kolibrios-gitea/drivers/video/drm/radeon/utils.c

824 lines
22 KiB
C
Raw Normal View History

#include <ddk.h>
#include <linux/mm.h>
#include <drm/drmP.h>
#include <linux/hdmi.h>
#include "radeon.h"
int x86_clflush_size;
unsigned int tsc_khz;
struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
{
struct file *filep;
int count;
filep = __builtin_malloc(sizeof(*filep));
if(unlikely(filep == NULL))
return ERR_PTR(-ENOMEM);
count = size / PAGE_SIZE;
filep->pages = kzalloc(sizeof(struct page *) * count, 0);
if(unlikely(filep->pages == NULL))
{
kfree(filep);
return ERR_PTR(-ENOMEM);
};
filep->count = count;
filep->allocated = 0;
filep->vma = NULL;
// printf("%s file %p pages %p count %d\n",
// __FUNCTION__,filep, filep->pages, count);
return filep;
}
static void *check_bytes8(const u8 *start, u8 value, unsigned int bytes)
{
while (bytes) {
if (*start != value)
return (void *)start;
start++;
bytes--;
}
return NULL;
}
/**
* memchr_inv - Find an unmatching character in an area of memory.
* @start: The memory area
* @c: Find a character other than c
* @bytes: The size of the area.
*
* returns the address of the first character other than @c, or %NULL
* if the whole buffer contains just @c.
*/
void *memchr_inv(const void *start, int c, size_t bytes)
{
u8 value = c;
u64 value64;
unsigned int words, prefix;
if (bytes <= 16)
return check_bytes8(start, value, bytes);
value64 = value;
#if defined(ARCH_HAS_FAST_MULTIPLIER) && BITS_PER_LONG == 64
value64 *= 0x0101010101010101;
#elif defined(ARCH_HAS_FAST_MULTIPLIER)
value64 *= 0x01010101;
value64 |= value64 << 32;
#else
value64 |= value64 << 8;
value64 |= value64 << 16;
value64 |= value64 << 32;
#endif
prefix = (unsigned long)start % 8;
if (prefix) {
u8 *r;
prefix = 8 - prefix;
r = check_bytes8(start, value, prefix);
if (r)
return r;
start += prefix;
bytes -= prefix;
}
words = bytes / 8;
while (words) {
if (*(u64 *)start != value64)
return check_bytes8(start, value, 8);
start += 8;
words--;
}
return check_bytes8(start, value, bytes % 8);
}
#define _U 0x01 /* upper */
#define _L 0x02 /* lower */
#define _D 0x04 /* digit */
#define _C 0x08 /* cntrl */
#define _P 0x10 /* punct */
#define _S 0x20 /* white space (space/lf/tab) */
#define _X 0x40 /* hex digit */
#define _SP 0x80 /* hard space (0x20) */
extern const unsigned char _ctype[];
#define __ismask(x) (_ctype[(int)(unsigned char)(x)])
#define isalnum(c) ((__ismask(c)&(_U|_L|_D)) != 0)
#define isalpha(c) ((__ismask(c)&(_U|_L)) != 0)
#define iscntrl(c) ((__ismask(c)&(_C)) != 0)
#define isdigit(c) ((__ismask(c)&(_D)) != 0)
#define isgraph(c) ((__ismask(c)&(_P|_U|_L|_D)) != 0)
#define islower(c) ((__ismask(c)&(_L)) != 0)
#define isprint(c) ((__ismask(c)&(_P|_U|_L|_D|_SP)) != 0)
#define ispunct(c) ((__ismask(c)&(_P)) != 0)
/* Note: isspace() must return false for %NUL-terminator */
#define isspace(c) ((__ismask(c)&(_S)) != 0)
#define isupper(c) ((__ismask(c)&(_U)) != 0)
#define isxdigit(c) ((__ismask(c)&(_D|_X)) != 0)
#define isascii(c) (((unsigned char)(c))<=0x7f)
#define toascii(c) (((unsigned char)(c))&0x7f)
static inline unsigned char __tolower(unsigned char c)
{
if (isupper(c))
c -= 'A'-'a';
return c;
}
static inline unsigned char __toupper(unsigned char c)
{
if (islower(c))
c -= 'a'-'A';
return c;
}
#define tolower(c) __tolower(c)
#define toupper(c) __toupper(c)
/*
* Fast implementation of tolower() for internal usage. Do not use in your
* code.
