kolibrios-gitea/drivers/video/Gallium/drivers/softpipe/sp_quad_blend.c
Sergey Semyonov (Serge) edb28b33f3 Gallium 3D: initial commit
git-svn-id: svn://kolibrios.org@3770 a494cfbc-eb01-0410-851d-a64ba20cac60
2013-07-06 10:06:47 +00:00

1307 lines
42 KiB
C

/**************************************************************************
*
* Copyright 2007 Tungsten Graphics, Inc., Cedar Park, Texas.
* All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sub license, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice (including the
* next paragraph) shall be included in all copies or substantial portions
* of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
* IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
* ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*
**************************************************************************/
/**
* quad blending
* \author Brian Paul
*/
#include "pipe/p_defines.h"
#include "util/u_math.h"
#include "util/u_memory.h"
#include "util/u_format.h"
#include "util/u_dual_blend.h"
#include "sp_context.h"
#include "sp_state.h"
#include "sp_quad.h"
#include "sp_tile_cache.h"
#include "sp_quad_pipe.h"
enum format
{
RGBA,
RGB,
LUMINANCE,
LUMINANCE_ALPHA,
INTENSITY
};
/** Subclass of quad_stage */
struct blend_quad_stage
{
struct quad_stage base;
boolean clamp[PIPE_MAX_COLOR_BUFS]; /**< clamp colors to [0,1]? */
enum format base_format[PIPE_MAX_COLOR_BUFS];
enum util_format_type format_type[PIPE_MAX_COLOR_BUFS];
};
/** cast wrapper */
static INLINE struct blend_quad_stage *
blend_quad_stage(struct quad_stage *stage)
{
return (struct blend_quad_stage *) stage;
}
#define VEC4_COPY(DST, SRC) \
do { \
DST[0] = SRC[0]; \
DST[1] = SRC[1]; \
DST[2] = SRC[2]; \
DST[3] = SRC[3]; \
} while(0)
#define VEC4_SCALAR(DST, SRC) \
do { \
DST[0] = SRC; \
DST[1] = SRC; \
DST[2] = SRC; \
DST[3] = SRC; \
} while(0)
#define VEC4_ADD(R, A, B) \
do { \
R[0] = A[0] + B[0]; \
R[1] = A[1] + B[1]; \
R[2] = A[2] + B[2]; \
R[3] = A[3] + B[3]; \
} while (0)
#define VEC4_SUB(R, A, B) \
do { \
R[0] = A[0] - B[0]; \
R[1] = A[1] - B[1]; \
R[2] = A[2] - B[2]; \
R[3] = A[3] - B[3]; \
} while (0)
/** Add and limit result to ceiling of 1.0 */
#define VEC4_ADD_SAT(R, A, B) \
do { \
R[0] = A[0] + B[0]; if (R[0] > 1.0f) R[0] = 1.0f; \
R[1] = A[1] + B[1]; if (R[1] > 1.0f) R[1] = 1.0f; \
R[2] = A[2] + B[2]; if (R[2] > 1.0f) R[2] = 1.0f; \
R[3] = A[3] + B[3]; if (R[3] > 1.0f) R[3] = 1.0f; \
} while (0)
/** Subtract and limit result to floor of 0.0 */
#define VEC4_SUB_SAT(R, A, B) \
do { \
R[0] = A[0] - B[0]; if (R[0] < 0.0f) R[0] = 0.0f; \
R[1] = A[1] - B[1]; if (R[1] < 0.0f) R[1] = 0.0f; \
R[2] = A[2] - B[2]; if (R[2] < 0.0f) R[2] = 0.0f; \
R[3] = A[3] - B[3]; if (R[3] < 0.0f) R[3] = 0.0f; \
} while (0)
#define VEC4_MUL(R, A, B) \
do { \
R[0] = A[0] * B[0]; \
R[1] = A[1] * B[1]; \
R[2] = A[2] * B[2]; \
R[3] = A[3] * B[3]; \
} while (0)
#define VEC4_MIN(R, A, B) \
do { \
R[0] = (A[0] < B[0]) ? A[0] : B[0]; \
R[1] = (A[1] < B[1]) ? A[1] : B[1]; \
R[2] = (A[2] < B[2]) ? A[2] : B[2]; \
R[3] = (A[3] < B[3]) ? A[3] : B[3]; \
} while (0)
#define VEC4_MAX(R, A, B) \
do { \
R[0] = (A[0] > B[0]) ? A[0] : B[0]; \
R[1] = (A[1] > B[1]) ? A[1] : B[1]; \
R[2] = (A[2] > B[2]) ? A[2] : B[2]; \
R[3] = (A[3] > B[3]) ? A[3] : B[3]; \
} while (0)
static void
logicop_quad(struct quad_stage *qs,
float (*quadColor)[4],
float (*dest)[4])
{
struct softpipe_context *softpipe = qs->softpipe;
ubyte src[4][4], dst[4][4], res[4][4];
uint *src4 = (uint *) src;
uint *dst4 = (uint *) dst;
uint *res4 = (uint *) res;
uint j;
/* convert to ubyte */
for (j = 0; j < 4; j++) { /* loop over R,G,B,A channels */
dst[j][0] = float_to_ubyte(dest[j][0]); /* P0 */
dst[j][1] = float_to_ubyte(dest[j][1]); /* P1 */
dst[j][2] = float_to_ubyte(dest[j][2]); /* P2 */
dst[j][3] = float_to_ubyte(dest[j][3]); /* P3 */
src[j][0] = float_to_ubyte(quadColor[j][0]); /* P0 */
src[j][1] = float_to_ubyte(quadColor[j][1]); /* P1 */
src[j][2] = float_to_ubyte(quadColor[j][2]); /* P2 */
src[j][3] = float_to_ubyte(quadColor[j][3]); /* P3 */
