kolibrios-gitea/programs/develop/libraries/newlib/math/powl.c

805 lines
18 KiB
C
Raw Normal View History

/* powl.c
*
* Power function, long double precision
*
*
*
* SYNOPSIS:
*
* long double x, y, z, powl();
*
* z = powl( x, y );
*
*
*
* DESCRIPTION:
*
* Computes x raised to the yth power. Analytically,
*
* x**y = exp( y log(x) ).
*
* Following Cody and Waite, this program uses a lookup table
* of 2**-i/32 and pseudo extended precision arithmetic to
* obtain several extra bits of accuracy in both the logarithm
* and the exponential.
*
*
*
* ACCURACY:
*
* The relative error of pow(x,y) can be estimated
* by y dl ln(2), where dl is the absolute error of
* the internally computed base 2 logarithm. At the ends
* of the approximation interval the logarithm equal 1/32
* and its relative error is about 1 lsb = 1.1e-19. Hence
* the predicted relative error in the result is 2.3e-21 y .
*
* Relative error:
* arithmetic domain # trials peak rms
*
* IEEE +-1000 40000 2.8e-18 3.7e-19
* .001 < x < 1000, with log(x) uniformly distributed.
* -1000 < y < 1000, y uniformly distributed.
*
* IEEE 0,8700 60000 6.5e-18 1.0e-18
* 0.99 < x < 1.01, 0 < y < 8700, uniformly distributed.
*
*
* ERROR MESSAGES:
*
* message condition value returned
* pow overflow x**y > MAXNUM INFINITY
* pow underflow x**y < 1/MAXNUM 0.0
* pow domain x<0 and y noninteger 0.0
*
*/
/*
Cephes Math Library Release 2.7: May, 1998
Copyright 1984, 1991, 1998 by Stephen L. Moshier
*/
/*
Modified for mingw
2002-07-22 Danny Smith <dannysmith@users.sourceforge.net>
*/
#ifdef __MINGW32__
#include "cephes_mconf.h"
#else
#include "mconf.h"
static char fname[] = {"powl"};
#endif
#ifndef _SET_ERRNO
#define _SET_ERRNO(x)
#endif
/* Table size */
#define NXT 32
/* log2(Table size) */
#define LNXT 5
#ifdef UNK
/* log(1+x) = x - .5x^2 + x^3 * P(z)/Q(z)
* on the domain 2^(-1/32) - 1 <= x <= 2^(1/32) - 1
*/
static long double P[] = {
8.3319510773868690346226E-4L,
4.9000050881978028599627E-1L,
1.7500123722550302671919E0L,
1.4000100839971580279335E0L,
};
static long double Q[] = {
/* 1.0000000000000000000000E0L,*/
5.2500282295834889175431E0L,
8.4000598057587009834666E0L,
4.2000302519914740834728E0L,
};
/* A[i] = 2^(-i/32), rounded to IEEE long double precision.
* If i is even, A[i] + B[i/2] gives additional accuracy.