*/
static inline char _tolower(const char c)
{
return c | 0x20;
}
void msleep(unsigned int msecs)
{
msecs /= 10;
if(!msecs) msecs = 1;
__asm__ __volatile__ (
"call *__imp__Delay"
::"b" (msecs));
__asm__ __volatile__ (
"":::"ebx");
};
/* simple loop based delay: */
static void delay_loop(unsigned long loops)
{
asm volatile(
" test %0,%0 \n"
" jz 3f \n"
" jmp 1f \n"
".align 16 \n"
"1: jmp 2f \n"
".align 16 \n"
"2: dec %0 \n"
" jnz 2b \n"
"3: dec %0 \n"
: /* we don't need output */
:"a" (loops)
);
}
static void (*delay_fn)(unsigned long) = delay_loop;
void __delay(unsigned long loops)
{
delay_fn(loops);
}
inline void __const_udelay(unsigned long xloops)
{
int d0;
xloops *= 4;
asm("mull %%edx"
: "=d" (xloops), "=&a" (d0)
: "1" (xloops), ""
(loops_per_jiffy * (HZ/4)));
__delay(++xloops);
}
void __udelay(unsigned long usecs)
{
__const_udelay(usecs * 0x000010c7); /* 2**32 / 1000000 (rounded up) */
}
unsigned int _sw_hweight32(unsigned int w)
{
#ifdef CONFIG_ARCH_HAS_FAST_MULTIPLIER
w -= (w >> 1) & 0x55555555;
w = (w & 0x33333333) + ((w >> 2) & 0x33333333);
w = (w + (w >> 4)) & 0x0f0f0f0f;
return (w * 0x01010101) >> 24;
#else
unsigned int res = w - ((w >> 1) & 0x55555555);
res = (res & 0x33333333) + ((res >> 2) & 0x33333333);
res = (res + (res >> 4)) & 0x0F0F0F0F;
res = res + (res >> 8);
return (res + (res >> 16)) & 0x000000FF;
#endif
}
EXPORT_SYMBOL(_sw_hweight32);
void usleep_range(unsigned long min, unsigned long max)
{
udelay(max);
}
EXPORT_SYMBOL(usleep_range);
void *kmemdup(const void *src, size_t len, gfp_t gfp)
{
void *p;
p = kmalloc(len, gfp);
if (p)
memcpy(p, src, len);
return p;
}
void cpu_detect1()
{
u32 junk, tfms, cap0, misc;
int i;
cpuid(0x00000001, &tfms, &misc, &junk, &cap0);
if (cap0 & (1<<19))
{
x86_clflush_size = ((misc >> 8) & 0xff) * 8;
}
#if 0
cpuid(0x80000002, (unsigned int*)&cpuinfo.model_name[0], (unsigned int*)&cpuinfo.model_name[4],
(unsigned int*)&cpuinfo.model_name[8], (unsigned int*)&cpuinfo.model_name[12]);
cpuid(0x80000003, (unsigned int*)&cpuinfo.model_name[16], (unsigned int*)&cpuinfo.model_name[20],
(unsigned int*)&cpuinfo.model_name[24], (unsigned int*)&cpuinfo.model_name[28]);
cpuid(0x80000004, (unsigned int*)&cpuinfo.model_name[32], (unsigned int*)&cpuinfo.model_name[36],
(unsigned int*)&cpuinfo.model_name[40], (unsigned int*)&cpuinfo.model_name[44]);
printf("\n%s\n\n",cpuinfo.model_name);
cpuinfo.def_mtrr = read_msr(MSR_MTRRdefType);
cpuinfo.mtrr_cap = read_msr(IA32_MTRRCAP);
printf("MSR_MTRRdefType %016llx\n\n", cpuinfo.def_mtrr);
cpuinfo.var_mtrr_count = (u8_t)cpuinfo.mtrr_cap;
for(i = 0; i < cpuinfo.var_mtrr_count; i++)
{
u64_t mtrr_base;
u64_t mtrr_mask;
cpuinfo.var_mtrr[i].base = read_msr(MTRRphysBase_MSR(i));
cpuinfo.var_mtrr[i].mask = read_msr(MTRRphysMask_MSR(i));
printf("MTRR_%d base: %016llx mask: %016llx\n", i,
cpuinfo.var_mtrr[i].base,
cpuinfo.var_mtrr[i].mask);
};
unsigned int cr0, cr3, cr4, eflags;
eflags = safe_cli();
/* Enter the no-fill (CD=1, NW=0) cache mode and flush caches. */
cr0 = read_cr0() | (1<<30);
write_cr0(cr0);
wbinvd();
cr4 = read_cr4();
write_cr4(cr4 & ~(1<<7));
cr3 = read_cr3();
write_cr3(cr3);
/* Save MTRR state */
rdmsr(MSR_MTRRdefType, deftype_lo, deftype_hi);
/* Disable MTRRs, and set the default type to uncached */
native_write_msr(MSR_MTRRdefType, deftype_lo & ~0xcff, deftype_hi);
wbinvd();
i = 0;
set_mtrr(i++,0,0x80000000>>12,MTRR_WB);
set_mtrr(i++,0x80000000>>12,0x40000000>>12,MTRR_WB);