}
switch (softpipe->blend->logicop_func) {
case PIPE_LOGICOP_CLEAR:
for (j = 0; j < 4; j++)
res4[j] = 0;
break;
case PIPE_LOGICOP_NOR:
for (j = 0; j < 4; j++)
res4[j] = ~(src4[j] | dst4[j]);
break;
case PIPE_LOGICOP_AND_INVERTED:
for (j = 0; j < 4; j++)
res4[j] = ~src4[j] & dst4[j];
break;
case PIPE_LOGICOP_COPY_INVERTED:
for (j = 0; j < 4; j++)
res4[j] = ~src4[j];
break;
case PIPE_LOGICOP_AND_REVERSE:
for (j = 0; j < 4; j++)
res4[j] = src4[j] & ~dst4[j];
break;
case PIPE_LOGICOP_INVERT:
for (j = 0; j < 4; j++)
res4[j] = ~dst4[j];
break;
case PIPE_LOGICOP_XOR:
for (j = 0; j < 4; j++)
res4[j] = dst4[j] ^ src4[j];
break;
case PIPE_LOGICOP_NAND:
for (j = 0; j < 4; j++)
res4[j] = ~(src4[j] & dst4[j]);
break;
case PIPE_LOGICOP_AND:
for (j = 0; j < 4; j++)
res4[j] = src4[j] & dst4[j];
break;
case PIPE_LOGICOP_EQUIV:
for (j = 0; j < 4; j++)
res4[j] = ~(src4[j] ^ dst4[j]);
break;
case PIPE_LOGICOP_NOOP:
for (j = 0; j < 4; j++)
res4[j] = dst4[j];
break;
case PIPE_LOGICOP_OR_INVERTED:
for (j = 0; j < 4; j++)
res4[j] = ~src4[j] | dst4[j];
break;
case PIPE_LOGICOP_COPY:
for (j = 0; j < 4; j++)
res4[j] = src4[j];
break;
case PIPE_LOGICOP_OR_REVERSE:
for (j = 0; j < 4; j++)
res4[j] = src4[j] | ~dst4[j];
break;
case PIPE_LOGICOP_OR:
for (j = 0; j < 4; j++)
res4[j] = src4[j] | dst4[j];
break;
case PIPE_LOGICOP_SET:
for (j = 0; j < 4; j++)
res4[j] = ~0;
break;
default:
assert(0 && "invalid logicop mode");
}
for (j = 0; j < 4; j++) {
quadColor[j][0] = ubyte_to_float(res[j][0]);
quadColor[j][1] = ubyte_to_float(res[j][1]);
quadColor[j][2] = ubyte_to_float(res[j][2]);
quadColor[j][3] = ubyte_to_float(res[j][3]);
}
}
/**
* Do blending for a 2x2 quad for one color buffer.
* \param quadColor the incoming quad colors
* \param dest the destination/framebuffer quad colors
* \param const_blend_color the constant blend color
* \param blend_index which set of blending terms to use
*/
static void
blend_quad(struct quad_stage *qs,
float (*quadColor)[4],
float (*quadColor2)[4],
float (*dest)[4],
const float const_blend_color[4],
unsigned blend_index)
{
static const float zero[4] = { 0, 0, 0, 0 };
static const float one[4] = { 1, 1, 1, 1 };
struct softpipe_context *softpipe = qs->softpipe;
float source[4][TGSI_QUAD_SIZE] = { { 0 } };
float blend_dest[4][TGSI_QUAD_SIZE];
/*
* Compute src/first term RGB
*/
switch (softpipe->blend->rt[blend_index].rgb_src_factor) {
case PIPE_BLENDFACTOR_ONE:
VEC4_COPY(source[0], quadColor[0]); /* R */
VEC4_COPY(source[1], quadColor[1]); /* G */
VEC4_COPY(source[2], quadColor[2]); /* B */
break;
case PIPE_BLENDFACTOR_SRC_COLOR:
VEC4_MUL(source[0], quadColor[0], quadColor[0]); /* R */
VEC4_MUL(source[1], quadColor[1], quadColor[1]); /* G */
VEC4_MUL(source[2], quadColor[2], quadColor[2]); /* B */
break;
case PIPE_BLENDFACTOR_SRC_ALPHA:
{
const float *alpha = quadColor[3];
VEC4_MUL(source[0], quadColor[0], alpha); /* R */
VEC4_MUL(source[1], quadColor[1], alpha); /* G */
VEC4_MUL(source[2], quadColor[2], alpha); /* B */
}
break;
case PIPE_BLENDFACTOR_DST_COLOR:
VEC4_MUL(source[0], quadColor[0], dest[0]); /* R */
VEC4_MUL(source[1], quadColor[1], dest[1]); /* G */
VEC4_MUL(source[2], quadColor[2], dest[2]); /* B */
break;
case PIPE_BLENDFACTOR_DST_ALPHA:
{
const float *alpha = dest[3];
VEC4_MUL(source[0], quadColor[0], alpha); /* R */
VEC4_MUL(source[1], quadColor[1], alpha); /* G */
VEC4_MUL(source[2], quadColor[2], alpha); /* B */
}
break;
case PIPE_BLENDFACTOR_SRC_ALPHA_SATURATE:
{
const float *alpha = quadColor[3];
float diff[4], temp[4];
VEC4_SUB(diff, one, dest[3]);
VEC4_MIN(temp, alpha, diff);
VEC4_MUL(source[0], quadColor[0], temp); /* R */
VEC4_MUL(source[1], quadColor[1], temp); /* G */
VEC4_MUL(source[2], quadColor[2], temp); /* B */
}
break;
case PIPE_BLENDFACTOR_CONST_COLOR:
{
float comp[4];
VEC4_SCALAR(comp, const_blend_color[0]); /* R */
VEC4_MUL(source[0], quadColor[0], comp); /* R */
VEC4_SCALAR(comp, const_blend_color[1]); /* G */
VEC4_MUL(source[1], quadColor[1], comp); /* G */
VEC4_SCALAR(comp, const_blend_color[2]); /* B */
