1164 lines
37 KiB
NASM
Raw Normal View History

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; ;;
;; Copyright (C) KolibriOS team 2004-2021. All rights reserved. ;;
;; Distributed under terms of the GNU General Public License ;;
;; ;;
;; Realtek 8139 driver for KolibriOS ;;
;; ;;
;; based on RTL8139.asm driver for menuetos ;;
;; and realtek8139.asm for SolarOS by Eugen Brasoveanu ;;
;; ;;
;; Written by hidnplayr@kolibrios.org ;;
;; ;;
;; GNU GENERAL PUBLIC LICENSE ;;
;; Version 2, June 1991 ;;
;; ;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
; TODO: test for RX-overrun
format PE DLL native
entry START
CURRENT_API = 0x0200
COMPATIBLE_API = 0x0100
API_VERSION = (COMPATIBLE_API shl 16) + CURRENT_API
; configureable area
MAX_DEVICES = 16
RBLEN = 3 ; Receive buffer size: 0==8K 1==16k 2==32k 3==64k
TXRR = 8 ; total retries = 16+(TXRR*16)
TX_MXDMA = 6 ; 0=16 1=32 2=64 3=128 4=256 5=512 6=1024 7=2048
ERTXTH = 8 ; in unit of 32 bytes e.g:(8*32)=256
RX_MXDMA = 7 ; 0=16 1=32 2=64 3=128 4=256 5=512 6=1024 7=unlimited
RXFTH = 7 ; 0=16 1=32 2=64 3=128 4=256 5=512 6=1024 7=no threshold
__DEBUG__ = 1
__DEBUG_LEVEL__ = 2 ; 1 = verbose, 2 = errors only
; end configureable area
section '.flat' readable writable executable
include '../proc32.inc'
include '../struct.inc'
include '../macros.inc'
include '../fdo.inc'
include '../netdrv.inc'
REG_IDR0 = 0x00
REG_MAR0 = 0x08 ; multicast filter register 0
REG_MAR4 = 0x0c ; multicast filter register 4
REG_TSD0 = 0x10 ; transmit status of descriptor
REG_TSAD0 = 0x20 ; transmit start address of descriptor
REG_RBSTART = 0x30 ; RxBuffer start address
REG_COMMAND = 0x37 ; command register
REG_CAPR = 0x38 ; current address of packet read (word) R/W
REG_IMR = 0x3c ; interrupt mask register
REG_ISR = 0x3e ; interrupt status register
REG_TXCONFIG = 0x40 ; transmit configuration register
REG_RXCONFIG = 0x44 ; receive configuration register 0
REG_MPC = 0x4c ; missed packet counter
REG_9346CR = 0x50 ; serial eeprom 93C46 command register
REG_CONFIG1 = 0x52 ; configuration register 1
REG_MSR = 0x58 ; Media Status register
REG_CONFIG4 = 0x5a ; configuration register 4
REG_HLTCLK = 0x5b ; undocumented halt clock register
REG_BMCR = 0x62 ; basic mode control register
REG_ANAR = 0x66 ; auto negotiation advertisement register
REG_9346CR_WE = 11b shl 6
BIT_RUNT = 4 ; total packet length < 64 bytes
BIT_LONG = 3 ; total packet length > 4k
BIT_CRC = 2 ; crc error occured
BIT_FAE = 1 ; frame alignment error occured
BIT_ROK = 0 ; received packet is ok
BIT_RST = 4 ; reset bit
BIT_RE = 3 ; receiver enabled
BIT_TE = 2 ; transmitter enabled
BUFE = 1 ; rx buffer is empty, no packet stored
BIT_ISR_TOK = 2 ; transmit ok
BIT_ISR_RER = 1 ; receive error interrupt
BIT_ISR_ROK = 0 ; receive ok
BIT_TX_MXDMA = 8 ; Max DMA burst size per Tx DMA burst
BIT_TXRR = 4 ; Tx Retry count 16+(TXRR*16)
BIT_RXFTH = 13 ; Rx fifo threshold
BIT_RBLEN = 11 ; Ring buffer length indicator
