kolibrios/drivers/sensors/k10temp/k10temp.c

588 lines
15 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0-or-later
/*
* k10temp.c - AMD Family 10h/11h/12h/14h/15h/16h/17h
* processor hardware monitoring
*
* Copyright (c) 2009 Clemens Ladisch <clemens@ladisch.de>
* Copyright (c) 2020 Guenter Roeck <linux@roeck-us.net>
*
* Implementation notes:
* - CCD register address information as well as the calculation to
* convert raw register values is from https://github.com/ocerman/zenpower.
* The information is not confirmed from chip datasheets, but experiments
* suggest that it provides reasonable temperature values.
*/
/* Ported for KolibriOS by turbocat (Maxim Logaeav). 2021 */
/* Thanks: dunkaist, punk_joker, doczom. */
#include <ddk.h>
#include <syscall.h>
#include <linux/bitops.h>
#include <linux/err.h>
#include <linux/hwmon.h>
#include <linux/init.h>
#include <linux/pci.h>
#include <linux/pci_ids.h>
#include <asm/amd_nb.h>
#include <asm/processor.h>
struct cpuinfo_x86 boot_cpu_data;
extern void init_amd_nbs(void);
extern void free_pci_devices(void);
#define MODNAME KBUILD_MODNAME ": "
#define KERNEL_SPACE 0x80000000
/* CPUID function 0x80000001, ebx */
#define CPUID_PKGTYPE_MASK GENMASK(31, 28)
#define CPUID_PKGTYPE_F 0x00000000
#define CPUID_PKGTYPE_AM2R2_AM3 0x10000000
/* DRAM controller (PCI function 2) */
#define REG_DCT0_CONFIG_HIGH 0x094
#define DDR3_MODE BIT(8)
/* miscellaneous (PCI function 3) */
#define REG_HARDWARE_THERMAL_CONTROL 0x64
#define HTC_ENABLE BIT(0)
#define REG_REPORTED_TEMPERATURE 0xa4
#define REG_NORTHBRIDGE_CAPABILITIES 0xe8
#define NB_CAP_HTC BIT(10)
/*
* For F15h M60h and M70h, REG_HARDWARE_THERMAL_CONTROL
* and REG_REPORTED_TEMPERATURE have been moved to
* D0F0xBC_xD820_0C64 [Hardware Temperature Control]
* D0F0xBC_xD820_0CA4 [Reported Temperature Control]
*/
#define F15H_M60H_HARDWARE_TEMP_CTRL_OFFSET 0xd8200c64
#define F15H_M60H_REPORTED_TEMP_CTRL_OFFSET 0xd8200ca4
/* Common for Zen CPU families (Family 17h and 18h) */
#define ZEN_REPORTED_TEMP_CTRL_OFFSET 0x00059800
#define ZEN_CCD_TEMP(x) (0x00059954 + ((x) * 4))
#define ZEN_CCD_TEMP_VALID BIT(11)
#define ZEN_CCD_TEMP_MASK GENMASK(10, 0)
#define ZEN_CUR_TEMP_SHIFT 21
#define ZEN_CUR_TEMP_RANGE_SEL_MASK BIT(19)
#define ZEN_SVI_BASE 0x0005A000
/* F17h thermal registers through SMN */
#define F17H_M01H_SVI_TEL_PLANE0 (ZEN_SVI_BASE + 0xc)
#define F17H_M01H_SVI_TEL_PLANE1 (ZEN_SVI_BASE + 0x10)
#define F17H_M31H_SVI_TEL_PLANE0 (ZEN_SVI_BASE + 0x14)
#define F17H_M31H_SVI_TEL_PLANE1 (ZEN_SVI_BASE + 0x10)
#define F17H_M01H_CFACTOR_ICORE 1000000 /* 1A / LSB */
#define F17H_M01H_CFACTOR_ISOC 250000 /* 0.25A / LSB */
#define F17H_M31H_CFACTOR_ICORE 1000000 /* 1A / LSB */
#define F17H_M31H_CFACTOR_ISOC 310000 /* 0.31A / LSB */
/* F19h thermal registers through SMN */