VEC4_MUL(source[2], quadColor[2], comp); /* B */
}
break;
case PIPE_BLENDFACTOR_CONST_ALPHA:
{
float alpha[4];
VEC4_SCALAR(alpha, const_blend_color[3]);
VEC4_MUL(source[0], quadColor[0], alpha); /* R */
VEC4_MUL(source[1], quadColor[1], alpha); /* G */
VEC4_MUL(source[2], quadColor[2], alpha); /* B */
}
break;
case PIPE_BLENDFACTOR_SRC1_COLOR:
VEC4_MUL(source[0], quadColor[0], quadColor2[0]); /* R */
VEC4_MUL(source[1], quadColor[1], quadColor2[1]); /* G */
VEC4_MUL(source[2], quadColor[2], quadColor2[2]); /* B */
break;
case PIPE_BLENDFACTOR_SRC1_ALPHA:
{
const float *alpha = quadColor2[3];
VEC4_MUL(source[0], quadColor[0], alpha); /* R */
VEC4_MUL(source[1], quadColor[1], alpha); /* G */
VEC4_MUL(source[2], quadColor[2], alpha); /* B */
}
break;
case PIPE_BLENDFACTOR_ZERO:
VEC4_COPY(source[0], zero); /* R */
VEC4_COPY(source[1], zero); /* G */
VEC4_COPY(source[2], zero); /* B */
break;
case PIPE_BLENDFACTOR_INV_SRC_COLOR:
{
float inv_comp[4];
VEC4_SUB(inv_comp, one, quadColor[0]); /* R */
VEC4_MUL(source[0], quadColor[0], inv_comp); /* R */
VEC4_SUB(inv_comp, one, quadColor[1]); /* G */
VEC4_MUL(source[1], quadColor[1], inv_comp); /* G */
VEC4_SUB(inv_comp, one, quadColor[2]); /* B */
VEC4_MUL(source[2], quadColor[2], inv_comp); /* B */
}
break;
case PIPE_BLENDFACTOR_INV_SRC_ALPHA:
{
float inv_alpha[4];
VEC4_SUB(inv_alpha, one, quadColor[3]);
VEC4_MUL(source[0], quadColor[0], inv_alpha); /* R */
VEC4_MUL(source[1], quadColor[1], inv_alpha); /* G */
VEC4_MUL(source[2], quadColor[2], inv_alpha); /* B */
}
break;
case PIPE_BLENDFACTOR_INV_DST_ALPHA:
{
float inv_alpha[4];
VEC4_SUB(inv_alpha, one, dest[3]);
VEC4_MUL(source[0], quadColor[0], inv_alpha); /* R */
VEC4_MUL(source[1], quadColor[1], inv_alpha); /* G */
VEC4_MUL(source[2], quadColor[2], inv_alpha); /* B */
}
break;
case PIPE_BLENDFACTOR_INV_DST_COLOR:
{
float inv_comp[4];
VEC4_SUB(inv_comp, one, dest[0]); /* R */
VEC4_MUL(source[0], quadColor[0], inv_comp); /* R */
VEC4_SUB(inv_comp, one, dest[1]); /* G */
VEC4_MUL(source[1], quadColor[1], inv_comp); /* G */
VEC4_SUB(inv_comp, one, dest[2]); /* B */
VEC4_MUL(source[2], quadColor[2], inv_comp); /* B */
}
break;
case PIPE_BLENDFACTOR_INV_CONST_COLOR:
{
float inv_comp[4];
/* R */
VEC4_SCALAR(inv_comp, 1.0f - const_blend_color[0]);
VEC4_MUL(source[0], quadColor[0], inv_comp);
/* G */
VEC4_SCALAR(inv_comp, 1.0f - const_blend_color[1]);
VEC4_MUL(source[1], quadColor[1], inv_comp);
/* B */
VEC4_SCALAR(inv_comp, 1.0f - const_blend_color[2]);
VEC4_MUL(source[2], quadColor[2], inv_comp);
}
break;
case PIPE_BLENDFACTOR_INV_CONST_ALPHA:
{
float inv_alpha[4];
VEC4_SCALAR(inv_alpha, 1.0f - const_blend_color[3]);
VEC4_MUL(source[0], quadColor[0], inv_alpha); /* R */
VEC4_MUL(source[1], quadColor[1], inv_alpha); /* G */
VEC4_MUL(source[2], quadColor[2], inv_alpha); /* B */
}
break;
case PIPE_BLENDFACTOR_INV_SRC1_COLOR:
{
float inv_comp[4];
VEC4_SUB(inv_comp, one, quadColor2[0]); /* R */
VEC4_MUL(source[0], quadColor[0], inv_comp); /* R */
VEC4_SUB(inv_comp, one, quadColor2[1]); /* G */
VEC4_MUL(source[1], quadColor[1], inv_comp); /* G */
VEC4_SUB(inv_comp, one, quadColor2[2]); /* B */
VEC4_MUL(source[2], quadColor[2], inv_comp); /* B */
}
break;
case PIPE_BLENDFACTOR_INV_SRC1_ALPHA:
{
float inv_alpha[4];
VEC4_SUB(inv_alpha, one, quadColor2[3]);
VEC4_MUL(source[0], quadColor[0], inv_alpha); /* R */
VEC4_MUL(source[1], quadColor[1], inv_alpha); /* G */
VEC4_MUL(source[2], quadColor[2], inv_alpha); /* B */
}
break;
default:
assert(0 && "invalid rgb src factor");
}
/*
* Compute src/first term A
*/
switch (softpipe->blend->rt[blend_index].alpha_src_factor) {
case PIPE_BLENDFACTOR_ONE:
VEC4_COPY(source[3], quadColor[3]); /* A */
break;
case PIPE_BLENDFACTOR_SRC_COLOR:
/* fall-through */
case PIPE_BLENDFACTOR_SRC_ALPHA:
{
const float *alpha = quadColor[3];
VEC4_MUL(source[3], quadColor[3], alpha); /* A */
}
break;
case PIPE_BLENDFACTOR_DST_COLOR:
/* fall-through */
case PIPE_BLENDFACTOR_DST_ALPHA:
VEC4_MUL(source[3], quadColor[3], dest[3]); /* A */
break;
case PIPE_BLENDFACTOR_SRC_ALPHA_SATURATE:
