Sergey Semyonov (Serge) 268f6d98b7 new folders layout
git-svn-id: svn://kolibrios.org@576 a494cfbc-eb01-0410-851d-a64ba20cac60
2007-07-09 16:31:02 +00:00

1962 lines
54 KiB
C

/*
leyer3.c: the layer 3 decoder
copyright 1995-2006 by the mpg123 project - free software under the terms of the LGPL 2.1
see COPYING and AUTHORS files in distribution or http://mpg123.de
initially written by Michael Hipp
Optimize-TODO: put short bands into the band-field without the stride of 3 reals
Length-optimze: unify long and short band code where it is possible
The int-vs-pointer situation has to be cleaned up.
*/
//#include <stdlib.h>
//#include "config.h"
#include "mpg123.h"
#include "huffman.h"
//#include "common.h"
//#include "debug.h"
#include "getbits.h"
static real ispow[8207];
static real aa_ca[8],aa_cs[8];
static real COS1[12][6];
static real win[4][36];
static real win1[4][36];
static real gainpow2[256+118+4];
#ifdef USE_3DNOW
real COS9[9];
static real COS6_1,COS6_2;
real tfcos36[9];
#else
static real COS9[9];
static real COS6_1,COS6_2;
static real tfcos36[9];
#endif
static real tfcos12[3];
#define NEW_DCT9
#ifdef NEW_DCT9
static real cos9[3],cos18[3];
#endif
struct bandInfoStruct {
int longIdx[23];
int longDiff[22];
int shortIdx[14];
int shortDiff[13];
};
int longLimit[9][23];
int shortLimit[9][14];
struct bandInfoStruct bandInfo[9] = {
/* MPEG 1.0 */
{ {0,4,8,12,16,20,24,30,36,44,52,62,74, 90,110,134,162,196,238,288,342,418,576},
{4,4,4,4,4,4,6,6,8, 8,10,12,16,20,24,28,34,42,50,54, 76,158},
{0,4*3,8*3,12*3,16*3,22*3,30*3,40*3,52*3,66*3, 84*3,106*3,136*3,192*3},
{4,4,4,4,6,8,10,12,14,18,22,30,56} } ,
{ {0,4,8,12,16,20,24,30,36,42,50,60,72, 88,106,128,156,190,230,276,330,384,576},
{4,4,4,4,4,4,6,6,6, 8,10,12,16,18,22,28,34,40,46,54, 54,192},
{0,4*3,8*3,12*3,16*3,22*3,28*3,38*3,50*3,64*3, 80*3,100*3,126*3,192*3},
{4,4,4,4,6,6,10,12,14,16,20,26,66} } ,
{ {0,4,8,12,16,20,24,30,36,44,54,66,82,102,126,156,194,240,296,364,448,550,576} ,
{4,4,4,4,4,4,6,6,8,10,12,16,20,24,30,38,46,56,68,84,102, 26} ,
{0,4*3,8*3,12*3,16*3,22*3,30*3,42*3,58*3,78*3,104*3,138*3,180*3,192*3} ,
{4,4,4,4,6,8,12,16,20,26,34,42,12} } ,
/* MPEG 2.0 */
{ {0,6,12,18,24,30,36,44,54,66,80,96,116,140,168,200,238,284,336,396,464,522,576},
{6,6,6,6,6,6,8,10,12,14,16,20,24,28,32,38,46,52,60,68,58,54 } ,
{0,4*3,8*3,12*3,18*3,24*3,32*3,42*3,56*3,74*3,100*3,132*3,174*3,192*3} ,
{4,4,4,6,6,8,10,14,18,26,32,42,18 } } ,
/* mhipp trunk has 330 -> 332 without further explanation ... */
{ {0,6,12,18,24,30,36,44,54,66,80,96,114,136,162,194,232,278,330,394,464,540,576},
{6,6,6,6,6,6,8,10,12,14,16,18,22,26,32,38,46,52,64,70,76,36 } ,
{0,4*3,8*3,12*3,18*3,26*3,36*3,48*3,62*3,80*3,104*3,136*3,180*3,192*3} ,
{4,4,4,6,8,10,12,14,18,24,32,44,12 } } ,
{ {0,6,12,18,24,30,36,44,54,66,80,96,116,140,168,200,238,284,336,396,464,522,576},
{6,6,6,6,6,6,8,10,12,14,16,20,24,28,32,38,46,52,60,68,58,54 },
{0,4*3,8*3,12*3,18*3,26*3,36*3,48*3,62*3,80*3,104*3,134*3,174*3,192*3},
{4,4,4,6,8,10,12,14,18,24,30,40,18 } } ,
/* MPEG 2.5 */
{ {0,6,12,18,24,30,36,44,54,66,80,96,116,140,168,200,238,284,336,396,464,522,576} ,
{6,6,6,6,6,6,8,10,12,14,16,20,24,28,32,38,46,52,60,68,58,54},
{0,12,24,36,54,78,108,144,186,240,312,402,522,576},
{4,4,4,6,8,10,12,14,18,24,30,40,18} },
{ {0,6,12,18,24,30,36,44,54,66,80,96,116,140,168,200,238,284,336,396,464,522,576} ,
{6,6,6,6,6,6,8,10,12,14,16,20,24,28,32,38,46,52,60,68,58,54},
{0,12,24,36,54,78,108,144,186,240,312,402,522,576},
{4,4,4,6,8,10,12,14,18,24,30,40,18} },
{ {0,12,24,36,48,60,72,88,108,132,160,192,232,280,336,400,476,566,568,570,572,574,576},
{12,12,12,12,12,12,16,20,24,28,32,40,48,56,64,76,90,2,2,2,2,2},
{0, 24, 48, 72,108,156,216,288,372,480,486,492,498,576},
{8,8,8,12,16,20,24,28,36,2,2,2,26} } ,
};
static int mapbuf0[9][152];
static int mapbuf1[9][156];
static int mapbuf2[9][44];
static int *map[9][3];
static int *mapend[9][3];
static unsigned int n_slen2[512]; /* MPEG 2.0 slen for 'normal' mode */
static unsigned int i_slen2[256]; /* MPEG 2.0 slen for intensity stereo */
static real tan1_1[16],tan2_1[16],tan1_2[16],tan2_2[16];
static real pow1_1[2][16],pow2_1[2][16],pow1_2[2][16],pow2_2[2][16];
#ifdef GAPLESS
/* still a dirty hack, places in bytes (zero-based)... */
static unsigned long position; /* position in raw decoder bytestream */
static unsigned long begin; /* first byte to play == number to skip */
static unsigned long end; /* last byte to play */
static unsigned long ignore; /* forcedly ignore stuff in between */
static int bytified;
/* input in bytes already */
void layer3_gapless_init(unsigned long b, unsigned long e)
{
bytified = 0;
position = 0;
ignore = 0;
begin = b;
end = e;
debug2("layer3_gapless_init: from %lu to %lu samples", begin, end);
}
void layer3_gapless_set_position(unsigned long frames, struct frame* fr, struct audio_info_struct *ai)
{
position = samples_to_bytes(frames*spf(fr), fr, ai);
debug1("set; position now %lu", position);
}
void layer3_gapless_bytify(struct frame *fr, struct audio_info_struct *ai)
{
if(!bytified)
{
begin = samples_to_bytes(begin, fr, ai);
end = samples_to_bytes(end, fr, ai);
bytified = 1;
debug2("bytified: begin=%lu; end=%5lu", begin, end);
}
}
/* I need initialized fr here! */
void layer3_gapless_set_ignore(unsigned long frames, struct frame *fr, struct audio_info_struct *ai)
{
ignore = samples_to_bytes(frames*spf(fr), fr, ai);
}
/*
take the (partially or fully) filled and remove stuff for gapless mode if needed
pcm_point may then be smaller than before...