set_mtrr(i++,0xC0000000>>12,0x20000000>>12,MTRR_WB);
set_mtrr(i++,0xdb800000>>12,0x00800000>>12,MTRR_UC);
set_mtrr(i++,0xdc000000>>12,0x04000000>>12,MTRR_UC);
set_mtrr(i++,0xE0000000>>12,0x10000000>>12,MTRR_WC);
for(; i < cpuinfo.var_mtrr_count; i++)
set_mtrr(i,0,0,0);
write_cr3(cr3);
/* Intel (P6) standard MTRRs */
native_write_msr(MSR_MTRRdefType, deftype_lo, deftype_hi);
/* Enable caches */
write_cr0(read_cr0() & ~(1<<30));
/* Restore value of CR4 */
write_cr4(cr4);
safe_sti(eflags);
printf("\nnew MTRR map\n\n");
for(i = 0; i < cpuinfo.var_mtrr_count; i++)
{
u64_t mtrr_base;
u64_t mtrr_mask;
cpuinfo.var_mtrr[i].base = read_msr(MTRRphysBase_MSR(i));
cpuinfo.var_mtrr[i].mask = read_msr(MTRRphysMask_MSR(i));
printf("MTRR_%d base: %016llx mask: %016llx\n", i,
cpuinfo.var_mtrr[i].base,
cpuinfo.var_mtrr[i].mask);
};
#endif
tsc_khz = (unsigned int)(GetCpuFreq()/1000);
}
static atomic_t fence_context_counter = ATOMIC_INIT(0);
/**
* fence_context_alloc - allocate an array of fence contexts
* @num: [in] amount of contexts to allocate
*
* This function will return the first index of the number of fences allocated.
* The fence context is used for setting fence->context to a unique number.
*/
unsigned fence_context_alloc(unsigned num)
{
BUG_ON(!num);
return atomic_add_return(num, &fence_context_counter) - num;
}
EXPORT_SYMBOL(fence_context_alloc);
int fence_signal(struct fence *fence)
{
unsigned long flags;
if (!fence)
return -EINVAL;
// if (!ktime_to_ns(fence->timestamp)) {
// fence->timestamp = ktime_get();
// smp_mb__before_atomic();
// }
if (test_and_set_bit(FENCE_FLAG_SIGNALED_BIT, &fence->flags))
return -EINVAL;
// trace_fence_signaled(fence);
if (test_bit(FENCE_FLAG_ENABLE_SIGNAL_BIT, &fence->flags)) {
struct fence_cb *cur, *tmp;
spin_lock_irqsave(fence->lock, flags);
list_for_each_entry_safe(cur, tmp, &fence->cb_list, node) {
list_del_init(&cur->node);
cur->func(fence, cur);
}
spin_unlock_irqrestore(fence->lock, flags);
}
return 0;
}
EXPORT_SYMBOL(fence_signal);
int fence_signal_locked(struct fence *fence)
{
struct fence_cb *cur, *tmp;
int ret = 0;
if (WARN_ON(!fence))
return -EINVAL;
// if (!ktime_to_ns(fence->timestamp)) {
// fence->timestamp = ktime_get();
// smp_mb__before_atomic();
// }
if (test_and_set_bit(FENCE_FLAG_SIGNALED_BIT, &fence->flags)) {
ret = -EINVAL;
/*
* we might have raced with the unlocked fence_signal,
* still run through all callbacks
*/
}// else
// trace_fence_signaled(fence);
list_for_each_entry_safe(cur, tmp, &fence->cb_list, node) {
list_del_init(&cur->node);
cur->func(fence, cur);
}
return ret;
}
EXPORT_SYMBOL(fence_signal_locked);
void fence_enable_sw_signaling(struct fence *fence)
{
unsigned long flags;
if (!test_and_set_bit(FENCE_FLAG_ENABLE_SIGNAL_BIT, &fence->flags) &&
!test_bit(FENCE_FLAG_SIGNALED_BIT, &fence->flags)) {
// trace_fence_enable_signal(fence);
spin_lock_irqsave(fence->lock, flags);
if (!fence->ops->enable_signaling(fence))
fence_signal_locked(fence);
spin_unlock_irqrestore(fence->lock, flags);
}
}
EXPORT_SYMBOL(fence_enable_sw_signaling);
signed long
fence_wait_timeout(struct fence *fence, bool intr, signed long timeout)
{
signed long ret;
if (WARN_ON(timeout < 0))
return -EINVAL;
// trace_fence_wait_start(fence);
ret = fence->ops->wait(fence, intr, timeout);
// trace_fence_wait_end(fence);
return ret;
}
EXPORT_SYMBOL(fence_wait_timeout);
void fence_release(struct kref *kref)
{
struct fence *fence =
container_of(kref, struct fence, refcount);