#define F19H_M01_SVI_TEL_PLANE0 (ZEN_SVI_BASE + 0x14)
#define F19H_M01_SVI_TEL_PLANE1 (ZEN_SVI_BASE + 0x10)
#define F19H_M01H_CFACTOR_ICORE 1000000 /* 1A / LSB */
#define F19H_M01H_CFACTOR_ISOC 310000 /* 0.31A / LSB */
/* Provide lock for writing to NB_SMU_IND_ADDR */
DEFINE_MUTEX(nb_smu_ind_mutex);
DEFINE_MUTEX(smn_mutex);
struct k10temp_data {
struct pci_dev *pdev;
void (*read_htcreg)(struct pci_dev *pdev, u32 *regval);
void (*read_tempreg)(struct pci_dev *pdev, u32 *regval);
int temp_offset;
u32 temp_adjust_mask;
u32 show_temp;
bool is_zen;
};
#define TCTL_BIT 0
#define TDIE_BIT 1
#define TCCD_BIT(x) ((x) + 2)
#define HAVE_TEMP(d, channel) ((d)->show_temp & BIT(channel))
#define HAVE_TDIE(d) HAVE_TEMP(d, TDIE_BIT)
struct tctl_offset {
u8 model;
char const *id;
int offset;
};
const struct tctl_offset tctl_offset_table[] = {
{ 0x17, "AMD Ryzen 5 1600X", 20000 },
{ 0x17, "AMD Ryzen 7 1700X", 20000 },
{ 0x17, "AMD Ryzen 7 1800X", 20000 },
{ 0x17, "AMD Ryzen 7 2700X", 10000 },
{ 0x17, "AMD Ryzen Threadripper 19", 27000 }, /* 19{00,20,50}X */
{ 0x17, "AMD Ryzen Threadripper 29", 27000 }, /* 29{20,50,70,90}[W]X */
};
void read_htcreg_pci(struct pci_dev *pdev, u32 *regval)
{
pci_read_config_dword(pdev, REG_HARDWARE_THERMAL_CONTROL, regval);
}
void read_tempreg_pci(struct pci_dev *pdev, u32 *regval)
{
pci_read_config_dword(pdev, REG_REPORTED_TEMPERATURE, regval);
}
void amd_nb_index_read(struct pci_dev *pdev, unsigned int devfn,
unsigned int base, int offset, u32 *val)
{
mutex_lock(&nb_smu_ind_mutex);
pci_bus_write_config_dword(pdev->bus, devfn,
base, offset);
pci_bus_read_config_dword(pdev->bus, devfn,
base + 4, val);
mutex_unlock(&nb_smu_ind_mutex);
}
void read_htcreg_nb_f15(struct pci_dev *pdev, u32 *regval)
{
amd_nb_index_read(pdev, PCI_DEVFN(0, 0), 0xb8,
F15H_M60H_HARDWARE_TEMP_CTRL_OFFSET, regval);
}
void read_tempreg_nb_f15(struct pci_dev *pdev, u32 *regval)
{
amd_nb_index_read(pdev, PCI_DEVFN(0, 0), 0xb8,
F15H_M60H_REPORTED_TEMP_CTRL_OFFSET, regval);
}
void read_tempreg_nb_zen(struct pci_dev *pdev, u32 *regval)
{
amd_smn_read(amd_pci_dev_to_node_id(pdev),
ZEN_REPORTED_TEMP_CTRL_OFFSET, regval);
}
long get_raw_temp(struct k10temp_data *data)
{
u32 regval;
long temp;
data->read_tempreg(data->pdev, &regval);
temp = (regval >> ZEN_CUR_TEMP_SHIFT) * 125;
if (regval & data->temp_adjust_mask)
temp -= 49000;
return temp;
}
#if 0
const char *k10temp_temp_label[] = {
"Tctl",
"Tdie",
"Tccd1",
"Tccd2",
"Tccd3",
"Tccd4",
"Tccd5",
"Tccd6",
"Tccd7",
"Tccd8",
};
int k10temp_read_labels(struct device *dev,
enum hwmon_sensor_types type,
u32 attr, int channel, const char **str)
{
switch (type) {
case hwmon_temp:
*str = k10temp_temp_label[channel];
break;
default:
return -EOPNOTSUPP;
}
return 0;
}
#endif
int k10temp_read_temp(struct device *dev, u32 attr, int channel,