*/
static long double A[33] = {
1.0000000000000000000000E0L,
9.7857206208770013448287E-1L,
9.5760328069857364691013E-1L,
9.3708381705514995065011E-1L,
9.1700404320467123175367E-1L,
8.9735453750155359320742E-1L,
8.7812608018664974155474E-1L,
8.5930964906123895780165E-1L,
8.4089641525371454301892E-1L,
8.2287773907698242225554E-1L,
8.0524516597462715409607E-1L,
7.8799042255394324325455E-1L,
7.7110541270397041179298E-1L,
7.5458221379671136985669E-1L,
7.3841307296974965571198E-1L,
7.2259040348852331001267E-1L,
7.0710678118654752438189E-1L,
6.9195494098191597746178E-1L,
6.7712777346844636413344E-1L,
6.6261832157987064729696E-1L,
6.4841977732550483296079E-1L,
6.3452547859586661129850E-1L,
6.2092890603674202431705E-1L,
6.0762367999023443907803E-1L,
5.9460355750136053334378E-1L,
5.8186242938878875689693E-1L,
5.6939431737834582684856E-1L,
5.5719337129794626814472E-1L,
5.4525386633262882960438E-1L,
5.3357020033841180906486E-1L,
5.2213689121370692017331E-1L,
5.1094857432705833910408E-1L,
5.0000000000000000000000E-1L,
};
static long double B[17] = {
0.0000000000000000000000E0L,
2.6176170809902549338711E-20L,
-1.0126791927256478897086E-20L,
1.3438228172316276937655E-21L,
1.2207982955417546912101E-20L,
-6.3084814358060867200133E-21L,
1.3164426894366316434230E-20L,
-1.8527916071632873716786E-20L,
1.8950325588932570796551E-20L,
1.5564775779538780478155E-20L,
6.0859793637556860974380E-21L,
-2.0208749253662532228949E-20L,
1.4966292219224761844552E-20L,
3.3540909728056476875639E-21L,
-8.6987564101742849540743E-22L,
-1.2327176863327626135542E-20L,
0.0000000000000000000000E0L,
};
/* 2^x = 1 + x P(x),
* on the interval -1/32 <= x <= 0
*/
static long double R[] = {
1.5089970579127659901157E-5L,
1.5402715328927013076125E-4L,
1.3333556028915671091390E-3L,
9.6181291046036762031786E-3L,
5.5504108664798463044015E-2L,
2.4022650695910062854352E-1L,
6.9314718055994530931447E-1L,
};
#define douba(k) A[k]
#define doubb(k) B[k]
#define MEXP (NXT*16384.0L)
/* The following if denormal numbers are supported, else -MEXP: */
#ifdef DENORMAL
#define MNEXP (-NXT*(16384.0L+64.0L))
#else
#define MNEXP (-NXT*16384.0L)
#endif
/* log2(e) - 1 */
#define LOG2EA 0.44269504088896340735992L
#endif
#ifdef IBMPC
static const unsigned short P[] = {
0xb804,0xa8b7,0xc6f4,0xda6a,0x3ff4, XPD
0x7de9,0xcf02,0x58c0,0xfae1,0x3ffd, XPD
0x405a,0x3722,0x67c9,0xe000,0x3fff, XPD
0xcd99,0x6b43,0x87ca,0xb333,0x3fff, XPD
};
static const unsigned short Q[] = {
/* 0x0000,0x0000,0x0000,0x8000,0x3fff, */
0x6307,0xa469,0x3b33,0xa800,0x4001, XPD
0xfec2,0x62d7,0xa51c,0x8666,0x4002, XPD