/* multiply alpha by 1.0 */
VEC4_COPY(source[3], quadColor[3]); /* A */
break;
case PIPE_BLENDFACTOR_CONST_COLOR:
/* fall-through */
case PIPE_BLENDFACTOR_CONST_ALPHA:
{
float comp[4];
VEC4_SCALAR(comp, const_blend_color[3]); /* A */
VEC4_MUL(source[3], quadColor[3], comp); /* A */
}
break;
case PIPE_BLENDFACTOR_ZERO:
VEC4_COPY(source[3], zero); /* A */
break;
case PIPE_BLENDFACTOR_INV_SRC_COLOR:
/* fall-through */
case PIPE_BLENDFACTOR_INV_SRC_ALPHA:
{
float inv_alpha[4];
VEC4_SUB(inv_alpha, one, quadColor[3]);
VEC4_MUL(source[3], quadColor[3], inv_alpha); /* A */
}
break;
case PIPE_BLENDFACTOR_INV_DST_COLOR:
/* fall-through */
case PIPE_BLENDFACTOR_INV_DST_ALPHA:
{
float inv_alpha[4];
VEC4_SUB(inv_alpha, one, dest[3]);
VEC4_MUL(source[3], quadColor[3], inv_alpha); /* A */
}
break;
case PIPE_BLENDFACTOR_INV_CONST_COLOR:
/* fall-through */
case PIPE_BLENDFACTOR_INV_CONST_ALPHA:
{
float inv_comp[4];
/* A */
VEC4_SCALAR(inv_comp, 1.0f - const_blend_color[3]);
VEC4_MUL(source[3], quadColor[3], inv_comp);
}
break;
case PIPE_BLENDFACTOR_SRC1_COLOR:
/* fall-through */
case PIPE_BLENDFACTOR_SRC1_ALPHA:
{
const float *alpha = quadColor2[3];
VEC4_MUL(source[3], quadColor[3], alpha); /* A */
}
break;
case PIPE_BLENDFACTOR_INV_SRC1_COLOR:
/* fall-through */
case PIPE_BLENDFACTOR_INV_SRC1_ALPHA:
{
float inv_alpha[4];
VEC4_SUB(inv_alpha, one, quadColor2[3]);
VEC4_MUL(source[3], quadColor[3], inv_alpha); /* A */
}
break;
default:
assert(0 && "invalid alpha src factor");
}
/* Save the original dest for use in masking */
VEC4_COPY(blend_dest[0], dest[0]);
VEC4_COPY(blend_dest[1], dest[1]);
VEC4_COPY(blend_dest[2], dest[2]);
VEC4_COPY(blend_dest[3], dest[3]);
/*
* Compute blend_dest/second term RGB
*/
switch (softpipe->blend->rt[blend_index].rgb_dst_factor) {
case PIPE_BLENDFACTOR_ONE:
/* blend_dest = blend_dest * 1 NO-OP, leave blend_dest as-is */
break;
case PIPE_BLENDFACTOR_SRC_COLOR:
VEC4_MUL(blend_dest[0], blend_dest[0], quadColor[0]); /* R */
VEC4_MUL(blend_dest[1], blend_dest[1], quadColor[1]); /* G */
VEC4_MUL(blend_dest[2], blend_dest[2], quadColor[2]); /* B */
break;
case PIPE_BLENDFACTOR_SRC_ALPHA:
VEC4_MUL(blend_dest[0], blend_dest[0], quadColor[3]); /* R * A */
VEC4_MUL(blend_dest[1], blend_dest[1], quadColor[3]); /* G * A */
VEC4_MUL(blend_dest[2], blend_dest[2], quadColor[3]); /* B * A */
break;
case PIPE_BLENDFACTOR_DST_ALPHA:
VEC4_MUL(blend_dest[0], blend_dest[0], blend_dest[3]); /* R * A */
VEC4_MUL(blend_dest[1], blend_dest[1], blend_dest[3]); /* G * A */
VEC4_MUL(blend_dest[2], blend_dest[2], blend_dest[3]); /* B * A */
break;
case PIPE_BLENDFACTOR_DST_COLOR:
VEC4_MUL(blend_dest[0], blend_dest[0], blend_dest[0]); /* R */
VEC4_MUL(blend_dest[1], blend_dest[1], blend_dest[1]); /* G */
VEC4_MUL(blend_dest[2], blend_dest[2], blend_dest[2]); /* B */
break;
case PIPE_BLENDFACTOR_SRC_ALPHA_SATURATE:
{
const float *alpha = quadColor[3];
float diff[4], temp[4];
VEC4_SUB(diff, one, blend_dest[3]);
VEC4_MIN(temp, alpha, diff);
VEC4_MUL(blend_dest[0], blend_dest[0], temp); /* R */
VEC4_MUL(blend_dest[1], blend_dest[1], temp); /* G */
VEC4_MUL(blend_dest[2], blend_dest[2], temp); /* B */
}
break;
case PIPE_BLENDFACTOR_CONST_COLOR:
{
float comp[4];
VEC4_SCALAR(comp, const_blend_color[0]); /* R */
VEC4_MUL(blend_dest[0], blend_dest[0], comp); /* R */
VEC4_SCALAR(comp, const_blend_color[1]); /* G */
VEC4_MUL(blend_dest[1], blend_dest[1], comp); /* G */
VEC4_SCALAR(comp, const_blend_color[2]); /* B */
VEC4_MUL(blend_dest[2], blend_dest[2], comp); /* B */
}
break;
case PIPE_BLENDFACTOR_CONST_ALPHA:
{
float comp[4];
VEC4_SCALAR(comp, const_blend_color[3]); /* A */
VEC4_MUL(blend_dest[0], blend_dest[0], comp); /* R */
VEC4_MUL(blend_dest[1], blend_dest[1], comp); /* G */
VEC4_MUL(blend_dest[2], blend_dest[2], comp); /* B */
}
break;
case PIPE_BLENDFACTOR_ZERO:
VEC4_COPY(blend_dest[0], zero); /* R */
VEC4_COPY(blend_dest[1], zero); /* G */
VEC4_COPY(blend_dest[2], zero); /* B */
break;
case PIPE_BLENDFACTOR_SRC1_COLOR:
VEC4_MUL(blend_dest[0], blend_dest[0], quadColor2[0]); /* R */