*/
void layer3_gapless_buffercheck()
{
/* pcm_point bytes added since last position... */
unsigned long new_pos = position + pcm_point;
if(begin && (position < begin))
{
debug4("new_pos %lu (old: %lu), begin %lu, pcm_point %i", new_pos, position, begin, pcm_point);
if(new_pos < begin)
{
if(ignore > pcm_point) ignore -= pcm_point;
else ignore = 0;
pcm_point = 0; /* full of padding/delay */
}
else
{
unsigned long ignored = begin-position;
/* we need to shift the memory to the left... */
debug3("old pcm_point: %i, begin %lu; good bytes: %i", pcm_point, begin, (int)(new_pos-begin));
if(ignore > ignored) ignore -= ignored;
else ignore = 0;
pcm_point -= ignored;
debug3("shifting %i bytes from %p to %p", pcm_point, pcm_sample+(int)(begin-position), pcm_sample);
memmove(pcm_sample, pcm_sample+(int)(begin-position), pcm_point);
}
}
/* I don't cover the case with both end and begin in chunk! */
else if(end && (new_pos > end))
{
ignore = 0;
/* either end in current chunk or chunk totally out */
debug2("ending at position %lu / point %i", new_pos, pcm_point);
if(position < end) pcm_point -= new_pos-end;
else pcm_point = 0;
debug1("set pcm_point to %i", pcm_point);
}
else if(ignore)
{
if(pcm_point < ignore)
{
ignore -= pcm_point;
debug2("ignored %i bytes; pcm_point = 0; %lu bytes left", pcm_point, ignore);
pcm_point = 0;
}
else
{
/* we need to shift the memory to the left... */
debug3("old pcm_point: %i, to ignore: %lu; good bytes: %i", pcm_point, ignore, pcm_point-(int)ignore);
pcm_point -= ignore;
debug3("shifting %i bytes from %p to %p", pcm_point, pcm_sample+ignore, pcm_sample);
memmove(pcm_sample, pcm_sample+ignore, pcm_point);
ignore = 0;
}
}
position = new_pos;
}
#endif
/*
* init tables for layer-3
*/
real hybridIn [2][SBLIMIT][SSLIMIT];
real hybridOut[2][SSLIMIT][SBLIMIT];
static real block[2][2][SBLIMIT*SSLIMIT] = { { { 0, } } };
static int blc[2]={0,0};
void reset_mpg()
{
memset(block,0,sizeof(block));
blc[0]=0;
blc[1]=0;
init_dct();
};
#pragma warning(disable:4244)
void init_layer3(int down_sample_sblimit)
{
int i,j,k,l;
for(i=-256;i<118+4;i++)
#ifdef USE_MMX
if(!param.down_sample)
gainpow2[i+256] = 16384.0 * pow((double)2.0,-0.25 * (double) (i+210) );
else
#endif
gainpow2[i+256] = DOUBLE_TO_REAL(pow_test((double)2.0,-0.25 * (double) (i+210)));
for(i=0;i<8207;i++)
ispow[i] = DOUBLE_TO_REAL(pow_test((double)i,(double)4.0/3.0));
for (i=0;i<8;i++) {
static double Ci[8]={-0.6,-0.535,-0.33,-0.185,-0.095,-0.041,-0.0142,-0.0037};
double sq=sqrt(1.0+Ci[i]*Ci[i]);
aa_cs[i] = DOUBLE_TO_REAL(1.0/sq);
aa_ca[i] = DOUBLE_TO_REAL(Ci[i]/sq);
}
for(i=0;i<18;i++) {
win[0][i] = win[1][i] = DOUBLE_TO_REAL(0.5 * sin( M_PI / 72.0 * (double) (2*(i+0) +1) ) / cos ( M_PI * (double) (2*(i+0) +19) / 72.0 ));
win[0][i+18] = win[3][i+18] = DOUBLE_TO_REAL(0.5 * sin( M_PI / 72.0 * (double) (2*(i+18)+1) ) / cos ( M_PI * (double) (2*(i+18)+19) / 72.0 ));
}
for(i=0;i<6;i++) {
win[1][i+18] = DOUBLE_TO_REAL(0.5 / cos ( M_PI * (double) (2*(i+18)+19) / 72.0 ));
win[3][i+12] = DOUBLE_TO_REAL(0.5 / cos ( M_PI * (double) (2*(i+12)+19) / 72.0 ));
win[1][i+24] = DOUBLE_TO_REAL(0.5 * sin( M_PI / 24.0 * (double) (2*i+13) ) / cos ( M_PI * (double) (2*(i+24)+19) / 72.0 ));
win[1][i+30] = win[3][i] = DOUBLE_TO_REAL(0.0);
win[3][i+6 ] = DOUBLE_TO_REAL(0.5 * sin( M_PI / 24.0 * (double) (2*i+1) ) / cos ( M_PI * (double) (2*(i+6 )+19) / 72.0 ));
}
for(i=0;i<9;i++)
COS9[i] = DOUBLE_TO_REAL(cos( M_PI / 18.0 * (double) i));
for(i=0;i<9;i++)
tfcos36[i] = DOUBLE_TO_REAL(0.5 / cos ( M_PI * (double) (i*2+1) / 36.0 ));
for(i=0;i<3;i++)
tfcos12[i] = DOUBLE_TO_REAL(0.5 / cos ( M_PI * (double) (i*2+1) / 12.0 ));
COS6_1 = DOUBLE_TO_REAL(cos( M_PI / 6.0 * (double) 1));
COS6_2 = DOUBLE_TO_REAL(cos( M_PI / 6.0 * (double) 2));
#ifdef NEW_DCT9
cos9[0] = DOUBLE_TO_REAL(cos(1.0*M_PI/9.0));
cos9[1] = DOUBLE_TO_REAL(cos(5.0*M_PI/9.0));
cos9[2] = DOUBLE_TO_REAL(cos(7.0*M_PI/9.0));
cos18[0] = DOUBLE_TO_REAL(cos(1.0*M_PI/18.0));
cos18[1] = DOUBLE_TO_REAL(cos(11.0*M_PI/18.0));
cos18[2] = DOUBLE_TO_REAL(cos(13.0*M_PI/18.0));
#endif
for(i=0;i<12;i++) {
win[2][i] = DOUBLE_TO_REAL(0.5 * sin( M_PI / 24.0 * (double) (2*i+1) ) / cos ( M_PI * (double) (2*i+7) / 24.0 ));
for(j=0;j<6;j++)
COS1[i][j] = DOUBLE_TO_REAL(cos( M_PI / 24.0 * (double) ((2*i+7)*(2*j+1)) ));
}
for(j=0;j<4;j++) {
static int len[4] = { 36,36,12,36 };
for(i=0;i<len[j];i+=2)
win1[j][i] = + win[j][i];
for(i=1;i<len[j];i+=2)
win1[j][i] = - win[j][i];
}
for(i=0;i<16;i++) {
double t = tan( (double) i * M_PI / 12.0 );
tan1_1[i] = DOUBLE_TO_REAL(t / (1.0+t));
tan2_1[i] = DOUBLE_TO_REAL(1.0 / (1.0 + t));
tan1_2[i] = DOUBLE_TO_REAL(M_SQRT2 * t / (1.0+t));
tan2_2[i] = DOUBLE_TO_REAL(M_SQRT2 / (1.0 + t));
for(j=0;j<2;j++) {
double base = pow_test(2.0,-0.25*(j+1.0));
double p1=1.0,p2=1.0;
if(i > 0) {
if( i & 1 )
p1 = pow_test(base,(i+1.0)*0.5);
else
p2 = pow_test(base,i*0.5);
}
pow1_1[j][i] = DOUBLE_TO_REAL(p1);
pow2_1[j][i] = DOUBLE_TO_REAL(p2);
pow1_2[j][i] = DOUBLE_TO_REAL(M_SQRT2 * p1);
pow2_2[j][i] = DOUBLE_TO_REAL(M_SQRT2 * p2);
}
}
for(j=0;j<9;j++) {
struct bandInfoStruct *bi = &bandInfo[j];
int *mp;
int cb,lwin;
int *bdf;
mp = map[j][0] = mapbuf0[j];
bdf = bi->longDiff;
for(i=0,cb = 0; cb < 8 ; cb++,i+=*bdf++) {
*mp++ = (*bdf) >> 1;
*mp++ = i;
*mp++ = 3;
*mp++ = cb;
}
bdf = bi->shortDiff+3;
for(cb=3;cb<13;cb++) {
int l = (*bdf++) >> 1;
for(lwin=0;lwin<3;lwin++) {
*mp++ = l;
*mp++ = i + lwin;
*mp++ = lwin;
*mp++ = cb;
}
i += 6*l;
}
mapend[j][0] = mp;
mp = map[j][1] = mapbuf1[j];
bdf = bi->shortDiff+0;
for(i=0,cb=0;cb<13;cb++) {
int l = (*bdf++) >> 1;
for(lwin=0;lwin<3;lwin++) {
*mp++ = l;
*mp++ = i + lwin;
*mp++ = lwin;
*mp++ = cb;
}
i += 6*l;
}
mapend[j][1] = mp;
mp = map[j][2] = mapbuf2[j];
bdf = bi->longDiff;
for(cb = 0; cb < 22 ; cb++) {
*mp++ = (*bdf++) >> 1;
*mp++ = cb;
}
mapend[j][2] = mp;
}
for(j=0;j<9;j++) {
for(i=0;i<23;i++) {
longLimit[j][i] = (bandInfo[j].longIdx[i] - 1 + 8) / 18 + 1;
if(longLimit[j][i] > (down_sample_sblimit) )
longLimit[j][i] = down_sample_sblimit;
}
for(i=0;i<14;i++) {
shortLimit[j][i] = (bandInfo[j].shortIdx[i] - 1) / 18 + 1;
if(shortLimit[j][i] > (down_sample_sblimit) )
shortLimit[j][i] = down_sample_sblimit;
}
}
for(i=0;i<5;i++) {
for(j=0;j<6;j++) {
for(k=0;k<6;k++) {
int n = k + j * 6 + i * 36;
i_slen2[n] = i|(j<<3)|(k<<6)|(3<<12);
}
}
}
for(i=0;i<4;i++) {
for(j=0;j<4;j++) {
for(k=0;k<4;k++) {
int n = k + j * 4 + i * 16;
