Sergey Semyonov (Serge) 754f9336f0 upload sdk
git-svn-id: svn://kolibrios.org@4349 a494cfbc-eb01-0410-851d-a64ba20cac60
2013-12-15 08:09:20 +00:00

8941 lines
264 KiB
C

/*
* SGI FREE SOFTWARE LICENSE B (Version 2.0, Sept. 18, 2008)
* Copyright (C) 1991-2000 Silicon Graphics, Inc. All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice including the dates of first publication and
* either this permission notice or a reference to
* http://oss.sgi.com/projects/FreeB/
* shall be included in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* SILICON GRAPHICS, INC. BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
* WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF
* OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*
* Except as contained in this notice, the name of Silicon Graphics, Inc.
* shall not be used in advertising or otherwise to promote the sale, use or
* other dealings in this Software without prior written authorization from
* Silicon Graphics, Inc.
*/
#include "gluos.h"
#include <assert.h>
#include <GL/glu.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <limits.h> /* UINT_MAX */
#include <math.h>
typedef union {
unsigned char ub[4];
unsigned short us[2];
unsigned int ui;
char b[4];
short s[2];
int i;
float f;
} Type_Widget;
/* Pixel storage modes */
typedef struct {
GLint pack_alignment;
GLint pack_row_length;
GLint pack_skip_rows;
GLint pack_skip_pixels;
GLint pack_lsb_first;
GLint pack_swap_bytes;
GLint pack_skip_images;
GLint pack_image_height;
GLint unpack_alignment;
GLint unpack_row_length;
GLint unpack_skip_rows;
GLint unpack_skip_pixels;
GLint unpack_lsb_first;
GLint unpack_swap_bytes;
GLint unpack_skip_images;
GLint unpack_image_height;
} PixelStorageModes;
static int gluBuild1DMipmapLevelsCore(GLenum, GLint,
GLsizei,
GLsizei,
GLenum, GLenum, GLint, GLint, GLint,
const void *);
static int gluBuild2DMipmapLevelsCore(GLenum, GLint,
GLsizei, GLsizei,
GLsizei, GLsizei,
GLenum, GLenum, GLint, GLint, GLint,
const void *);
static int gluBuild3DMipmapLevelsCore(GLenum, GLint,
GLsizei, GLsizei, GLsizei,
GLsizei, GLsizei, GLsizei,
GLenum, GLenum, GLint, GLint, GLint,
const void *);
/*
* internal function declarations
*/
static GLfloat bytes_per_element(GLenum type);
static GLint elements_per_group(GLenum format, GLenum type);
static GLint is_index(GLenum format);
static GLint image_size(GLint width, GLint height, GLenum format, GLenum type);
static void fill_image(const PixelStorageModes *,
GLint width, GLint height, GLenum format,
GLenum type, GLboolean index_format,
const void *userdata, GLushort *newimage);
static void empty_image(const PixelStorageModes *,
GLint width, GLint height, GLenum format,
GLenum type, GLboolean index_format,
const GLushort *oldimage, void *userdata);
static void scale_internal(GLint components, GLint widthin, GLint heightin,
const GLushort *datain,
GLint widthout, GLint heightout,
GLushort *dataout);
static void scale_internal_ubyte(GLint components, GLint widthin,
GLint heightin, const GLubyte *datain,
GLint widthout, GLint heightout,
GLubyte *dataout, GLint element_size,
GLint ysize, GLint group_size);
static void scale_internal_byte(GLint components, GLint widthin,
GLint heightin, const GLbyte *datain,
GLint widthout, GLint heightout,
GLbyte *dataout, GLint element_size,
GLint ysize, GLint group_size);
static void scale_internal_ushort(GLint components, GLint widthin,
GLint heightin, const GLushort *datain,
GLint widthout, GLint heightout,
GLushort *dataout, GLint element_size,
GLint ysize, GLint group_size,
GLint myswap_bytes);
static void scale_internal_short(GLint components, GLint widthin,
GLint heightin, const GLshort *datain,
GLint widthout, GLint heightout,
GLshort *dataout, GLint element_size,
GLint ysize, GLint group_size,
GLint myswap_bytes);
static void scale_internal_uint(GLint components, GLint widthin,
GLint heightin, const GLuint *datain,
GLint widthout, GLint heightout,
GLuint *dataout, GLint element_size,
GLint ysize, GLint group_size,
GLint myswap_bytes);
static void scale_internal_int(GLint components, GLint widthin,
GLint heightin, const GLint *datain,
GLint widthout, GLint heightout,
GLint *dataout, GLint element_size,
GLint ysize, GLint group_size,
GLint myswap_bytes);
static void scale_internal_float(GLint components, GLint widthin,
GLint heightin, const GLfloat *datain,
GLint widthout, GLint heightout,
GLfloat *dataout, GLint element_size,
GLint ysize, GLint group_size,
GLint myswap_bytes);
static int checkMipmapArgs(GLenum, GLenum, GLenum);
static GLboolean legalFormat(GLenum);
static GLboolean legalType(GLenum);
static GLboolean isTypePackedPixel(GLenum);
static GLboolean isLegalFormatForPackedPixelType(GLenum, GLenum);
static GLboolean isLegalLevels(GLint, GLint, GLint, GLint);
static void closestFit(GLenum, GLint, GLint, GLint, GLenum, GLenum,
GLint *, GLint *);
/* all extract/shove routines must return double to handle unsigned ints */
static GLdouble extractUbyte(int, const void *);
static void shoveUbyte(GLdouble, int, void *);
static GLdouble extractSbyte(int, const void *);
static void shoveSbyte(GLdouble, int, void *);
static GLdouble extractUshort(int, const void *);
static void shoveUshort(GLdouble, int, void *);
static GLdouble extractSshort(int, const void *);
static void shoveSshort(GLdouble, int, void *);
static GLdouble extractUint(int, const void *);
static void shoveUint(GLdouble, int, void *);
static GLdouble extractSint(int, const void *);
static void shoveSint(GLdouble, int, void *);
static GLdouble extractFloat(int, const void *);
static void shoveFloat(GLdouble, int, void *);
static void halveImageSlice(int, GLdouble (*)(int, const void *),
void (*)(GLdouble, int, void *),
GLint, GLint, GLint,
const void *, void *,
GLint, GLint, GLint, GLint, GLint);
static void halveImage3D(int, GLdouble (*)(int, const void *),
void (*)(GLdouble, int, void *),
GLint, GLint, GLint,
const void *, void *,
GLint, GLint, GLint, GLint, GLint);
/* packedpixel type scale routines */
static void extract332(int,const void *, GLfloat []);
static void shove332(const GLfloat [],int ,void *);
static void extract233rev(int,const void *, GLfloat []);
static void shove233rev(const GLfloat [],int ,void *);
static void extract565(int,const void *, GLfloat []);
static void shove565(const GLfloat [],int ,void *);
static void extract565rev(int,const void *, GLfloat []);
static void shove565rev(const GLfloat [],int ,void *);
static void extract4444(int,const void *, GLfloat []);
static void shove4444(const GLfloat [],int ,void *);
static void extract4444rev(int,const void *, GLfloat []);
static void shove4444rev(const GLfloat [],int ,void *);
static void extract5551(int,const void *, GLfloat []);
static void shove5551(const GLfloat [],int ,void *);
static void extract1555rev(int,const void *, GLfloat []);
static void shove1555rev(const GLfloat [],int ,void *);
static void extract8888(int,const void *, GLfloat []);
static void shove8888(const GLfloat [],int ,void *);