// trace_fence_destroy(fence);
BUG_ON(!list_empty(&fence->cb_list));
if (fence->ops->release)
fence->ops->release(fence);
else
fence_free(fence);
}
EXPORT_SYMBOL(fence_release);
void fence_free(struct fence *fence)
{
kfree_rcu(fence, rcu);
}
EXPORT_SYMBOL(fence_free);
reservation_object_add_shared_inplace(struct reservation_object *obj,
struct reservation_object_list *fobj,
struct fence *fence)
{
u32 i;
fence_get(fence);
// preempt_disable();
write_seqcount_begin(&obj->seq);
for (i = 0; i < fobj->shared_count; ++i) {
struct fence *old_fence;
old_fence = rcu_dereference_protected(fobj->shared[i],
reservation_object_held(obj));
if (old_fence->context == fence->context) {
/* memory barrier is added by write_seqcount_begin */
RCU_INIT_POINTER(fobj->shared[i], fence);
write_seqcount_end(&obj->seq);
preempt_enable();
fence_put(old_fence);
return;
}
}
/*
* memory barrier is added by write_seqcount_begin,
* fobj->shared_count is protected by this lock too
*/
RCU_INIT_POINTER(fobj->shared[fobj->shared_count], fence);
fobj->shared_count++;
write_seqcount_end(&obj->seq);
// preempt_enable();
}
static void
reservation_object_add_shared_replace(struct reservation_object *obj,
struct reservation_object_list *old,
struct reservation_object_list *fobj,
struct fence *fence)
{
unsigned i;
struct fence *old_fence = NULL;
fence_get(fence);
if (!old) {
RCU_INIT_POINTER(fobj->shared[0], fence);
fobj->shared_count = 1;
goto done;
}
/*
* no need to bump fence refcounts, rcu_read access
* requires the use of kref_get_unless_zero, and the
* references from the old struct are carried over to
* the new.
*/
fobj->shared_count = old->shared_count;
for (i = 0; i < old->shared_count; ++i) {
struct fence *check;
check = rcu_dereference_protected(old->shared[i],
reservation_object_held(obj));
if (!old_fence && check->context == fence->context) {
old_fence = check;
RCU_INIT_POINTER(fobj->shared[i], fence);
} else
RCU_INIT_POINTER(fobj->shared[i], check);
}
if (!old_fence) {
RCU_INIT_POINTER(fobj->shared[fobj->shared_count], fence);
fobj->shared_count++;
}
done:
// preempt_disable();
write_seqcount_begin(&obj->seq);
/*
* RCU_INIT_POINTER can be used here,
* seqcount provides the necessary barriers
*/
RCU_INIT_POINTER(obj->fence, fobj);
write_seqcount_end(&obj->seq);
// preempt_enable();
if (old)
kfree_rcu(old, rcu);
if (old_fence)
fence_put(old_fence);
}
int reservation_object_reserve_shared(struct reservation_object *obj)
{
struct reservation_object_list *fobj, *old;
u32 max;
old = reservation_object_get_list(obj);
if (old && old->shared_max) {
if (old->shared_count < old->shared_max) {
/* perform an in-place update */
kfree(obj->staged);
obj->staged = NULL;
return 0;
} else
max = old->shared_max * 2;
} else
max = 4;
/*
* resize obj->staged or allocate if it doesn't exist,
* noop if already correct size
*/
fobj = krealloc(obj->staged, offsetof(typeof(*fobj), shared[max]),
GFP_KERNEL);
if (!fobj)
return -ENOMEM;
obj->staged = fobj;
fobj->shared_max = max;
return 0;
}
EXPORT_SYMBOL(reservation_object_reserve_shared);
void reservation_object_add_shared_fence(struct reservation_object *obj,
struct fence *fence)
{
struct reservation_object_list *old, *fobj = obj->staged;
old = reservation_object_get_list(obj);
obj->staged = NULL;
if (!fobj) {
BUG_ON(old->shared_count >= old->shared_max);
reservation_object_add_shared_inplace(obj, old, fence);
} else
reservation_object_add_shared_replace(obj, old, fobj, fence);