0xda32,0xd072,0xa5d7,0x8666,0x4001, XPD
};
static const unsigned short A[] = {
0x0000,0x0000,0x0000,0x8000,0x3fff, XPD
0x033a,0x722a,0xb2db,0xfa83,0x3ffe, XPD
0xcc2c,0x2486,0x7d15,0xf525,0x3ffe, XPD
0xf5cb,0xdcda,0xb99b,0xefe4,0x3ffe, XPD
0x392f,0xdd24,0xc6e7,0xeac0,0x3ffe, XPD
0x48a8,0x7c83,0x06e7,0xe5b9,0x3ffe, XPD
0xe111,0x2a94,0xdeec,0xe0cc,0x3ffe, XPD
0x3755,0xdaf2,0xb797,0xdbfb,0x3ffe, XPD
0x6af4,0xd69d,0xfcca,0xd744,0x3ffe, XPD
0xe45a,0xf12a,0x1d91,0xd2a8,0x3ffe, XPD
0x80e4,0x1f84,0x8c15,0xce24,0x3ffe, XPD
0x27a3,0x6e2f,0xbd86,0xc9b9,0x3ffe, XPD
0xdadd,0x5506,0x2a11,0xc567,0x3ffe, XPD
0x9456,0x6670,0x4cca,0xc12c,0x3ffe, XPD
0x36bf,0x580c,0xa39f,0xbd08,0x3ffe, XPD
0x9ee9,0x62fb,0xaf47,0xb8fb,0x3ffe, XPD
0x6484,0xf9de,0xf333,0xb504,0x3ffe, XPD
0x2590,0xd2ac,0xf581,0xb123,0x3ffe, XPD
0x4ac6,0x42a1,0x3eea,0xad58,0x3ffe, XPD
0x0ef8,0xea7c,0x5ab4,0xa9a1,0x3ffe, XPD
0x38ea,0xb151,0xd6a9,0xa5fe,0x3ffe, XPD
0x6819,0x0c49,0x4303,0xa270,0x3ffe, XPD
0x11ae,0x91a1,0x3260,0x9ef5,0x3ffe, XPD
0x5539,0xd54e,0x39b9,0x9b8d,0x3ffe, XPD
0xa96f,0x8db8,0xf051,0x9837,0x3ffe, XPD
0x0961,0xfef7,0xefa8,0x94f4,0x3ffe, XPD
0xc336,0xab11,0xd373,0x91c3,0x3ffe, XPD
0x53c0,0x45cd,0x398b,0x8ea4,0x3ffe, XPD
0xd6e7,0xea8b,0xc1e3,0x8b95,0x3ffe, XPD
0x8527,0x92da,0x0e80,0x8898,0x3ffe, XPD
0x7b15,0xcc48,0xc367,0x85aa,0x3ffe, XPD
0xa1d7,0xac2b,0x8698,0x82cd,0x3ffe, XPD
0x0000,0x0000,0x0000,0x8000,0x3ffe, XPD
};
static const unsigned short B[] = {
0x0000,0x0000,0x0000,0x0000,0x0000, XPD
0x1f87,0xdb30,0x18f5,0xf73a,0x3fbd, XPD
0xac15,0x3e46,0x2932,0xbf4a,0xbfbc, XPD
0x7944,0xba66,0xa091,0xcb12,0x3fb9, XPD
0xff78,0x40b4,0x2ee6,0xe69a,0x3fbc, XPD
0xc895,0x5069,0xe383,0xee53,0xbfbb, XPD
0x7cde,0x9376,0x4325,0xf8ab,0x3fbc, XPD
0xa10c,0x25e0,0xc093,0xaefd,0xbfbd, XPD
0x7d3e,0xea95,0x1366,0xb2fb,0x3fbd, XPD
0x5d89,0xeb34,0x5191,0x9301,0x3fbd, XPD
0x80d9,0xb883,0xfb10,0xe5eb,0x3fbb, XPD
0x045d,0x288c,0xc1ec,0xbedd,0xbfbd, XPD
0xeded,0x5c85,0x4630,0x8d5a,0x3fbd, XPD
0x9d82,0xe5ac,0x8e0a,0xfd6d,0x3fba, XPD
0x6dfd,0xeb58,0xaf14,0x8373,0xbfb9, XPD
0xf938,0x7aac,0x91cf,0xe8da,0xbfbc, XPD
0x0000,0x0000,0x0000,0x0000,0x0000, XPD
};
static const unsigned short R[] = {
0xa69b,0x530e,0xee1d,0xfd2a,0x3fee, XPD
0xc746,0x8e7e,0x5960,0xa182,0x3ff2, XPD
0x63b6,0xadda,0xfd6a,0xaec3,0x3ff5, XPD
0xc104,0xfd99,0x5b7c,0x9d95,0x3ff8, XPD
0xe05e,0x249d,0x46b8,0xe358,0x3ffa, XPD
0x5d1d,0x162c,0xeffc,0xf5fd,0x3ffc, XPD
0x79aa,0xd1cf,0x17f7,0xb172,0x3ffe, XPD
};
/* 10 byte sizes versus 12 byte */
#define douba(k) (*(long double *)(&A[(sizeof( long double )/2)*(k)]))
