kolibrios-gitea/programs/develop/oberon07/lib/Math/CMath.ob07
Kirill Lipatov (Leency) 498da3221e update Oberon07 and CEDIT by akron1
git-svn-id: svn://kolibrios.org@8859 a494cfbc-eb01-0410-851d-a64ba20cac60
2021-06-15 17:33:16 +00:00

463 lines
9.8 KiB
Plaintext
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

(* ***********************************************
Модуль работы с комплексными числами.
Вадим Исаев, 2020
Module for complex numbers.
Vadim Isaev, 2020
*************************************************** *)
MODULE CMath;
IMPORT Math, Out;
TYPE
complex* = POINTER TO RECORD
re*: REAL;
im*: REAL
END;
VAR
result: complex;
i* : complex;
_0*: complex;
(* Инициализация комплексного числа.
Init complex number. *)
PROCEDURE CInit* (re : REAL; im: REAL): complex;
VAR
temp: complex;
BEGIN
NEW(temp);
temp.re:=re;
temp.im:=im;
RETURN temp
END CInit;
(* Четыре основных арифметических операций.
Four base operations +, -, * , / *)
(* Сложение
addition : z := z1 + z2 *)
PROCEDURE CAdd* (z1, z2: complex): complex;
BEGIN
result.re := z1.re + z2.re;
result.im := z1.im + z2.im;
RETURN result
END CAdd;
(* Сложение с REAL.
addition : z := z1 + r1 *)
PROCEDURE CAdd_r* (z1: complex; r1: REAL): complex;
BEGIN
result.re := z1.re + r1;
result.im := z1.im;
RETURN result
END CAdd_r;
(* Сложение с INTEGER.
addition : z := z1 + i1 *)
PROCEDURE CAdd_i* (z1: complex; i1: INTEGER): complex;
BEGIN
result.re := z1.re + FLT(i1);
result.im := z1.im;
RETURN result
END CAdd_i;
(* Смена знака.
substraction : z := - z1 *)
PROCEDURE CNeg (z1 : complex): complex;
BEGIN
result.re := -z1.re;
result.im := -z1.im;
RETURN result
END CNeg;
(* Вычитание.
substraction : z := z1 - z2 *)
PROCEDURE CSub* (z1, z2 : complex): complex;
BEGIN
result.re := z1.re - z2.re;
result.im := z1.im - z2.im;
RETURN result
END CSub;
(* Вычитание REAL.
substraction : z := z1 - r1 *)
PROCEDURE CSub_r1* (z1 : complex; r1 : REAL): complex;
BEGIN
result.re := z1.re - r1;
result.im := z1.im;
RETURN result
END CSub_r1;
(* Вычитание из REAL.
substraction : z := r1 - z1 *)
PROCEDURE CSub_r2* (r1 : REAL; z1 : complex): complex;
BEGIN
result.re := r1 - z1.re;
result.im := - z1.im;
RETURN result
END CSub_r2;
(* Вычитание INTEGER.
substraction : z := z1 - i1 *)
PROCEDURE CSub_i* (z1 : complex; i1 : INTEGER): complex;
BEGIN
result.re := z1.re - FLT(i1);
result.im := z1.im;
RETURN result
END CSub_i;
(* Умножение.
multiplication : z := z1 * z2 *)
PROCEDURE CMul (z1, z2 : complex): complex;
BEGIN
result.re := (z1.re * z2.re) - (z1.im * z2.im);
result.im := (z1.re * z2.im) + (z1.im * z2.re);
RETURN result
END CMul;
(* Умножение с REAL.
multiplication : z := z1 * r1 *)
PROCEDURE CMul_r (z1 : complex; r1 : REAL): complex;
BEGIN
result.re := z1.re * r1;
result.im := z1.im * r1;
RETURN result
END CMul_r;
(* Умножение с INTEGER.
multiplication : z := z1 * i1 *)
PROCEDURE CMul_i (z1 : complex; i1 : INTEGER): complex;
BEGIN
result.re := z1.re * FLT(i1);
result.im := z1.im * FLT(i1);
RETURN result
END CMul_i;
(* Деление.
