// SPDX-License-Identifier: GPL-2.0-or-later /* * k10temp.c - AMD Family 10h/11h/12h/14h/15h/16h/17h * processor hardware monitoring * * Copyright (c) 2009 Clemens Ladisch * Copyright (c) 2020 Guenter Roeck * * Implementation notes: * - CCD register address information as well as the calculation to * convert raw register values is from https://github.com/ocerman/zenpower. * The information is not confirmed from chip datasheets, but experiments * suggest that it provides reasonable temperature values. */ /* Ported for KolibriOS by turbocat (Maxim Logaeav). 2021 */ /* Thanks: dunkaist, punk_joker, doczom. */ #include #include #include #include #include #include #include #include #include #include struct cpuinfo_x86 boot_cpu_data; extern void init_amd_nbs(void); extern void free_pci_devices(void); #define MODNAME KBUILD_MODNAME ": " #define KERNEL_SPACE 0x80000000 /* CPUID function 0x80000001, ebx */ #define CPUID_PKGTYPE_MASK GENMASK(31, 28) #define CPUID_PKGTYPE_F 0x00000000 #define CPUID_PKGTYPE_AM2R2_AM3 0x10000000 /* DRAM controller (PCI function 2) */ #define REG_DCT0_CONFIG_HIGH 0x094 #define DDR3_MODE BIT(8) /* miscellaneous (PCI function 3) */ #define REG_HARDWARE_THERMAL_CONTROL 0x64 #define HTC_ENABLE BIT(0) #define REG_REPORTED_TEMPERATURE 0xa4 #define REG_NORTHBRIDGE_CAPABILITIES 0xe8 #define NB_CAP_HTC BIT(10) /* * For F15h M60h and M70h, REG_HARDWARE_THERMAL_CONTROL * and REG_REPORTED_TEMPERATURE have been moved to * D0F0xBC_xD820_0C64 [Hardware Temperature Control] * D0F0xBC_xD820_0CA4 [Reported Temperature Control] */ #define F15H_M60H_HARDWARE_TEMP_CTRL_OFFSET 0xd8200c64 #define F15H_M60H_REPORTED_TEMP_CTRL_OFFSET 0xd8200ca4 /* Common for Zen CPU families (Family 17h and 18h) */ #define ZEN_REPORTED_TEMP_CTRL_OFFSET 0x00059800 #define ZEN_CCD_TEMP(x) (0x00059954 + ((x) * 4)) #define ZEN_CCD_TEMP_VALID BIT(11) #define ZEN_CCD_TEMP_MASK GENMASK(10, 0) #define ZEN_CUR_TEMP_SHIFT 21 #define ZEN_CUR_TEMP_RANGE_SEL_MASK BIT(19) #define ZEN_SVI_BASE 0x0005A000 /* F17h thermal registers through SMN */ #define F17H_M01H_SVI_TEL_PLANE0 (ZEN_SVI_BASE + 0xc) #define F17H_M01H_SVI_TEL_PLANE1 (ZEN_SVI_BASE + 0x10) #define F17H_M31H_SVI_TEL_PLANE0 (ZEN_SVI_BASE + 0x14) #define F17H_M31H_SVI_TEL_PLANE1 (ZEN_SVI_BASE + 0x10) #define F17H_M01H_CFACTOR_ICORE 1000000 /* 1A / LSB */ #define F17H_M01H_CFACTOR_ISOC 250000 /* 0.25A / LSB */ #define F17H_M31H_CFACTOR_ICORE 1000000 /* 1A / LSB */ #define F17H_M31H_CFACTOR_ISOC 310000 /* 0.31A / LSB */ /* F19h thermal registers through SMN */ #define F19H_M01_SVI_TEL_PLANE0 (ZEN_SVI_BASE + 0x14) #define F19H_M01_SVI_TEL_PLANE1 (ZEN_SVI_BASE + 0x10) #define F19H_M01H_CFACTOR_ICORE 1000000 /* 1A / LSB */ #define F19H_M01H_CFACTOR_ISOC 310000 /* 0.31A / LSB */ /* Provide lock for writing to NB_SMU_IND_ADDR */ DEFINE_MUTEX(nb_smu_ind_mutex); DEFINE_MUTEX(smn_mutex); struct