/*
	layer2.c: the layer 2 decoder, root of mpg123

	copyright 1994-2009 by the mpg123 project - free software under the terms of the LGPL 2.1
	see COPYING and AUTHORS files in distribution or http://mpg123.org
	initially written by Michael Hipp

	mpg123 started as mp2 decoder a long time ago...
	part of this file is required for layer 1, too.
*/


#include "mpg123lib_intern.h"
#ifndef NO_LAYER2
#include "l2tables.h"
#endif
#include "getbits.h"

#ifndef NO_LAYER12 /* Stuff  needed for layer I and II. */

static int grp_3tab[32 * 3] = { 0, };   /* used: 27 */
static int grp_5tab[128 * 3] = { 0, };  /* used: 125 */
static int grp_9tab[1024 * 3] = { 0, }; /* used: 729 */

#if defined(REAL_IS_FIXED) && defined(PRECALC_TABLES)
#include "l12_integer_tables.h"
#else
static const double mulmul[27] =
{
	0.0 , -2.0/3.0 , 2.0/3.0 ,
	2.0/7.0 , 2.0/15.0 , 2.0/31.0, 2.0/63.0 , 2.0/127.0 , 2.0/255.0 ,
	2.0/511.0 , 2.0/1023.0 , 2.0/2047.0 , 2.0/4095.0 , 2.0/8191.0 ,
	2.0/16383.0 , 2.0/32767.0 , 2.0/65535.0 ,
	-4.0/5.0 , -2.0/5.0 , 2.0/5.0, 4.0/5.0 ,
	-8.0/9.0 , -4.0/9.0 , -2.0/9.0 , 2.0/9.0 , 4.0/9.0 , 8.0/9.0
};
#endif

void init_layer12(void)
{
	const int base[3][9] =
	{
		{ 1 , 0, 2 , } ,
		{ 17, 18, 0 , 19, 20 , } ,
		{ 21, 1, 22, 23, 0, 24, 25, 2, 26 }
	};
	int i,j,k,l,len;
	const int tablen[3] = { 3 , 5 , 9 };
	int *itable;
	int *tables[3] = { grp_3tab , grp_5tab , grp_9tab };

	for(i=0;i<3;i++)
	{
		itable = tables[i];
		len = tablen[i];
		for(j=0;j<len;j++)
		for(k=0;k<len;k++)
		for(l=0;l<len;l++)
		{
			*itable++ = base[i][l];
			*itable++ = base[i][k];
			*itable++ = base[i][j];
		}
	}
}

void init_layer12_stuff(mpg123_handle *fr, real* (*init_table)(mpg123_handle *fr, real *table, int m))
{
	int k;
	real *table;
	for(k=0;k<27;k++)
	{
		table = init_table(fr, fr->muls[k], k);
		*table++ = 0.0;
	}
}

real* init_layer12_table(mpg123_handle *fr, real *table, int m)
{
#if defined(REAL_IS_FIXED) && defined(PRECALC_TABLES)
	int i;
	for(i=0;i<63;i++)
	*table++ = layer12_table[m][i];
#else
	int i,j;
	for(j=3,i=0;i<63;i++,j--)
	*table++ = DOUBLE_TO_REAL_SCALE_LAYER12(mulmul[m] * pow(2.0,(double) j / 3.0));
#endif

	return table;
}

#ifdef OPT_MMXORSSE
real* init_layer12_table_mmx(mpg123_handle *fr, real *table, int m)
{
	int i,j;
	if(!fr->p.down_sample) 
	{
		for(j=3,i=0;i<63;i++,j--)
			*table++ = DOUBLE_TO_REAL(16384 * mulmul[m] * pow(2.0,(double) j / 3.0));
	}
	else
	{
		for(j=3,i=0;i<63;i++,j--)
		*table++ = DOUBLE_TO_REAL(mulmul[m] * pow(2.0,(double) j / 3.0));
	}
	return table;
}
#endif

#endif /* NO_LAYER12 */

/* The rest is the actual decoding of layer II data. */

#ifndef NO_LAYER2

static void II_step_one(unsigned int *bit_alloc,int *scale,mpg123_handle *fr)
{
	int stereo = fr->stereo-1;
	int sblimit = fr->II_sblimit;
	int jsbound = fr->jsbound;
	int sblimit2 = fr->II_sblimit<<stereo;
	const struct al_table *alloc1 = fr->alloc;
	int i;
	unsigned int scfsi_buf[64];
	unsigned int *scfsi,*bita;
	int sc,step;

	bita = bit_alloc;
	if(stereo)
	{
		for(i=jsbound;i;i--,alloc1+=(1<<step))
		{
			step=alloc1->bits;
			*bita++ = (char) getbits(fr, step);
			*bita++ = (char) getbits(fr, step);
		}
		for(i=sblimit-jsbound;i;i--,alloc1+=(1<<step))
		{
			step=alloc1->bits;
			bita[0] = (char) getbits(fr, step);
			bita[1] = bita[0];
			bita+=2;
		}
		bita = bit_alloc;
		scfsi=scfsi_buf;