division : z := znum / zden *)
PROCEDURE CDiv (z1, z2 : complex): complex;
(* The following algorithm is used to properly handle
denominator overflow:
| a + b(d/c) c - a(d/c)
| ---------- + ---------- I if |d| < |c|
a + b I | c + d(d/c) a + d(d/c)
------- = |
c + d I | b + a(c/d) -a+ b(c/d)
| ---------- + ---------- I if |d| >= |c|
| d + c(c/d) d + c(c/d)
*)
VAR
tmp, denom : REAL;
BEGIN
IF ( ABS(z2.re) > ABS(z2.im) ) THEN
tmp := z2.im / z2.re;
denom := z2.re + z2.im * tmp;
result.re := (z1.re + z1.im * tmp) / denom;
result.im := (z1.im - z1.re * tmp) / denom;
ELSE
tmp := z2.re / z2.im;
denom := z2.im + z2.re * tmp;
result.re := (z1.im + z1.re * tmp) / denom;
result.im := (-z1.re + z1.im * tmp) / denom;
END;
RETURN result
END CDiv;
(* Деление на REAL.
division : z := znum / r1 *)
PROCEDURE CDiv_r* (z1 : complex; r1 : REAL): complex;
BEGIN
result.re := z1.re / r1;
result.im := z1.im / r1;
RETURN result
END CDiv_r;
(* Деление на INTEGER.
division : z := znum / i1 *)
PROCEDURE CDiv_i* (z1 : complex; i1 : INTEGER): complex;
BEGIN
result.re := z1.re / FLT(i1);
result.im := z1.im / FLT(i1);
RETURN result
END CDiv_i;
(* fonctions elementaires *)
(* Вывод на экран.
out complex number *)
PROCEDURE CPrint* (z: complex; width: INTEGER);
BEGIN
Out.Real(z.re, width);
IF z.im>=0.0 THEN
Out.String("+");
END;
Out.Real(z.im, width);
Out.String("i");
END CPrint;
PROCEDURE CPrintLn* (z: complex; width: INTEGER);
BEGIN
CPrint(z, width);
Out.Ln;
END CPrintLn;
(* Вывод на экран с фиксированным кол-вом знаков
после запятой (p) *)
PROCEDURE CPrintFix* (z: complex; width, p: INTEGER);
BEGIN
Out.FixReal(z.re, width, p);
IF z.im>=0.0 THEN
Out.String("+");
END;
Out.FixReal(z.im, width, p);
Out.String("i");
END CPrintFix;
PROCEDURE CPrintFixLn* (z: complex; width, p: INTEGER);
BEGIN
CPrintFix(z, width, p);
Out.Ln;
END CPrintFixLn;
(* Модуль числа.
module : r = |z| *)
PROCEDURE CMod* (z1 : complex): REAL;
BEGIN
RETURN Math.sqrt((z1.re * z1.re) + (z1.im * z1.im))
END CMod;
(* Квадрат числа.
square : r := z*z *)
PROCEDURE CSqr* (z1: complex): complex;
BEGIN
result.re := z1.re * z1.re - z1.im * z1.im;
result.im := 2.0 * z1.re * z1.im;
RETURN result
END CSqr;
(* Квадратный корень числа.
square root : r := sqrt(z) *)
PROCEDURE CSqrt* (z1: complex): complex;
VAR
root, q: REAL;
BEGIN
IF (z1.re#0.0) OR (z1.im#0.0) THEN
root := Math.sqrt(0.5 * (ABS(z1.re) + CMod(z1)));
q := z1.im / (2.0 * root);
IF z1.re >= 0.0 THEN
result.re := root;
result.im := q;
ELSE
IF z1.im < 0.0 THEN
result.re := - q;
result.im := - root
ELSE
result.re := q;
result.im := root
END
END
ELSE
result := z1;
END;
RETURN result
END CSqrt;
(* Экспонента.
exponantial : r := exp(z) *)
(* exp(x + iy) = exp(x).exp(iy) = exp(x).[cos(y) + i sin(y)] *)
PROCEDURE CExp* (z: complex): complex;
VAR
expz : REAL;
BEGIN
expz := Math.exp(z.re);
result.re := expz * Math.cos(z.im);
result.im := expz * Math.sin(z.im);
RETURN result
END CExp;
(* Натуральный логарифм.
natural logarithm : r := ln(z) *)
(* ln( p exp(i0)) = ln(p) + i0 + 2kpi *)
PROCEDURE CLn* (z: complex): complex;
BEGIN
result.re := Math.ln(CMod(z));
result.im := Math.arctan2(z.im, z.re);
RETURN result
END CLn;
(* Число в степени.