k10temp_data { struct pci_dev *pdev; void (*read_htcreg)(struct pci_dev *pdev, u32 *regval); void (*read_tempreg)(struct pci_dev *pdev, u32 *regval); int temp_offset; u32 temp_adjust_mask; u32 show_temp; bool is_zen; }; #define TCTL_BIT 0 #define TDIE_BIT 1 #define TCCD_BIT(x) ((x) + 2) #define HAVE_TEMP(d, channel) ((d)->show_temp & BIT(channel)) #define HAVE_TDIE(d) HAVE_TEMP(d, TDIE_BIT) struct tctl_offset { u8 model; char const *id; int offset; }; const struct tctl_offset tctl_offset_table[] = { { 0x17, "AMD Ryzen 5 1600X", 20000 }, { 0x17, "AMD Ryzen 7 1700X", 20000 }, { 0x17, "AMD Ryzen 7 1800X", 20000 }, { 0x17, "AMD Ryzen 7 2700X", 10000 }, { 0x17, "AMD Ryzen Threadripper 19", 27000 }, /* 19{00,20,50}X */ { 0x17, "AMD Ryzen Threadripper 29", 27000 }, /* 29{20,50,70,90}[W]X */ }; void read_htcreg_pci(struct pci_dev *pdev, u32 *regval) { pci_read_config_dword(pdev, REG_HARDWARE_THERMAL_CONTROL, regval); } void read_tempreg_pci(struct pci_dev *pdev, u32 *regval) { pci_read_config_dword(pdev, REG_REPORTED_TEMPERATURE, regval); } void amd_nb_index_read(struct pci_dev *pdev, unsigned int devfn, unsigned int base, int offset, u32 *val) { mutex_lock(&nb_smu_ind_mutex); pci_bus_write_config_dword(pdev->bus, devfn, base, offset); pci_bus_read_config_dword(pdev->bus, devfn, base + 4, val); mutex_unlock(&nb_smu_ind_mutex); } void read_htcreg_nb_f15(struct pci_dev *pdev, u32 *regval) { amd_nb_index_read(pdev, PCI_DEVFN(0, 0), 0xb8, F15H_M60H_HARDWARE_TEMP_CTRL_OFFSET, regval); } void read_tempreg_nb_f15(struct pci_dev *pdev, u32 *regval) { amd_nb_index_read(pdev, PCI_DEVFN(0, 0), 0xb8, F15H_M60H_REPORTED_TEMP_CTRL_OFFSET, regval); } void read_tempreg_nb_zen(struct pci_dev *pdev, u32 *regval) { amd_smn_read(amd_pci_dev_to_node_id(pdev), ZEN_REPORTED_TEMP_CTRL_OFFSET, regval); } long get_raw_temp(struct k10temp_data *data) { u32 regval; long temp; data->read_tempreg(data->pdev, ®val); temp = (regval >> ZEN_CUR_TEMP_SHIFT) * 125; if (regval & data->temp_adjust_mask) temp -= 49000; return temp; } #if 0 const char *k10temp_temp_label[] = { "Tctl", "Tdie", "Tccd1", "Tccd2", "Tccd3", "Tccd4", "Tccd5", "Tccd6", "Tccd7", "Tccd8", }; int k10temp_read_labels(struct device *dev, enum hwmon_sensor_types type, u32 attr, int channel, const char **str) { switch (type) { case hwmon_temp: *str = k10temp_temp_label[channel]; break; default: return -EOPNOTSUPP; } return 0; } #endif int k10temp_read_temp(struct device *dev, u32 attr, int channel, long *val) { struct k10temp_data *data = dev_get_drvdata(dev); u32 regval; switch (attr) { case hwmon_temp_input: switch (channel) { case 0: /* Tctl */ *val = get_raw_temp(data); if (*val < 0) *val = 0; break; case 1: /* Tdie */ *val = get_raw_temp(data) - data->temp_offset; if (*val < 0) *val = 0; break; case 2 ... 