BIT_RX_MXDMA = 8 ; Max DMA burst size per Rx DMA burst
BIT_NOWRAP = 7 ; transfered data wrapping
BIT_9356SEL = 6 ; eeprom selector 9346/9356
BIT_AER = 5 ; accept error packets
BIT_AR = 4 ; accept runt packets
BIT_AB = 3 ; accept broadcast packets
BIT_AM = 2 ; accept multicast packets
BIT_APM = 1 ; accept physical match packets
BIT_AAP = 0 ; accept all packets
BIT_93C46_EEM1 = 7 ; RTL8139 eeprom operating mode1
BIT_93C46_EEM0 = 6 ; RTL8139 eeprom operating mode0
BIT_93C46_EECS = 3 ; chip select
BIT_93C46_EESK = 2 ; serial data clock
BIT_93C46_EEDI = 1 ; serial data input
BIT_93C46_EEDO = 0 ; serial data output
BIT_LWACT = 4 ; see REG_CONFIG1
BIT_SLEEP = 1 ; sleep bit at older chips
BIT_PWRDWN = 0 ; power down bit at older chips
BIT_PMEn = 0 ; power management enabled
BIT_LWPTN = 2 ; see REG_CONFIG4
BIT_ERTXTH = 16 ; early TX threshold
BIT_TOK = 15 ; transmit ok
BIT_OWN = 13 ; tx DMA operation is completed
BIT_ANE = 12 ; auto negotiation enable
BIT_TXFD = 8 ; 100base-T full duplex
BIT_TX = 7 ; 100base-T
BIT_10FD = 6 ; 10base-T full duplex
BIT_10 = 5 ; 10base-T
BIT_SELECTOR = 0 ; binary encoded selector CSMA/CD=00001
BIT_IFG1 = 1 shl 25
BIT_IFG0 = 1 shl 24
RX_CONFIG = (RBLEN shl BIT_RBLEN) or \
(RX_MXDMA shl BIT_RX_MXDMA) or \
(1 shl BIT_NOWRAP) or \
(RXFTH shl BIT_RXFTH) or\
(1 shl BIT_AB) or \ ; Accept broadcast packets
(1 shl BIT_APM) or \ ; Accept physical match packets
(1 shl BIT_AER) or \ ; Accept error packets
(1 shl BIT_AR) or \ ; Accept Runt packets (smaller then 64 bytes)
(1 shl BIT_AM) ; Accept multicast packets
RX_BUFFER_SIZE = (8192 shl RBLEN);+16+1500
NUM_TX_DESC = 4 ; not user selectable
EE_93C46_REG_ETH_ID = 7 ; MAC offset
EE_93C46_READ_CMD = (6 shl 6) ; 110b + 6bit address
EE_93C56_READ_CMD = (6 shl 8) ; 110b + 8bit address
EE_93C46_CMD_LENGTH = 9 ; start bit + cmd + 6bit address
EE_93C56_CMD_LENGTH = 11 ; start bit + cmd + 8bit ddress
; See chapter "5.7 Transmit Configuration Register" of RTL8139D(L).pdf
VER_RTL8139 = 1000000b
VER_RTL8139_K = 1100000b
VER_RTL8139A = 1110000b
VER_RTL8139A_G = 1110010b
VER_RTL8139B = 1111000b
VER_RTL8130 = 1111100b
VER_RTL8139C = 1110100b
VER_RTL8100 = 1111010b
VER_RTL8100_8139D = 1110101b
VER_RTL8139CP = 1110110b
VER_RTL8101 = 1110111b
IDX_UNKNOWN = 0
IDX_RTL8139 = 1
IDX_RTL8139_K = 2
IDX_RTL8139A = 3
IDX_RTL8139A_G = 4
IDX_RTL8139B = 5
IDX_RTL8130 = 6
IDX_RTL8139C = 7
IDX_RTL8100 = 8
IDX_RTL8100_8139D = 9
IDX_RTL8139CP = 10
IDX_RTL8101 = 11
HW_VERSIONS = 11
ISR_SERR = 1 shl 15
ISR_TIMEOUT = 1 shl 14
ISR_LENCHG = 1 shl 13
ISR_FIFOOVW = 1 shl 6
ISR_PUN = 1 shl 5
ISR_RXOVW = 1 shl 4
ISR_TER = 1 shl 3
ISR_TOK = 1 shl 2
ISR_RER = 1 shl 1
ISR_ROK = 1 shl 0
INTERRUPT_MASK = ISR_ROK or \
ISR_RER or \
ISR_TOK or \
ISR_TER or \
ISR_RXOVW or \
ISR_PUN or \
ISR_FIFOOVW or \
ISR_LENCHG or \
ISR_TIMEOUT or \
ISR_SERR
TSR_OWN = 1 shl 13
TSR_TUN = 1 shl 14
TSR_TOK = 1 shl 15
TSR_CDH = 1 shl 28
TSR_OWC = 1 shl 29
TSR_TABT = 1 shl 30
TSR_CRS = 1 shl 31
struct device ETH_DEVICE
io_addr dd ?