#define doubb(k) (*(long double *)(&B[(sizeof( long double )/2)*(k)]))
#define MEXP (NXT*16384.0L)
#ifdef DENORMAL
#define MNEXP (-NXT*(16384.0L+64.0L))
#else
#define MNEXP (-NXT*16384.0L)
#endif
static const
union
{
unsigned short L[6];
long double ld;
} log2ea = {{0xc2ef,0x705f,0xeca5,0xe2a8,0x3ffd, XPD}};
#define LOG2EA (log2ea.ld)
/*
#define LOG2EA 0.44269504088896340735992L
*/
#endif
#ifdef MIEEE
static long P[] = {
0x3ff40000,0xda6ac6f4,0xa8b7b804,
0x3ffd0000,0xfae158c0,0xcf027de9,
0x3fff0000,0xe00067c9,0x3722405a,
0x3fff0000,0xb33387ca,0x6b43cd99,
};
static long Q[] = {
/* 0x3fff0000,0x80000000,0x00000000, */
0x40010000,0xa8003b33,0xa4696307,
0x40020000,0x8666a51c,0x62d7fec2,
0x40010000,0x8666a5d7,0xd072da32,
};
static long A[] = {
0x3fff0000,0x80000000,0x00000000,
0x3ffe0000,0xfa83b2db,0x722a033a,
0x3ffe0000,0xf5257d15,0x2486cc2c,
0x3ffe0000,0xefe4b99b,0xdcdaf5cb,
0x3ffe0000,0xeac0c6e7,0xdd24392f,
0x3ffe0000,0xe5b906e7,0x7c8348a8,
0x3ffe0000,0xe0ccdeec,0x2a94e111,
0x3ffe0000,0xdbfbb797,0xdaf23755,
0x3ffe0000,0xd744fcca,0xd69d6af4,
0x3ffe0000,0xd2a81d91,0xf12ae45a,
0x3ffe0000,0xce248c15,0x1f8480e4,
0x3ffe0000,0xc9b9bd86,0x6e2f27a3,
0x3ffe0000,0xc5672a11,0x5506dadd,
0x3ffe0000,0xc12c4cca,0x66709456,
0x3ffe0000,0xbd08a39f,0x580c36bf,
0x3ffe0000,0xb8fbaf47,0x62fb9ee9,
0x3ffe0000,0xb504f333,0xf9de6484,
0x3ffe0000,0xb123f581,0xd2ac2590,
0x3ffe0000,0xad583eea,0x42a14ac6,
0x3ffe0000,0xa9a15ab4,0xea7c0ef8,
0x3ffe0000,0xa5fed6a9,0xb15138ea,
0x3ffe0000,0xa2704303,0x0c496819,
0x3ffe0000,0x9ef53260,0x91a111ae,
0x3ffe0000,0x9b8d39b9,0xd54e5539,
0x3ffe0000,0x9837f051,0x8db8a96f,
0x3ffe0000,0x94f4efa8,0xfef70961,
0x3ffe0000,0x91c3d373,0xab11c336,
0x3ffe0000,0x8ea4398b,0x45cd53c0,
0x3ffe0000,0x8b95c1e3,0xea8bd6e7,
0x3ffe0000,0x88980e80,0x92da8527,
0x3ffe0000,0x85aac367,0xcc487b15,
0x3ffe0000,0x82cd8698,0xac2ba1d7,
0x3ffe0000,0x80000000,0x00000000,
};
static long B[51] = {
0x00000000,0x00000000,0x00000000,
0x3fbd0000,0xf73a18f5,0xdb301f87,
0xbfbc0000,0xbf4a2932,0x3e46ac15,
0x3fb90000,0xcb12a091,0xba667944,
0x3fbc0000,0xe69a2ee6,0x40b4ff78,
0xbfbb0000,0xee53e383,0x5069c895,
0x3fbc0000,0xf8ab4325,0x93767cde,
0xbfbd0000,0xaefdc093,0x25e0a10c,
0x3fbd0000,0xb2fb1366,0xea957d3e,
0x3fbd0000,0x93015191,0xeb345d89,
0x3fbb0000,0xe5ebfb10,0xb88380d9,
0xbfbd0000,0xbeddc1ec,0x288c045d,
0x3fbd0000,0x8d5a4630,0x5c85eded,
0x3fba0000,0xfd6d8e0a,0xe5ac9d82,
0xbfb90000,0x8373af14,0xeb586dfd,
0xbfbc0000,0xe8da91cf,0x7aacf938,
0x00000000,0x00000000,0x00000000,
};
static long R[] = {
0x3fee0000,0xfd2aee1d,0x530ea69b,