i_slen2[n+180] = i|(j<<3)|(k<<6)|(4<<12);
}
}
}
for(i=0;i<4;i++) {
for(j=0;j<3;j++) {
int n = j + i * 3;
i_slen2[n+244] = i|(j<<3) | (5<<12);
n_slen2[n+500] = i|(j<<3) | (2<<12) | (1<<15);
}
}
for(i=0;i<5;i++) {
for(j=0;j<5;j++) {
for(k=0;k<4;k++) {
for(l=0;l<4;l++) {
int n = l + k * 4 + j * 16 + i * 80;
n_slen2[n] = i|(j<<3)|(k<<6)|(l<<9)|(0<<12);
}
}
}
}
for(i=0;i<5;i++) {
for(j=0;j<5;j++) {
for(k=0;k<4;k++) {
int n = k + j * 4 + i * 20;
n_slen2[n+400] = i|(j<<3)|(k<<6)|(1<<12);
}
}
}
}
/*
* read additional side information (for MPEG 1 and MPEG 2)
*/
static int III_get_side_info(struct III_sideinfo *si,int stereo,
int ms_stereo,long sfreq,int single,int lsf)
{
int ch, gr;
int powdiff = (single == 3) ? 4 : 0;
static const int tabs[2][5] = { { 2,9,5,3,4 } , { 1,8,1,2,9 } };
const int *tab = tabs[lsf];
si->main_data_begin = getbits(tab[1]);
if (stereo == 1)
si->private_bits = getbits_fast(tab[2]);
else
si->private_bits = getbits_fast(tab[3]);
if(!lsf) {
for (ch=0; ch<stereo; ch++) {
si->ch[ch].gr[0].scfsi = -1;
si->ch[ch].gr[1].scfsi = getbits_fast(4);
}
}
for (gr=0; gr<tab[0]; gr++) {
for (ch=0; ch<stereo; ch++) {
register struct gr_info_s *gr_info = &(si->ch[ch].gr[gr]);
gr_info->part2_3_length = getbits(12);
gr_info->big_values = getbits(9);
if(gr_info->big_values > 288) {
gr_info->big_values = 288;
}
gr_info->pow2gain = gainpow2+256 - getbits_fast(8) + powdiff;
if(ms_stereo)
gr_info->pow2gain += 2;
gr_info->scalefac_compress = getbits(tab[4]);
if(get1bit()) { /* window switch flag */
int i;
gr_info->block_type = getbits_fast(2);
gr_info->mixed_block_flag = get1bit();
gr_info->table_select[0] = getbits_fast(5);
gr_info->table_select[1] = getbits_fast(5);
/*
* table_select[2] not needed, because there is no region2,
* but to satisfy some verifications tools we set it either.
*/
gr_info->table_select[2] = 0;
for(i=0;i<3;i++)
gr_info->full_gain[i] = gr_info->pow2gain + (getbits_fast(3)<<3);
if(gr_info->block_type == 0) {
/* exit(1); */
return 1;
}
/* region_count/start parameters are implicit in this case. */
if(!lsf || gr_info->block_type == 2)
gr_info->region1start = 36>>1;
else {
/* check this again for 2.5 and sfreq=8 */
if(sfreq == 8)
gr_info->region1start = 108>>1;
else
gr_info->region1start = 54>>1;
}
gr_info->region2start = 576>>1;
}
else {
int i,r0c,r1c;
for (i=0; i<3; i++)
gr_info->table_select[i] = getbits_fast(5);
r0c = getbits_fast(4);
r1c = getbits_fast(3);
gr_info->region1start = bandInfo[sfreq].longIdx[r0c+1] >> 1 ;
gr_info->region2start = bandInfo[sfreq].longIdx[r0c+1+r1c+1] >> 1;
gr_info->block_type = 0;
gr_info->mixed_block_flag = 0;
}
if(!lsf)
gr_info->preflag = get1bit();
gr_info->scalefac_scale = get1bit();
gr_info->count1table_select = get1bit();
}
}
return 0;
}
/*
* read scalefactors
*/
static int III_get_scale_factors_1(int *scf,struct gr_info_s *gr_info,int ch,int gr)
{
static const unsigned char slen[2][16] = {
{0, 0, 0, 0, 3, 1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4},
{0, 1, 2, 3, 0, 1, 2, 3, 1, 2, 3, 1, 2, 3, 2, 3}
};
int numbits;
int num0 = slen[0][gr_info->scalefac_compress];
int num1 = slen[1][gr_info->scalefac_compress];
if (gr_info->block_type == 2) {
int i=18;
numbits = (num0 + num1) * 18;
if (gr_info->mixed_block_flag) {
for (i=8;i;i--)
*scf++ = getbits_fast(num0);
i = 9;
numbits -= num0; /* num0 * 17 + num1 * 18 */
}
for (;i;i--)
*scf++ = getbits_fast(num0);
for (i = 18; i; i--)
*scf++ = getbits_fast(num1);
*scf++ = 0; *scf++ = 0; *scf++ = 0; /* short[13][0..2] = 0 */
}
else {
int i;
int scfsi = gr_info->scfsi;
if(scfsi < 0) { /* scfsi < 0 => granule == 0 */
for(i=11;i;i--)
*scf++ = getbits_fast(num0);
for(i=10;i;i--)
*scf++ = getbits_fast(num1);
numbits = (num0 + num1) * 10 + num0;
*scf++ = 0;
}
else {
numbits = 0;
if(!(scfsi & 0x8)) {
for (i=0;i<6;i++)
*scf++ = getbits_fast(num0);
numbits += num0 * 6;
}
else {
scf += 6;
}
if(!(scfsi & 0x4)) {
for (i=0;i<5;i++)
*scf++ = getbits_fast(num0);
numbits += num0 * 5;
}
else {
scf += 5;
}
if(!(scfsi & 0x2)) {
for(i=0;i<5;i++)
*scf++ = getbits_fast(num1);
numbits += num1 * 5;
}
else {
scf += 5;
}
if(!(scfsi & 0x1)) {
for (i=0;i<5;i++)
*scf++ = getbits_fast(num1);
numbits += num1 * 5;
}
else {
scf += 5;
}
*scf++ = 0; /* no l[21] in original sources */
}
}
return numbits;
}
static int III_get_scale_factors_2(int *scf,struct gr_info_s *gr_info,int i_stereo)
{
unsigned char *pnt;
int i,j,n=0,numbits=0;
unsigned int slen;
static const unsigned char stab[3][6][4] = {
{ { 6, 5, 5,5 } , { 6, 5, 7,3 } , { 11,10,0,0} ,
{ 7, 7, 7,0 } , { 6, 6, 6,3 } , { 8, 8,5,0} } ,
{ { 9, 9, 9,9 } , { 9, 9,12,6 } , { 18,18,0,0} ,
{12,12,12,0 } , {12, 9, 9,6 } , { 15,12,9,0} } ,
{ { 6, 9, 9,9 } , { 6, 9,12,6 } , { 15,18,0,0} ,
{ 6,15,12,0 } , { 6,12, 9,6 } , { 6,18,9,0} } };
if(i_stereo) /* i_stereo AND second channel -> do_layer3() checks this */
slen = i_slen2[gr_info->scalefac_compress>>1];
else
slen = n_slen2[gr_info->scalefac_compress];
gr_info->preflag = (slen>>15) & 0x1;
n = 0;
if( gr_info->block_type == 2 ) {
n++;
if(gr_info->mixed_block_flag)
n++;
}
pnt = stab[n][(slen>>12)&0x7];
for(i=0;i<4;i++) {
int num = slen & 0x7;
slen >>= 3;
if(num) {
for(j=0;j<(int)(pnt[i]);j++)
*scf++ = getbits_fast(num);
numbits += pnt[i] * num;
}
else {
for(j=0;j<(int)(pnt[i]);j++)
*scf++ = 0;
}
}
n = (n << 1) + 1;
for(i=0;i<n;i++)
*scf++ = 0;
return numbits;
}
static int pretab1[22] = {0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,2,2,3,3,3,2,0};
static int pretab2[22] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0};
/*
* Dequantize samples (includes huffman decoding)
*/
/* 24 is enough because tab13 has max. a 19 bit huffvector */
#define BITSHIFT ((sizeof(long)-1)*8)
#define REFRESH_MASK \
while(num < BITSHIFT) { \
mask |= ((unsigned long)getbyte())<<(BITSHIFT-num); \
num += 8; \
part2remain -= 8; }
static int III_dequantize_sample(real xr[SBLIMIT][SSLIMIT],int *scf,
struct gr_info_s *gr_info,int sfreq,int part2bits)
{
int shift = 1 + gr_info->scalefac_scale;
real *xrpnt = (real *) xr;
int l[3],l3;
int part2remain = gr_info->part2_3_length - part2bits;
int *me;
/* mhipp tree has this split up a bit... */
int num=getbitoffset();
long mask = (long) getbits(num)<<(BITSHIFT+8-num);
part2remain -= num;
{
int bv = gr_info->big_values;
int region1 = gr_info->region1start;
int region2 = gr_info->region2start;
if(region1 > region2)
{
return 1;
}
l3 = ((576>>1)-bv)>>1;
/*
* we may lose the 'odd' bit here !!