long *val)
{
struct k10temp_data *data = dev_get_drvdata(dev);
u32 regval;
switch (attr) {
case hwmon_temp_input:
switch (channel) {
case 0: /* Tctl */
*val = get_raw_temp(data);
if (*val < 0)
*val = 0;
break;
case 1: /* Tdie */
*val = get_raw_temp(data) - data->temp_offset;
if (*val < 0)
*val = 0;
break;
case 2 ... 9: /* Tccd{1-8} */
amd_smn_read(amd_pci_dev_to_node_id(data->pdev),
ZEN_CCD_TEMP(channel - 2), &regval);
*val = (regval & ZEN_CCD_TEMP_MASK) * 125 - 49000;
break;
default:
return -EOPNOTSUPP;
}
break;
case hwmon_temp_max:
*val = 70 * 1000;
break;
case hwmon_temp_crit:
data->read_htcreg(data->pdev, &regval);
*val = ((regval >> 16) & 0x7f) * 500 + 52000;
break;
case hwmon_temp_crit_hyst:
data->read_htcreg(data->pdev, &regval);
*val = (((regval >> 16) & 0x7f)
- ((regval >> 24) & 0xf)) * 500 + 52000;
break;
default:
return -EOPNOTSUPP;
}
return 0;
}
int k10temp_read(struct device *dev, enum hwmon_sensor_types type,
u32 attr, int channel, long *val)
{
switch (type) {
case hwmon_temp:
return k10temp_read_temp(dev, attr, channel, val);
default:
return -EOPNOTSUPP;
}
}
umode_t k10temp_is_visible(const void *_data,
enum hwmon_sensor_types type,
u32 attr, int channel)
{
const struct k10temp_data *data = _data;
struct pci_dev *pdev = data->pdev;
u32 reg;
switch (type) {
case hwmon_temp:
switch (attr) {
case hwmon_temp_input:
if (!HAVE_TEMP(data, channel)){
return 0;
}
break;
case hwmon_temp_max:
if (channel || data->is_zen)
return 0;
break;
case hwmon_temp_crit:
case hwmon_temp_crit_hyst:
if (channel || !data->read_htcreg)
return 0;
pci_read_config_dword(pdev,
REG_NORTHBRIDGE_CAPABILITIES,
&reg);
if (!(reg & NB_CAP_HTC))
return 0;
data->read_htcreg(data->pdev, &reg);
if (!(reg & HTC_ENABLE))
return 0;
break;
// case hwmon_temp_label:
// /* Show temperature labels only on Zen CPUs */
// if (!data->is_zen || !HAVE_TEMP(data, channel))
// return 0;
// break;
default:
return 0;
}
break;
default:
return 0;
}
return 0444;
}
bool has_erratum_319(struct pci_dev *pdev)
{
u32 pkg_type, reg_dram_cfg;
if (boot_cpu_data.x86 != 0x10)
return false;
/*
* Erratum 319: The thermal sensor of Socket F/AM2+ processors
* may be unreliable.
*/
pkg_type = cpuid_ebx(0x80000001) & CPUID_PKGTYPE_MASK;
if (pkg_type == CPUID_PKGTYPE_F)
return true;
if (pkg_type != CPUID_PKGTYPE_AM2R2_AM3)
return false;
/* DDR3 memory implies socket AM3, which is good */
pci_bus_read_config_dword(pdev->bus,
PCI_DEVFN(PCI_SLOT(pdev->devfn), 2),
REG_DCT0_CONFIG_HIGH, &reg_dram_cfg);
if (reg_dram_cfg & DDR3_MODE)
return false;
/*
* Unfortunately it is possible to run a socket AM3 CPU with DDR2
* memory. We blacklist all the cores which do exist in socket AM2+
* format. It still isn't perfect, as RB-C2 cores exist in both AM2+
* and AM3 formats, but that's the best we can do.