static void extract8888rev(int,const void *, GLfloat []);
static void shove8888rev(const GLfloat [],int ,void *);
static void extract1010102(int,const void *, GLfloat []);
static void shove1010102(const GLfloat [],int ,void *);
static void extract2101010rev(int,const void *, GLfloat []);
static void shove2101010rev(const GLfloat [],int ,void *);
static void scaleInternalPackedPixel(int,
void (*)(int, const void *,GLfloat []),
void (*)(const GLfloat [],int, void *),
GLint,GLint, const void *,
GLint,GLint,void *,GLint,GLint,GLint);
static void halveImagePackedPixel(int,
void (*)(int, const void *,GLfloat []),
void (*)(const GLfloat [],int, void *),
GLint, GLint, const void *,
void *, GLint, GLint, GLint);
static void halve1DimagePackedPixel(int,
void (*)(int, const void *,GLfloat []),
void (*)(const GLfloat [],int, void *),
GLint, GLint, const void *,
void *, GLint, GLint, GLint);
static void halve1Dimage_ubyte(GLint, GLuint, GLuint,const GLubyte *,
GLubyte *, GLint, GLint, GLint);
static void halve1Dimage_byte(GLint, GLuint, GLuint,const GLbyte *, GLbyte *,
GLint, GLint, GLint);
static void halve1Dimage_ushort(GLint, GLuint, GLuint, const GLushort *,
GLushort *, GLint, GLint, GLint, GLint);
static void halve1Dimage_short(GLint, GLuint, GLuint,const GLshort *, GLshort *,
GLint, GLint, GLint, GLint);
static void halve1Dimage_uint(GLint, GLuint, GLuint, const GLuint *, GLuint *,
GLint, GLint, GLint, GLint);
static void halve1Dimage_int(GLint, GLuint, GLuint, const GLint *, GLint *,
GLint, GLint, GLint, GLint);
static void halve1Dimage_float(GLint, GLuint, GLuint, const GLfloat *, GLfloat *,
GLint, GLint, GLint, GLint);
static GLint imageSize3D(GLint, GLint, GLint, GLenum,GLenum);
static void fillImage3D(const PixelStorageModes *, GLint, GLint, GLint,GLenum,
GLenum, GLboolean, const void *, GLushort *);
static void emptyImage3D(const PixelStorageModes *,
GLint, GLint, GLint, GLenum,
GLenum, GLboolean,
const GLushort *, void *);
static void scaleInternal3D(GLint, GLint, GLint, GLint, const GLushort *,
GLint, GLint, GLint, GLushort *);
static void retrieveStoreModes(PixelStorageModes *psm)
{
glGetIntegerv(GL_UNPACK_ALIGNMENT, &psm->unpack_alignment);
glGetIntegerv(GL_UNPACK_ROW_LENGTH, &psm->unpack_row_length);
glGetIntegerv(GL_UNPACK_SKIP_ROWS, &psm->unpack_skip_rows);
glGetIntegerv(GL_UNPACK_SKIP_PIXELS, &psm->unpack_skip_pixels);
glGetIntegerv(GL_UNPACK_LSB_FIRST, &psm->unpack_lsb_first);
glGetIntegerv(GL_UNPACK_SWAP_BYTES, &psm->unpack_swap_bytes);
glGetIntegerv(GL_PACK_ALIGNMENT, &psm->pack_alignment);
glGetIntegerv(GL_PACK_ROW_LENGTH, &psm->pack_row_length);
glGetIntegerv(GL_PACK_SKIP_ROWS, &psm->pack_skip_rows);
glGetIntegerv(GL_PACK_SKIP_PIXELS, &psm->pack_skip_pixels);
glGetIntegerv(GL_PACK_LSB_FIRST, &psm->pack_lsb_first);
glGetIntegerv(GL_PACK_SWAP_BYTES, &psm->pack_swap_bytes);
}
static void retrieveStoreModes3D(PixelStorageModes *psm)
{
glGetIntegerv(GL_UNPACK_ALIGNMENT, &psm->unpack_alignment);
glGetIntegerv(GL_UNPACK_ROW_LENGTH, &psm->unpack_row_length);
glGetIntegerv(GL_UNPACK_SKIP_ROWS, &psm->unpack_skip_rows);
glGetIntegerv(GL_UNPACK_SKIP_PIXELS, &psm->unpack_skip_pixels);
glGetIntegerv(GL_UNPACK_LSB_FIRST, &psm->unpack_lsb_first);
glGetIntegerv(GL_UNPACK_SWAP_BYTES, &psm->unpack_swap_bytes);
glGetIntegerv(GL_UNPACK_SKIP_IMAGES, &psm->unpack_skip_images);
glGetIntegerv(GL_UNPACK_IMAGE_HEIGHT, &psm->unpack_image_height);
glGetIntegerv(GL_PACK_ALIGNMENT, &psm->pack_alignment);
glGetIntegerv(GL_PACK_ROW_LENGTH, &psm->pack_row_length);
glGetIntegerv(GL_PACK_SKIP_ROWS, &psm->pack_skip_rows);
glGetIntegerv(GL_PACK_SKIP_PIXELS, &psm->pack_skip_pixels);
glGetIntegerv(GL_PACK_LSB_FIRST, &psm->pack_lsb_first);
glGetIntegerv(GL_PACK_SWAP_BYTES, &psm->pack_swap_bytes);
glGetIntegerv(GL_PACK_SKIP_IMAGES, &psm->pack_skip_images);
glGetIntegerv(GL_PACK_IMAGE_HEIGHT, &psm->pack_image_height);
}
static int computeLog(GLuint value)
{
int i;
i = 0;
/* Error! */
if (value == 0) return -1;
for (;;) {
if (value & 1) {
/* Error ! */
if (value != 1) return -1;
return i;
}
value = value >> 1;
i++;
}
}
/*
** Compute the nearest power of 2 number. This algorithm is a little
** strange, but it works quite well.
*/
static int nearestPower(GLuint value)
{
int i;
i = 1;
/* Error! */
if (value == 0) return -1;
for (;;) {
if (value == 1) {
return i;
} else if (value == 3) {
return i*4;
}
value = value >> 1;
i *= 2;
}
}
#define __GLU_SWAP_2_BYTES(s)\
(GLushort)(((GLushort)((const GLubyte*)(s))[1])<<8 | ((const GLubyte*)(s))[0])
#define __GLU_SWAP_4_BYTES(s)\
(GLuint)(((GLuint)((const GLubyte*)(s))[3])<<24 | \
((GLuint)((const GLubyte*)(s))[2])<<16 | \
((GLuint)((const GLubyte*)(s))[1])<<8 | ((const GLubyte*)(s))[0])
static void halveImage(GLint components, GLuint width, GLuint height,
const GLushort *datain, GLushort *dataout)
{
int i, j, k;
int newwidth, newheight;
int delta;
GLushort *s;
const GLushort *t;
newwidth = width / 2;
newheight = height / 2;
delta = width * components;
s = dataout;
t = datain;
/* Piece o' cake! */
for (i = 0; i < newheight; i++) {
for (j = 0; j < newwidth; j++) {
for (k = 0; k < components; k++) {
s[0] = (t[0] + t[components] + t[delta] +
t[delta+components] + 2) / 4;
s++; t++;
}
t += components;
}
t += delta;
}
}
static void halveImage_ubyte(GLint components, GLuint width, GLuint height,
const GLubyte *datain, GLubyte *dataout,
GLint element_size, GLint ysize, GLint group_size)
{
int i, j, k;
int newwidth, newheight;
int padBytes;
GLubyte *s;
const char *t;
/* handle case where there is only 1 column/row */
if (width == 1 || height == 1) {
assert( !(width == 1 && height == 1) ); /* can't be 1x1 */
halve1Dimage_ubyte(components,width,height,datain,dataout,
element_size,ysize,group_size);
return;
}
newwidth = width / 2;
newheight = height / 2;
padBytes = ysize - (width*group_size);
s = dataout;
t = (const char *)datain;
/* Piece o' cake! */
for (i = 0; i < newheight; i++) {
for (j = 0; j < newwidth; j++) {
for (k = 0; k < components; k++) {
s[0] = (*(const GLubyte*)t +
*(const GLubyte*)(t+group_size) +
*(const GLubyte*)(t+ysize) +
*(const GLubyte*)(t+ysize+group_size) + 2) / 4;
s++; t += element_size;
}
t += group_size;
}
t += padBytes;
t += ysize;
}
}
/* */
static void halve1Dimage_ubyte(GLint components, GLuint width, GLuint height,
const GLubyte *dataIn, GLubyte *dataOut,
GLint element_size, GLint ysize,
GLint group_size)
{
GLint halfWidth= width / 2;
GLint halfHeight= height / 2;
const char *src= (const char *) dataIn;
GLubyte *dest= dataOut;
int jj;
assert(width == 1 || height == 1); /* must be 1D */
assert(width != height); /* can't be square */
if (height == 1) { /* 1 row */
assert(width != 1); /* widthxheight can't be 1x1 */
halfHeight= 1;
for (jj= 0; jj< halfWidth; jj++) {
int kk;
for (kk= 0; kk< components; kk++) {
*dest= (*(const GLubyte*)src +
*(const GLubyte*)(src+group_size)) / 2;
src+= element_size;
dest++;
}
src+= group_size; /* skip to next 2 */
}
{
int padBytes= ysize - (width*group_size);