* check this later again
*/
if(bv <= region1) {
l[0] = bv; l[1] = 0; l[2] = 0;
}
else {
l[0] = region1;
if(bv <= region2) {
l[1] = bv - l[0]; l[2] = 0;
}
else {
l[1] = region2 - l[0]; l[2] = bv - region2;
}
}
}
if(gr_info->block_type == 2) {
/*
* decoding with short or mixed mode BandIndex table
*/
int i,max[4];
int step=0,lwin=3,cb=0;
register real v = 0.0;
register int *m,mc;
if(gr_info->mixed_block_flag) {
max[3] = -1;
max[0] = max[1] = max[2] = 2;
m = map[sfreq][0];
me = mapend[sfreq][0];
}
else {
max[0] = max[1] = max[2] = max[3] = -1;
/* max[3] not really needed in this case */
m = map[sfreq][1];
me = mapend[sfreq][1];
}
mc = 0;
for(i=0;i<2;i++) {
int lp = l[i];
struct newhuff *h = ht+gr_info->table_select[i];
for(;lp;lp--,mc--) {
register int x,y;
if( (!mc) ) {
mc = *m++;
xrpnt = ((real *) xr) + (*m++);
lwin = *m++;
cb = *m++;
if(lwin == 3) {
v = gr_info->pow2gain[(*scf++) << shift];
step = 1;
}
else {
v = gr_info->full_gain[lwin][(*scf++) << shift];
step = 3;
}
}
{
register short *val = h->table;
REFRESH_MASK;
while((y=*val++)<0) {
if (mask < 0)
val -= y;
num--;
mask <<= 1;
}
x = y >> 4;
y &= 0xf;
}
if(x == 15 && h->linbits) {
max[lwin] = cb;
REFRESH_MASK;
x += ((unsigned long) mask) >> (BITSHIFT+8-h->linbits);
num -= h->linbits+1;
mask <<= h->linbits;
if(mask < 0)
*xrpnt = REAL_MUL(-ispow[x], v);
else
*xrpnt = REAL_MUL(ispow[x], v);
mask <<= 1;
}
else if(x) {
max[lwin] = cb;
if(mask < 0)
*xrpnt = REAL_MUL(-ispow[x], v);
else
*xrpnt = REAL_MUL(ispow[x], v);
num--;
mask <<= 1;
}
else
*xrpnt = DOUBLE_TO_REAL(0.0);
xrpnt += step;
if(y == 15 && h->linbits) {
max[lwin] = cb;
REFRESH_MASK;
y += ((unsigned long) mask) >> (BITSHIFT+8-h->linbits);
num -= h->linbits+1;
mask <<= h->linbits;
if(mask < 0)
*xrpnt = REAL_MUL(-ispow[y], v);
else
*xrpnt = REAL_MUL(ispow[y], v);
mask <<= 1;
}
else if(y) {
max[lwin] = cb;
if(mask < 0)
*xrpnt = REAL_MUL(-ispow[y], v);
else
*xrpnt = REAL_MUL(ispow[y], v);
num--;
mask <<= 1;
}
else
*xrpnt = DOUBLE_TO_REAL(0.0);
xrpnt += step;
}
}
for(;l3 && (part2remain+num > 0);l3--) {
/* not mixing code and declarations to keep C89 happy */
struct newhuff* h;
register short* val;
register short a;
/* This is only a humble hack to prevent a special segfault. */
/* More insight into the real workings is still needed. */
/* especially why there are (valid?) files that make xrpnt exceed the array with 4 bytes without segfaulting, more seems to be really bad, though. */
#ifdef DEBUG
if(!(xrpnt < &xr[SBLIMIT][0]))
{
if(param.verbose) debug2("attempted soft xrpnt overflow (%p !< %p) ?", (void*) xrpnt, (void*) &xr[SBLIMIT][0]);
}
#endif
if(!(xrpnt < &xr[SBLIMIT][0]+5))
{
return 2;
}
h = htc+gr_info->count1table_select;
val = h->table;
REFRESH_MASK;
while((a=*val++)<0) {
if (mask < 0)
val -= a;
num--;
mask <<= 1;
}
if(part2remain+num <= 0) {
num -= part2remain+num;
break;
}
for(i=0;i<4;i++) {
if(!(i & 1)) {
if(!mc) {
mc = *m++;
xrpnt = ((real *) xr) + (*m++);
lwin = *m++;
cb = *m++;
if(lwin == 3) {
v = gr_info->pow2gain[(*scf++) << shift];
step = 1;
}
else {
v = gr_info->full_gain[lwin][(*scf++) << shift];
step = 3;
}
}
mc--;
}
if( (a & (0x8>>i)) ) {
max[lwin] = cb;
if(part2remain+num <= 0) {
break;
}
if(mask < 0)
*xrpnt = -v;
else
*xrpnt = v;
num--;
mask <<= 1;
}
else
*xrpnt = DOUBLE_TO_REAL(0.0);
xrpnt += step;
}
}
if(lwin < 3) { /* short band? */
while(1) {
for(;mc > 0;mc--) {
*xrpnt = DOUBLE_TO_REAL(0.0); xrpnt += 3; /* short band -> step=3 */
*xrpnt = DOUBLE_TO_REAL(0.0); xrpnt += 3;
}
if(m >= me)
break;
mc = *m++;
xrpnt = ((real *) xr) + *m++;
if(*m++ == 0)
break; /* optimize: field will be set to zero at the end of the function */
m++; /* cb */
}
}
gr_info->maxband[0] = max[0]+1;
gr_info->maxband[1] = max[1]+1;
gr_info->maxband[2] = max[2]+1;
gr_info->maxbandl = max[3]+1;
{
int rmax = max[0] > max[1] ? max[0] : max[1];
rmax = (rmax > max[2] ? rmax : max[2]) + 1;
gr_info->maxb = rmax ? shortLimit[sfreq][rmax] : longLimit[sfreq][max[3]+1];
}
}
else {
/*
* decoding with 'long' BandIndex table (block_type != 2)
*/
int *pretab = gr_info->preflag ? pretab1 : pretab2;
int i,max = -1;
int cb = 0;
int *m = map[sfreq][2];
register real v = 0.0;
int mc = 0;
/*
* long hash table values
*/
for(i=0;i<3;i++) {
int lp = l[i];
struct newhuff *h = ht+gr_info->table_select[i];
for(;lp;lp--,mc--) {
int x,y;
if(!mc) {
mc = *m++;
cb = *m++;
if(cb == 21)
v = 0.0;
else
v = gr_info->pow2gain[((*scf++) + (*pretab++)) << shift];
}
{
register short *val = h->table;
REFRESH_MASK;
while((y=*val++)<0) {
if (mask < 0)
val -= y;
num--;
mask <<= 1;
}
x = y >> 4;
y &= 0xf;
}
if (x == 15 && h->linbits) {
max = cb;
REFRESH_MASK;
x += ((unsigned long) mask) >> (BITSHIFT+8-h->linbits);
num -= h->linbits+1;
mask <<= h->linbits;
if(mask < 0)
*xrpnt++ = REAL_MUL(-ispow[x], v);
else
*xrpnt++ = REAL_MUL(ispow[x], v);
mask <<= 1;
}
else if(x) {
max = cb;
if(mask < 0)
*xrpnt++ = REAL_MUL(-ispow[x], v);
else
*xrpnt++ = REAL_MUL(ispow[x], v);
num--;
mask <<= 1;
}
else
*xrpnt++ = DOUBLE_TO_REAL(0.0);
if (y == 15 && h->linbits) {
max = cb;
REFRESH_MASK;
y += ((unsigned long) mask) >> (BITSHIFT+8-h->linbits);
num -= h->linbits+1;
mask <<= h->linbits;
if(mask < 0)
*xrpnt++ = REAL_MUL(-ispow[y], v);
else
*xrpnt++ = REAL_MUL(ispow[y], v);
mask <<= 1;
}
else if(y) {
max = cb;
if(mask < 0)
*xrpnt++ = REAL_MUL(-ispow[y], v);
else
*xrpnt++ = REAL_MUL(ispow[y], v);
num--;
mask <<= 1;
}
else
*xrpnt++ = DOUBLE_TO_REAL(0.0);
}
}
/*
* short (count1table) values
*/
for(;l3 && (part2remain+num > 0);l3--) {
struct newhuff *h = htc+gr_info->count1table_select;
register short *val = h->table,a;
REFRESH_MASK;
while((a=*val++)<0) {
if (mask < 0)
val -= a;
num--;
mask <<= 1;
}