		for(i=sblimit2;i;i--)
		if(*bita++) *scfsi++ = (char) getbits_fast(fr, 2);
	}
	else /* mono */
	{
		for(i=sblimit;i;i--,alloc1+=(1<<step))
		{
			step=alloc1->bits;
			*bita++ = (char) getbits(fr, step);
		}
		bita = bit_alloc;
		scfsi=scfsi_buf;
		for(i=sblimit;i;i--)
		if(*bita++) *scfsi++ = (char) getbits_fast(fr, 2);
	}

	bita = bit_alloc;
	scfsi=scfsi_buf;
	for(i=sblimit2;i;i--)
	if(*bita++)
	switch(*scfsi++)
	{
		case 0: 
			*scale++ = getbits_fast(fr, 6);
			*scale++ = getbits_fast(fr, 6);
			*scale++ = getbits_fast(fr, 6);
		break;
		case 1 : 
			*scale++ = sc = getbits_fast(fr, 6);
			*scale++ = sc;
			*scale++ = getbits_fast(fr, 6);
		break;
		case 2: 
			*scale++ = sc = getbits_fast(fr, 6);
			*scale++ = sc;
			*scale++ = sc;
		break;
		default:              /* case 3 */
			*scale++ = getbits_fast(fr, 6);
			*scale++ = sc = getbits_fast(fr, 6);
			*scale++ = sc;
		break;
	}
}


static void II_step_two(unsigned int *bit_alloc,real fraction[2][4][SBLIMIT],int *scale,mpg123_handle *fr,int x1)
{
	int i,j,k,ba;
	int stereo = fr->stereo;
	int sblimit = fr->II_sblimit;
	int jsbound = fr->jsbound;
	const struct al_table *alloc2,*alloc1 = fr->alloc;
	unsigned int *bita=bit_alloc;
	int d1,step;

	for(i=0;i<jsbound;i++,alloc1+=(1<<step))
	{
		step = alloc1->bits;
		for(j=0;j<stereo;j++)
		{
			if( (ba=*bita++) ) 
			{
				k=(alloc2 = alloc1+ba)->bits;
				if( (d1=alloc2->d) < 0) 
				{
					real cm=fr->muls[k][scale[x1]];
					fraction[j][0][i] = REAL_MUL_SCALE_LAYER12(DOUBLE_TO_REAL_15((int)getbits(fr, k) + d1), cm);
					fraction[j][1][i] = REAL_MUL_SCALE_LAYER12(DOUBLE_TO_REAL_15((int)getbits(fr, k) + d1), cm);
					fraction[j][2][i] = REAL_MUL_SCALE_LAYER12(DOUBLE_TO_REAL_15((int)getbits(fr, k) + d1), cm);
				}        
				else 
				{
					const int *table[] = { 0,0,0,grp_3tab,0,grp_5tab,0,0,0,grp_9tab };
					unsigned int idx,*tab,m=scale[x1];
					idx = (unsigned int) getbits(fr, k);
					tab = (unsigned int *) (table[d1] + idx + idx + idx);
					fraction[j][0][i] = REAL_SCALE_LAYER12(fr->muls[*tab++][m]);
					fraction[j][1][i] = REAL_SCALE_LAYER12(fr->muls[*tab++][m]);
					fraction[j][2][i] = REAL_SCALE_LAYER12(fr->muls[*tab][m]);  
				}
				scale+=3;
			}
			else
			fraction[j][0][i] = fraction[j][1][i] = fraction[j][2][i] = DOUBLE_TO_REAL(0.0);
		}
	}