*/
return boot_cpu_data.x86_model < 4;
}
const struct hwmon_channel_info *k10temp_info[] = {
HWMON_CHANNEL_INFO(temp,
HWMON_T_INPUT | HWMON_T_MAX |
HWMON_T_CRIT | HWMON_T_CRIT_HYST |
HWMON_T_LABEL,
HWMON_T_INPUT | HWMON_T_LABEL,
HWMON_T_INPUT | HWMON_T_LABEL,
HWMON_T_INPUT | HWMON_T_LABEL,
HWMON_T_INPUT | HWMON_T_LABEL,
HWMON_T_INPUT | HWMON_T_LABEL,
HWMON_T_INPUT | HWMON_T_LABEL,
HWMON_T_INPUT | HWMON_T_LABEL,
HWMON_T_INPUT | HWMON_T_LABEL,
HWMON_T_INPUT | HWMON_T_LABEL),
HWMON_CHANNEL_INFO(in,
HWMON_I_INPUT | HWMON_I_LABEL,
HWMON_I_INPUT | HWMON_I_LABEL),
HWMON_CHANNEL_INFO(curr,
HWMON_C_INPUT | HWMON_C_LABEL,
HWMON_C_INPUT | HWMON_C_LABEL),
NULL
};
/*
const struct hwmon_ops k10temp_hwmon_ops = {
.is_visible = k10temp_is_visible,
.read = k10temp_read,
.read_string = k10temp_read_labels,
};*/
/*
const struct hwmon_chip_info k10temp_chip_info = {
.ops = &k10temp_hwmon_ops,
.info = k10temp_info,
};*/
void k10temp_get_ccd_support(struct pci_dev *pdev,
struct k10temp_data *data, int limit)
{
u32 regval;
int i;
for (i = 0; i < limit; i++) {
amd_smn_read(amd_pci_dev_to_node_id(pdev),
ZEN_CCD_TEMP(i), &regval);
if (regval & ZEN_CCD_TEMP_VALID)
data->show_temp |= BIT(TCCD_BIT(i));
}
}
int k10temp_probe(struct pci_dev *pdev, const struct pci_device_id *id, struct device *hwmon_dev)
{
int unreliable = has_erratum_319(pdev);
struct device *dev = &pdev->dev;
struct k10temp_data *data;
int i;
if (unreliable) {
/* if (!force) {
dev_err(dev,"unreliable CPU thermal sensor; monitoring disabled\n");
return -ENODEV;
}
*/
printk(MODNAME "Unreliable CPU thermal sensor; Check erratum 319\n");
}
data = KernelZeroAlloc(sizeof(struct k10temp_data));
if (!data)
return -ENOMEM;
data->pdev = pdev;
data->show_temp |= BIT(TCTL_BIT); /* Always show Tctl */
if (boot_cpu_data.x86 == 0x15 &&
((boot_cpu_data.x86_model & 0xf0) == 0x60 ||
(boot_cpu_data.x86_model & 0xf0) == 0x70)) {
data->read_htcreg = read_htcreg_nb_f15;
data->read_tempreg = read_tempreg_nb_f15;
} else if (boot_cpu_data.x86 == 0x17 || boot_cpu_data.x86 == 0x18) {
data->temp_adjust_mask = ZEN_CUR_TEMP_RANGE_SEL_MASK;
data->read_tempreg = read_tempreg_nb_zen;
data->show_temp |= BIT(TDIE_BIT); /* show Tdie */
data->is_zen = true;
switch (boot_cpu_data.x86_model) {
case 0x1: /* Zen */
case 0x8: /* Zen+ */
case 0x11: /* Zen APU */
case 0x18: /* Zen+ APU */
k10temp_get_ccd_support(pdev, data, 4);
break;
case 0x31: /* Zen2 Threadripper */
case 0x71: /* Zen2 */
k10temp_get_ccd_support(pdev, data, 8);
break;
}
} else if (boot_cpu_data.x86 == 0x19) {
data->temp_adjust_mask = ZEN_CUR_TEMP_RANGE_SEL_MASK;
data->read_tempreg = read_tempreg_nb_zen;
data->show_temp |= BIT(TDIE_BIT);
data->is_zen = true;
switch (boot_cpu_data.x86_model) {
case 0x0 ... 0x1: /* Zen3 SP3/TR */
case 0x21: /* Zen3 Ryzen Desktop */
k10temp_get_ccd_support(pdev, data, 8);
break;
}
} else {
data->read_htcreg = read_htcreg_pci;
data->read_tempreg = read_tempreg_pci;
}
for (i = 0; i < ARRAY_SIZE(tctl_offset_table); i++) {
const struct tctl_offset *entry = &tctl_offset_table[i];
if (boot_cpu_data.x86 == entry->model &&