if(part2remain+num <= 0) {
num -= part2remain+num;
break;
}
for(i=0;i<4;i++) {
if(!(i & 1)) {
if(!mc) {
mc = *m++;
cb = *m++;
if(cb == 21)
v = 0.0;
else
v = gr_info->pow2gain[((*scf++) + (*pretab++)) << shift];
}
mc--;
}
if ( (a & (0x8>>i)) ) {
max = cb;
if(part2remain+num <= 0) {
break;
}
if(mask < 0)
*xrpnt++ = -v;
else
*xrpnt++ = v;
num--;
mask <<= 1;
}
else
*xrpnt++ = DOUBLE_TO_REAL(0.0);
}
}
gr_info->maxbandl = max+1;
gr_info->maxb = longLimit[sfreq][gr_info->maxbandl];
}
part2remain += num;
backbits(num);
num = 0;
while(xrpnt < &xr[SBLIMIT][0])
*xrpnt++ = DOUBLE_TO_REAL(0.0);
while( part2remain > 16 ) {
getbits(16); /* Dismiss stuffing Bits */
part2remain -= 16;
}
if(part2remain > 0)
getbits(part2remain);
else if(part2remain < 0) {
return 1; /* -> error */
}
return 0;
}
/*
* III_stereo: calculate real channel values for Joint-I-Stereo-mode
*/
static void III_i_stereo(real xr_buf[2][SBLIMIT][SSLIMIT],int *scalefac,
struct gr_info_s *gr_info,int sfreq,int ms_stereo,int lsf)
{
real (*xr)[SBLIMIT*SSLIMIT] = (real (*)[SBLIMIT*SSLIMIT] ) xr_buf;
struct bandInfoStruct *bi = &bandInfo[sfreq];
const real *tab1,*tab2;
#if 1
int tab;
/* TODO: optimize as static */
static const real *tabs[3][2][2] = {
{ { tan1_1,tan2_1 } , { tan1_2,tan2_2 } },
{ { pow1_1[0],pow2_1[0] } , { pow1_2[0],pow2_2[0] } } ,
{ { pow1_1[1],pow2_1[1] } , { pow1_2[1],pow2_2[1] } }
};
tab = lsf + (gr_info->scalefac_compress & lsf);
tab1 = tabs[tab][ms_stereo][0];
tab2 = tabs[tab][ms_stereo][1];
#else
if(lsf) {
int p = gr_info->scalefac_compress & 0x1;
if(ms_stereo) {
tab1 = pow1_2[p]; tab2 = pow2_2[p];
}
else {
tab1 = pow1_1[p]; tab2 = pow2_1[p];
}
}
else {
if(ms_stereo) {
tab1 = tan1_2; tab2 = tan2_2;
}
else {
tab1 = tan1_1; tab2 = tan2_1;
}
}
#endif
if (gr_info->block_type == 2) {
int lwin,do_l = 0;
if( gr_info->mixed_block_flag )
do_l = 1;
for (lwin=0;lwin<3;lwin++) { /* process each window */
/* get first band with zero values */
int is_p,sb,idx,sfb = gr_info->maxband[lwin]; /* sfb is minimal 3 for mixed mode */
if(sfb > 3)
do_l = 0;
for(;sfb<12;sfb++) {
is_p = scalefac[sfb*3+lwin-gr_info->mixed_block_flag]; /* scale: 0-15 */
if(is_p != 7) {
real t1,t2;
sb = bi->shortDiff[sfb];
idx = bi->shortIdx[sfb] + lwin;
t1 = tab1[is_p]; t2 = tab2[is_p];
for (; sb > 0; sb--,idx+=3) {
real v = xr[0][idx];
xr[0][idx] = REAL_MUL(v, t1);
xr[1][idx] = REAL_MUL(v, t2);
}
}
}
#if 1
/* in the original: copy 10 to 11 , here: copy 11 to 12
maybe still wrong??? (copy 12 to 13?) */
is_p = scalefac[11*3+lwin-gr_info->mixed_block_flag]; /* scale: 0-15 */
sb = bi->shortDiff[12];
idx = bi->shortIdx[12] + lwin;
#else
is_p = scalefac[10*3+lwin-gr_info->mixed_block_flag]; /* scale: 0-15 */
sb = bi->shortDiff[11];
idx = bi->shortIdx[11] + lwin;
#endif
if(is_p != 7) {
real t1,t2;
t1 = tab1[is_p]; t2 = tab2[is_p];
for ( ; sb > 0; sb--,idx+=3 ) {
real v = xr[0][idx];
xr[0][idx] = REAL_MUL(v, t1);
xr[1][idx] = REAL_MUL(v, t2);
}
}
} /* end for(lwin; .. ; . ) */
/* also check l-part, if ALL bands in the three windows are 'empty'
* and mode = mixed_mode
*/
if (do_l) {
int sfb = gr_info->maxbandl;
int idx;
if(sfb > 21) return; /* similarity fix related to CVE-2006-1655 */
idx = bi->longIdx[sfb];
for ( ; sfb<8; sfb++ ) {
int sb = bi->longDiff[sfb];
int is_p = scalefac[sfb]; /* scale: 0-15 */
if(is_p != 7) {
real t1,t2;
t1 = tab1[is_p]; t2 = tab2[is_p];
for ( ; sb > 0; sb--,idx++) {
real v = xr[0][idx];
xr[0][idx] = REAL_MUL(v, t1);
xr[1][idx] = REAL_MUL(v, t2);
}
}
else
idx += sb;
}
}
}
else { /* ((gr_info->block_type != 2)) */
int sfb = gr_info->maxbandl;
int is_p,idx;
if(sfb > 21) return; /* tightened fix for CVE-2006-1655 */
idx = bi->longIdx[sfb];
for ( ; sfb<21; sfb++) {
int sb = bi->longDiff[sfb];
is_p = scalefac[sfb]; /* scale: 0-15 */
if(is_p != 7) {
real t1,t2;
t1 = tab1[is_p]; t2 = tab2[is_p];
for ( ; sb > 0; sb--,idx++) {
real v = xr[0][idx];
xr[0][idx] = REAL_MUL(v, t1);
xr[1][idx] = REAL_MUL(v, t2);
}
}
else
idx += sb;
}
is_p = scalefac[20];
if(is_p != 7) { /* copy l-band 20 to l-band 21 */
int sb;
real t1 = tab1[is_p],t2 = tab2[is_p];
for ( sb = bi->longDiff[21]; sb > 0; sb--,idx++ ) {
real v = xr[0][idx];
xr[0][idx] = REAL_MUL(v, t1);
xr[1][idx] = REAL_MUL(v, t2);
}
}
} /* ... */
}
static void III_antialias(real xr[SBLIMIT][SSLIMIT],struct gr_info_s *gr_info) {
int sblim;
if(gr_info->block_type == 2) {
if(!gr_info->mixed_block_flag)
return;
sblim = 1;
}
else {
sblim = gr_info->maxb-1;
}
/* 31 alias-reduction operations between each pair of sub-bands */
/* with 8 butterflies between each pair */
{
int sb;
real *xr1=(real *) xr[1];
for(sb=sblim;sb;sb--,xr1+=10) {
int ss;
real *cs=aa_cs,*ca=aa_ca;
real *xr2 = xr1;
for(ss=7;ss>=0;ss--)
{ /* upper and lower butterfly inputs */
register real bu = *--xr2,bd = *xr1;
*xr2 = REAL_MUL(bu, *cs) - REAL_MUL(bd, *ca);
*xr1++ = REAL_MUL(bd, *cs++) + REAL_MUL(bu, *ca++);
}
}
}
}
/*
// This is an optimized DCT from Jeff Tsay's maplay 1.2+ package.
// Saved one multiplication by doing the 'twiddle factor' stuff
// together with the window mul. (MH)
//
// This uses Byeong Gi Lee's Fast Cosine Transform algorithm, but the
// 9 point IDCT needs to be reduced further. Unfortunately, I don't
// know how to do that, because 9 is not an even number. - Jeff.
//
//////////////////////////////////////////////////////////////////
//
// 9 Point Inverse Discrete Cosine Transform
//
// This piece of code is Copyright 1997 Mikko Tommila and is freely usable
// by anybody. The algorithm itself is of course in the public domain.
//
// Again derived heuristically from the 9-point WFTA.
//
// The algorithm is optimized (?) for speed, not for small rounding errors or
// good readability.