src+= padBytes; /* for assertion only */
}
}
else if (width == 1) { /* 1 column */
int padBytes= ysize - (width * group_size);
assert(height != 1); /* widthxheight can't be 1x1 */
halfWidth= 1;
/* one vertical column with possible pad bytes per row */
/* average two at a time */
for (jj= 0; jj< halfHeight; jj++) {
int kk;
for (kk= 0; kk< components; kk++) {
*dest= (*(const GLubyte*)src + *(const GLubyte*)(src+ysize)) / 2;
src+= element_size;
dest++;
}
src+= padBytes; /* add pad bytes, if any, to get to end to row */
src+= ysize;
}
}
assert(src == &((const char *)dataIn)[ysize*height]);
assert((char *)dest == &((char *)dataOut)
[components * element_size * halfWidth * halfHeight]);
} /* halve1Dimage_ubyte() */
static void halveImage_byte(GLint components, GLuint width, GLuint height,
const GLbyte *datain, GLbyte *dataout,
GLint element_size,
GLint ysize, GLint group_size)
{
int i, j, k;
int newwidth, newheight;
int padBytes;
GLbyte *s;
const char *t;
/* handle case where there is only 1 column/row */
if (width == 1 || height == 1) {
assert( !(width == 1 && height == 1) ); /* can't be 1x1 */
halve1Dimage_byte(components,width,height,datain,dataout,
element_size,ysize,group_size);
return;
}
newwidth = width / 2;
newheight = height / 2;
padBytes = ysize - (width*group_size);
s = dataout;
t = (const char *)datain;
/* Piece o' cake! */
for (i = 0; i < newheight; i++) {
for (j = 0; j < newwidth; j++) {
for (k = 0; k < components; k++) {
s[0] = (*(const GLbyte*)t +
*(const GLbyte*)(t+group_size) +
*(const GLbyte*)(t+ysize) +
*(const GLbyte*)(t+ysize+group_size) + 2) / 4;
s++; t += element_size;
}
t += group_size;
}
t += padBytes;
t += ysize;
}
}
static void halve1Dimage_byte(GLint components, GLuint width, GLuint height,
const GLbyte *dataIn, GLbyte *dataOut,
GLint element_size,GLint ysize, GLint group_size)
{
GLint halfWidth= width / 2;
GLint halfHeight= height / 2;
const char *src= (const char *) dataIn;
GLbyte *dest= dataOut;
int jj;
assert(width == 1 || height == 1); /* must be 1D */
assert(width != height); /* can't be square */
if (height == 1) { /* 1 row */
assert(width != 1); /* widthxheight can't be 1x1 */
halfHeight= 1;
for (jj= 0; jj< halfWidth; jj++) {
int kk;
for (kk= 0; kk< components; kk++) {
*dest= (*(const GLbyte*)src + *(const GLbyte*)(src+group_size)) / 2;
src+= element_size;
dest++;
}
src+= group_size; /* skip to next 2 */
}
{
int padBytes= ysize - (width*group_size);
src+= padBytes; /* for assertion only */
}
}
else if (width == 1) { /* 1 column */
int padBytes= ysize - (width * group_size);
assert(height != 1); /* widthxheight can't be 1x1 */
halfWidth= 1;
/* one vertical column with possible pad bytes per row */
/* average two at a time */
for (jj= 0; jj< halfHeight; jj++) {
int kk;
for (kk= 0; kk< components; kk++) {
*dest= (*(const GLbyte*)src + *(const GLbyte*)(src+ysize)) / 2;
src+= element_size;
dest++;
}
src+= padBytes; /* add pad bytes, if any, to get to end to row */
src+= ysize;
}
assert(src == &((const char *)dataIn)[ysize*height]);
}
assert((char *)dest == &((char *)dataOut)
[components * element_size * halfWidth * halfHeight]);
} /* halve1Dimage_byte() */
static void halveImage_ushort(GLint components, GLuint width, GLuint height,
const GLushort *datain, GLushort *dataout,
GLint element_size, GLint ysize, GLint group_size,
GLint myswap_bytes)
{
int i, j, k;
int newwidth, newheight;
int padBytes;
GLushort *s;
const char *t;
/* handle case where there is only 1 column/row */
if (width == 1 || height == 1) {
assert( !(width == 1 && height == 1) ); /* can't be 1x1 */
halve1Dimage_ushort(components,width,height,datain,dataout,
element_size,ysize,group_size, myswap_bytes);
return;
}
newwidth = width / 2;
newheight = height / 2;
padBytes = ysize - (width*group_size);
s = dataout;
t = (const char *)datain;
/* Piece o' cake! */
if (!myswap_bytes)
for (i = 0; i < newheight; i++) {
for (j = 0; j < newwidth; j++) {
for (k = 0; k < components; k++) {
s[0] = (*(const GLushort*)t +
*(const GLushort*)(t+group_size) +
*(const GLushort*)(t+ysize) +
*(const GLushort*)(t+ysize+group_size) + 2) / 4;
s++; t += element_size;
}
t += group_size;
}
t += padBytes;
t += ysize;
}
else
for (i = 0; i < newheight; i++) {
for (j = 0; j < newwidth; j++) {
for (k = 0; k < components; k++) {
s[0] = (__GLU_SWAP_2_BYTES(t) +
__GLU_SWAP_2_BYTES(t+group_size) +
__GLU_SWAP_2_BYTES(t+ysize) +
__GLU_SWAP_2_BYTES(t+ysize+group_size)+ 2)/4;
s++; t += element_size;
}
t += group_size;
}
t += padBytes;
t += ysize;
}
}
static void halve1Dimage_ushort(GLint components, GLuint width, GLuint height,
const GLushort *dataIn, GLushort *dataOut,
GLint element_size, GLint ysize,
GLint group_size, GLint myswap_bytes)
{
GLint halfWidth= width / 2;
GLint halfHeight= height / 2;
const char *src= (const char *) dataIn;
GLushort *dest= dataOut;
int jj;
assert(width == 1 || height == 1); /* must be 1D */
assert(width != height); /* can't be square */
if (height == 1) { /* 1 row */
assert(width != 1); /* widthxheight can't be 1x1 */
halfHeight= 1;
for (jj= 0; jj< halfWidth; jj++) {
int kk;
for (kk= 0; kk< components; kk++) {
#define BOX2 2
GLushort ushort[BOX2];
if (myswap_bytes) {
ushort[0]= __GLU_SWAP_2_BYTES(src);
ushort[1]= __GLU_SWAP_2_BYTES(src+group_size);
}
else {
ushort[0]= *(const GLushort*)src;
ushort[1]= *(const GLushort*)(src+group_size);
}
*dest= (ushort[0] + ushort[1]) / 2;
src+= element_size;
dest++;
}
src+= group_size; /* skip to next 2 */
}
{
int padBytes= ysize - (width*group_size);
src+= padBytes; /* for assertion only */
}
}
else if (width == 1) { /* 1 column */
int padBytes= ysize - (width * group_size);
assert(height != 1); /* widthxheight can't be 1x1 */
halfWidth= 1;
/* one vertical column with possible pad bytes per row */
/* average two at a time */
for (jj= 0; jj< halfHeight; jj++) {
int kk;
for (kk= 0; kk< components; kk++) {
#define BOX2 2
GLushort ushort[BOX2];
if (myswap_bytes) {
ushort[0]= __GLU_SWAP_2_BYTES(src);
ushort[1]= __GLU_SWAP_2_BYTES(src+ysize);
}
else {
ushort[0]= *(const GLushort*)src;
ushort[1]= *(const GLushort*)(src+ysize);
}
*dest= (ushort[0] + ushort[1]) / 2;
src+= element_size;
dest++;
}
src+= padBytes; /* add pad bytes, if any, to get to end to row */
src+= ysize;
}
assert(src == &((const char *)dataIn)[ysize*height]);
}
assert((char *)dest == &((char *)dataOut)
[components * element_size * halfWidth * halfHeight]);
} /* halve1Dimage_ushort() */
static void halveImage_short(GLint components, GLuint width, GLuint height,
const GLshort *datain, GLshort *dataout,
GLint element_size, GLint ysize, GLint group_size,
GLint myswap_bytes)
{
int i, j, k;
int newwidth, newheight;
int padBytes;
GLshort *s;
const char *t;
/* handle case where there is only 1 column/row */
if (width == 1 || height == 1) {
assert( !(width == 1 && height == 1) ); /* can't be 1x1 */
halve1Dimage_short(components,width,height,datain,dataout,
element_size,ysize,group_size, myswap_bytes);
return;
}
newwidth = width / 2;
newheight = height / 2;
padBytes = ysize - (width*group_size);
