Kirill Lipatov (Leency) 498da3221e update Oberon07 and CEDIT by akron1
git-svn-id: svn://kolibrios.org@8859 a494cfbc-eb01-0410-851d-a64ba20cac60
2021-06-15 17:33:16 +00:00

465 lines
7.9 KiB
Plaintext

(*
BSD 2-Clause License
Copyright (c) 2020, Anton Krotov
All rights reserved.
*)
MODULE FPU;
CONST
INF = 07F800000H;
NINF = 0FF800000H;
NAN = 07FC00000H;
PROCEDURE div2 (b, a: INTEGER): INTEGER;
VAR
n, e, r, s: INTEGER;
BEGIN
s := ORD(BITS(a) / BITS(b) - {0..30});
e := (a DIV 800000H) MOD 256 - (b DIV 800000H) MOD 256 + 127;
a := a MOD 800000H + 800000H;
b := b MOD 800000H + 800000H;
n := 800000H;
r := 0;
IF a < b THEN
a := a * 2;
DEC(e)
END;
WHILE (a > 0) & (n > 0) DO
IF a >= b THEN
INC(r, n);
DEC(a, b)
END;
a := a * 2;
n := n DIV 2
END;
IF e <= 0 THEN
e := 0;
r := 800000H;
s := 0
ELSIF e >= 255 THEN
e := 255;
r := 800000H
END
RETURN (r - 800000H) + e * 800000H + s
END div2;
PROCEDURE mul2 (b, a: INTEGER): INTEGER;
VAR
e, r, s: INTEGER;
BEGIN
s := ORD(BITS(a) / BITS(b) - {0..30});
e := (a DIV 800000H) MOD 256 + (b DIV 800000H) MOD 256 - 127;
a := a MOD 800000H + 800000H;
b := b MOD 800000H + 800000H;
r := a * (b MOD 256);
b := b DIV 256;
r := LSR(r, 8);
INC(r, a * (b MOD 256));
b := b DIV 256;
r := LSR(r, 8);
INC(r, a * (b MOD 256));
r := LSR(r, 7);
IF r >= 1000000H THEN
r := r DIV 2;
INC(e)
END;
IF e <= 0 THEN
e := 0;
r := 800000H;
s := 0
ELSIF e >= 255 THEN
e := 255;
r := 800000H
END
RETURN (r - 800000H) + e * 800000H + s
END mul2;
PROCEDURE add2 (b, a: INTEGER): INTEGER;
VAR
ea, eb, e, d, r: INTEGER;
BEGIN
ea := (a DIV 800000H) MOD 256;
eb := (b DIV 800000H) MOD 256;
d := ea - eb;
a := a MOD 800000H + 800000H;
b := b MOD 800000H + 800000H;
IF d > 0 THEN
IF d < 24 THEN
b := LSR(b, d)
ELSE
b := 0
END;
e := ea
ELSIF d < 0 THEN
IF d > -24 THEN
a := LSR(a, -d)
ELSE
a := 0
END;
e := eb
ELSE
e := ea
END;
r := a + b;
IF r >= 1000000H THEN
r := r DIV 2;
INC(e)
END;
IF e >= 255 THEN
e := 255;
r := 800000H
END
RETURN (r - 800000H) + e * 800000H
END add2;
PROCEDURE sub2 (b, a: INTEGER): INTEGER;
VAR
ea, eb, e, d, r, s: INTEGER;
BEGIN
ea := (a DIV 800000H) MOD 256;
eb := (b DIV 800000H) MOD 256;
a := a MOD 800000H + 800000H;
b := b MOD 800000H + 800000H;
d := ea - eb;
IF (d > 0) OR (d = 0) & (a >= b) THEN
s := 0
ELSE
ea := eb;
d := -d;
r := a;
a := b;
b := r;
s := 80000000H
END;
e := ea;
IF d > 0 THEN
IF d < 24 THEN
b := LSR(b, d)
ELSE
b := 0
END
END;
r := a - b;
IF r = 0 THEN
e := 0;
r := 800000H;
s := 0
ELSE
WHILE r < 800000H DO
r := r * 2;
DEC(e)
END
END;
IF e <= 0 THEN
e := 0;
r := 800000H;
s := 0
END
RETURN (r - 800000H) + e * 800000H + s
END sub2;
PROCEDURE zero (VAR x: INTEGER);
BEGIN
IF BITS(x) * {23..30} = {} THEN
x := 0
END
END zero;
PROCEDURE isNaN (a: INTEGER): BOOLEAN;
RETURN (a > INF) OR (a < 0) & (a > NINF)
END isNaN;
PROCEDURE isInf (a: INTEGER): BOOLEAN;
RETURN (a = INF) OR (a = NINF)
END isInf;
PROCEDURE isNormal (a: INTEGER): BOOLEAN;
RETURN (BITS(a) * {23..30} # {23..30}) & (BITS(a) * {23..30} # {})
END isNormal;
PROCEDURE add* (b, a: INTEGER): INTEGER;
VAR
r: INTEGER;
BEGIN
zero(a); zero(b);
IF isNormal(a) & isNormal(b) THEN