pci_bus dd ?
pci_dev dd ?
irq_line db ?
rb 3 ; align 4
rx_buffer dd ?
rx_data_offset dd ?
curr_tx_desc db ?
hw_ver_id db ?
rb 2 ; align 4
TX_DESC rd NUM_TX_DESC
ends
;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; ;;
;; proc START ;;
;; ;;
;; (standard driver proc) ;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;
proc START c, reason:dword, cmdline:dword
cmp [reason], DRV_ENTRY
jne .fail
DEBUGF 2,"Loading driver\n"
invoke RegService, my_service, service_proc
ret
.fail:
xor eax, eax
ret
endp
;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; ;;
;; proc SERVICE_PROC ;;
;; ;;
;; (standard driver proc) ;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;
proc service_proc stdcall, ioctl:dword
mov edx, [ioctl]
mov eax, [edx + IOCTL.io_code]
;------------------------------------------------------
cmp eax, 0 ;SRV_GETVERSION
jne @F
cmp [edx + IOCTL.out_size], 4
jb .fail
mov eax, [edx + IOCTL.output]
mov [eax], dword API_VERSION
xor eax, eax
ret
;------------------------------------------------------
@@:
cmp eax, 1 ;SRV_HOOK
jne .fail
cmp [edx + IOCTL.inp_size], 3 ; Data input must be at least 3 bytes
jb .fail
mov eax, [edx + IOCTL.input]
cmp byte [eax], 1 ; 1 means device number and bus number (pci) are given
jne .fail ; other types arent supported for this card yet
; check if the device is already listed
mov esi, device_list
mov ecx, [devices]
test ecx, ecx
jz .firstdevice
mov ax, [eax+1] ; get the pci bus and device numbers
.nextdevice:
mov ebx, [esi]
cmp al, byte[ebx + device.pci_bus]
jne @f
cmp ah, byte[ebx + device.pci_dev]
je .find_devicenum ; Device is already loaded, let's find it's device number
@@:
add esi, 4
loop .nextdevice
; This device doesnt have its own eth_device structure yet, lets create one
.firstdevice:
cmp [devices], MAX_DEVICES ; First check if the driver can handle one more card
jae .fail
allocate_and_clear ebx, sizeof.device, .fail ; Allocate the buffer for device structure
; Fill in the direct call addresses into the struct
mov [ebx + device.reset], reset
mov [ebx + device.transmit], transmit
mov [ebx + device.unload], unload
mov [ebx + device.name], my_service
; save the pci bus and device numbers
mov eax, [edx + IOCTL.input]
movzx ecx, byte[eax+1]
mov [ebx + device.pci_bus], ecx
movzx ecx, byte[eax+2]
mov [ebx + device.pci_dev], ecx
; Now, it's time to find the base io addres of the PCI device
stdcall PCI_find_io, [ebx + device.pci_bus], [ebx + device.pci_dev]
mov [ebx + device.io_addr], eax
; We've found the io address, find IRQ now
invoke PciRead8, [ebx + device.pci_bus], [ebx + device.pci_dev], PCI_header00.interrupt_line
mov [ebx + device.irq_line], al
DEBUGF 1, "Hooking into device, devfn:%x, bus:%x, irq:%x, I/O addr:%x\n",\
[ebx + device.pci_dev]:2,[ebx + device.pci_bus]:2,[ebx + device.irq_line]:2,[ebx + device.io_addr]:4
; Allocate the receive buffer
invoke CreateRingBuffer, dword (RX_BUFFER_SIZE), dword PG_SW
test eax, eax
jz .err
mov [ebx + device.rx_buffer], eax
; Ok, the eth_device structure is ready, let's probe the device
call probe ; this function will output in eax
test eax, eax
jnz .err ; If an error occured, exit
mov eax, [devices] ; Add the device structure to our device list
mov [device_list+4*eax], ebx ; (IRQ handler uses this list to find device)