exp : z := z1^z2 *)
PROCEDURE CPower* (z1, z2 : complex): complex;
VAR
a: complex;
BEGIN
a:=CLn(z1);
a:=CMul(z2, a);
result:=CExp(a);
RETURN result
END CPower;
(* Число в степени REAL.
multiplication : z := z1^r *)
PROCEDURE CPower_r* (z1: complex; r: REAL): complex;
VAR
a: complex;
BEGIN
a:=CLn(z1);
a:=CMul_r(a, r);
result:=CExp(a);
RETURN result
END CPower_r;
(* Обратное число.
inverse : r := 1 / z *)
PROCEDURE CInv* (z: complex): complex;
VAR
denom : REAL;
BEGIN
denom := (z.re * z.re) + (z.im * z.im);
(* generates a fpu exception if denom=0 as for reals *)
result.re:=z.re/denom;
result.im:=-z.im/denom;
RETURN result
END CInv;
(* direct trigonometric functions *)
(* Косинус.
complex cosinus *)
(* cos(x+iy) = cos(x).cos(iy) - sin(x).sin(iy) *)
(* cos(ix) = cosh(x) et sin(ix) = i.sinh(x) *)
PROCEDURE CCos* (z: complex): complex;
BEGIN
result.re := Math.cos(z.re) * Math.cosh(z.im);
result.im := - Math.sin(z.re) * Math.sinh(z.im);
RETURN result
END CCos;
(* Синус.
sinus complex *)
(* sin(x+iy) = sin(x).cos(iy) + cos(x).sin(iy) *)
(* cos(ix) = cosh(x) et sin(ix) = i.sinh(x) *)
PROCEDURE CSin (z: complex): complex;
BEGIN
result.re := Math.sin(z.re) * Math.cosh(z.im);
result.im := Math.cos(z.re) * Math.sinh(z.im);
RETURN result
END CSin;
(* Тангенс.
tangente *)
PROCEDURE CTg* (z: complex): complex;
VAR
temp1, temp2: complex;
BEGIN
temp1:=CSin(z);
temp2:=CCos(z);
result:=CDiv(temp1, temp2);
RETURN result
END CTg;
(* inverse complex hyperbolic functions *)
(* Гиперболический арккосинус.
hyberbolic arg cosinus *)
(* _________ *)
(* argch(z) = -/+ ln(z + i.V 1 - z.z) *)
PROCEDURE CArcCosh* (z : complex): complex;
BEGIN
result:=CNeg(CLn(CAdd(z, CMul(i, CSqrt(CSub_r2(1.0, CMul(z, z)))))));
RETURN result
END CArcCosh;
(* Гиперболический арксинус.
hyperbolic arc sinus *)
(* ________ *)
(* argsh(z) = ln(z + V 1 + z.z) *)
PROCEDURE CArcSinh* (z : complex): complex;
BEGIN
result:=CLn(CAdd(z, CSqrt(CAdd_r(CMul(z, z), 1.0))));
RETURN result
END CArcSinh;
(* Гиперболический арктангенс.
hyperbolic arc tangent *)
(* argth(z) = 1/2 ln((z + 1) / (1 - z)) *)
PROCEDURE CArcTgh (z : complex): complex;
BEGIN
result:=CDiv_r(CLn(CDiv(CAdd_r(z, 1.0), CSub_r2(1.0, z))), 2.0);
RETURN result
END CArcTgh;
(* trigonometriques inverses *)
(* Арккосинус.
arc cosinus complex *)
(* arccos(z) = -i.argch(z) *)
PROCEDURE CArcCos* (z: complex): complex;
BEGIN
result := CNeg(CMul(i, CArcCosh(z)));
RETURN result
END CArcCos;
(* Арксинус.
arc sinus complex *)
(* arcsin(z) = -i.argsh(i.z) *)
PROCEDURE CArcSin* (z : complex): complex;
BEGIN
result := CNeg(CMul(i, CArcSinh(z)));
RETURN result
END CArcSin;
(* Арктангенс.
arc tangente complex *)
(* arctg(z) = -i.argth(i.z) *)
PROCEDURE CArcTg* (z : complex): complex;
BEGIN
result := CNeg(CMul(i, CArcTgh(CMul(i, z))));
RETURN result
END CArcTg;
BEGIN
result:=CInit(0.0, 0.0);
i :=CInit(0.0, 1.0);
_0:=CInit(0.0, 0.0);
END CMath.