//
// 36 additions, 11 multiplications
//
// Again this is very likely sub-optimal.
//
// The code is optimized to use a minimum number of temporary variables,
// so it should compile quite well even on 8-register Intel x86 processors.
// This makes the code quite obfuscated and very difficult to understand.
//
// References:
// [1] S. Winograd: "On Computing the Discrete Fourier Transform",
// Mathematics of Computation, Volume 32, Number 141, January 1978,
// Pages 175-199
*/
/*------------------------------------------------------------------*/
/* */
/* Function: Calculation of the inverse MDCT */
/* */
/*------------------------------------------------------------------*/
#ifdef USE_3DNOW
void dct36(real *inbuf,real *o1,real *o2,real *wintab,real *tsbuf)
#else
static void dct36(real *inbuf,real *o1,real *o2,real *wintab,real *tsbuf)
#endif
{
#ifdef NEW_DCT9
real tmp[18];
#endif
{
register real *in = inbuf;
in[17]+=in[16]; in[16]+=in[15]; in[15]+=in[14];
in[14]+=in[13]; in[13]+=in[12]; in[12]+=in[11];
in[11]+=in[10]; in[10]+=in[9]; in[9] +=in[8];
in[8] +=in[7]; in[7] +=in[6]; in[6] +=in[5];
in[5] +=in[4]; in[4] +=in[3]; in[3] +=in[2];
in[2] +=in[1]; in[1] +=in[0];
in[17]+=in[15]; in[15]+=in[13]; in[13]+=in[11]; in[11]+=in[9];
in[9] +=in[7]; in[7] +=in[5]; in[5] +=in[3]; in[3] +=in[1];
#ifdef NEW_DCT9
#if 1
{
real t3;
{
real t0, t1, t2;
t0 = REAL_MUL(COS6_2, (in[8] + in[16] - in[4]));
t1 = REAL_MUL(COS6_2, in[12]);
t3 = in[0];
t2 = t3 - t1 - t1;
tmp[1] = tmp[7] = t2 - t0;
tmp[4] = t2 + t0 + t0;
t3 += t1;
t2 = REAL_MUL(COS6_1, (in[10] + in[14] - in[2]));
tmp[1] -= t2;
tmp[7] += t2;
}
{
real t0, t1, t2;
t0 = REAL_MUL(cos9[0], (in[4] + in[8] ));
t1 = REAL_MUL(cos9[1], (in[8] - in[16]));
t2 = REAL_MUL(cos9[2], (in[4] + in[16]));
tmp[2] = tmp[6] = t3 - t0 - t2;
tmp[0] = tmp[8] = t3 + t0 + t1;
tmp[3] = tmp[5] = t3 - t1 + t2;
}
}
{
real t1, t2, t3;
t1 = REAL_MUL(cos18[0], (in[2] + in[10]));
t2 = REAL_MUL(cos18[1], (in[10] - in[14]));
t3 = REAL_MUL(COS6_1, in[6]);
{
real t0 = t1 + t2 + t3;
tmp[0] += t0;
tmp[8] -= t0;
}
t2 -= t3;
t1 -= t3;
t3 = REAL_MUL(cos18[2], (in[2] + in[14]));
t1 += t3;
tmp[3] += t1;
tmp[5] -= t1;
t2 -= t3;
tmp[2] += t2;
tmp[6] -= t2;
}
#else
{
real t0, t1, t2, t3, t4, t5, t6, t7;
t1 = REAL_MUL(COS6_2, in[12]);
t2 = REAL_MUL(COS6_2, (in[8] + in[16] - in[4]));
t3 = in[0] + t1;
t4 = in[0] - t1 - t1;
t5 = t4 - t2;
tmp[4] = t4 + t2 + t2;
t0 = REAL_MUL(cos9[0], (in[4] + in[8]));
t1 = REAL_MUL(cos9[1], (in[8] - in[16]));
t2 = REAL_MUL(cos9[2], (in[4] + in[16]));
t6 = t3 - t0 - t2;
t0 += t3 + t1;
t3 += t2 - t1;
t2 = REAL_MUL(cos18[0], (in[2] + in[10]));
t4 = REAL_MUL(cos18[1], (in[10] - in[14]));
t7 = REAL_MUL(COS6_1, in[6]);
t1 = t2 + t4 + t7;
tmp[0] = t0 + t1;
tmp[8] = t0 - t1;
t1 = REAL_MUL(cos18[2], (in[2] + in[14]));
t2 += t1 - t7;
tmp[3] = t3 + t2;
t0 = REAL_MUL(COS6_1, (in[10] + in[14] - in[2]));
tmp[5] = t3 - t2;
t4 -= t1 + t7;
tmp[1] = t5 - t0;
tmp[7] = t5 + t0;
tmp[2] = t6 + t4;
tmp[6] = t6 - t4;
}
#endif
{
real t0, t1, t2, t3, t4, t5, t6, t7;
t1 = REAL_MUL(COS6_2, in[13]);
t2 = REAL_MUL(COS6_2, (in[9] + in[17] - in[5]));
t3 = in[1] + t1;
t4 = in[1] - t1 - t1;
t5 = t4 - t2;
t0 = REAL_MUL(cos9[0], (in[5] + in[9]));
t1 = REAL_MUL(cos9[1], (in[9] - in[17]));
tmp[13] = REAL_MUL((t4 + t2 + t2), tfcos36[17-13]);
t2 = REAL_MUL(cos9[2], (in[5] + in[17]));
t6 = t3 - t0 - t2;
t0 += t3 + t1;
t3 += t2 - t1;
t2 = REAL_MUL(cos18[0], (in[3] + in[11]));
t4 = REAL_MUL(cos18[1], (in[11] - in[15]));
t7 = REAL_MUL(COS6_1, in[7]);
t1 = t2 + t4 + t7;
tmp[17] = REAL_MUL((t0 + t1), tfcos36[17-17]);
tmp[9] = REAL_MUL((t0 - t1), tfcos36[17-9]);
t1 = REAL_MUL(cos18[2], (in[3] + in[15]));
t2 += t1 - t7;
tmp[14] = REAL_MUL((t3 + t2), tfcos36[17-14]);
t0 = REAL_MUL(COS6_1, (in[11] + in[15] - in[3]));
tmp[12] = REAL_MUL((t3 - t2), tfcos36[17-12]);
t4 -= t1 + t7;
tmp[16] = REAL_MUL((t5 - t0), tfcos36[17-16]);
tmp[10] = REAL_MUL((t5 + t0), tfcos36[17-10]);
tmp[15] = REAL_MUL((t6 + t4), tfcos36[17-15]);
tmp[11] = REAL_MUL((t6 - t4), tfcos36[17-11]);
}
#define MACRO(v) { \
real tmpval; \
tmpval = tmp[(v)] + tmp[17-(v)]; \
out2[9+(v)] = REAL_MUL(tmpval, w[27+(v)]); \
out2[8-(v)] = REAL_MUL(tmpval, w[26-(v)]); \
tmpval = tmp[(v)] - tmp[17-(v)]; \
ts[SBLIMIT*(8-(v))] = out1[8-(v)] + REAL_MUL(tmpval, w[8-(v)]); \
ts[SBLIMIT*(9+(v))] = out1[9+(v)] + REAL_MUL(tmpval, w[9+(v)]); }
{
register real *out2 = o2;
register real *w = wintab;
register real *out1 = o1;
register real *ts = tsbuf;
MACRO(0);
MACRO(1);
MACRO(2);
MACRO(3);
MACRO(4);
MACRO(5);
MACRO(6);
MACRO(7);
MACRO(8);
}
#else
{
#define MACRO0(v) { \
real tmp; \
out2[9+(v)] = REAL_MUL((tmp = sum0 + sum1), w[27+(v)]); \
out2[8-(v)] = REAL_MUL(tmp, w[26-(v)]); } \
sum0 -= sum1; \
ts[SBLIMIT*(8-(v))] = out1[8-(v)] + REAL_MUL(sum0, w[8-(v)]); \
ts[SBLIMIT*(9+(v))] = out1[9+(v)] + REAL_MUL(sum0, w[9+(v)]);
#define MACRO1(v) { \
real sum0,sum1; \
sum0 = tmp1a + tmp2a; \
sum1 = REAL_MUL((tmp1b + tmp2b), tfcos36[(v)]); \
MACRO0(v); }
#define MACRO2(v) { \
real sum0,sum1; \
sum0 = tmp2a - tmp1a; \
sum1 = REAL_MUL((tmp2b - tmp1b), tfcos36[(v)]); \
MACRO0(v); }
register const real *c = COS9;
register real *out2 = o2;
register real *w = wintab;
register real *out1 = o1;