inc [devices] ;
call reset
test eax, eax
jnz .destroy
mov [ebx + device.type], NET_TYPE_ETH
invoke NetRegDev
cmp eax, -1
je .destroy
ret
; If the device was already loaded, find the device number and return it in eax
.find_devicenum:
DEBUGF 1, "Trying to find device number of already registered device\n"
invoke NetPtrToNum ; This kernel procedure converts a pointer to device struct in ebx
; into a device number in edi
mov eax, edi ; Application wants it in eax instead
DEBUGF 1, "Kernel says: %u\n", eax
ret
; If an error occured, remove all allocated data and exit (returning -1 in eax)
.destroy:
; unregister device from device_list
mov eax, [devices]
mov dword[device_list-4+4*eax], 0
dec [devices]
.err:
DEBUGF 2, "Fatal error occured, aborting\n"
invoke KernelFree, [ebx + device.rx_buffer]
invoke KernelFree, ebx
.fail:
or eax, -1
ret
;------------------------------------------------------
endp
;;/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\;;
;; ;;
;; Actual Hardware dependent code starts here ;;
;; ;;
;;/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\;;
align 4
unload:
; TODO: (in this particular order)
;
; - Stop the device
; - Detach int handler
; - Remove device from local list (RTL8139_LIST)
; - call unregister function in kernel
; - Remove all allocated structures and buffers the card used
or eax, -1
ret
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;
;; probe: enables the device (if it really is RTL8139)
;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
align 4
probe:
DEBUGF 1, "Probing\n"
; Make the device a bus master
invoke PciRead32, [ebx + device.pci_bus], [ebx + device.pci_dev], PCI_header00.command
or al, PCI_CMD_MASTER or PCI_CMD_PIO
invoke PciWrite32, [ebx + device.pci_bus], [ebx + device.pci_dev], PCI_header00.command, eax
; wake up old chips
set_io [ebx + device.io_addr], 0
set_io [ebx + device.io_addr], REG_HLTCLK
mov al, 'R' ; run the clock
out dx, al
; get chip version
set_io [ebx + device.io_addr], 0
set_io [ebx + device.io_addr], REG_TXCONFIG + 2
in ax, dx
shr ah, 2
shr ax, 6
and al, 0x7f
DEBUGF 1, "Chip version: %x\n", eax:2
; now find it in our array
mov ecx, HW_VERSIONS
@@:
cmp al, [hw_ver_array + ecx]
je @f
dec ecx
jnz @r
@@:
mov [ebx + device.hw_ver_id], cl
mov ecx, [hw_ver_names+ecx*4]
mov [ebx + device.name], ecx
DEBUGF 1, "Chip version: %s\n", ecx
cmp [ebx + device.hw_ver_id], IDX_RTL8139B
jae .new_chip
; wake up older chips
.old_chip:
DEBUGF 1, "Wake up chip old style\n"
set_io [ebx + device.io_addr], REG_CONFIG1
in al, dx
and al, not ((1 shl BIT_SLEEP) or (1 shl BIT_PWRDWN))
out dx, al
jmp .done
; set LWAKE pin to active high (default value).
; it is for Wake-On-LAN functionality of some motherboards.
; this signal is used to inform the motherboard to execute a wake-up process.
; only at newer chips.
.new_chip:
DEBUGF 1, "Wake up chip new style\n"
; unlock config and BMCR registers
set_io [ebx + device.io_addr], 0
set_io [ebx + device.io_addr], REG_9346CR
mov al, (1 shl BIT_93C46_EEM1) or (1 shl BIT_93C46_EEM0)
out dx, al
;
set_io [ebx + device.io_addr], REG_CONFIG1
in al, dx
or al, (1 shl BIT_PMEn)
and al, not (1 shl BIT_LWACT)
out dx, al
;
set_io [ebx + device.io_addr], REG_CONFIG4
in al, dx