VEC4_MUL(blend_dest[1], blend_dest[1], quadColor2[1]); /* G */
VEC4_MUL(blend_dest[2], blend_dest[2], quadColor2[2]); /* B */
break;
case PIPE_BLENDFACTOR_SRC1_ALPHA:
VEC4_MUL(blend_dest[0], blend_dest[0], quadColor2[3]); /* R * A */
VEC4_MUL(blend_dest[1], blend_dest[1], quadColor2[3]); /* G * A */
VEC4_MUL(blend_dest[2], blend_dest[2], quadColor2[3]); /* B * A */
break;
case PIPE_BLENDFACTOR_INV_SRC_COLOR:
{
float inv_comp[4];
VEC4_SUB(inv_comp, one, quadColor[0]); /* R */
VEC4_MUL(blend_dest[0], inv_comp, blend_dest[0]); /* R */
VEC4_SUB(inv_comp, one, quadColor[1]); /* G */
VEC4_MUL(blend_dest[1], inv_comp, blend_dest[1]); /* G */
VEC4_SUB(inv_comp, one, quadColor[2]); /* B */
VEC4_MUL(blend_dest[2], inv_comp, blend_dest[2]); /* B */
}
break;
case PIPE_BLENDFACTOR_INV_SRC_ALPHA:
{
float one_minus_alpha[TGSI_QUAD_SIZE];
VEC4_SUB(one_minus_alpha, one, quadColor[3]);
VEC4_MUL(blend_dest[0], blend_dest[0], one_minus_alpha); /* R */
VEC4_MUL(blend_dest[1], blend_dest[1], one_minus_alpha); /* G */
VEC4_MUL(blend_dest[2], blend_dest[2], one_minus_alpha); /* B */
}
break;
case PIPE_BLENDFACTOR_INV_DST_ALPHA:
{
float inv_comp[4];
VEC4_SUB(inv_comp, one, blend_dest[3]); /* A */
VEC4_MUL(blend_dest[0], inv_comp, blend_dest[0]); /* R */
VEC4_MUL(blend_dest[1], inv_comp, blend_dest[1]); /* G */
VEC4_MUL(blend_dest[2], inv_comp, blend_dest[2]); /* B */
}
break;
case PIPE_BLENDFACTOR_INV_DST_COLOR:
{
float inv_comp[4];
VEC4_SUB(inv_comp, one, blend_dest[0]); /* R */
VEC4_MUL(blend_dest[0], blend_dest[0], inv_comp); /* R */
VEC4_SUB(inv_comp, one, blend_dest[1]); /* G */
VEC4_MUL(blend_dest[1], blend_dest[1], inv_comp); /* G */
VEC4_SUB(inv_comp, one, blend_dest[2]); /* B */
VEC4_MUL(blend_dest[2], blend_dest[2], inv_comp); /* B */
}
break;
case PIPE_BLENDFACTOR_INV_CONST_COLOR:
{
float inv_comp[4];
/* R */
VEC4_SCALAR(inv_comp, 1.0f - const_blend_color[0]);
VEC4_MUL(blend_dest[0], blend_dest[0], inv_comp);
/* G */
VEC4_SCALAR(inv_comp, 1.0f - const_blend_color[1]);
VEC4_MUL(blend_dest[1], blend_dest[1], inv_comp);
/* B */
VEC4_SCALAR(inv_comp, 1.0f - const_blend_color[2]);
VEC4_MUL(blend_dest[2], blend_dest[2], inv_comp);
}
break;
case PIPE_BLENDFACTOR_INV_CONST_ALPHA:
{
float inv_comp[4];
VEC4_SCALAR(inv_comp, 1.0f - const_blend_color[3]);
VEC4_MUL(blend_dest[0], blend_dest[0], inv_comp);
VEC4_MUL(blend_dest[1], blend_dest[1], inv_comp);
VEC4_MUL(blend_dest[2], blend_dest[2], inv_comp);
}
break;
case PIPE_BLENDFACTOR_INV_SRC1_COLOR:
{
float inv_comp[4];
VEC4_SUB(inv_comp, one, quadColor2[0]); /* R */
VEC4_MUL(blend_dest[0], inv_comp, blend_dest[0]); /* R */
VEC4_SUB(inv_comp, one, quadColor2[1]); /* G */
VEC4_MUL(blend_dest[1], inv_comp, blend_dest[1]); /* G */
VEC4_SUB(inv_comp, one, quadColor2[2]); /* B */
VEC4_MUL(blend_dest[2], inv_comp, blend_dest[2]); /* B */
}
break;
case PIPE_BLENDFACTOR_INV_SRC1_ALPHA:
{
float one_minus_alpha[TGSI_QUAD_SIZE];
VEC4_SUB(one_minus_alpha, one, quadColor2[3]);
VEC4_MUL(blend_dest[0], blend_dest[0], one_minus_alpha); /* R */
VEC4_MUL(blend_dest[1], blend_dest[1], one_minus_alpha); /* G */
VEC4_MUL(blend_dest[2], blend_dest[2], one_minus_alpha); /* B */
}
break;
default:
assert(0 && "invalid rgb dst factor");
}
/*
* Compute blend_dest/second term A
*/
switch (softpipe->blend->rt[blend_index].alpha_dst_factor) {
case PIPE_BLENDFACTOR_ONE:
/* blend_dest = blend_dest * 1 NO-OP, leave blend_dest as-is */
break;
case PIPE_BLENDFACTOR_SRC_COLOR:
/* fall-through */
case PIPE_BLENDFACTOR_SRC_ALPHA:
VEC4_MUL(blend_dest[3], blend_dest[3], quadColor[3]); /* A * A */
break;
case PIPE_BLENDFACTOR_DST_COLOR:
/* fall-through */
case PIPE_BLENDFACTOR_DST_ALPHA:
VEC4_MUL(blend_dest[3], blend_dest[3], blend_dest[3]); /* A */
break;
case PIPE_BLENDFACTOR_SRC_ALPHA_SATURATE:
/* blend_dest = blend_dest * 1 NO-OP, leave blend_dest as-is */
break;
case PIPE_BLENDFACTOR_CONST_COLOR:
/* fall-through */
case PIPE_BLENDFACTOR_CONST_ALPHA:
{
float comp[4];
VEC4_SCALAR(comp, const_blend_color[3]); /* A */
VEC4_MUL(blend_dest[3], blend_dest[3], comp); /* A */
}
break;