s = dataout;
t = (const char *)datain;
/* Piece o' cake! */
if (!myswap_bytes)
for (i = 0; i < newheight; i++) {
for (j = 0; j < newwidth; j++) {
for (k = 0; k < components; k++) {
s[0] = (*(const GLshort*)t +
*(const GLshort*)(t+group_size) +
*(const GLshort*)(t+ysize) +
*(const GLshort*)(t+ysize+group_size) + 2) / 4;
s++; t += element_size;
}
t += group_size;
}
t += padBytes;
t += ysize;
}
else
for (i = 0; i < newheight; i++) {
for (j = 0; j < newwidth; j++) {
for (k = 0; k < components; k++) {
GLushort b;
GLint buf;
b = __GLU_SWAP_2_BYTES(t);
buf = *(const GLshort*)&b;
b = __GLU_SWAP_2_BYTES(t+group_size);
buf += *(const GLshort*)&b;
b = __GLU_SWAP_2_BYTES(t+ysize);
buf += *(const GLshort*)&b;
b = __GLU_SWAP_2_BYTES(t+ysize+group_size);
buf += *(const GLshort*)&b;
s[0] = (GLshort)((buf+2)/4);
s++; t += element_size;
}
t += group_size;
}
t += padBytes;
t += ysize;
}
}
static void halve1Dimage_short(GLint components, GLuint width, GLuint height,
const GLshort *dataIn, GLshort *dataOut,
GLint element_size, GLint ysize,
GLint group_size, GLint myswap_bytes)
{
GLint halfWidth= width / 2;
GLint halfHeight= height / 2;
const char *src= (const char *) dataIn;
GLshort *dest= dataOut;
int jj;
assert(width == 1 || height == 1); /* must be 1D */
assert(width != height); /* can't be square */
if (height == 1) { /* 1 row */
assert(width != 1); /* widthxheight can't be 1x1 */
halfHeight= 1;
for (jj= 0; jj< halfWidth; jj++) {
int kk;
for (kk= 0; kk< components; kk++) {
#define BOX2 2
GLshort sshort[BOX2];
if (myswap_bytes) {
sshort[0]= __GLU_SWAP_2_BYTES(src);
sshort[1]= __GLU_SWAP_2_BYTES(src+group_size);
}
else {
sshort[0]= *(const GLshort*)src;
sshort[1]= *(const GLshort*)(src+group_size);
}
*dest= (sshort[0] + sshort[1]) / 2;
src+= element_size;
dest++;
}
src+= group_size; /* skip to next 2 */
}
{
int padBytes= ysize - (width*group_size);
src+= padBytes; /* for assertion only */
}
}
else if (width == 1) { /* 1 column */
int padBytes= ysize - (width * group_size);
assert(height != 1); /* widthxheight can't be 1x1 */
halfWidth= 1;
/* one vertical column with possible pad bytes per row */
/* average two at a time */
for (jj= 0; jj< halfHeight; jj++) {
int kk;
for (kk= 0; kk< components; kk++) {
#define BOX2 2
GLshort sshort[BOX2];
if (myswap_bytes) {
sshort[0]= __GLU_SWAP_2_BYTES(src);
sshort[1]= __GLU_SWAP_2_BYTES(src+ysize);
}
else {
sshort[0]= *(const GLshort*)src;
sshort[1]= *(const GLshort*)(src+ysize);
}
*dest= (sshort[0] + sshort[1]) / 2;
src+= element_size;
dest++;
}
src+= padBytes; /* add pad bytes, if any, to get to end to row */
src+= ysize;
}
assert(src == &((const char *)dataIn)[ysize*height]);
}
assert((char *)dest == &((char *)dataOut)
[components * element_size * halfWidth * halfHeight]);
} /* halve1Dimage_short() */
static void halveImage_uint(GLint components, GLuint width, GLuint height,
const GLuint *datain, GLuint *dataout,
GLint element_size, GLint ysize, GLint group_size,
GLint myswap_bytes)
{
int i, j, k;
int newwidth, newheight;
int padBytes;
GLuint *s;
const char *t;
/* handle case where there is only 1 column/row */
if (width == 1 || height == 1) {
assert( !(width == 1 && height == 1) ); /* can't be 1x1 */
halve1Dimage_uint(components,width,height,datain,dataout,
element_size,ysize,group_size, myswap_bytes);
return;
}
newwidth = width / 2;
newheight = height / 2;
padBytes = ysize - (width*group_size);
s = dataout;
t = (const char *)datain;
/* Piece o' cake! */
if (!myswap_bytes)
for (i = 0; i < newheight; i++) {
for (j = 0; j < newwidth; j++) {
for (k = 0; k < components; k++) {
/* need to cast to double to hold large unsigned ints */
s[0] = ((double)*(const GLuint*)t +
(double)*(const GLuint*)(t+group_size) +
(double)*(const GLuint*)(t+ysize) +
(double)*(const GLuint*)(t+ysize+group_size))/4 + 0.5;
s++; t += element_size;
}
t += group_size;
}
t += padBytes;
t += ysize;
}
else
for (i = 0; i < newheight; i++) {
for (j = 0; j < newwidth; j++) {
for (k = 0; k < components; k++) {
/* need to cast to double to hold large unsigned ints */
GLdouble buf;
buf = (GLdouble)__GLU_SWAP_4_BYTES(t) +
(GLdouble)__GLU_SWAP_4_BYTES(t+group_size) +
(GLdouble)__GLU_SWAP_4_BYTES(t+ysize) +
(GLdouble)__GLU_SWAP_4_BYTES(t+ysize+group_size);
s[0] = (GLuint)(buf/4 + 0.5);
s++; t += element_size;
}
t += group_size;
}
t += padBytes;
t += ysize;
}
}
/* */
static void halve1Dimage_uint(GLint components, GLuint width, GLuint height,
const GLuint *dataIn, GLuint *dataOut,
GLint element_size, GLint ysize,
GLint group_size, GLint myswap_bytes)
{
GLint halfWidth= width / 2;
GLint halfHeight= height / 2;
const char *src= (const char *) dataIn;
GLuint *dest= dataOut;
int jj;
assert(width == 1 || height == 1); /* must be 1D */
assert(width != height); /* can't be square */
if (height == 1) { /* 1 row */
assert(width != 1); /* widthxheight can't be 1x1 */
halfHeight= 1;
for (jj= 0; jj< halfWidth; jj++) {
int kk;
for (kk= 0; kk< components; kk++) {
#define BOX2 2
GLuint uint[BOX2];
if (myswap_bytes) {
uint[0]= __GLU_SWAP_4_BYTES(src);
uint[1]= __GLU_SWAP_4_BYTES(src+group_size);
}
else {
uint[0]= *(const GLuint*)src;
uint[1]= *(const GLuint*)(src+group_size);
}
*dest= ((double)uint[0]+(double)uint[1])/2.0;
src+= element_size;
dest++;
}
src+= group_size; /* skip to next 2 */
}
{
int padBytes= ysize - (width*group_size);
src+= padBytes; /* for assertion only */
}
}
else if (width == 1) { /* 1 column */
int padBytes= ysize - (width * group_size);
assert(height != 1); /* widthxheight can't be 1x1 */
halfWidth= 1;
/* one vertical column with possible pad bytes per row */
/* average two at a time */
for (jj= 0; jj< halfHeight; jj++) {
int kk;
for (kk= 0; kk< components; kk++) {
#define BOX2 2
GLuint uint[BOX2];
if (myswap_bytes) {
uint[0]= __GLU_SWAP_4_BYTES(src);
uint[1]= __GLU_SWAP_4_BYTES(src+ysize);
}
else {
uint[0]= *(const GLuint*)src;
uint[1]= *(const GLuint*)(src+ysize);
}
*dest= ((double)uint[0]+(double)uint[1])/2.0;
src+= element_size;
dest++;
}
src+= padBytes; /* add pad bytes, if any, to get to end to row */
src+= ysize;
}
assert(src == &((const char *)dataIn)[ysize*height]);
}
assert((char *)dest == &((char *)dataOut)
[components * element_size * halfWidth * halfHeight]);
} /* halve1Dimage_uint() */
static void halveImage_int(GLint components, GLuint width, GLuint height,
const GLint *datain, GLint *dataout, GLint element_size,
GLint ysize, GLint group_size, GLint myswap_bytes)
{
int i, j, k;
int newwidth, newheight;
int padBytes;
GLint *s;
const char *t;
/* handle case where there is only 1 column/row */
if (width == 1 || height == 1) {
assert( !(width == 1 && height == 1) ); /* can't be 1x1 */
halve1Dimage_int(components,width,height,datain,dataout,
element_size,ysize,group_size, myswap_bytes);
return;
}
newwidth = width / 2;
newheight = height / 2;
padBytes = ysize - (width*group_size);
s = dataout;
t = (const char *)datain;
/* Piece o' cake! */
if (!myswap_bytes)
for (i = 0; i < newheight; i++) {
for (j = 0; j < newwidth; j++) {