register real *ts = tsbuf;
real ta33,ta66,tb33,tb66;
ta33 = REAL_MUL(in[2*3+0], c[3]);
ta66 = REAL_MUL(in[2*6+0], c[6]);
tb33 = REAL_MUL(in[2*3+1], c[3]);
tb66 = REAL_MUL(in[2*6+1], c[6]);
{
real tmp1a,tmp2a,tmp1b,tmp2b;
tmp1a = REAL_MUL(in[2*1+0], c[1]) + ta33 + REAL_MUL(in[2*5+0], c[5]) + REAL_MUL(in[2*7+0], c[7]);
tmp1b = REAL_MUL(in[2*1+1], c[1]) + tb33 + REAL_MUL(in[2*5+1], c[5]) + REAL_MUL(in[2*7+1], c[7]);
tmp2a = REAL_MUL(in[2*2+0], c[2]) + REAL_MUL(in[2*4+0], c[4]) + ta66 + REAL_MUL(in[2*8+0], c[8]);
tmp2b = REAL_MUL(in[2*2+1], c[2]) + REAL_MUL(in[2*4+1], c[4]) + tb66 + REAL_MUL(in[2*8+1], c[8]);
MACRO1(0);
MACRO2(8);
}
{
real tmp1a,tmp2a,tmp1b,tmp2b;
tmp1a = REAL_MUL(( in[2*1+0] - in[2*5+0] - in[2*7+0] ), c[3]);
tmp1b = REAL_MUL(( in[2*1+1] - in[2*5+1] - in[2*7+1] ), c[3]);
tmp2a = REAL_MUL(( in[2*2+0] - in[2*4+0] - in[2*8+0] ), c[6]) - in[2*6+0] + in[2*0+0];
tmp2b = REAL_MUL(( in[2*2+1] - in[2*4+1] - in[2*8+1] ), c[6]) - in[2*6+1] + in[2*0+1];
MACRO1(1);
MACRO2(7);
}
{
real tmp1a,tmp2a,tmp1b,tmp2b;
tmp1a = REAL_MUL(in[2*1+0], c[5]) - ta33 - REAL_MUL(in[2*5+0], c[7]) + REAL_MUL(in[2*7+0], c[1]);
tmp1b = REAL_MUL(in[2*1+1], c[5]) - tb33 - REAL_MUL(in[2*5+1], c[7]) + REAL_MUL(in[2*7+1], c[1]);
tmp2a = - REAL_MUL(in[2*2+0], c[8]) - REAL_MUL(in[2*4+0], c[2]) + ta66 + REAL_MUL(in[2*8+0], c[4]);
tmp2b = - REAL_MUL(in[2*2+1], c[8]) - REAL_MUL(in[2*4+1], c[2]) + tb66 + REAL_MUL(in[2*8+1], c[4]);
MACRO1(2);
MACRO2(6);
}
{
real tmp1a,tmp2a,tmp1b,tmp2b;
tmp1a = REAL_MUL(in[2*1+0], c[7]) - ta33 + REAL_MUL(in[2*5+0], c[1]) - REAL_MUL(in[2*7+0], c[5]);
tmp1b = REAL_MUL(in[2*1+1], c[7]) - tb33 + REAL_MUL(in[2*5+1], c[1]) - REAL_MUL(in[2*7+1], c[5]);
tmp2a = - REAL_MUL(in[2*2+0], c[4]) + REAL_MUL(in[2*4+0], c[8]) + ta66 - REAL_MUL(in[2*8+0], c[2]);
tmp2b = - REAL_MUL(in[2*2+1], c[4]) + REAL_MUL(in[2*4+1], c[8]) + tb66 - REAL_MUL(in[2*8+1], c[2]);
MACRO1(3);
MACRO2(5);
}
{
real sum0,sum1;
sum0 = in[2*0+0] - in[2*2+0] + in[2*4+0] - in[2*6+0] + in[2*8+0];
sum1 = REAL_MUL((in[2*0+1] - in[2*2+1] + in[2*4+1] - in[2*6+1] + in[2*8+1] ), tfcos36[4]);
MACRO0(4);
}
}
#endif
}
}
/*
* new DCT12
*/
static void dct12(real *in,real *rawout1,real *rawout2,register real *wi,register real *ts)
{
#define DCT12_PART1 \
in5 = in[5*3]; \
in5 += (in4 = in[4*3]); \
in4 += (in3 = in[3*3]); \
in3 += (in2 = in[2*3]); \
in2 += (in1 = in[1*3]); \
in1 += (in0 = in[0*3]); \
\
in5 += in3; in3 += in1; \
\
in2 = REAL_MUL(in2, COS6_1); \
in3 = REAL_MUL(in3, COS6_1); \
#define DCT12_PART2 \
in0 += REAL_MUL(in4, COS6_2); \
\
in4 = in0 + in2; \
in0 -= in2; \
\
in1 += REAL_MUL(in5, COS6_2); \
\
in5 = REAL_MUL((in1 + in3), tfcos12[0]); \
in1 = REAL_MUL((in1 - in3), tfcos12[2]); \
\
in3 = in4 + in5; \
in4 -= in5; \
\
in2 = in0 + in1; \
in0 -= in1;
{
real in0,in1,in2,in3,in4,in5;
register real *out1 = rawout1;
ts[SBLIMIT*0] = out1[0]; ts[SBLIMIT*1] = out1[1]; ts[SBLIMIT*2] = out1[2];
ts[SBLIMIT*3] = out1[3]; ts[SBLIMIT*4] = out1[4]; ts[SBLIMIT*5] = out1[5];
DCT12_PART1
{
real tmp0,tmp1 = (in0 - in4);
{
real tmp2 = REAL_MUL((in1 - in5), tfcos12[1]);
tmp0 = tmp1 + tmp2;
tmp1 -= tmp2;
}
ts[(17-1)*SBLIMIT] = out1[17-1] + REAL_MUL(tmp0, wi[11-1]);
ts[(12+1)*SBLIMIT] = out1[12+1] + REAL_MUL(tmp0, wi[6+1]);
ts[(6 +1)*SBLIMIT] = out1[6 +1] + REAL_MUL(tmp1, wi[1]);
ts[(11-1)*SBLIMIT] = out1[11-1] + REAL_MUL(tmp1, wi[5-1]);
}
DCT12_PART2
ts[(17-0)*SBLIMIT] = out1[17-0] + REAL_MUL(in2, wi[11-0]);
ts[(12+0)*SBLIMIT] = out1[12+0] + REAL_MUL(in2, wi[6+0]);
ts[(12+2)*SBLIMIT] = out1[12+2] + REAL_MUL(in3, wi[6+2]);
ts[(17-2)*SBLIMIT] = out1[17-2] + REAL_MUL(in3, wi[11-2]);
ts[(6 +0)*SBLIMIT] = out1[6+0] + REAL_MUL(in0, wi[0]);
ts[(11-0)*SBLIMIT] = out1[11-0] + REAL_MUL(in0, wi[5-0]);
ts[(6 +2)*SBLIMIT] = out1[6+2] + REAL_MUL(in4, wi[2]);
ts[(11-2)*SBLIMIT] = out1[11-2] + REAL_MUL(in4, wi[5-2]);
}
in++;
{
real in0,in1,in2,in3,in4,in5;
register real *out2 = rawout2;
DCT12_PART1
{
real tmp0,tmp1 = (in0 - in4);
{
real tmp2 = REAL_MUL((in1 - in5), tfcos12[1]);
tmp0 = tmp1 + tmp2;
tmp1 -= tmp2;
}
out2[5-1] = REAL_MUL(tmp0, wi[11-1]);
out2[0+1] = REAL_MUL(tmp0, wi[6+1]);
ts[(12+1)*SBLIMIT] += REAL_MUL(tmp1, wi[1]);
ts[(17-1)*SBLIMIT] += REAL_MUL(tmp1, wi[5-1]);
}
DCT12_PART2
out2[5-0] = REAL_MUL(in2, wi[11-0]);
out2[0+0] = REAL_MUL(in2, wi[6+0]);
out2[0+2] = REAL_MUL(in3, wi[6+2]);
out2[5-2] = REAL_MUL(in3, wi[11-2]);
ts[(12+0)*SBLIMIT] += REAL_MUL(in0, wi[0]);
ts[(17-0)*SBLIMIT] += REAL_MUL(in0, wi[5-0]);
ts[(12+2)*SBLIMIT] += REAL_MUL(in4, wi[2]);
ts[(17-2)*SBLIMIT] += REAL_MUL(in4, wi[5-2]);
}
in++;
{
real in0,in1,in2,in3,in4,in5;
register real *out2 = rawout2;
out2[12]=out2[13]=out2[14]=out2[15]=out2[16]=out2[17]=0.0;
DCT12_PART1
{
real tmp0,tmp1 = (in0 - in4);
{
real tmp2 = REAL_MUL((in1 - in5), tfcos12[1]);
tmp0 = tmp1 + tmp2;
tmp1 -= tmp2;
}
out2[11-1] = REAL_MUL(tmp0, wi[11-1]);
out2[6 +1] = REAL_MUL(tmp0, wi[6+1]);
out2[0+1] += REAL_MUL(tmp1, wi[1]);
out2[5-1] += REAL_MUL(tmp1, wi[5-1]);
}
DCT12_PART2
out2[11-0] = REAL_MUL(in2, wi[11-0]);
out2[6 +0] = REAL_MUL(in2, wi[6+0]);
out2[6 +2] = REAL_MUL(in3, wi[6+2]);
out2[11-2] = REAL_MUL(in3, wi[11-2]);
out2[0+0] += REAL_MUL(in0, wi[0]);
out2[5-0] += REAL_MUL(in0, wi[5-0]);
out2[0+2] += REAL_MUL(in4, wi[2]);