and al, not (1 shl BIT_LWPTN)
out dx, al
; lock config and BMCR registers
xor al, al
set_io [ebx + device.io_addr], REG_9346CR
out dx, al
.done:
DEBUGF 1, "probing done!\n"
xor eax, eax
ret
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;
;; reset: Set up all registers and descriptors, clear some values
;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
reset:
DEBUGF 1, "Reset\n"
; reset chip
DEBUGF 1, "Resetting chip\n"
set_io [ebx + device.io_addr], 0
set_io [ebx + device.io_addr], REG_COMMAND
mov al, 1 shl BIT_RST
out dx, al
mov cx, 1000 ; wait no longer for the reset
@@:
in al, dx
test al, 1 shl BIT_RST
jz @f ; RST remains 1 during reset
dec cx
jnz @r
DEBUGF 2, "Reset timeout!\n"
or eax, -1
ret
@@:
; Read MAC address
call read_mac
; attach int handler
movzx eax, [ebx + device.irq_line]
DEBUGF 1, "Attaching int handler to irq %x\n", eax:1
invoke AttachIntHandler, eax, int_handler, ebx
test eax, eax
jnz @f
DEBUGF 2, "Could not attach int handler!\n"
or eax, -1
ret
@@:
; unlock config and BMCR registers
set_io [ebx + device.io_addr], 0
set_io [ebx + device.io_addr], REG_9346CR
mov al, (1 shl BIT_93C46_EEM1) or (1 shl BIT_93C46_EEM0)
out dx, al
; initialize multicast registers (no filtering)
mov eax, 0xffffffff
set_io [ebx + device.io_addr], REG_MAR0
out dx, eax
set_io [ebx + device.io_addr], REG_MAR4
out dx, eax
; enable Rx/Tx
mov al, (1 shl BIT_RE) or (1 shl BIT_TE)
set_io [ebx + device.io_addr], REG_COMMAND
out dx, al
; Rxbuffer size, unlimited dma burst, no wrapping, no rx threshold
; accept broadcast packets, accept physical match packets
mov eax, RX_CONFIG
set_io [ebx + device.io_addr], REG_RXCONFIG
out dx, eax
; 1024 bytes DMA burst, total retries = 16 + 8 * 16 = 144
mov eax, (TX_MXDMA shl BIT_TX_MXDMA) or (TXRR shl BIT_TXRR) or BIT_IFG1 or BIT_IFG0
set_io [ebx + device.io_addr], REG_TXCONFIG
out dx, eax
; enable auto negotiation
set_io [ebx + device.io_addr], REG_BMCR
in ax, dx
or ax, (1 shl BIT_ANE)
out dx, ax
; set auto negotiation advertisement
set_io [ebx + device.io_addr], REG_ANAR
in ax, dx
or ax, (1 shl BIT_SELECTOR) or (1 shl BIT_10) or (1 shl BIT_10FD) or (1 shl BIT_TX) or (1 shl BIT_TXFD)
out dx, ax
; lock config and BMCR registers
xor eax, eax
set_io [ebx + device.io_addr], REG_9346CR
out dx, al
; init RX/TX pointers
mov [ebx + device.rx_data_offset], eax
mov [ebx + device.curr_tx_desc], al
; set_io [ebx + device.io_addr], REG_CAPR
; out dx, ax
; clear packet/byte counters
lea edi, [ebx + device.bytes_tx]
mov ecx, 6
rep stosd
; clear missing packet counter
set_io [ebx + device.io_addr], REG_MPC
out dx, eax
; set RxBuffer address, init RX buffer offset
mov eax, [ebx + device.rx_buffer]
mov dword[eax], 0 ; clear receive flags for first packet (really needed??)
DEBUGF 1, "RX buffer virtual addr=0x%x\n", eax
invoke GetPhysAddr
DEBUGF 1, "RX buffer physical addr=0x%x\n", eax
set_io [ebx + device.io_addr], REG_RBSTART
out dx, eax
; enable interrupts
set_io [ebx + device.io_addr], 0
set_io [ebx + device.io_addr], REG_IMR
mov ax, INTERRUPT_MASK
out dx, ax
; Set the mtu, kernel will be able to send now
mov [ebx + device.mtu], 1514
; Detect current link status
call link
; Indicate that we have successfully reset the card
xor eax, eax
ret
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; ;;