case PIPE_BLENDFACTOR_ZERO:
VEC4_COPY(blend_dest[3], zero); /* A */
break;
case PIPE_BLENDFACTOR_INV_SRC_COLOR:
/* fall-through */
case PIPE_BLENDFACTOR_INV_SRC_ALPHA:
{
float one_minus_alpha[TGSI_QUAD_SIZE];
VEC4_SUB(one_minus_alpha, one, quadColor[3]);
VEC4_MUL(blend_dest[3], blend_dest[3], one_minus_alpha); /* A */
}
break;
case PIPE_BLENDFACTOR_INV_DST_COLOR:
/* fall-through */
case PIPE_BLENDFACTOR_INV_DST_ALPHA:
{
float inv_comp[4];
VEC4_SUB(inv_comp, one, blend_dest[3]); /* A */
VEC4_MUL(blend_dest[3], inv_comp, blend_dest[3]); /* A */
}
break;
case PIPE_BLENDFACTOR_INV_CONST_COLOR:
/* fall-through */
case PIPE_BLENDFACTOR_INV_CONST_ALPHA:
{
float inv_comp[4];
VEC4_SCALAR(inv_comp, 1.0f - const_blend_color[3]);
VEC4_MUL(blend_dest[3], blend_dest[3], inv_comp);
}
break;
case PIPE_BLENDFACTOR_SRC1_COLOR:
/* fall-through */
case PIPE_BLENDFACTOR_SRC1_ALPHA:
VEC4_MUL(blend_dest[3], blend_dest[3], quadColor2[3]); /* A * A */
break;
case PIPE_BLENDFACTOR_INV_SRC1_COLOR:
/* fall-through */
case PIPE_BLENDFACTOR_INV_SRC1_ALPHA:
{
float one_minus_alpha[TGSI_QUAD_SIZE];
VEC4_SUB(one_minus_alpha, one, quadColor2[3]);
VEC4_MUL(blend_dest[3], blend_dest[3], one_minus_alpha); /* A */
}
break;
default:
assert(0 && "invalid alpha dst factor");
}
/*
* Combine RGB terms
*/
switch (softpipe->blend->rt[blend_index].rgb_func) {
case PIPE_BLEND_ADD:
VEC4_ADD(quadColor[0], source[0], blend_dest[0]); /* R */
VEC4_ADD(quadColor[1], source[1], blend_dest[1]); /* G */
VEC4_ADD(quadColor[2], source[2], blend_dest[2]); /* B */
break;
case PIPE_BLEND_SUBTRACT:
VEC4_SUB(quadColor[0], source[0], blend_dest[0]); /* R */
VEC4_SUB(quadColor[1], source[1], blend_dest[1]); /* G */
VEC4_SUB(quadColor[2], source[2], blend_dest[2]); /* B */
break;
case PIPE_BLEND_REVERSE_SUBTRACT:
VEC4_SUB(quadColor[0], blend_dest[0], source[0]); /* R */
VEC4_SUB(quadColor[1], blend_dest[1], source[1]); /* G */
VEC4_SUB(quadColor[2], blend_dest[2], source[2]); /* B */
break;
case PIPE_BLEND_MIN:
VEC4_MIN(quadColor[0], source[0], blend_dest[0]); /* R */
VEC4_MIN(quadColor[1], source[1], blend_dest[1]); /* G */
VEC4_MIN(quadColor[2], source[2], blend_dest[2]); /* B */
break;
case PIPE_BLEND_MAX:
VEC4_MAX(quadColor[0], source[0], blend_dest[0]); /* R */
VEC4_MAX(quadColor[1], source[1], blend_dest[1]); /* G */
VEC4_MAX(quadColor[2], source[2], blend_dest[2]); /* B */
break;
default:
assert(0 && "invalid rgb blend func");
}
/*
* Combine A terms
*/
switch (softpipe->blend->rt[blend_index].alpha_func) {
case PIPE_BLEND_ADD:
VEC4_ADD(quadColor[3], source[3], blend_dest[3]); /* A */
break;
case PIPE_BLEND_SUBTRACT:
VEC4_SUB(quadColor[3], source[3], blend_dest[3]); /* A */
break;
case PIPE_BLEND_REVERSE_SUBTRACT:
VEC4_SUB(quadColor[3], blend_dest[3], source[3]); /* A */
break;
case PIPE_BLEND_MIN:
VEC4_MIN(quadColor[3], source[3], blend_dest[3]); /* A */
break;
case PIPE_BLEND_MAX:
VEC4_MAX(quadColor[3], source[3], blend_dest[3]); /* A */
break;
default:
assert(0 && "invalid alpha blend func");
}
}
static void
colormask_quad(unsigned colormask,
float (*quadColor)[4],
float (*dest)[4])
{
/* R */
if (!(colormask & PIPE_MASK_R))
COPY_4V(quadColor[0], dest[0]);
/* G */
if (!(colormask & PIPE_MASK_G))
COPY_4V(quadColor[1], dest[1]);
/* B */
if (!(colormask & PIPE_MASK_B))
COPY_4V(quadColor[2], dest[2]);
/* A */
if (!(colormask & PIPE_MASK_A))
COPY_4V(quadColor[3], dest[3]);
}
/**
* Clamp all colors in a quad to [0, 1]
*/
static void
clamp_colors(float (*quadColor)[4])
{
unsigned i, j;
for (j = 0; j < TGSI_QUAD_SIZE; j++) {
for (i = 0; i < 4; i++) {
quadColor[i][j] = CLAMP(quadColor[i][j], 0.0F, 1.0F);
}
}
}
/**
* If we're drawing to a luminance, luminance/alpha or intensity surface
* we have to adjust (rebase) the fragment/quad colors before writing them
* to the tile cache. The tile cache always stores RGBA colors but if
* we're caching a L/A surface (for example) we need to be sure that R=G=B
* so that subsequent reads from the surface cache appear to return L/A
* values.
* The piglit fbo-blending-formats test will exercise this.