out2[5-2] += REAL_MUL(in4, wi[5-2]);
}
}
/*
* III_hybrid
*/
#ifdef USE_3DNOW
static void III_hybrid(real fsIn[SBLIMIT][SSLIMIT],real tsOut[SSLIMIT][SBLIMIT],int ch,struct gr_info_s *gr_info,struct frame *fr)
#else
static void III_hybrid(real fsIn[SBLIMIT][SSLIMIT],real tsOut[SSLIMIT][SBLIMIT],
int ch,struct gr_info_s *gr_info)
#endif
{
real *tspnt = (real *) tsOut;
real *rawout1,*rawout2;
int bt,sb = 0;
{
int b = blc[ch];
rawout1=block[b][ch];
b=-b+1;
rawout2=block[b][ch];
blc[ch] = b;
}
if(gr_info->mixed_block_flag) {
sb = 2;
#ifdef USE_3DNOW
(fr->dct36)(fsIn[0],rawout1,rawout2,win[0],tspnt);
(fr->dct36)(fsIn[1],rawout1+18,rawout2+18,win1[0],tspnt+1);
#else
dct36(fsIn[0],rawout1,rawout2,win[0],tspnt);
dct36(fsIn[1],rawout1+18,rawout2+18,win1[0],tspnt+1);
#endif
rawout1 += 36; rawout2 += 36; tspnt += 2;
}
bt = gr_info->block_type;
if(bt == 2) {
for (; sb<gr_info->maxb; sb+=2,tspnt+=2,rawout1+=36,rawout2+=36) {
dct12(fsIn[sb] ,rawout1 ,rawout2 ,win[2] ,tspnt);
dct12(fsIn[sb+1],rawout1+18,rawout2+18,win1[2],tspnt+1);
}
}
else {
for (; sb<gr_info->maxb; sb+=2,tspnt+=2,rawout1+=36,rawout2+=36) {
#ifdef USE_3DNOW
(fr->dct36)(fsIn[sb],rawout1,rawout2,win[bt],tspnt);
(fr->dct36)(fsIn[sb+1],rawout1+18,rawout2+18,win1[bt],tspnt+1);
#else
dct36(fsIn[sb],rawout1,rawout2,win[bt],tspnt);
dct36(fsIn[sb+1],rawout1+18,rawout2+18,win1[bt],tspnt+1);
#endif
}
}
for(;sb<SBLIMIT;sb++,tspnt++) {
int i;
for(i=0;i<SSLIMIT;i++) {
tspnt[i*SBLIMIT] = *rawout1++;
*rawout2++ = DOUBLE_TO_REAL(0.0);
}
}
}
int do_layer3(struct frame *fr,byte *pcm_sample,int *pcm_point)
{
int gr, ch, ss,clip=0;
int scalefacs[2][39]; /* max 39 for short[13][3] mode, mixed: 38, long: 22 */
struct III_sideinfo sideinfo;
int stereo = fr->stereo;
int single = fr->single;
int ms_stereo,i_stereo;
int sfreq = fr->sampling_frequency;
int stereo1,granules;
if(stereo == 1) { /* stream is mono */
stereo1 = 1;
single = 0;
}
else if(single >= 0) /* stream is stereo, but force to mono */
stereo1 = 1;
else
stereo1 = 2;
if(fr->mode == MPG_MD_JOINT_STEREO) {
ms_stereo = (fr->mode_ext & 0x2)>>1;
i_stereo = fr->mode_ext & 0x1;
}
else
ms_stereo = i_stereo = 0;
if(fr->lsf) {
granules = 1;
#if 0
III_get_side_info_2(&sideinfo,stereo,ms_stereo,sfreq,single);
#endif
}
else {
granules = 2;
}
/* quick hack to keep the music playing */
/* after having seen this nasty test file... */
if(III_get_side_info(&sideinfo,stereo,ms_stereo,sfreq,single,fr->lsf))
{
return clip;
}
set_pointer(sideinfo.main_data_begin);
for (gr=0;gr<granules;gr++)
{
{
struct gr_info_s *gr_info = &(sideinfo.ch[0].gr[gr]);
long part2bits;
if(fr->lsf)
part2bits = III_get_scale_factors_2(scalefacs[0],gr_info,0);
else
part2bits = III_get_scale_factors_1(scalefacs[0],gr_info,0,gr);
if(III_dequantize_sample(hybridIn[0], scalefacs[0],gr_info,sfreq,part2bits))
return clip;
}
if(stereo == 2) {
struct gr_info_s *gr_info = &(sideinfo.ch[1].gr[gr]);
long part2bits;
if(fr->lsf)
part2bits = III_get_scale_factors_2(scalefacs[1],gr_info,i_stereo);
else
part2bits = III_get_scale_factors_1(scalefacs[1],gr_info,1,gr);
if(III_dequantize_sample(hybridIn[1],scalefacs[1],gr_info,sfreq,part2bits))
return clip;
if(ms_stereo) {
int i;
int maxb = sideinfo.ch[0].gr[gr].maxb;
if(sideinfo.ch[1].gr[gr].maxb > maxb)
maxb = sideinfo.ch[1].gr[gr].maxb;
for(i=0;i<SSLIMIT*maxb;i++) {
real tmp0 = ((real *)hybridIn[0])[i];
real tmp1 = ((real *)hybridIn[1])[i];
((real *)hybridIn[0])[i] = tmp0 + tmp1;
((real *)hybridIn[1])[i] = tmp0 - tmp1;
}
}
if(i_stereo)
III_i_stereo(hybridIn,scalefacs[1],gr_info,sfreq,ms_stereo,fr->lsf);
if(ms_stereo || i_stereo || (single == 3) ) {
if(gr_info->maxb > sideinfo.ch[0].gr[gr].maxb)
sideinfo.ch[0].gr[gr].maxb = gr_info->maxb;
else
gr_info->maxb = sideinfo.ch[0].gr[gr].maxb;
}
switch(single) {
case 3:
{
register int i;
register real *in0 = (real *) hybridIn[0],*in1 = (real *) hybridIn[1];
for(i=0;i<SSLIMIT*gr_info->maxb;i++,in0++)
*in0 = (*in0 + *in1++); /* *0.5 done by pow-scale */
}
break;
case 1:
{
register int i;
register real *in0 = (real *) hybridIn[0],*in1 = (real *) hybridIn[1];
for(i=0;i<SSLIMIT*gr_info->maxb;i++)
*in0++ = *in1++;
}
break;
}
}
for(ch=0;ch<stereo1;ch++) {
struct gr_info_s *gr_info = &(sideinfo.ch[ch].gr[gr]);
III_antialias(hybridIn[ch],gr_info);
#ifdef USE_3DNOW
III_hybrid(hybridIn[ch], hybridOut[ch], ch,gr_info,fr);
#else
III_hybrid(hybridIn[ch], hybridOut[ch], ch,gr_info);
#endif
}
#ifdef I486_OPT
if (fr->synth != synth_1to1 || single >= 0) {
#endif
for(ss=0;ss<SSLIMIT;ss++) {
if(single >= 0) {
clip += (fr->synth_mono)(hybridOut[0][ss],pcm_sample,pcm_point);
}
else {
int p1=*pcm_point;
clip += (fr->synth)(hybridOut[0][ss],0,pcm_sample,&p1);
clip += (fr->synth)(hybridOut[1][ss],1,pcm_sample,pcm_point);
}
#ifdef VARMODESUPPORT
if (playlimit < 128) {
pcm_point -= playlimit >> 1;
playlimit = 0;
}
else
playlimit -= 128;
#endif
}
#ifdef I486_OPT
} else {
/* Only stereo, 16 bits benefit from the 486 optimization. */
ss=0;
while (ss < SSLIMIT) {
int n;
n=(0x40000 - *pcm_point) / (2*2*32);
if (n > (SSLIMIT-ss)) n=SSLIMIT-ss;
synth_1to1_486(hybridOut[0][ss],0,pcm_sample+*pcm_point,n);
synth_1to1_486(hybridOut[1][ss],1,pcm_sample+*pcm_point,n);
ss+=n;
*pcm_point+=(2*2*32)*n;
}
}
#endif
}
return clip;
}