0x3ff20000,0xa1825960,0x8e7ec746,
0x3ff50000,0xaec3fd6a,0xadda63b6,
0x3ff80000,0x9d955b7c,0xfd99c104,
0x3ffa0000,0xe35846b8,0x249de05e,
0x3ffc0000,0xf5fdeffc,0x162c5d1d,
0x3ffe0000,0xb17217f7,0xd1cf79aa,
};
#define douba(k) (*(long double *)&A[3*(k)])
#define doubb(k) (*(long double *)&B[3*(k)])
#define MEXP (NXT*16384.0L)
#ifdef DENORMAL
#define MNEXP (-NXT*(16384.0L+64.0L))
#else
#define MNEXP (-NXT*16382.0L)
#endif
static long L[3] = {0x3ffd0000,0xe2a8eca5,0x705fc2ef};
#define LOG2EA (*(long double *)(&L[0]))
#endif
#define F W
#define Fa Wa
#define Fb Wb
#define G W
#define Ga Wa
#define Gb u
#define H W
#define Ha Wb
#define Hb Wb
#ifndef __MINGW32__
extern long double MAXNUML;
#endif
static VOLATILE long double z;
static long double w, W, Wa, Wb, ya, yb, u;
#ifdef __MINGW32__
static __inline__ long double reducl( long double );
extern long double __powil ( long double, int );
extern long double powl ( long double x, long double y);
#else
#ifdef ANSIPROT
extern long double floorl ( long double );
extern long double fabsl ( long double );
extern long double frexpl ( long double, int * );
extern long double ldexpl ( long double, int );
extern long double polevll ( long double, void *, int );
extern long double p1evll ( long double, void *, int );
extern long double __powil ( long double, int );
extern int isnanl ( long double );
extern int isfinitel ( long double );
static long double reducl( long double );
extern int signbitl ( long double );
#else
long double floorl(), fabsl(), frexpl(), ldexpl();
long double polevll(), p1evll(), __powil();
static long double reducl();
int isnanl(), isfinitel(), signbitl();
#endif /* __MINGW32__ */
#ifdef INFINITIES
extern long double INFINITYL;
#else
#define INFINITYL MAXNUML
#endif
#ifdef NANS
extern long double NANL;
#endif
#ifdef MINUSZERO
extern long double NEGZEROL;
#endif
#endif /* __MINGW32__ */
#ifdef __MINGW32__
/* No error checking. We handle Infs and zeros ourselves. */
static __inline__ long double
__fast_ldexpl (long double x, int expn)
{
long double res;
__asm__ ("fscale"
: "=t" (res)
: "0" (x), "u" ((long double) expn));
return res;
}
#define ldexpl __fast_ldexpl
#endif
long double powl( x, y )
long double x, y;
{
/* double F, Fa, Fb, G, Ga, Gb, H, Ha, Hb */
int i, nflg, iyflg, yoddint;
long e;
if( y == 0.0L )
return( 1.0L );
#ifdef NANS
if( isnanl(x) )
{
_SET_ERRNO (EDOM);
return( x );
}
if( isnanl(y) )
{
_SET_ERRNO (EDOM);
return( y );
}
#endif
if( y == 1.0L )
return( x );
if( isinfl(y) && (x == -1.0L || x == 1.0L) )
return( y );
if( x == 1.0L )