for (k = 0; k < components; k++) {
s[0] = ((float)*(const GLint*)t +
(float)*(const GLint*)(t+group_size) +
(float)*(const GLint*)(t+ysize) +
(float)*(const GLint*)(t+ysize+group_size))/4 + 0.5;
s++; t += element_size;
}
t += group_size;
}
t += padBytes;
t += ysize;
}
else
for (i = 0; i < newheight; i++) {
for (j = 0; j < newwidth; j++) {
for (k = 0; k < components; k++) {
GLuint b;
GLfloat buf;
b = __GLU_SWAP_4_BYTES(t);
buf = *(GLint*)&b;
b = __GLU_SWAP_4_BYTES(t+group_size);
buf += *(GLint*)&b;
b = __GLU_SWAP_4_BYTES(t+ysize);
buf += *(GLint*)&b;
b = __GLU_SWAP_4_BYTES(t+ysize+group_size);
buf += *(GLint*)&b;
s[0] = (GLint)(buf/4 + 0.5);
s++; t += element_size;
}
t += group_size;
}
t += padBytes;
t += ysize;
}
}
/* */
static void halve1Dimage_int(GLint components, GLuint width, GLuint height,
const GLint *dataIn, GLint *dataOut,
GLint element_size, GLint ysize,
GLint group_size, GLint myswap_bytes)
{
GLint halfWidth= width / 2;
GLint halfHeight= height / 2;
const char *src= (const char *) dataIn;
GLint *dest= dataOut;
int jj;
assert(width == 1 || height == 1); /* must be 1D */
assert(width != height); /* can't be square */
if (height == 1) { /* 1 row */
assert(width != 1); /* widthxheight can't be 1x1 */
halfHeight= 1;
for (jj= 0; jj< halfWidth; jj++) {
int kk;
for (kk= 0; kk< components; kk++) {
#define BOX2 2
GLuint uint[BOX2];
if (myswap_bytes) {
uint[0]= __GLU_SWAP_4_BYTES(src);
uint[1]= __GLU_SWAP_4_BYTES(src+group_size);
}
else {
uint[0]= *(const GLuint*)src;
uint[1]= *(const GLuint*)(src+group_size);
}
*dest= ((float)uint[0]+(float)uint[1])/2.0;
src+= element_size;
dest++;
}
src+= group_size; /* skip to next 2 */
}
{
int padBytes= ysize - (width*group_size);
src+= padBytes; /* for assertion only */
}
}
else if (width == 1) { /* 1 column */
int padBytes= ysize - (width * group_size);
assert(height != 1); /* widthxheight can't be 1x1 */
halfWidth= 1;
/* one vertical column with possible pad bytes per row */
/* average two at a time */
for (jj= 0; jj< halfHeight; jj++) {
int kk;
for (kk= 0; kk< components; kk++) {
#define BOX2 2
GLuint uint[BOX2];
if (myswap_bytes) {
uint[0]= __GLU_SWAP_4_BYTES(src);
uint[1]= __GLU_SWAP_4_BYTES(src+ysize);
}
else {
uint[0]= *(const GLuint*)src;
uint[1]= *(const GLuint*)(src+ysize);
}
*dest= ((float)uint[0]+(float)uint[1])/2.0;
src+= element_size;
dest++;
}
src+= padBytes; /* add pad bytes, if any, to get to end to row */
src+= ysize;
}
assert(src == &((const char *)dataIn)[ysize*height]);
}
assert((char *)dest == &((char *)dataOut)
[components * element_size * halfWidth * halfHeight]);
} /* halve1Dimage_int() */
static void halveImage_float(GLint components, GLuint width, GLuint height,
const GLfloat *datain, GLfloat *dataout,
GLint element_size, GLint ysize, GLint group_size,
GLint myswap_bytes)
{
int i, j, k;
int newwidth, newheight;
int padBytes;
GLfloat *s;
const char *t;
/* handle case where there is only 1 column/row */
if (width == 1 || height == 1) {
assert( !(width == 1 && height == 1) ); /* can't be 1x1 */
halve1Dimage_float(components,width,height,datain,dataout,
element_size,ysize,group_size, myswap_bytes);
return;
}
newwidth = width / 2;
newheight = height / 2;
padBytes = ysize - (width*group_size);
s = dataout;
t = (const char *)datain;
/* Piece o' cake! */
if (!myswap_bytes)
for (i = 0; i < newheight; i++) {
for (j = 0; j < newwidth; j++) {
for (k = 0; k < components; k++) {
s[0] = (*(const GLfloat*)t +
*(const GLfloat*)(t+group_size) +
*(const GLfloat*)(t+ysize) +
*(const GLfloat*)(t+ysize+group_size)) / 4;
s++; t += element_size;
}
t += group_size;
}
t += padBytes;
t += ysize;
}
else
for (i = 0; i < newheight; i++) {
for (j = 0; j < newwidth; j++) {
for (k = 0; k < components; k++) {
union { GLuint b; GLfloat f; } swapbuf;
swapbuf.b = __GLU_SWAP_4_BYTES(t);
s[0] = swapbuf.f;
swapbuf.b = __GLU_SWAP_4_BYTES(t+group_size);
s[0] += swapbuf.f;
swapbuf.b = __GLU_SWAP_4_BYTES(t+ysize);
s[0] += swapbuf.f;
swapbuf.b = __GLU_SWAP_4_BYTES(t+ysize+group_size);
s[0] += swapbuf.f;
s[0] /= 4;
s++; t += element_size;
}
t += group_size;
}
t += padBytes;
t += ysize;
}
}
/* */
static void halve1Dimage_float(GLint components, GLuint width, GLuint height,
const GLfloat *dataIn, GLfloat *dataOut,
GLint element_size, GLint ysize,
GLint group_size, GLint myswap_bytes)
{
GLint halfWidth= width / 2;
GLint halfHeight= height / 2;
const char *src= (const char *) dataIn;
GLfloat *dest= dataOut;
int jj;
assert(width == 1 || height == 1); /* must be 1D */
assert(width != height); /* can't be square */
if (height == 1) { /* 1 row */
assert(width != 1); /* widthxheight can't be 1x1 */
halfHeight= 1;
for (jj= 0; jj< halfWidth; jj++) {
int kk;
for (kk= 0; kk< components; kk++) {
#define BOX2 2
GLfloat sfloat[BOX2];
if (myswap_bytes) {
sfloat[0]= __GLU_SWAP_4_BYTES(src);
sfloat[1]= __GLU_SWAP_4_BYTES(src+group_size);
}
else {
sfloat[0]= *(const GLfloat*)src;
sfloat[1]= *(const GLfloat*)(src+group_size);
}
*dest= (sfloat[0] + sfloat[1]) / 2.0;
src+= element_size;
dest++;
}
src+= group_size; /* skip to next 2 */
}
{
int padBytes= ysize - (width*group_size);
src+= padBytes; /* for assertion only */
}
}
else if (width == 1) { /* 1 column */
int padBytes= ysize - (width * group_size);
assert(height != 1); /* widthxheight can't be 1x1 */
halfWidth= 1;
/* one vertical column with possible pad bytes per row */
/* average two at a time */
for (jj= 0; jj< halfHeight; jj++) {
int kk;
for (kk= 0; kk< components; kk++) {
#define BOX2 2
GLfloat sfloat[BOX2];
if (myswap_bytes) {
sfloat[0]= __GLU_SWAP_4_BYTES(src);
sfloat[1]= __GLU_SWAP_4_BYTES(src+ysize);
}
else {
sfloat[0]= *(const GLfloat*)src;
sfloat[1]= *(const GLfloat*)(src+ysize);
}
*dest= (sfloat[0] + sfloat[1]) / 2.0;
src+= element_size;
dest++;
}
src+= padBytes; /* add pad bytes, if any, to get to end to row */
src+= ysize; /* skip to odd row */
}
}
assert(src == &((const char *)dataIn)[ysize*height]);
assert((char *)dest == &((char *)dataOut)
[components * element_size * halfWidth * halfHeight]);
} /* halve1Dimage_float() */
static void scale_internal(GLint components, GLint widthin, GLint heightin,
const GLushort *datain,
GLint widthout, GLint heightout,
GLushort *dataout)
{
float x, lowx, highx, convx, halfconvx;
float y, lowy, highy, convy, halfconvy;
float xpercent,ypercent;
float percent;
/* Max components in a format is 4, so... */
float totals[4];
float area;
int i,j,k,yint,xint,xindex,yindex;
int temp;
if (widthin == widthout*2 && heightin == heightout*2) {
halveImage(components, widthin, heightin, datain, dataout);
return;
}
convy = (float) heightin/heightout;
convx = (float) widthin/widthout;
halfconvx = convx/2;
halfconvy = convy/2;
for (i = 0; i < heightout; i++) {
y = convy * (i+0.5);
if (heightin > heightout) {
highy = y + halfconvy;
lowy = y - halfconvy;
} else {
highy = y + 0.5;
lowy = y - 0.5;
}
for (j = 0; j < widthout; j++) {
x = convx * (j+0.5);
if (widthin > widthout) {
highx = x + halfconvx;
lowx = x - halfconvx;
} else {
highx = x + 0.5;
lowx = x - 0.5;