;; Transmit ;;
;; ;;
;; In: pointer to device structure in ebx ;;
;; Out: eax = 0 on success ;;
;; ;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
align 16
proc transmit stdcall bufferptr
spin_lock_irqsave
mov esi, [bufferptr]
DEBUGF 1,"Transmitting packet, buffer:%x, size:%u\n", [bufferptr], [esi + NET_BUFF.length]
lea eax, [esi + NET_BUFF.data]
DEBUGF 1,"To: %x-%x-%x-%x-%x-%x From: %x-%x-%x-%x-%x-%x Type:%x%x\n",\
[eax+00]:2,[eax+01]:2,[eax+02]:2,[eax+03]:2,[eax+04]:2,[eax+05]:2,\
[eax+06]:2,[eax+07]:2,[eax+08]:2,[eax+09]:2,[eax+10]:2,[eax+11]:2,\
[eax+13]:2,[eax+12]:2
cmp [esi + NET_BUFF.length], 1514
ja .error
cmp [esi + NET_BUFF.length], 60
jb .error
; check if we own the current discriptor
set_io [ebx + device.io_addr], 0
set_io [ebx + device.io_addr], REG_TSD0
movzx ecx, [ebx + device.curr_tx_desc]
shl ecx, 2
add edx, ecx
in eax, dx
test eax, (1 shl BIT_OWN)
jz .overrun
; Set the buffer address
set_io [ebx + device.io_addr], REG_TSAD0
mov [ebx + device.TX_DESC+ecx], esi
mov eax, esi
add eax, [eax + NET_BUFF.offset]
invoke GetPhysAddr
out dx, eax
; And the size of the buffer
set_io [ebx + device.io_addr], REG_TSD0
mov eax, [esi + NET_BUFF.length]
or eax, (ERTXTH shl BIT_ERTXTH) ; Early threshold
out dx, eax
; get next descriptor
inc [ebx + device.curr_tx_desc]
and [ebx + device.curr_tx_desc], NUM_TX_DESC-1
; Update stats
inc [ebx + device.packets_tx]
mov eax, [esi + NET_BUFF.length]
add dword[ebx + device.bytes_tx], eax
adc dword[ebx + device.bytes_tx + 4], 0
spin_unlock_irqrestore
xor eax, eax
ret
.error:
DEBUGF 2, "TX packet error\n"
inc [ebx + device.packets_tx_err]
invoke NetFree, [bufferptr]
spin_unlock_irqrestore
or eax, -1
ret
.overrun:
DEBUGF 2, "TX overrun\n"
inc [ebx + device.packets_tx_ovr]
invoke NetFree, [bufferptr]
spin_unlock_irqrestore
or eax, -1
ret
endp
;;;;;;;;;;;;;;;;;;;;;;;
;; ;;
;; Interrupt handler ;;
;; ;;
;;;;;;;;;;;;;;;;;;;;;;;
align 16
int_handler:
push ebx esi edi
mov ebx, [esp+4*4]
DEBUGF 1,"INT for 0x%x\n", ebx
; TODO? if we are paranoid, we can check that the value from ebx is present in the current device_list
set_io [ebx + device.io_addr], 0
set_io [ebx + device.io_addr], REG_ISR
in ax, dx ; Get interrupt status
test ax, ax
jz .nothing
out dx, ax ; ACK interrupt
DEBUGF 1, "Status: %x\n", ax
;----------------------------------------------------
; Received packet ok?
test ax, ISR_ROK
jz @f
push ax
.receive:
set_io [ebx + device.io_addr], 0
set_io [ebx + device.io_addr], REG_COMMAND
in al, dx
test al, BUFE ; test if RX buffer is empty
jnz .finish
DEBUGF 1, "RX:\n"
mov eax, [ebx + device.rx_buffer]
add eax, [ebx + device.rx_data_offset]
test byte [eax], (1 shl BIT_ROK) ; check if packet is ok
jz .reset_rx
; packet is ok, copy it
movzx ecx, word [eax+2] ; packet length
sub cx, 4 ; don't copy CRC
; Update stats
add dword [ebx + device.bytes_rx], ecx
adc dword [ebx + device.bytes_rx + 4], 0
inc [ebx + device.packets_rx]
DEBUGF 1, "Received %u bytes\n", ecx
push ebx eax ecx
add ecx, NET_BUFF.data
invoke NetAlloc, ecx ; Allocate a buffer to put packet into
pop ecx
test eax, eax ; Test if we allocated succesfully
jz .abort
mov [eax + NET_BUFF.length], ecx
mov [eax + NET_BUFF.device], ebx
mov [eax + NET_BUFF.offset], NET_BUFF.data