return( 1.0L );
if( y >= MAXNUML )
{
_SET_ERRNO (ERANGE);
#ifdef INFINITIES
if( x > 1.0L )
return( INFINITYL );
#else
if( x > 1.0L )
return( MAXNUML );
#endif
if( x > 0.0L && x < 1.0L )
return( 0.0L );
#ifdef INFINITIES
if( x < -1.0L )
return( INFINITYL );
#else
if( x < -1.0L )
return( MAXNUML );
#endif
if( x > -1.0L && x < 0.0L )
return( 0.0L );
}
if( y <= -MAXNUML )
{
_SET_ERRNO (ERANGE);
if( x > 1.0L )
return( 0.0L );
#ifdef INFINITIES
if( x > 0.0L && x < 1.0L )
return( INFINITYL );
#else
if( x > 0.0L && x < 1.0L )
return( MAXNUML );
#endif
if( x < -1.0L )
return( 0.0L );
#ifdef INFINITIES
if( x > -1.0L && x < 0.0L )
return( INFINITYL );
#else
if( x > -1.0L && x < 0.0L )
return( MAXNUML );
#endif
}
if( x >= MAXNUML )
{
#if INFINITIES
if( y > 0.0L )
return( INFINITYL );
#else
if( y > 0.0L )
return( MAXNUML );
#endif
return( 0.0L );
}
w = floorl(y);
/* Set iyflg to 1 if y is an integer. */
iyflg = 0;
if( w == y )
iyflg = 1;
/* Test for odd integer y. */
yoddint = 0;
if( iyflg )
{
ya = fabsl(y);
ya = floorl(0.5L * ya);
yb = 0.5L * fabsl(w);
if( ya != yb )
yoddint = 1;
}
if( x <= -MAXNUML )
{
if( y > 0.0L )
{
#ifdef INFINITIES
if( yoddint )
return( -INFINITYL );
return( INFINITYL );
#else
if( yoddint )
return( -MAXNUML );
return( MAXNUML );
#endif
}
if( y < 0.0L )
{
#ifdef MINUSZERO
if( yoddint )
return( NEGZEROL );
#endif
return( 0.0 );
}
}
nflg = 0; /* flag = 1 if x<0 raised to integer power */
if( x <= 0.0L )
{
if( x == 0.0L )
{
if( y < 0.0 )
{
#ifdef MINUSZERO
if( signbitl(x) && yoddint )
return( -INFINITYL );
#endif
#ifdef INFINITIES
return( INFINITYL );
#else
return( MAXNUML );
#endif
}
if( y > 0.0 )
{
#ifdef MINUSZERO
if( signbitl(x) && yoddint )
return( NEGZEROL );
#endif
return( 0.0 );
}
if( y == 0.0L )
return( 1.0L ); /* 0**0 */
else
return( 0.0L ); /* 0**y */
}
else
{
if( iyflg == 0 )
{ /* noninteger power of negative number */
mtherr( fname, DOMAIN );
_SET_ERRNO (EDOM);
#ifdef NANS
return(NANL);
#else
return(0.0L);
#endif
}
nflg = 1;
}
}
/* Integer power of an integer. */
if( iyflg )
{
i = w;
w = floorl(x);
if( (w == x) && (fabsl(y) < 32768.0) )
{
w = __powil( x, (int) y );
return( w );
}
}
if( nflg )
x = fabsl(x);
/* separate significand from exponent */
x = frexpl( x, &i );
e = i;
/* find significand in antilog table A[] */
i = 1;
if( x <= douba(17) )
i = 17;
if( x <= douba(i+8) )
i += 8;
if( x <= douba(i+4) )
i += 4;
if( x <= douba(i+2) )
i += 2;
if( x >= douba(1) )
i = -1;
i += 1;
/* Find (x - A[i])/A[i]
* in order to compute log(x/A[i]):
*
* log(x) = log( a x/a ) = log(a) + log(x/a)