strstr(boot_cpu_data.x86_model_id, entry->id)) {
data->temp_offset = entry->offset;
break;
}
}
hwmon_dev->driver_data=data;
return PTR_ERR_OR_ZERO(hwmon_dev);
}
const struct pci_device_id k10temp_id_table[] = {
{ PCI_VDEVICE(AMD, PCI_DEVICE_ID_AMD_10H_NB_MISC) },
{ PCI_VDEVICE(AMD, PCI_DEVICE_ID_AMD_11H_NB_MISC) },
{ PCI_VDEVICE(AMD, PCI_DEVICE_ID_AMD_CNB17H_F3) },
{ PCI_VDEVICE(AMD, PCI_DEVICE_ID_AMD_15H_NB_F3) },
{ PCI_VDEVICE(AMD, PCI_DEVICE_ID_AMD_15H_M10H_F3) },
{ PCI_VDEVICE(AMD, PCI_DEVICE_ID_AMD_15H_M30H_NB_F3) },
{ PCI_VDEVICE(AMD, PCI_DEVICE_ID_AMD_15H_M60H_NB_F3) },
{ PCI_VDEVICE(AMD, PCI_DEVICE_ID_AMD_15H_M70H_NB_F3) },
{ PCI_VDEVICE(AMD, PCI_DEVICE_ID_AMD_16H_NB_F3) },
{ PCI_VDEVICE(AMD, PCI_DEVICE_ID_AMD_16H_M30H_NB_F3) },
{ PCI_VDEVICE(AMD, PCI_DEVICE_ID_AMD_17H_DF_F3) },
{ PCI_VDEVICE(AMD, PCI_DEVICE_ID_AMD_17H_M10H_DF_F3) },
{ PCI_VDEVICE(AMD, PCI_DEVICE_ID_AMD_17H_M30H_DF_F3) },
{ PCI_VDEVICE(AMD, PCI_DEVICE_ID_AMD_17H_M60H_DF_F3) },
{ PCI_VDEVICE(AMD, PCI_DEVICE_ID_AMD_17H_M70H_DF_F3) },
{ PCI_VDEVICE(AMD, PCI_DEVICE_ID_AMD_19H_DF_F3) },
{ PCI_VDEVICE(HYGON, PCI_DEVICE_ID_AMD_17H_DF_F3) },
{}
};
#define K10TEMP_NA (-1)
#define CHANEL_INPUT_MAX 10
struct {
int Tctl;
int Tdie;
int Tccd1;
int Tccd2;
int Tccd3;
int Tccd4;
int Tccd5;
int Tccd6;
int Tccd7;
int Tccd8;
int Tmax;
int Tcrit;
int Tcrit_hyst;
} k10temp_out;
struct device k10temp_device;
int read_temp_info(struct device *dev, unsigned attr, int channel) {
long temp = K10TEMP_NA;
if (k10temp_is_visible(dev->driver_data, hwmon_temp, attr, channel)) {
if (k10temp_read_temp(dev, attr, channel, &temp)) {
temp = K10TEMP_NA;
}
}
return (int)temp;
}
void read_all_info(struct device* dev)
{
int* k10temp_out_array = (int*)&k10temp_out;
for (int c = 0; c < CHANEL_INPUT_MAX; c++) {
k10temp_out_array[c] = read_temp_info(dev, hwmon_temp_input, c);
}
}
int __stdcall service_proc(ioctl_t *my_ctl)
{
if(!my_ctl || !my_ctl->output || (int)my_ctl->output>=KERNEL_SPACE-sizeof(k10temp_out)){
printk(MODNAME "Bad address for writing data!\n");
return 0;
}
read_all_info(&k10temp_device);
if(my_ctl->out_size == sizeof(k10temp_out)){
memcpy(my_ctl->output, &k10temp_out, sizeof(k10temp_out));
return 0;
}
printk(MODNAME "Invalid buffer length!\n");
return 1;
}
uint32_t drvEntry(int action, char *cmdline)
{
if (action != 1) {
return 0;
}
static pci_dev_t device;
const struct pci_device_id *k10temp_id;
cpu_detect(&boot_cpu_data);
if(unlikely(enum_pci_devices() != 0)) {
printk(MODNAME "Device enumeration failed!\n");
goto error;
}
k10temp_id = find_pci_device(&device, k10temp_id_table);
if (unlikely(k10temp_id == NULL)) {
printk(MODNAME "Device not found!\n");
goto error;
}
init_amd_nbs();
k10temp_probe(&device.pci_dev, k10temp_id, &k10temp_device);
k10temp_out.Tmax = read_temp_info(&k10temp_device, hwmon_temp_max, 0);
k10temp_out.Tcrit = read_temp_info(&k10temp_device, hwmon_temp_crit, 0);
k10temp_out.Tcrit_hyst = read_temp_info(&k10temp_device, hwmon_temp_crit_hyst, 0);
return RegService(MODNAME, service_proc);
error:
free_pci_devices();
return 0;
}