*/
static void
rebase_colors(enum format base_format, float (*quadColor)[4])
{
unsigned i;
switch (base_format) {
case RGB:
for (i = 0; i < 4; i++) {
/* A = 1 */
quadColor[3][i] = 1.0F;
}
break;
case LUMINANCE:
for (i = 0; i < 4; i++) {
/* B = G = R */
quadColor[2][i] = quadColor[1][i] = quadColor[0][i];
/* A = 1 */
quadColor[3][i] = 1.0F;
}
break;
case LUMINANCE_ALPHA:
for (i = 0; i < 4; i++) {
/* B = G = R */
quadColor[2][i] = quadColor[1][i] = quadColor[0][i];
}
break;
case INTENSITY:
for (i = 0; i < 4; i++) {
/* A = B = G = R */
quadColor[3][i] = quadColor[2][i] = quadColor[1][i] = quadColor[0][i];
}
break;
default:
; /* nothing */
}
}
static void
blend_fallback(struct quad_stage *qs,
struct quad_header *quads[],
unsigned nr)
{
const struct blend_quad_stage *bqs = blend_quad_stage(qs);
struct softpipe_context *softpipe = qs->softpipe;
const struct pipe_blend_state *blend = softpipe->blend;
unsigned cbuf;
boolean write_all;
write_all = softpipe->fs_variant->info.color0_writes_all_cbufs;
for (cbuf = 0; cbuf < softpipe->framebuffer.nr_cbufs; cbuf++)
{
/* which blend/mask state index to use: */
const uint blend_buf = blend->independent_blend_enable ? cbuf : 0;
float dest[4][TGSI_QUAD_SIZE];
struct softpipe_cached_tile *tile
= sp_get_cached_tile(softpipe->cbuf_cache[cbuf],
quads[0]->input.x0,
quads[0]->input.y0);
const boolean clamp = bqs->clamp[cbuf];
const float *blend_color;
const boolean dual_source_blend = util_blend_state_is_dual(blend, cbuf);
uint q, i, j;
if (clamp)
blend_color = softpipe->blend_color_clamped.color;
else
blend_color = softpipe->blend_color.color;
for (q = 0; q < nr; q++) {
struct quad_header *quad = quads[q];
float (*quadColor)[4];
float (*quadColor2)[4] = NULL;
float temp_quad_color[TGSI_QUAD_SIZE][4];
const int itx = (quad->input.x0 & (TILE_SIZE-1));
const int ity = (quad->input.y0 & (TILE_SIZE-1));
if (write_all) {
for (j = 0; j < TGSI_QUAD_SIZE; j++) {
for (i = 0; i < 4; i++) {
temp_quad_color[i][j] = quad->output.color[0][i][j];
}
}
quadColor = temp_quad_color;
} else {
quadColor = quad->output.color[cbuf];
if (dual_source_blend)
quadColor2 = quad->output.color[cbuf + 1];
}
/* If fixed-point dest color buffer, need to clamp the incoming
* fragment colors now.
*/
if (clamp || softpipe->rasterizer->clamp_fragment_color) {
clamp_colors(quadColor);
}
/* get/swizzle dest colors
*/
for (j = 0; j < TGSI_QUAD_SIZE; j++) {
int x = itx + (j & 1);
int y = ity + (j >> 1);
for (i = 0; i < 4; i++) {
dest[i][j] = tile->data.color[y][x][i];
}
}
if (blend->logicop_enable) {
if (bqs->format_type[cbuf] != UTIL_FORMAT_TYPE_FLOAT) {
logicop_quad( qs, quadColor, dest );
}
}
else if (blend->rt[blend_buf].blend_enable) {
blend_quad(qs, quadColor, quadColor2, dest, blend_color, blend_buf);
/* If fixed-point dest color buffer, need to clamp the outgoing
* fragment colors now.
*/
if (clamp) {
clamp_colors(quadColor);
}
}
rebase_colors(bqs->base_format[cbuf], quadColor);
if (blend->rt[blend_buf].colormask != 0xf)
colormask_quad( blend->rt[cbuf].colormask, quadColor, dest);
/* Output color values
*/
for (j = 0; j < TGSI_QUAD_SIZE; j++) {
if (quad->inout.mask & (1 << j)) {
int x = itx + (j & 1);
int y = ity + (j >> 1);
for (i = 0; i < 4; i++) { /* loop over color chans */
tile->data.color[y][x][i] = quadColor[i][j];
}
}
}
}
}
}
static void
blend_single_add_src_alpha_inv_src_alpha(struct quad_stage *qs,
struct quad_header *quads[],
unsigned nr)
{
const struct blend_quad_stage *bqs = blend_quad_stage(qs);
static const float one[4] = { 1, 1, 1, 1 };
float one_minus_alpha[TGSI_QUAD_SIZE];
float dest[4][TGSI_QUAD_SIZE];
float source[4][TGSI_QUAD_SIZE];
uint i, j, q;
struct softpipe_cached_tile *tile
= sp_get_cached_tile(qs->softpipe->cbuf_cache[0],
quads[0]->input.x0,
quads[0]->input.y0);
for (q = 0; q < nr; q++) {
struct quad_header *quad = quads[q];
float (*quadColor)[4] = quad->output.color[0];
const float *alpha = quadColor[3];
const int itx = (quad->input.x0 & (TILE_SIZE-1));
const int ity = (quad->input.y0 & (TILE_SIZE-1));
/* get/swizzle dest colors */
for (j = 0; j < TGSI_QUAD_SIZE; j++) {
int x = itx + (j & 1);
int y = ity + (j >> 1);
for (i = 0; i < 4; i++) {
dest[i][j] = tile->data.color[y][x][i];
}
}
/* If fixed-point dest color buffer, need to clamp the incoming
* fragment colors now.
*/
if (bqs->clamp[0] || qs->softpipe->rasterizer->clamp_fragment_color) {
clamp_colors(quadColor);
}
VEC4_MUL(source[0], quadColor[0], alpha); /* R */
VEC4_MUL(source[1], quadColor[1], alpha); /* G */
VEC4_MUL(source[2], quadColor[2], alpha); /* B */
VEC4_MUL(source[3], quadColor[3], alpha); /* A */
VEC4_SUB(one_minus_alpha, one, alpha);
VEC4_MUL(dest[0], dest[0], one_minus_alpha); /* R */
VEC4_MUL(dest[1], dest[1], one_minus_alpha); /* G */
VEC4_MUL(dest[2], dest[2], one_minus_alpha); /* B */
VEC4_MUL(dest[3], dest[3], one_minus_alpha); /* A */
VEC4_ADD(quadColor[0], source[0], dest[0]); /* R */
VEC4_ADD(quadColor[1], source[1], dest[1]); /* G */
VEC4_ADD(quadColor[2], source[2], dest[2]); /* B */
VEC4_ADD(quadColor[3], source[3], dest[3]); /* A */
/* If fixed-point dest color buffer, need to clamp the outgoing
* fragment colors now.
*/
if (bqs->clamp[0]) {
clamp_colors(quadColor);
}
rebase_colors(bqs->base_format[0], quadColor);
for (j = 0; j < TGSI_QUAD_SIZE; j++) {
if (quad->inout.mask & (1 << j)) {
int x = itx + (j & 1);
int y = ity + (j >> 1);
for (i = 0; i < 4; i++) { /* loop over color chans */
tile->data.color[y][x][i] = quadColor[i][j];
}
}
}
}
}
static void
blend_single_add_one_one(struct quad_stage *qs,
struct quad_header *quads[],
unsigned nr)
{
const struct blend_quad_stage *bqs = blend_quad_stage(qs);
float dest[4][TGSI_QUAD_SIZE];
uint i, j, q;
struct softpipe_cached_tile *tile
= sp_get_cached_tile(qs->softpipe->cbuf_cache[0],
quads[0]->input.x0,
quads[0]->input.y0);
for (q = 0; q < nr; q++) {
struct quad_header *quad = quads[q];
float (*quadColor)[4] = quad->output.color[0];
const int itx = (quad->input.x0 & (TILE_SIZE-1));
const int ity = (quad->input.y0 & (TILE_SIZE-1));
/* get/swizzle dest colors */
for (j = 0; j < TGSI_QUAD_SIZE; j++) {
int x = itx + (j & 1);
int y = ity + (j >> 1);
for (i = 0; i < 4; i++) {
dest[i][j] = tile->data.color[y][x][i];
}
}
/* If fixed-point dest color buffer, need to clamp the incoming
* fragment colors now.