IF (a > 0) & (b > 0) THEN
r := add2(b, a)
ELSIF (a < 0) & (b < 0) THEN
r := add2(b, a) + 80000000H
ELSIF (a > 0) & (b < 0) THEN
r := sub2(b, a)
ELSIF (a < 0) & (b > 0) THEN
r := sub2(a, b)
END
ELSIF isNaN(a) OR isNaN(b) THEN
r := NAN
ELSIF isInf(a) & isInf(b) THEN
IF a = b THEN
r := a
ELSE
r := NAN
END
ELSIF isInf(a) THEN
r := a
ELSIF isInf(b) THEN
r := b
ELSIF a = 0 THEN
r := b
ELSIF b = 0 THEN
r := a
END
RETURN r
END add;
PROCEDURE sub* (b, a: INTEGER): INTEGER;
VAR
r: INTEGER;
BEGIN
zero(a); zero(b);
IF isNormal(a) & isNormal(b) THEN
IF (a > 0) & (b > 0) THEN
r := sub2(b, a)
ELSIF (a < 0) & (b < 0) THEN
r := sub2(a, b)
ELSIF (a > 0) & (b < 0) THEN
r := add2(b, a)
ELSIF (a < 0) & (b > 0) THEN
r := add2(b, a) + 80000000H
END
ELSIF isNaN(a) OR isNaN(b) THEN
r := NAN
ELSIF isInf(a) & isInf(b) THEN
IF a # b THEN
r := a
ELSE
r := NAN
END
ELSIF isInf(a) THEN
r := a
ELSIF isInf(b) THEN
r := INF + ORD(BITS(b) / {31} - {0..30})
ELSIF (a = 0) & (b = 0) THEN
r := 0
ELSIF a = 0 THEN
r := ORD(BITS(b) / {31})
ELSIF b = 0 THEN
r := a
END
RETURN r
END sub;
PROCEDURE mul* (b, a: INTEGER): INTEGER;
VAR
r: INTEGER;
BEGIN
zero(a); zero(b);
IF isNormal(a) & isNormal(b) THEN
r := mul2(b, a)
ELSIF isNaN(a) OR isNaN(b) THEN
r := NAN
ELSIF (isInf(a) & (b = 0)) OR (isInf(b) & (a = 0)) THEN
r := NAN
ELSIF isInf(a) OR isInf(b) THEN
r := INF + ORD(BITS(a) / BITS(b) - {0..30})
ELSIF (a = 0) OR (b = 0) THEN
r := 0
END
RETURN r
END mul;
PROCEDURE _div* (b, a: INTEGER): INTEGER;
VAR
r: INTEGER;
BEGIN
zero(a); zero(b);
IF isNormal(a) & isNormal(b) THEN
r := div2(b, a)
ELSIF isNaN(a) OR isNaN(b) THEN
r := NAN
ELSIF isInf(a) & isInf(b) THEN
r := NAN
ELSIF isInf(a) THEN
r := INF + ORD(BITS(a) / BITS(b) - {0..30})
ELSIF isInf(b) THEN
r := 0
ELSIF a = 0 THEN
IF b = 0 THEN
r := NAN
ELSE
r := 0
END
ELSIF b = 0 THEN
IF a > 0 THEN
r := INF
ELSE
r := NINF
END
END
RETURN r
END _div;
PROCEDURE cmp* (op, b, a: INTEGER): BOOLEAN;
VAR
res: BOOLEAN;
BEGIN
zero(a); zero(b);
IF isNaN(a) OR isNaN(b) THEN
res := op = 1
ELSIF (a < 0) & (b < 0) THEN
CASE op OF
|0: res := a = b
|1: res := a # b
|2: res := a > b
|3: res := a >= b
|4: res := a < b
|5: res := a <= b
END
ELSE
CASE op OF
|0: res := a = b
|1: res := a # b
|2: res := a < b
|3: res := a <= b
|4: res := a > b
|5: res := a >= b
END
END
RETURN res
END cmp;
PROCEDURE flt* (x: INTEGER): INTEGER;
VAR
n, y, r, s: INTEGER;
BEGIN
IF x = 0 THEN
s := 0;
r := 800000H;
n := -126
ELSIF x = 80000000H THEN
s := 80000000H;
r := 800000H;
n := 32
ELSE
IF x < 0 THEN
s := 80000000H
ELSE
s := 0
END;
n := 0;
y := ABS(x);
r := y;
WHILE y > 0 DO
y := y DIV 2;
INC(n)
END;
IF n > 24 THEN
r := LSR(r, n - 24)
ELSE
r := LSL(r, 24 - n)
END
END
RETURN (r - 800000H) + (n + 126) * 800000H + s
END flt;
PROCEDURE floor* (x: INTEGER): INTEGER;
VAR
r, e: INTEGER;
BEGIN
zero(x);
e := (x DIV 800000H) MOD 256 - 127;
r := x MOD 800000H + 800000H;
IF (0 <= e) & (e <= 22) THEN
r := LSR(r, 23 - e) + ORD((x < 0) & (LSL(r, e + 9) # 0))
ELSIF (23 <= e) & (e <= 54) THEN
r := LSL(r, e - 23)
ELSIF (e < 0) & (x < 0) THEN
r := 1
ELSE
r := 0
END;
IF x < 0 THEN
r := -r
END
RETURN r
END floor;
END FPU.