}
/*
** Ok, now apply box filter to box that goes from (lowx, lowy)
** to (highx, highy) on input data into this pixel on output
** data.
*/
totals[0] = totals[1] = totals[2] = totals[3] = 0.0;
area = 0.0;
y = lowy;
yint = floor(y);
while (y < highy) {
yindex = (yint + heightin) % heightin;
if (highy < yint+1) {
ypercent = highy - y;
} else {
ypercent = yint+1 - y;
}
x = lowx;
xint = floor(x);
while (x < highx) {
xindex = (xint + widthin) % widthin;
if (highx < xint+1) {
xpercent = highx - x;
} else {
xpercent = xint+1 - x;
}
percent = xpercent * ypercent;
area += percent;
temp = (xindex + (yindex * widthin)) * components;
for (k = 0; k < components; k++) {
totals[k] += datain[temp + k] * percent;
}
xint++;
x = xint;
}
yint++;
y = yint;
}
temp = (j + (i * widthout)) * components;
for (k = 0; k < components; k++) {
/* totals[] should be rounded in the case of enlarging an RGB
* ramp when the type is 332 or 4444
*/
dataout[temp + k] = (totals[k]+0.5)/area;
}
}
}
}
static void scale_internal_ubyte(GLint components, GLint widthin,
GLint heightin, const GLubyte *datain,
GLint widthout, GLint heightout,
GLubyte *dataout, GLint element_size,
GLint ysize, GLint group_size)
{
float convx;
float convy;
float percent;
/* Max components in a format is 4, so... */
float totals[4];
float area;
int i,j,k,xindex;
const char *temp, *temp0;
const char *temp_index;
int outindex;
int lowx_int, highx_int, lowy_int, highy_int;
float x_percent, y_percent;
float lowx_float, highx_float, lowy_float, highy_float;
float convy_float, convx_float;
int convy_int, convx_int;
int l, m;
const char *left, *right;
if (widthin == widthout*2 && heightin == heightout*2) {
halveImage_ubyte(components, widthin, heightin,
(const GLubyte *)datain, (GLubyte *)dataout,
element_size, ysize, group_size);
return;
}
convy = (float) heightin/heightout;
convx = (float) widthin/widthout;
convy_int = floor(convy);
convy_float = convy - convy_int;
convx_int = floor(convx);
convx_float = convx - convx_int;
area = convx * convy;
lowy_int = 0;
lowy_float = 0;
highy_int = convy_int;
highy_float = convy_float;
for (i = 0; i < heightout; i++) {
/* Clamp here to be sure we don't read beyond input buffer. */
if (highy_int >= heightin)
highy_int = heightin - 1;
lowx_int = 0;
lowx_float = 0;
highx_int = convx_int;
highx_float = convx_float;
for (j = 0; j < widthout; j++) {
/*
** Ok, now apply box filter to box that goes from (lowx, lowy)
** to (highx, highy) on input data into this pixel on output
** data.
*/
totals[0] = totals[1] = totals[2] = totals[3] = 0.0;
/* calculate the value for pixels in the 1st row */
xindex = lowx_int*group_size;
if((highy_int>lowy_int) && (highx_int>lowx_int)) {
y_percent = 1-lowy_float;
temp = (const char *)datain + xindex + lowy_int * ysize;
percent = y_percent * (1-lowx_float);
for (k = 0, temp_index = temp; k < components;
k++, temp_index += element_size) {
totals[k] += (GLubyte)(*(temp_index)) * percent;
}
left = temp;
for(l = lowx_int+1; l < highx_int; l++) {
temp += group_size;
for (k = 0, temp_index = temp; k < components;
k++, temp_index += element_size) {
totals[k] += (GLubyte)(*(temp_index)) * y_percent;
}
}
temp += group_size;
right = temp;
percent = y_percent * highx_float;
for (k = 0, temp_index = temp; k < components;
k++, temp_index += element_size) {
totals[k] += (GLubyte)(*(temp_index)) * percent;
}
/* calculate the value for pixels in the last row */
y_percent = highy_float;
percent = y_percent * (1-lowx_float);
temp = (const char *)datain + xindex + highy_int * ysize;
for (k = 0, temp_index = temp; k < components;
k++, temp_index += element_size) {
totals[k] += (GLubyte)(*(temp_index)) * percent;
}
for(l = lowx_int+1; l < highx_int; l++) {
temp += group_size;
for (k = 0, temp_index = temp; k < components;
k++, temp_index += element_size) {
totals[k] += (GLubyte)(*(temp_index)) * y_percent;
}
}
temp += group_size;
percent = y_percent * highx_float;
for (k = 0, temp_index = temp; k < components;
k++, temp_index += element_size) {
totals[k] += (GLubyte)(*(temp_index)) * percent;
}
/* calculate the value for pixels in the 1st and last column */
for(m = lowy_int+1; m < highy_int; m++) {
left += ysize;
right += ysize;
for (k = 0; k < components;
k++, left += element_size, right += element_size) {
totals[k] += (GLubyte)(*(left))*(1-lowx_float)
+(GLubyte)(*(right))*highx_float;
}
}
} else if (highy_int > lowy_int) {
x_percent = highx_float - lowx_float;
percent = (1-lowy_float)*x_percent;
temp = (const char *)datain + xindex + lowy_int*ysize;
for (k = 0, temp_index = temp; k < components;
k++, temp_index += element_size) {
totals[k] += (GLubyte)(*(temp_index)) * percent;
}
for(m = lowy_int+1; m < highy_int; m++) {
temp += ysize;
for (k = 0, temp_index = temp; k < components;
k++, temp_index += element_size) {
totals[k] += (GLubyte)(*(temp_index)) * x_percent;
}
}
percent = x_percent * highy_float;
temp += ysize;
for (k = 0, temp_index = temp; k < components;
k++, temp_index += element_size) {
totals[k] += (GLubyte)(*(temp_index)) * percent;
}
} else if (highx_int > lowx_int) {
y_percent = highy_float - lowy_float;
percent = (1-lowx_float)*y_percent;
temp = (const char *)datain + xindex + lowy_int*ysize;
for (k = 0, temp_index = temp; k < components;
k++, temp_index += element_size) {
totals[k] += (GLubyte)(*(temp_index)) * percent;
}
for (l = lowx_int+1; l < highx_int; l++) {
temp += group_size;
for (k = 0, temp_index = temp; k < components;
k++, temp_index += element_size) {
totals[k] += (GLubyte)(*(temp_index)) * y_percent;
}
}
temp += group_size;
percent = y_percent * highx_float;
for (k = 0, temp_index = temp; k < components;
k++, temp_index += element_size) {
totals[k] += (GLubyte)(*(temp_index)) * percent;
}
} else {
percent = (highy_float-lowy_float)*(highx_float-lowx_float);
temp = (const char *)datain + xindex + lowy_int * ysize;
for (k = 0, temp_index = temp; k < components;
k++, temp_index += element_size) {
totals[k] += (GLubyte)(*(temp_index)) * percent;
}
}
/* this is for the pixels in the body */
temp0 = (const char *)datain + xindex + group_size +
(lowy_int+1)*ysize;
for (m = lowy_int+1; m < highy_int; m++) {
temp = temp0;
for(l = lowx_int+1; l < highx_int; l++) {
for (k = 0, temp_index = temp; k < components;
k++, temp_index += element_size) {
totals[k] += (GLubyte)(*(temp_index));
}
temp += group_size;
}
temp0 += ysize;
}
outindex = (j + (i * widthout)) * components;
for (k = 0; k < components; k++) {
dataout[outindex + k] = totals[k]/area;
/*printf("totals[%d] = %f\n", k, totals[k]);*/
}
lowx_int = highx_int;
lowx_float = highx_float;
highx_int += convx_int;
highx_float += convx_float;
if(highx_float > 1) {
highx_float -= 1.0;
highx_int++;
}
}
lowy_int = highy_int;
lowy_float = highy_float;
highy_int += convy_int;
highy_float += convy_float;
if(highy_float > 1) {
highy_float -= 1.0;
highy_int++;
}
}
}
static void scale_internal_byte(GLint components, GLint widthin,
GLint heightin, const GLbyte *datain,
GLint widthout, GLint heightout,
GLbyte *dataout, GLint element_size,
GLint ysize, GLint group_size)
{
float convx;
float convy;
float percent;
/* Max components in a format is 4, so... */
float totals[4];
float area;
int i,j,k,xindex;
const char *temp, *temp0;
const char *temp_index;
int outindex;
int lowx_int, highx_int, lowy_int, highy_int;
float x_percent, y_percent;
float lowx_float, highx_float, lowy_float, highy_float;
float convy_float, convx_float;
int convy_int, convx_int;
int l, m;
const char *left, *right;
if (widthin == widthout*2 && heightin == heightout*2) {
halveImage_byte(components, widthin, heightin,
(const GLbyte *)datain, (GLbyte *)dataout,
element_size, ysize, group_size);
return;
}
convy = (float) heightin/heightout;
convx = (float) widthin/widthout;
convy_int = floor(convy);
convy_float = convy - convy_int;
convx_int = floor(convx);
convx_float = convx - convx_int;
area = convx * convy;
lowy_int = 0;
lowy_float = 0;
highy_int = convy_int;
highy_float = convy_float;
for (i = 0; i < heightout; i++) {
/* Clamp here to be sure we don't read beyond input buffer. */
if (highy_int >= heightin)
highy_int = heightin - 1;
lowx_int = 0;
lowx_float = 0;
highx_int = convx_int;
highx_float = convx_float;