lea edi, [eax + NET_BUFF.data] ; Where we will copy too
mov esi, [esp] ; The buffer we will copy from
add esi, 4 ; Dont copy CRC
push .abort ; return addr for Eth_input
push eax ; buffer ptr for Eth_input
.copy:
shr ecx, 1
jnc .nb
movsb
.nb:
shr ecx, 1
jnc .nw
movsw
.nw:
jz .nd
rep movsd
.nd:
jmp [EthInput] ; Send it to kernel
.abort:
pop eax ebx
; update eth_data_start_offset
movzx eax, word [eax+2] ; packet length
add eax, [ebx + device.rx_data_offset]
add eax, 4+3 ; packet header is 4 bytes long + dword alignment
and eax, not 3 ; dword alignment
cmp eax, RX_BUFFER_SIZE
jb .no_wrap
DEBUGF 1, "Wrapping\n"
sub eax, RX_BUFFER_SIZE
.no_wrap:
mov [ebx + device.rx_data_offset], eax
DEBUGF 1, "New RX ptr: %d\n", eax
set_io [ebx + device.io_addr], 0
set_io [ebx + device.io_addr], REG_CAPR ; update 'Current Address of Packet Read register'
sub eax, 0x10 ; value 0x10 is a constant for CAPR
out dx, ax
jmp .receive ; check for multiple packets
.reset_rx:
test byte [eax], (1 shl BIT_CRC)
jz .no_crc_error
DEBUGF 2, "RX: CRC error!\n"
.no_crc_error:
test byte [eax], (1 shl BIT_FAE)
jz .no_fae_error
DEBUGF 2, "RX: Frame alignment error!\n"
.no_fae_error:
DEBUGF 1, "Reset RX\n"
in al, dx ; read command register
push ax
and al, not (1 shl BIT_RE) ; Clear the RE bit
out dx, al
pop ax
out dx, al ; write original command back
add edx, REG_RXCONFIG - REG_COMMAND ; Restore RX configuration
mov ax, RX_CONFIG
out dx, ax
.finish:
pop ax
@@:
;----------------------------------------------------
; Transmit ok / Transmit error
test ax, ISR_TOK + ISR_TER
jz @f
DEBUGF 1, "Transmit done!\n"
push ax
mov ecx, (NUM_TX_DESC-1)*4
.txdescloop:
set_io [ebx + device.io_addr], 0
set_io [ebx + device.io_addr], REG_TSD0
add edx, ecx
in eax, dx
test eax, TSR_OWN ; DMA operation completed
jz .notthisone
cmp [ebx + device.TX_DESC+ecx], 0
je .notthisone
DEBUGF 1, "TSD: 0x%x\n", eax
test eax, TSR_TUN
jz .no_bun
DEBUGF 2, "TX: FIFO Buffer underrun!\n"
.no_bun:
test eax, TSR_OWC
jz .no_owc
DEBUGF 2, "TX: OWC!\n"
.no_owc:
test eax, TSR_TABT
jz .no_tabt
DEBUGF 2, "TX: TABT!\n"
.no_tabt:
test eax, TSR_CRS
jz .no_csl
DEBUGF 2, "TX: Carrier Sense Lost!\n"
.no_csl:
test eax, TSR_TOK
jz .no_tok
DEBUGF 1, "TX: Transmit OK!\n"
.no_tok:
DEBUGF 1, "free transmit buffer 0x%x\n", [ebx + device.TX_DESC+ecx]:8
push ecx ebx
invoke NetFree, [ebx + device.TX_DESC+ecx]
pop ebx ecx
mov [ebx + device.TX_DESC+ecx], 0
.notthisone:
sub ecx, 4
jae .txdescloop
pop ax
@@:
;----------------------------------------------------
; Rx buffer overflow ?
test ax, ISR_RXOVW
jz @f
push ax
DEBUGF 2, "RX:buffer overflow!\n"
set_io [ebx + device.io_addr], 0
set_io [ebx + device.io_addr], REG_ISR
mov ax, ISR_FIFOOVW or ISR_RXOVW or ISR_ROK
out dx, ax
pop ax
@@:
;----------------------------------------------------
; Packet underrun?
test ax, ISR_PUN
jz @f
DEBUGF 1, "Packet underrun or link changed!\n"
call link
@@:
;----------------------------------------------------
; Receive FIFO overflow ?
test ax, ISR_FIFOOVW
jz @f
push ax
DEBUGF 2, "RX fifo overflow!\n"
set_io [ebx + device.io_addr], 0
set_io [ebx + device.io_addr], REG_ISR
mov ax, ISR_FIFOOVW or ISR_RXOVW or ISR_ROK
out dx, ax
pop ax
@@:
;----------------------------------------------------
; cable length changed ?
