kolibrios-gitea/contrib/media/updf/libopenjpeg/mct.c

191 lines
4.9 KiB
C
Raw Normal View History

/*
* Copyright (c) 2002-2007, Communications and Remote Sensing Laboratory, Universite catholique de Louvain (UCL), Belgium
* Copyright (c) 2002-2007, Professor Benoit Macq
* Copyright (c) 2001-2003, David Janssens
* Copyright (c) 2002-2003, Yannick Verschueren
* Copyright (c) 2003-2007, Francois-Olivier Devaux and Antonin Descampe
* Copyright (c) 2005, Herve Drolon, FreeImage Team
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS `AS IS'
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
#ifdef __SSE__
#include <xmmintrin.h>
#endif
#include "opj_includes.h"
/* <summary> */
/* This table contains the norms of the basis function of the reversible MCT. */
/* </summary> */
static const double mct_norms[3] = { 1.732, .8292, .8292 };
/* <summary> */
/* This table contains the norms of the basis function of the irreversible MCT. */
/* </summary> */
static const double mct_norms_real[3] = { 1.732, 1.805, 1.573 };
/* <summary> */
/* Foward reversible MCT. */
/* </summary> */
void mct_encode(
int* restrict c0,
int* restrict c1,
int* restrict c2,
int n)
{
int i;
for(i = 0; i < n; ++i) {
int r = c0[i];
int g = c1[i];
int b = c2[i];
int y = (r + (g * 2) + b) >> 2;
int u = b - g;
int v = r - g;
c0[i] = y;
c1[i] = u;
c2[i] = v;
}
}
/* <summary> */
/* Inverse reversible MCT. */
/* </summary> */
void mct_decode(
int* restrict c0,
int* restrict c1,
int* restrict c2,
int n)
{
int i;
for (i = 0; i < n; ++i) {
int y = c0[i];
int u = c1[i];
int v = c2[i];
int g = y - ((u + v) >> 2);
int r = v + g;
int b = u + g;
c0[i] = r;
c1[i] = g;
c2[i] = b;
}
}
/* <summary> */
/* Get norm of basis function of reversible MCT. */
/* </summary> */
double mct_getnorm(int compno) {
return mct_norms[compno];
}
/* <summary> */
/* Foward irreversible MCT. */
/* </summary> */
void mct_encode_real(
int* restrict c0,
int* restrict c1,
int* restrict c2,
int n)
{
int i;
for(i = 0; i < n; ++i) {
int r = c0[i];
int g = c1[i];
int b = c2[i];
int y = fix_mul(r, 2449) + fix_mul(g, 4809) + fix_mul(b, 934);
int u = -fix_mul(r, 1382) - fix_mul(g, 2714) + fix_mul(b, 4096);
int v = fix_mul(r, 4096) - fix_mul(g, 3430) - fix_mul(b, 666);
c0[i] = y;
c1[i] = u;
c2[i] = v;
}
}
/* <summary> */
/* Inverse irreversible MCT. */
/* </summary> */
void mct_decode_real(
float* restrict c0,
float* restrict c1,
float* restrict c2,
int n)
{
int i;
#ifdef __SSE__
__m128 vrv, vgu, vgv, vbu;
vrv = _mm_set1_ps(1.402f);
vgu = _mm_set1_ps(0.34413f);
vgv = _mm_set1_ps(0.71414f);
vbu = _mm_set1_ps(1.772f);
for (i = 0; i < (n >> 3); ++i) {
__m128 vy, vu, vv;
__m128 vr, vg, vb;
vy = _mm_load_ps(c0);
vu = _mm_load_ps(c1);
vv = _mm_load_ps(c2);
vr = _mm_add_ps(vy, _mm_mul_ps(vv, vrv));
vg = _mm_sub_ps(_mm_sub_ps(vy, _mm_mul_ps(vu, vgu)), _mm_mul_ps(vv, vgv));
vb = _mm_add_ps(vy, _mm_mul_ps(vu, vbu));
_mm_store_ps(c0, vr);
_mm_store_ps(c1, vg);
_mm_store_ps(c2, vb);
c0 += 4;
c1 += 4;
c2 += 4;
vy = _mm_load_ps(c0);
vu = _mm_load_ps(c1);
vv = _mm_load_ps(c2);
vr = _mm_add_ps(vy, _mm_mul_ps(vv, vrv));
vg = _mm_sub_ps(_mm_sub_ps(vy, _mm_mul_ps(vu, vgu)), _mm_mul_ps(vv, vgv));
vb = _mm_add_ps(vy, _mm_mul_ps(vu, vbu));
_mm_store_ps(c0, vr);
_mm_store_ps(c1, vg);
_mm_store_ps(c2, vb);
c0 += 4;
c1 += 4;
c2 += 4;
}
n &= 7;
#endif
for(i = 0; i < n; ++i) {
float y = c0[i];
float u = c1[i];
float v = c2[i];
float r = y + (v * 1.402f);
float g = y - (u * 0.34413f) - (v * (0.71414f));
float b = y + (u * 1.772f);
c0[i] = r;
c1[i] = g;
c2[i] = b;
}
}
/* <summary> */
/* Get norm of basis function of irreversible MCT. */
/* </summary> */
double mct_getnorm_real(int compno) {
return mct_norms_real[compno];
}