*/
if (bqs->clamp[0] || qs->softpipe->rasterizer->clamp_fragment_color) {
clamp_colors(quadColor);
}
VEC4_ADD(quadColor[0], quadColor[0], dest[0]); /* R */
VEC4_ADD(quadColor[1], quadColor[1], dest[1]); /* G */
VEC4_ADD(quadColor[2], quadColor[2], dest[2]); /* B */
VEC4_ADD(quadColor[3], quadColor[3], dest[3]); /* A */
/* If fixed-point dest color buffer, need to clamp the outgoing
* fragment colors now.
*/
if (bqs->clamp[0]) {
clamp_colors(quadColor);
}
rebase_colors(bqs->base_format[0], quadColor);
for (j = 0; j < TGSI_QUAD_SIZE; j++) {
if (quad->inout.mask & (1 << j)) {
int x = itx + (j & 1);
int y = ity + (j >> 1);
for (i = 0; i < 4; i++) { /* loop over color chans */
tile->data.color[y][x][i] = quadColor[i][j];
}
}
}
}
}
/**
* Just copy the quad color to the framebuffer tile (respecting the writemask),
* for one color buffer.
* Clamping will be done, if needed (depending on the color buffer's
* datatype) when we write/pack the colors later.
*/
static void
single_output_color(struct quad_stage *qs,
struct quad_header *quads[],
unsigned nr)
{
const struct blend_quad_stage *bqs = blend_quad_stage(qs);
uint i, j, q;
struct softpipe_cached_tile *tile
= sp_get_cached_tile(qs->softpipe->cbuf_cache[0],
quads[0]->input.x0,
quads[0]->input.y0);
for (q = 0; q < nr; q++) {
struct quad_header *quad = quads[q];
float (*quadColor)[4] = quad->output.color[0];
const int itx = (quad->input.x0 & (TILE_SIZE-1));
const int ity = (quad->input.y0 & (TILE_SIZE-1));
if (qs->softpipe->rasterizer->clamp_fragment_color)
clamp_colors(quadColor);
rebase_colors(bqs->base_format[0], quadColor);
for (j = 0; j < TGSI_QUAD_SIZE; j++) {
if (quad->inout.mask & (1 << j)) {
int x = itx + (j & 1);
int y = ity + (j >> 1);
for (i = 0; i < 4; i++) { /* loop over color chans */
tile->data.color[y][x][i] = quadColor[i][j];
}
}
}
}
}
static void
blend_noop(struct quad_stage *qs,
struct quad_header *quads[],
unsigned nr)
{
}
static void
choose_blend_quad(struct quad_stage *qs,
struct quad_header *quads[],
unsigned nr)
{
struct blend_quad_stage *bqs = blend_quad_stage(qs);
struct softpipe_context *softpipe = qs->softpipe;
const struct pipe_blend_state *blend = softpipe->blend;
unsigned i;
qs->run = blend_fallback;
if (softpipe->framebuffer.nr_cbufs == 0) {
qs->run = blend_noop;
}
else if (!softpipe->blend->logicop_enable &&
softpipe->blend->rt[0].colormask == 0xf &&
softpipe->framebuffer.nr_cbufs == 1)
{
if (!blend->rt[0].blend_enable) {
qs->run = single_output_color;
}
else if (blend->rt[0].rgb_src_factor == blend->rt[0].alpha_src_factor &&
blend->rt[0].rgb_dst_factor == blend->rt[0].alpha_dst_factor &&
blend->rt[0].rgb_func == blend->rt[0].alpha_func)
{
if (blend->rt[0].alpha_func == PIPE_BLEND_ADD) {
if (blend->rt[0].rgb_src_factor == PIPE_BLENDFACTOR_ONE &&
blend->rt[0].rgb_dst_factor == PIPE_BLENDFACTOR_ONE) {
qs->run = blend_single_add_one_one;
}
else if (blend->rt[0].rgb_src_factor == PIPE_BLENDFACTOR_SRC_ALPHA &&
blend->rt[0].rgb_dst_factor == PIPE_BLENDFACTOR_INV_SRC_ALPHA)
qs->run = blend_single_add_src_alpha_inv_src_alpha;
}
}
}
/* For each color buffer, determine if the buffer has destination alpha and
* whether color clamping is needed.
*/
for (i = 0; i < softpipe->framebuffer.nr_cbufs; i++) {
const enum pipe_format format = softpipe->framebuffer.cbufs[i]->format;
const struct util_format_description *desc =
util_format_description(format);
/* assuming all or no color channels are normalized: */
bqs->clamp[i] = desc->channel[0].normalized;
bqs->format_type[i] = desc->channel[0].type;
if (util_format_is_intensity(format))
bqs->base_format[i] = INTENSITY;
else if (util_format_is_luminance(format))
bqs->base_format[i] = LUMINANCE;
else if (util_format_is_luminance_alpha(format))
bqs->base_format[i] = LUMINANCE_ALPHA;
else if (!util_format_has_alpha(format))
bqs->base_format[i] = RGB;
else
bqs->base_format[i] = RGBA;
}
qs->run(qs, quads, nr);
}
static void blend_begin(struct quad_stage *qs)
{
qs->run = choose_blend_quad;
}
static void blend_destroy(struct quad_stage *qs)
{
FREE( qs );
}
struct quad_stage *sp_quad_blend_stage( struct softpipe_context *softpipe )
{
struct blend_quad_stage *stage = CALLOC_STRUCT(blend_quad_stage);
if (!stage)
return NULL;
stage->base.softpipe = softpipe;
stage->base.begin = blend_begin;
stage->base.run = choose_blend_quad;
stage->base.destroy = blend_destroy;
return &stage->base;
}