9: /* Tccd{1-8} */ amd_smn_read(amd_pci_dev_to_node_id(data->pdev), ZEN_CCD_TEMP(channel - 2), ®val); *val = (regval & ZEN_CCD_TEMP_MASK) * 125 - 49000; break; default: return -EOPNOTSUPP; } break; case hwmon_temp_max: *val = 70 * 1000; break; case hwmon_temp_crit: data->read_htcreg(data->pdev, ®val); *val = ((regval >> 16) & 0x7f) * 500 + 52000; break; case hwmon_temp_crit_hyst: data->read_htcreg(data->pdev, ®val); *val = (((regval >> 16) & 0x7f) - ((regval >> 24) & 0xf)) * 500 + 52000; break; default: return -EOPNOTSUPP; } return 0; } int k10temp_read(struct device *dev, enum hwmon_sensor_types type, u32 attr, int channel, long *val) { switch (type) { case hwmon_temp: return k10temp_read_temp(dev, attr, channel, val); default: return -EOPNOTSUPP; } } umode_t k10temp_is_visible(const void *_data, enum hwmon_sensor_types type, u32 attr, int channel) { const struct k10temp_data *data = _data; struct pci_dev *pdev = data->pdev; u32 reg; switch (type) { case hwmon_temp: switch (attr) { case hwmon_temp_input: if (!HAVE_TEMP(data, channel)){ return 0; } break; case hwmon_temp_max: if (channel || data->is_zen) return 0; break; case hwmon_temp_crit: case hwmon_temp_crit_hyst: if (channel || !data->read_htcreg) return 0; pci_read_config_dword(pdev, REG_NORTHBRIDGE_CAPABILITIES, ®); if (!(reg & NB_CAP_HTC)) return 0; data->read_htcreg(data->pdev, ®); if (!(reg & HTC_ENABLE)) return 0; break; // case hwmon_temp_label: // /* Show temperature labels only on Zen CPUs */ // if (!data->is_zen || !HAVE_TEMP(data, channel)) // return 0; // break; default: return 0; } break; default: return 0; } return 0444; } bool has_erratum_319(struct pci_dev *pdev) { u32 pkg_type, reg_dram_cfg; if (boot_cpu_data.x86 != 0x10) return false; /* * Erratum 319: The thermal sensor of Socket F/AM2+ processors * may be unreliable. */ pkg_type = cpuid_ebx(0x80000001) & CPUID_PKGTYPE_MASK; if (pkg_type == CPUID_PKGTYPE_F) return true; if (pkg_type != CPUID_PKGTYPE_AM2R2_AM3) return false; /* DDR3 memory implies socket AM3, which is good */ pci_bus_read_config_dword(pdev->bus, PCI_DEVFN(PCI_SLOT(pdev->devfn), 2), REG_DCT0_CONFIG_HIGH, ®_dram_cfg); if (reg_dram_cfg & DDR3_MODE) return false; /* * Unfortunately it is possible to run a socket AM3 CPU with DDR2 * memory. We blacklist all the cores which do exist in socket AM2+ * format. It still isn't perfect, as RB-C2 cores exist in both AM2+ * and AM3 formats, but that's the best we can do. */ return boot_cpu_data.x86_model < 4; } const struct hwmon_channel_info *k10temp_info[] = { HWMON_CHANNEL_INFO(temp, HWMON_T_INPUT | HWMON_T_MAX | HWMON_T_CRIT | HWMON_T_CRIT_HYST | HWMON_T_LABEL, HWMON_T_INPUT | HWMON_T_LABEL, HWMON_T_INPUT | HWMON_T_LABEL, HWMON_T_INPUT | HWMON_T_LABEL, HWMON_T_INPUT | HWMON_T_LABEL, HWMON_T_INPUT | HWMON_T_LABEL, HWMON_T_INPUT | HWMON_T_LABEL, HWMON_T_INPUT | HWMON_T_LABEL, HWMON_T_INPUT | HWMON_T_LABEL, HWMON_T_INPUT | HWMON_T_LABEL), HWMON_CHANNEL_INFO(in, HWMON_I_INPUT | HWMON_I_LABEL, HWMON_I_INPUT | HWMON_I_LABEL), HWMON_CHANNEL_INFO(curr, HWMON_C_INPUT | HWMON_C_LABEL, HWMON_C_INPUT | HWMON_C_LABEL), NULL }; /* const struct hwmon_ops k10temp_hwmon_ops = { .is_visible = k10temp_is_visible, .read = k10temp_read, .read_string = k10temp_read_labels, };*/ /* const struct hwmon_chip_info k10temp_chip_info = { .ops = &k10temp_hwmon_ops, .info = k10temp_info, };*/ void k10temp_get_ccd_support(struct pci_dev *pdev, struct k10temp_data *data, int limit) { u32 regval; int i; for (i = 0; i < limit; i++) { amd_smn_read(amd_pci_dev_to_node_id(pdev), ZEN_CCD_TEMP(i), ®val); if (regval & ZEN_CCD_TEMP_VALID) data->show_temp |= BIT(TCCD_BIT(i)); } } int k10temp_probe(struct pci_dev *pdev, const struct pci_device_id *id, struct device *hwmon_dev) { int unreliable = has_erratum_319(pdev); struct device *dev = &pdev->dev; struct k10temp_data *data; int i; if (unreliable) { /* if (!force) { dev_err(dev,"unreliable CPU thermal sensor; monitoring disabled\n"); return -ENODEV; } */ printk(MODNAME "Unreliable CPU thermal sensor; Check erratum 319\n"); } data = KernelZeroAlloc(sizeof(struct k10temp_data)); if (!data) return -ENOMEM; data->pdev = pdev; data->show_temp |= BIT(TCTL_BIT); /* Always show Tctl */ if (boot_cpu_data.x86 == 0x15 && ((boot_cpu_data.x86_model & 0xf0) == 0x60 || (boot_cpu_data.x86_model & 0xf0) == 0x70)) { data->read_htcreg = read_htcreg_nb_f15; data->read_tempreg = read_tempreg_nb_f15; } else if (boot_cpu_data.x86 == 0x17 || boot_cpu_data.x86 == 0x18) { data->temp_adjust_mask = ZEN_CUR_TEMP_RANGE_SEL_MASK; data->read_tempreg = read_tempreg_nb_zen; data->show_temp |= BIT(TDIE_BIT); /* show Tdie */ data->is_zen = true; switch (boot_cpu_data.x86_model) { case 0x1: /* Zen */ case 0x8: /* Zen+ */ case 0x11: /* Zen APU */ case 0x18: /* Zen+ APU */ k10temp_get_ccd_support(pdev, data, 4); break; case 0x31: /* Zen2 Threadripper */ case 0x71: /* Zen2 */ k10temp_get_ccd_support(pdev, data, 8); break; } } else if (boot_cpu_data.x86 == 0x19) { data->temp_adjust_mask = ZEN_CUR_TEMP_RANGE_SEL_MASK; data->read_tempreg = read_tempreg_nb_zen; data->show_temp |= BIT(TDIE_BIT); data->is_zen = true; switch (boot_cpu_data.x86_model) { case 0x0 ... 0x1: /* Zen3 SP3/TR */ case 0x21: /* Zen3 Ryzen Desktop */ k10temp_get_ccd_support(pdev, data, 8); break; } } else { data->read_htcreg = read_htcreg_pci; data->read_tempreg = read_tempreg_pci; } for (i = 0; i < ARRAY_SIZE(tctl_offset_table); i++) { const struct tctl_offset *entry = &tctl_offset_table[i]; if (boot_cpu_data.x86 == entry->model && strstr(boot_cpu_data.x86_model_id, entry->id)) { data->temp_offset = entry->offset; break; } } hwmon_dev->driver_data=data; return PTR_ERR_OR_ZERO(hwmon_dev); } const struct pci_device_id