}
EXPORT_SYMBOL(reservation_object_add_shared_fence);
void reservation_object_add_excl_fence(struct reservation_object *obj,
struct fence *fence)
{
struct fence *old_fence = reservation_object_get_excl(obj);
struct reservation_object_list *old;
u32 i = 0;
old = reservation_object_get_list(obj);
if (old)
i = old->shared_count;
if (fence)
fence_get(fence);
// preempt_disable();
write_seqcount_begin(&obj->seq);
/* write_seqcount_begin provides the necessary memory barrier */
RCU_INIT_POINTER(obj->fence_excl, fence);
if (old)
old->shared_count = 0;
write_seqcount_end(&obj->seq);
// preempt_enable();
/* inplace update, no shared fences */
while (i--)
fence_put(rcu_dereference_protected(old->shared[i],
reservation_object_held(obj)));
if (old_fence)
fence_put(old_fence);
}
EXPORT_SYMBOL(reservation_object_add_excl_fence);
void
fence_init(struct fence *fence, const struct fence_ops *ops,
spinlock_t *lock, unsigned context, unsigned seqno)
{
BUG_ON(!lock);
BUG_ON(!ops || !ops->wait || !ops->enable_signaling ||
!ops->get_driver_name || !ops->get_timeline_name);
kref_init(&fence->refcount);
fence->ops = ops;
INIT_LIST_HEAD(&fence->cb_list);
fence->lock = lock;
fence->context = context;
fence->seqno = seqno;
fence->flags = 0UL;
// trace_fence_init(fence);
}
EXPORT_SYMBOL(fence_init);
#include <linux/rcupdate.h>
struct rcu_ctrlblk {
struct rcu_head *rcucblist; /* List of pending callbacks (CBs). */
struct rcu_head **donetail; /* ->next pointer of last "done" CB. */
struct rcu_head **curtail; /* ->next pointer of last CB. */
// RCU_TRACE(long qlen); /* Number of pending CBs. */
// RCU_TRACE(unsigned long gp_start); /* Start time for stalls. */
// RCU_TRACE(unsigned long ticks_this_gp); /* Statistic for stalls. */
// RCU_TRACE(unsigned long jiffies_stall); /* Jiffies at next stall. */
// RCU_TRACE(const char *name); /* Name of RCU type. */
};
/* Definition for rcupdate control block. */
static struct rcu_ctrlblk rcu_sched_ctrlblk = {
.donetail = &rcu_sched_ctrlblk.rcucblist,
.curtail = &rcu_sched_ctrlblk.rcucblist,
// RCU_TRACE(.name = "rcu_sched")
};
static void __call_rcu(struct rcu_head *head,
void (*func)(struct rcu_head *rcu),
struct rcu_ctrlblk *rcp)
{
unsigned long flags;
// debug_rcu_head_queue(head);
head->func = func;
head->next = NULL;
local_irq_save(flags);
*rcp->curtail = head;
rcp->curtail = &head->next;
// RCU_TRACE(rcp->qlen++);
local_irq_restore(flags);
}
/*
* Post an RCU callback to be invoked after the end of an RCU-sched grace
* period. But since we have but one CPU, that would be after any
* quiescent state.
*/
void call_rcu_sched(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
{
__call_rcu(head, func, &rcu_sched_ctrlblk);
}
fb_get_options(const char *name, char **option)
{
return 1;
}
ktime_t ktime_get(void)
{
ktime_t t;
t.tv64 = GetClockNs();
return t;
}
void radeon_cursor_reset(struct drm_crtc *crtc)
{
}
/* Greatest common divisor */
unsigned long gcd(unsigned long a, unsigned long b)
{
unsigned long r;
if (a < b)
swap(a, b);
if (!b)
return a;
while ((r = a % b) != 0) {
a = b;
b = r;
}
return b;
}
void vfree(const void *addr)
{
KernelFree(addr);
}
int set_memory_uc(unsigned long addr, int numpages)
{
return 0;
};
int set_memory_wb(unsigned long addr, int numpages)
{
return 0;
};
char *strdup(const char *str)
{
size_t len = strlen(str) + 1;
char *copy = __builtin_malloc(len);
if (copy)
{
memcpy (copy, str, len);
}
return copy;
}