for (j = 0; j < widthout; j++) {
/*
** Ok, now apply box filter to box that goes from (lowx, lowy)
** to (highx, highy) on input data into this pixel on output
** data.
*/
totals[0] = totals[1] = totals[2] = totals[3] = 0.0;
/* calculate the value for pixels in the 1st row */
xindex = lowx_int*group_size;
if((highy_int>lowy_int) && (highx_int>lowx_int)) {
y_percent = 1-lowy_float;
temp = (const char *)datain + xindex + lowy_int * ysize;
percent = y_percent * (1-lowx_float);
for (k = 0, temp_index = temp; k < components;
k++, temp_index += element_size) {
totals[k] += (GLbyte)(*(temp_index)) * percent;
}
left = temp;
for(l = lowx_int+1; l < highx_int; l++) {
temp += group_size;
for (k = 0, temp_index = temp; k < components;
k++, temp_index += element_size) {
totals[k] += (GLbyte)(*(temp_index)) * y_percent;
}
}
temp += group_size;
right = temp;
percent = y_percent * highx_float;
for (k = 0, temp_index = temp; k < components;
k++, temp_index += element_size) {
totals[k] += (GLbyte)(*(temp_index)) * percent;
}
/* calculate the value for pixels in the last row */
y_percent = highy_float;
percent = y_percent * (1-lowx_float);
temp = (const char *)datain + xindex + highy_int * ysize;
for (k = 0, temp_index = temp; k < components;
k++, temp_index += element_size) {
totals[k] += (GLbyte)(*(temp_index)) * percent;
}
for(l = lowx_int+1; l < highx_int; l++) {
temp += group_size;
for (k = 0, temp_index = temp; k < components;
k++, temp_index += element_size) {
totals[k] += (GLbyte)(*(temp_index)) * y_percent;
}
}
temp += group_size;
percent = y_percent * highx_float;
for (k = 0, temp_index = temp; k < components;
k++, temp_index += element_size) {
totals[k] += (GLbyte)(*(temp_index)) * percent;
}
/* calculate the value for pixels in the 1st and last column */
for(m = lowy_int+1; m < highy_int; m++) {
left += ysize;
right += ysize;
for (k = 0; k < components;
k++, left += element_size, right += element_size) {
totals[k] += (GLbyte)(*(left))*(1-lowx_float)
+(GLbyte)(*(right))*highx_float;
}
}
} else if (highy_int > lowy_int) {
x_percent = highx_float - lowx_float;
percent = (1-lowy_float)*x_percent;
temp = (const char *)datain + xindex + lowy_int*ysize;
for (k = 0, temp_index = temp; k < components;
k++, temp_index += element_size) {
totals[k] += (GLbyte)(*(temp_index)) * percent;
}
for(m = lowy_int+1; m < highy_int; m++) {
temp += ysize;
for (k = 0, temp_index = temp; k < components;
k++, temp_index += element_size) {
totals[k] += (GLbyte)(*(temp_index)) * x_percent;
}
}
percent = x_percent * highy_float;
temp += ysize;
for (k = 0, temp_index = temp; k < components;
k++, temp_index += element_size) {
totals[k] += (GLbyte)(*(temp_index)) * percent;
}
} else if (highx_int > lowx_int) {
y_percent = highy_float - lowy_float;
percent = (1-lowx_float)*y_percent;
temp = (const char *)datain + xindex + lowy_int*ysize;
for (k = 0, temp_index = temp; k < components;
k++, temp_index += element_size) {
totals[k] += (GLbyte)(*(temp_index)) * percent;
}
for (l = lowx_int+1; l < highx_int; l++) {
temp += group_size;
for (k = 0, temp_index = temp; k < components;
k++, temp_index += element_size) {
totals[k] += (GLbyte)(*(temp_index)) * y_percent;
}
}
temp += group_size;
percent = y_percent * highx_float;
for (k = 0, temp_index = temp; k < components;
k++, temp_index += element_size) {
totals[k] += (GLbyte)(*(temp_index)) * percent;
}
} else {
percent = (highy_float-lowy_float)*(highx_float-lowx_float);
temp = (const char *)datain + xindex + lowy_int * ysize;
for (k = 0, temp_index = temp; k < components;
k++, temp_index += element_size) {
totals[k] += (GLbyte)(*(temp_index)) * percent;
}
}
/* this is for the pixels in the body */
temp0 = (const char *)datain + xindex + group_size +
(lowy_int+1)*ysize;
for (m = lowy_int+1; m < highy_int; m++) {
temp = temp0;
for(l = lowx_int+1; l < highx_int; l++) {
for (k = 0, temp_index = temp; k < components;
k++, temp_index += element_size) {
totals[k] += (GLbyte)(*(temp_index));
}
temp += group_size;
}
temp0 += ysize;
}
outindex = (j + (i * widthout)) * components;
for (k = 0; k < components; k++) {
dataout[outindex + k] = totals[k]/area;
/*printf("totals[%d] = %f\n", k, totals[k]);*/
}
lowx_int = highx_int;
lowx_float = highx_float;
highx_int += convx_int;
highx_float += convx_float;
if(highx_float > 1) {
highx_float -= 1.0;
highx_int++;
}
}
lowy_int = highy_int;
lowy_float = highy_float;
highy_int += convy_int;
highy_float += convy_float;
if(highy_float > 1) {
highy_float -= 1.0;
highy_int++;
}
}
}
static void scale_internal_ushort(GLint components, GLint widthin,
GLint heightin, const GLushort *datain,
GLint widthout, GLint heightout,
GLushort *dataout, GLint element_size,
GLint ysize, GLint group_size,
GLint myswap_bytes)
{
float convx;
float convy;
float percent;
/* Max components in a format is 4, so... */
float totals[4];
float area;
int i,j,k,xindex;
const char *temp, *temp0;
const char *temp_index;
int outindex;
int lowx_int, highx_int, lowy_int, highy_int;
float x_percent, y_percent;
float lowx_float, highx_float, lowy_float, highy_float;
float convy_float, convx_float;
int convy_int, convx_int;
int l, m;
const char *left, *right;
if (widthin == widthout*2 && heightin == heightout*2) {
halveImage_ushort(components, widthin, heightin,
(const GLushort *)datain, (GLushort *)dataout,
element_size, ysize, group_size, myswap_bytes);
return;
}
convy = (float) heightin/heightout;
convx = (float) widthin/widthout;
convy_int = floor(convy);
convy_float = convy - convy_int;
convx_int = floor(convx);
convx_float = convx - convx_int;
area = convx * convy;
lowy_int = 0;
lowy_float = 0;
highy_int = convy_int;
highy_float = convy_float;
for (i = 0; i < heightout; i++) {
/* Clamp here to be sure we don't read beyond input buffer. */
if (highy_int >= heightin)
highy_int = heightin - 1;
lowx_int = 0;
lowx_float = 0;
highx_int = convx_int;
highx_float = convx_float;