*
* log(x/a) = log(1+v), v = x/a - 1 = (x-a)/a
*/
x -= douba(i);
x -= doubb(i/2);
x /= douba(i);
/* rational approximation for log(1+v):
*
* log(1+v) = v - v**2/2 + v**3 P(v) / Q(v)
*/
z = x*x;
w = x * ( z * polevll( x, P, 3 ) / p1evll( x, Q, 3 ) );
w = w - ldexpl( z, -1 ); /* w - 0.5 * z */
/* Convert to base 2 logarithm:
* multiply by log2(e) = 1 + LOG2EA
*/
z = LOG2EA * w;
z += w;
z += LOG2EA * x;
z += x;
/* Compute exponent term of the base 2 logarithm. */
w = -i;
w = ldexpl( w, -LNXT ); /* divide by NXT */
w += e;
/* Now base 2 log of x is w + z. */
/* Multiply base 2 log by y, in extended precision. */
/* separate y into large part ya
* and small part yb less than 1/NXT
*/
ya = reducl(y);
yb = y - ya;
/* (w+z)(ya+yb)
* = w*ya + w*yb + z*y
*/
F = z * y + w * yb;
Fa = reducl(F);
Fb = F - Fa;
G = Fa + w * ya;
Ga = reducl(G);
Gb = G - Ga;
H = Fb + Gb;
Ha = reducl(H);
w = ldexpl( Ga + Ha, LNXT );
/* Test the power of 2 for overflow */
if( w > MEXP )
{
_SET_ERRNO (ERANGE);
mtherr( fname, OVERFLOW );
return( MAXNUML );
}
if( w < MNEXP )
{
_SET_ERRNO (ERANGE);
mtherr( fname, UNDERFLOW );
return( 0.0L );
}
e = w;
Hb = H - Ha;
if( Hb > 0.0L )
{
e += 1;
Hb -= (1.0L/NXT); /*0.0625L;*/
}
/* Now the product y * log2(x) = Hb + e/NXT.
*
* Compute base 2 exponential of Hb,
* where -0.0625 <= Hb <= 0.
*/
z = Hb * polevll( Hb, R, 6 ); /* z = 2**Hb - 1 */
/* Express e/NXT as an integer plus a negative number of (1/NXT)ths.
* Find lookup table entry for the fractional power of 2.
*/
if( e < 0 )
i = 0;
else
i = 1;
i = e/NXT + i;
e = NXT*i - e;
w = douba( e );
z = w * z; /* 2**-e * ( 1 + (2**Hb-1) ) */
z = z + w;
z = ldexpl( z, i ); /* multiply by integer power of 2 */
if( nflg )
{
/* For negative x,
* find out if the integer exponent
* is odd or even.
*/
w = ldexpl( y, -1 );
w = floorl(w);
w = ldexpl( w, 1 );
if( w != y )
z = -z; /* odd exponent */
}
return( z );
}
static __inline__ long double
__convert_inf_to_maxnum(long double x)
{
if (isinf(x))
return (x > 0.0L ? MAXNUML : -MAXNUML);
else
return x;
}
/* Find a multiple of 1/NXT that is within 1/NXT of x. */
static __inline__ long double reducl(x)
long double x;
{
long double t;
/* If the call to ldexpl overflows, set it to MAXNUML.
This avoids Inf - Inf = Nan result when calculating the 'small'
part of a reduction. Instead, the small part becomes Inf,
causing under/overflow when adding it to the 'large' part.
There must be a cleaner way of doing this. */
t = __convert_inf_to_maxnum (ldexpl( x, LNXT ));
t = floorl( t );
t = ldexpl( t, -LNXT );
return(t);
}