test ax, ISR_LENCHG
jz @f
DEBUGF 2, "Cable length changed!\n"
call link
@@:
pop edi esi ebx
xor eax, eax
inc eax
ret
.nothing:
pop edi esi ebx
xor eax, eax
ret
;;;;;;;;;;;;;;;;;;;;;;;
;; ;;
;; Check link status ;;
;; ;;
;;;;;;;;;;;;;;;;;;;;;;;
align 4
link:
DEBUGF 1, "Checking link status:\n"
set_io [ebx + device.io_addr], 0
set_io [ebx + device.io_addr], REG_MSR
in ax, dx
test al, 1 shl 2 ; 0 = link ok 1 = link fail
jnz .notconnected
mov ecx, ETH_LINK_SPEED_10M
test al, 1 shl 3 ; 0 = 100 Mbps 1 = 10 Mbps
jnz @f
mov ecx, ETH_LINK_SPEED_100M
@@:
set_io [ebx + device.io_addr], REG_BMCR
in ax, dx
test ax, 1 shl 8 ; Duplex mode
jz @f
or ecx, ETH_LINK_FULL_DUPLEX
@@:
mov [ebx + device.state], ecx
invoke NetLinkChanged
DEBUGF 2, "link is up\n"
ret
.notconnected:
mov [ebx + device.state], ETH_LINK_DOWN
invoke NetLinkChanged
DEBUGF 2, "link is down\n"
ret
;;;;;;;;;;;;;;;;;;;;;;;
;; ;;
;; Write MAC address ;;
;; ;;
;;;;;;;;;;;;;;;;;;;;;;;
align 4
write_mac: ; in: mac pushed onto stack (as 3 words)
DEBUGF 1, "Writing MAC\n"
; disable all in command registers
set_io [ebx + device.io_addr], 0
set_io [ebx + device.io_addr], REG_9346CR
xor eax, eax
out dx, al
set_io [ebx + device.io_addr], REG_IMR
xor eax, eax
out dx, ax
set_io [ebx + device.io_addr], REG_ISR
mov eax, -1
out dx, ax
; enable writing
set_io [ebx + device.io_addr], REG_9346CR
mov eax, REG_9346CR_WE
out dx, al
; write the mac ...
set_io [ebx + device.io_addr], REG_IDR0
pop eax
out dx, eax
set_io [ebx + device.io_addr], REG_IDR0+4
xor eax, eax
pop ax
out dx, eax
; disable writing
set_io [ebx + device.io_addr], REG_9346CR
xor eax, eax
out dx, al
DEBUGF 1, "MAC write ok!\n"
; Notice this procedure does not ret, but continues to read_mac instead.
;;;;;;;;;;;;;;;;;;;;;;
;; ;;
;; Read MAC address ;;
;; ;;
;;;;;;;;;;;;;;;;;;;;;;
read_mac:
DEBUGF 1, "Reading MAC:\n"
set_io [ebx + device.io_addr], 0
lea edi, [ebx + device.mac]
in eax, dx
stosd
add edx, 4
in ax, dx
stosw
DEBUGF 1, "%x-%x-%x-%x-%x-%x\n",[edi-6]:2,[edi-5]:2,[edi-4]:2,[edi-3]:2,[edi-2]:2,[edi-1]:2
ret
; End of code
data fixups
end data
include '../peimport.inc'
my_service db 'RTL8139',0 ; max 16 chars include zero
sz_unknown db 'Unknown RTL8139 clone', 0
sz_RTL8139 db 'Realtek 8139',0
sz_RTL8139_K db 'Realtek 8139 rev K',0
sz_RTL8139A db 'Realtek 8139A',0
sz_RTL8139A_G db 'Realtek 8139A rev G',0
sz_RTL8139B db 'Realtek 8139B',0
sz_RTL8130 db 'Realtek 8130',0
sz_RTL8139C db 'Realtek 8139C',0
sz_RTL8100 db 'Realtek 8100',0
sz_RTL8100_8139D db 'Realtek 8100B / 8139D',0
sz_RTL8139CP db 'Realtek 8139CP', 0
sz_RTL8101 db 'Realtek 8101',0
hw_ver_names:
dd sz_unknown
dd sz_RTL8139
dd sz_RTL8139_K
dd sz_RTL8139A
dd sz_RTL8139A_G
dd sz_RTL8139B
dd sz_RTL8130
dd sz_RTL8139C
dd sz_RTL8100
dd sz_RTL8100_8139D
dd sz_RTL8139CP
dd sz_RTL8101
hw_ver_array: ; This array is used by the probe routine to find out wich version of the RTL8139 we are working with
db 0
db VER_RTL8139
db VER_RTL8139_K
db VER_RTL8139A
db VER_RTL8139A_G
db VER_RTL8139B
db VER_RTL8130
db VER_RTL8139C
db VER_RTL8100
db VER_RTL8100_8139D
db VER_RTL8139CP
db VER_RTL8101
include_debug_strings ; All data wich FDO uses will be included here
align 4
devices dd 0
device_list rd MAX_DEVICES ; This list contains all pointers to device structures the driver is handling