k10temp_id_table[] = { { PCI_VDEVICE(AMD, PCI_DEVICE_ID_AMD_10H_NB_MISC) }, { PCI_VDEVICE(AMD, PCI_DEVICE_ID_AMD_11H_NB_MISC) }, { PCI_VDEVICE(AMD, PCI_DEVICE_ID_AMD_CNB17H_F3) }, { PCI_VDEVICE(AMD, PCI_DEVICE_ID_AMD_15H_NB_F3) }, { PCI_VDEVICE(AMD, PCI_DEVICE_ID_AMD_15H_M10H_F3) }, { PCI_VDEVICE(AMD, PCI_DEVICE_ID_AMD_15H_M30H_NB_F3) }, { PCI_VDEVICE(AMD, PCI_DEVICE_ID_AMD_15H_M60H_NB_F3) }, { PCI_VDEVICE(AMD, PCI_DEVICE_ID_AMD_15H_M70H_NB_F3) }, { PCI_VDEVICE(AMD, PCI_DEVICE_ID_AMD_16H_NB_F3) }, { PCI_VDEVICE(AMD, PCI_DEVICE_ID_AMD_16H_M30H_NB_F3) }, { PCI_VDEVICE(AMD, PCI_DEVICE_ID_AMD_17H_DF_F3) }, { PCI_VDEVICE(AMD, PCI_DEVICE_ID_AMD_17H_M10H_DF_F3) }, { PCI_VDEVICE(AMD, PCI_DEVICE_ID_AMD_17H_M30H_DF_F3) }, { PCI_VDEVICE(AMD, PCI_DEVICE_ID_AMD_17H_M60H_DF_F3) }, { PCI_VDEVICE(AMD, PCI_DEVICE_ID_AMD_17H_M70H_DF_F3) }, { PCI_VDEVICE(AMD, PCI_DEVICE_ID_AMD_19H_DF_F3) }, { PCI_VDEVICE(HYGON, PCI_DEVICE_ID_AMD_17H_DF_F3) }, {} }; #define K10TEMP_NA (-1) #define CHANEL_INPUT_MAX 10 struct { int Tctl; int Tdie; int Tccd1; int Tccd2; int Tccd3; int Tccd4; int Tccd5; int Tccd6; int Tccd7; int Tccd8; int Tmax; int Tcrit; int Tcrit_hyst; } k10temp_out; struct device k10temp_device; int read_temp_info(struct device *dev, unsigned attr, int channel) { long temp = K10TEMP_NA; if (k10temp_is_visible(dev->driver_data, hwmon_temp, attr, channel)) { if (k10temp_read_temp(dev, attr, channel, &temp)) { temp = K10TEMP_NA; } } return (int)temp; } void read_all_info(struct device* dev) { int* k10temp_out_array = (int*)&k10temp_out; for (int c = 0; c < CHANEL_INPUT_MAX; c++) { k10temp_out_array[c] = read_temp_info(dev, hwmon_temp_input, c); } } int __stdcall service_proc(ioctl_t *my_ctl) { if(!my_ctl || !my_ctl->output || (int)my_ctl->output>=KERNEL_SPACE-sizeof(k10temp_out)){ printk(MODNAME "Bad address for writing data!\n"); return 0; } read_all_info(&k10temp_device); if(my_ctl->out_size == sizeof(k10temp_out)){ memcpy(my_ctl->output, &k10temp_out, sizeof(k10temp_out)); return 0; } printk(MODNAME "Invalid buffer length!\n"); return 1; } uint32_t drvEntry(int action, char *cmdline) { if (action != 1) { return 0; } static pci_dev_t device; const struct pci_device_id *k10temp_id; cpu_detect(&boot_cpu_data); if(unlikely(enum_pci_devices() != 0)) { printk(MODNAME "Device enumeration failed!\n"); goto error; } k10temp_id = find_pci_device(&device, k10temp_id_table); if (unlikely(k10temp_id == NULL)) { printk(MODNAME "Device not found!\n"); goto error; } init_amd_nbs(); k10temp_probe(&device.pci_dev, k10temp_id, &k10temp_device); k10temp_out.Tmax = read_temp_info(&k10temp_device, hwmon_temp_max, 0); k10temp_out.Tcrit = read_temp_info(&k10temp_device, hwmon_temp_crit, 0); k10temp_out.Tcrit_hyst = read_temp_info(&k10temp_device, hwmon_temp_crit_hyst, 0); return RegService(MODNAME, service_proc); error: free_pci_devices(); return 0; }