a, long double __b, long double __c, long double __x)
{ return __detail::__hyperg<long double>(__a, __b, __c, __x); }
/// 5.2.1.17 Hypergeometric functions.
template<typename _Tpa, typename _Tpb, typename _Tpc, typename _Tp>
inline typename __gnu_cxx::__promote_4<_Tpa, _Tpb, _Tpc, _Tp>::__type
hyperg(_Tpa __a, _Tpb __b, _Tpc __c, _Tp __x)
{
typedef typename __gnu_cxx::__promote_4<_Tpa, _Tpb, _Tpc, _Tp>::__type __type;
return __detail::__hyperg<__type>(__a, __b, __c, __x);
}
inline float
laguerref(unsigned int __n, float __x)
{ return __detail::__laguerre<float>(__n, __x); }
inline long double
laguerrel(unsigned int __n, long double __x)
{ return __detail::__laguerre<long double>(__n, __x); }
/// 5.2.1.18 Laguerre polynomials.
template<typename _Tp>
inline typename __gnu_cxx::__promote<_Tp>::__type
laguerre(unsigned int __n, _Tp __x)
{
typedef typename __gnu_cxx::__promote<_Tp>::__type __type;
return __detail::__laguerre<__type>(__n, __x);
}
inline float
legendref(unsigned int __n, float __x)
{ return __detail::__poly_legendre_p<float>(__n, __x); }
inline long double
legendrel(unsigned int __n, long double __x)
{ return __detail::__poly_legendre_p<long double>(__n, __x); }
/// 5.2.1.19 Legendre polynomials.
template<typename _Tp>
inline typename __gnu_cxx::__promote<_Tp>::__type
legendre(unsigned int __n, _Tp __x)
{
typedef typename __gnu_cxx::__promote<_Tp>::__type __type;
return __detail::__poly_legendre_p<__type>(__n, __x);
}
inline float
riemann_zetaf(float __x)
{ return __detail::__riemann_zeta<float>(__x); }
inline long double
riemann_zetal(long double __x)
{ return __detail::__riemann_zeta<long double>(__x); }
/// 5.2.1.20 Riemann zeta function.
template<typename _Tp>
inline typename __gnu_cxx::__promote<_Tp>::__type
riemann_zeta(_Tp __x)
{
typedef typename __gnu_cxx::__promote<_Tp>::__type __type;
return __detail::__riemann_zeta<__type>(__x);
}
inline float
sph_besself(unsigned int __n, float __x)
{ return __detail::__sph_bessel<float>(__n, __x); }
inline long double
sph_bessell(unsigned int __n, long double __x)
{ return __detail::__sph_bessel<long double>(__n, __x); }
/// 5.2.1.21 Spherical Bessel functions.
template<typename _Tp>
inline typename __gnu_cxx::__promote<_Tp>::__type
sph_bessel(unsigned int __n, _Tp __x)
{
typedef typename __gnu_cxx::__promote<_Tp>::__type __type;
return __detail::__sph_bessel<__type>(__n, __x);
}
inline float
sph_legendref(unsigned int __l, unsigned int __m, float __theta)
{ return __detail::__sph_legendre<float>(__l, __m, __theta); }
inline long double
sph_legendrel(unsigned int __l, unsigned int __m, long double __theta)
{ return __detail::__sph_legendre<long double>(__l, __m, __theta); }
/// 5.2.1.22 Spherical associated Legendre functions.
template<typename _Tp>
inline typename __gnu_cxx::__promote<_Tp>::__type
sph_legendre(unsigned int __l, unsigned int __m, _Tp __theta)
{
typedef typename __gnu_cxx::__promote<_Tp>::__type __type;
return __detail::__sph_legendre<__type>(__l, __m, __theta);
}
inline float
sph_neumannf(unsigned int __n, float __x)
{ return __detail::__sph_neumann<float>(__n, __x); }
inline long double
sph_neumannl(unsigned int __n, long double __x)
{ return __detail::__sph_neumann<long double>(__n, __x); }
/// 5.2.1.23 Spherical Neumann functions.
template<typename _Tp>
inline typename __gnu_cxx::__promote<_Tp>::__type
sph_neumann(unsigned int __n, _Tp __x)
{
typedef typename __gnu_cxx::__promote<_Tp>::__type __type;
return __detail::__sph_neumann<__type>(__n, __x);
}
/* @} */ // tr1_math_spec_func
_GLIBCXX_END_NAMESPACE_VERSION
}
}
#endif // _GLIBCXX_TR1_CMATH