	for(i=jsbound;i<sblimit;i++,alloc1+=(1<<step))
	{
		step = alloc1->bits;
		bita++;	/* channel 1 and channel 2 bitalloc are the same */
		if( (ba=*bita++) )
		{
			k=(alloc2 = alloc1+ba)->bits;
			if( (d1=alloc2->d) < 0)
			{
				real cm;
				cm=fr->muls[k][scale[x1+3]];
				fraction[0][0][i] = DOUBLE_TO_REAL_15((int)getbits(fr, k) + d1);
				fraction[0][1][i] = DOUBLE_TO_REAL_15((int)getbits(fr, k) + d1);
				fraction[0][2][i] = DOUBLE_TO_REAL_15((int)getbits(fr, k) + d1);
				fraction[1][0][i] = REAL_MUL_SCALE_LAYER12(fraction[0][0][i], cm);
				fraction[1][1][i] = REAL_MUL_SCALE_LAYER12(fraction[0][1][i], cm);
				fraction[1][2][i] = REAL_MUL_SCALE_LAYER12(fraction[0][2][i], cm);
				cm=fr->muls[k][scale[x1]];
				fraction[0][0][i] = REAL_MUL_SCALE_LAYER12(fraction[0][0][i], cm);
				fraction[0][1][i] = REAL_MUL_SCALE_LAYER12(fraction[0][1][i], cm);
				fraction[0][2][i] = REAL_MUL_SCALE_LAYER12(fraction[0][2][i], cm);
			}
			else
			{
				const int *table[] = { 0,0,0,grp_3tab,0,grp_5tab,0,0,0,grp_9tab };
				unsigned int idx,*tab,m1,m2;
				m1 = scale[x1]; m2 = scale[x1+3];
				idx = (unsigned int) getbits(fr, k);
				tab = (unsigned int *) (table[d1] + idx + idx + idx);
				fraction[0][0][i] = REAL_SCALE_LAYER12(fr->muls[*tab][m1]); fraction[1][0][i] = REAL_SCALE_LAYER12(fr->muls[*tab++][m2]);
				fraction[0][1][i] = REAL_SCALE_LAYER12(fr->muls[*tab][m1]); fraction[1][1][i] = REAL_SCALE_LAYER12(fr->muls[*tab++][m2]);
				fraction[0][2][i] = REAL_SCALE_LAYER12(fr->muls[*tab][m1]); fraction[1][2][i] = REAL_SCALE_LAYER12(fr->muls[*tab][m2]);
			}
			scale+=6;
		}
		else
		{
			fraction[0][0][i] = fraction[0][1][i] = fraction[0][2][i] =
			fraction[1][0][i] = fraction[1][1][i] = fraction[1][2][i] = DOUBLE_TO_REAL(0.0);
		}
/*
	Historic comment...
	should we use individual scalefac for channel 2 or
	is the current way the right one , where we just copy channel 1 to
	channel 2 ?? 
	The current 'strange' thing is, that we throw away the scalefac
	values for the second channel ...!!
	-> changed .. now we use the scalefac values of channel one !! 
*/
	}

	if(sblimit > (fr->down_sample_sblimit) )
	sblimit = fr->down_sample_sblimit;

	for(i=sblimit;i<SBLIMIT;i++)
	for (j=0;j<stereo;j++)
	fraction[j][0][i] = fraction[j][1][i] = fraction[j][2][i] = DOUBLE_TO_REAL(0.0);
}


static void II_select_table(mpg123_handle *fr)
{
	const int translate[3][2][16] =
	{
		{
			{ 0,2,2,2,2,2,2,0,0,0,1,1,1,1,1,0 },
			{ 0,2,2,0,0,0,1,1,1,1,1,1,1,1,1,0 }
		},
		{
			{ 0,2,2,2,2,2,2,0,0,0,0,0,0,0,0,0 },
			{ 0,2,2,0,0,0,0,0,0,0,0,0,0,0,0,0 }
		},
		{
			{ 0,3,3,3,3,3,3,0,0,0,1,1,1,1,1,0 },
			{ 0,3,3,0,0,0,1,1,1,1,1,1,1,1,1,0 }
		}
	};

	int table,sblim;
	const struct al_table *tables[5] = { alloc_0, alloc_1, alloc_2, alloc_3 , alloc_4 };
	const int sblims[5] = { 27 , 30 , 8, 12 , 30 };

	if(fr->sampling_frequency >= 3)	/* Or equivalent: (fr->lsf == 1) */
	table = 4;
	else
	table = translate[fr->sampling_frequency][2-fr->stereo][fr->bitrate_index];

	sblim = sblims[table];
	fr->alloc      = tables[table];
	fr->II_sblimit = sblim;
}


int do_layer2(mpg123_handle *fr)
{
	int clip=0;
	int i,j;
	int stereo = fr->stereo;
	/* pick_table clears unused subbands */
	/* replacement for real fraction[2][4][SBLIMIT], needs alignment. */
	real (*fraction)[4][SBLIMIT] = fr->layer2.fraction;
	unsigned int bit_alloc[64];
	int scale[192];
	int single = fr->single;

	II_select_table(fr);
	fr->jsbound = (fr->mode == MPG_MD_JOINT_STEREO) ? (fr->mode_ext<<2)+4 : fr->II_sblimit;

	if(fr->jsbound > fr->II_sblimit)
	{
		fprintf(stderr, "Truncating stereo boundary to sideband limit.\n");
		fr->jsbound=fr->II_sblimit;
	}

	/* TODO: What happens with mono mixing, actually? */
	if(stereo == 1 || single == SINGLE_MIX) /* also, mix not really handled */
	single = SINGLE_LEFT;

	II_step_one(bit_alloc, scale, fr);

	for(i=0;i<SCALE_BLOCK;i++)
	{
		II_step_two(bit_alloc,fraction,scale,fr,i>>2);
		for(j=0;j<3;j++) 
		{
			if(single != SINGLE_STEREO)
			clip += (fr->synth_mono)(fraction[single][j], fr);
			else
			clip += (fr->synth_stereo)(fraction[0][j], fraction[1][j], fr);
		}
	}

	return clip;
}

#endif /* NO_LAYER2 */