for (j = 0; j < widthout; j++) {
/*
** Ok, now apply box filter to box that goes from (lowx, lowy)
** to (highx, highy) on input data into this pixel on output
** data.
*/
totals[0] = totals[1] = totals[2] = totals[3] = 0.0;
/* calculate the value for pixels in the 1st row */
xindex = lowx_int*group_size;
if((highy_int>lowy_int) && (highx_int>lowx_int)) {
y_percent = 1-lowy_float;
temp = (const char *)datain + xindex + lowy_int * ysize;
percent = y_percent * (1-lowx_float);
for (k = 0, temp_index = temp; k < components;
k++, temp_index += element_size) {
if (myswap_bytes) {
totals[k] += __GLU_SWAP_2_BYTES(temp_index) * percent;
} else {
totals[k] += *(const GLushort*)temp_index * percent;
}
}
left = temp;
for(l = lowx_int+1; l < highx_int; l++) {
temp += group_size;
for (k = 0, temp_index = temp; k < components;
k++, temp_index += element_size) {
if (myswap_bytes) {
totals[k] +=
__GLU_SWAP_2_BYTES(temp_index) * y_percent;
} else {
totals[k] += *(const GLushort*)temp_index * y_percent;
}
}
}
temp += group_size;
right = temp;
percent = y_percent * highx_float;
for (k = 0, temp_index = temp; k < components;
k++, temp_index += element_size) {
if (myswap_bytes) {
totals[k] += __GLU_SWAP_2_BYTES(temp_index) * percent;
} else {
totals[k] += *(const GLushort*)temp_index * percent;
}
}
/* calculate the value for pixels in the last row */
y_percent = highy_float;
percent = y_percent * (1-lowx_float);
temp = (const char *)datain + xindex + highy_int * ysize;
for (k = 0, temp_index = temp; k < components;
k++, temp_index += element_size) {
if (myswap_bytes) {
totals[k] += __GLU_SWAP_2_BYTES(temp_index) * percent;
} else {
totals[k] += *(const GLushort*)temp_index * percent;
}
}
for(l = lowx_int+1; l < highx_int; l++) {
temp += group_size;
for (k = 0, temp_index = temp; k < components;
k++, temp_index += element_size) {
if (myswap_bytes) {
totals[k] +=
__GLU_SWAP_2_BYTES(temp_index) * y_percent;
} else {
totals[k] += *(const GLushort*)temp_index * y_percent;
}
}
}
temp += group_size;
percent = y_percent * highx_float;
for (k = 0, temp_index = temp; k < components;
k++, temp_index += element_size) {
if (myswap_bytes) {
totals[k] += __GLU_SWAP_2_BYTES(temp_index) * percent;
} else {
totals[k] += *(const GLushort*)temp_index * percent;
}
}
/* calculate the value for pixels in the 1st and last column */
for(m = lowy_int+1; m < highy_int; m++) {
left += ysize;
right += ysize;
for (k = 0; k < components;
k++, left += element_size, right += element_size) {
if (myswap_bytes) {
totals[k] +=
__GLU_SWAP_2_BYTES(left) * (1-lowx_float) +
__GLU_SWAP_2_BYTES(right) * highx_float;
} else {
totals[k] += *(const GLushort*)left * (1-lowx_float)
+ *(const GLushort*)right * highx_float;
}
}
}
} else if (highy_int > lowy_int) {
x_percent = highx_float - lowx_float;
percent = (1-lowy_float)*x_percent;
temp = (const char *)datain + xindex + lowy_int*ysize;
for (k = 0, temp_index = temp; k < components;
k++, temp_index += element_size) {
if (myswap_bytes) {
totals[k] += __GLU_SWAP_2_BYTES(temp_index) * percent;
} else {
totals[k] += *(const GLushort*)temp_index * percent;
}
}
for(m = lowy_int+1; m < highy_int; m++) {
temp += ysize;
for (k = 0, temp_index = temp; k < components;
k++, temp_index += element_size) {
if (myswap_bytes) {
totals[k] +=
__GLU_SWAP_2_BYTES(temp_index) * x_percent;
} else {
totals[k] += *(const GLushort*)temp_index * x_percent;
}
}
}
percent = x_percent * highy_float;
temp += ysize;
for (k = 0, temp_index = temp; k < components;
k++, temp_index += element_size) {
if (myswap_bytes) {
totals[k] += __GLU_SWAP_2_BYTES(temp_index) * percent;
} else {
totals[k] += *(const GLushort*)temp_index * percent;
}
}
} else if (highx_int > lowx_int) {
y_percent = highy_float - lowy_float;
percent = (1-lowx_float)*y_percent;
temp = (const char *)datain + xindex + lowy_int*ysize;
for (k = 0, temp_index = temp; k < components;
k++, temp_index += element_size) {
if (myswap_bytes) {
totals[k] += __GLU_SWAP_2_BYTES(temp_index) * percent;
} else {
totals[k] += *(const GLushort*)temp_index * percent;
}
}
for (l = lowx_int+1; l < highx_int; l++) {
temp += group_size;
for (k = 0, temp_index = temp; k < components;
k++, temp_index += element_size) {
if (myswap_bytes) {
totals[k] +=
__GLU_SWAP_2_BYTES(temp_index) * y_percent;
} else {
totals[k] += *(const GLushort*)temp_index * y_percent;
}
}
}
temp += group_size;
percent = y_percent * highx_float;
for (k = 0, temp_index = temp; k < components;
k++, temp_index += element_size) {
if (myswap_bytes) {
totals[k] += __GLU_SWAP_2_BYTES(temp_index) * percent;
} else {
totals[k] += *(const GLushort*)temp_index * percent;
}
}
} else {
percent = (highy_float-lowy_float)*(highx_float-lowx_float);
temp = (const char *)datain + xindex + lowy_int * ysize;
for (k = 0, temp_index = temp; k < components;
k++, temp_index += element_size) {
if (myswap_bytes) {
totals[k] += __GLU_SWAP_2_BYTES(temp_index) * percent;
} else {
totals[k] += *(const GLushort*)temp_index * percent;
}
}
}
/* this is for the pixels in the body */
temp0 = (const char *)datain + xindex + group_size +
(lowy_int+1)*ysize;
for (m = lowy_int+1; m < highy_int; m++) {
temp = temp0;
for(l = lowx_int+1; l < highx_int; l++) {
for (k = 0, temp_index = temp; k < components;
k++, temp_index += element_size) {
if (myswap_bytes) {
totals[k] += __GLU_SWAP_2_BYTES(temp_index);
} else {
totals[k] += *(const GLushort*)temp_index;
}
}
temp += group_size;
}
temp0 += ysize;
}
outindex = (j + (i * widthout)) * components;
for (k = 0; k < components; k++) {
dataout[outindex + k] = totals[k]/area;
/*printf("totals[%d] = %f\n", k, totals[k]);*/
}
lowx_int = highx_int;
lowx_float = highx_float;
highx_int += convx_int;
highx_float += convx_float;
if(highx_float > 1) {
highx_float -= 1.0;
highx_int++;
}
}
lowy_int = highy_int;
lowy_float = highy_float;
highy_int += convy_int;
highy_float += convy_float;
if(highy_float > 1) {
highy_float -= 1.0;
highy_int++;
}
}
}
static void scale_internal_short(GLint components, GLint widthin,
GLint heightin, const GLshort *datain,
GLint widthout, GLint heightout,
GLshort *dataout, GLint element_size,
GLint ysize, GLint group_size,
GLint myswap_bytes)
{
float convx;
float convy;
float percent;
/* Max components in a format is 4, so... */
float totals[4];
float area;
int i,j,k,xindex;
const char *temp, *temp0;
const char *temp_index;
int outindex;
int lowx_int, highx_int, lowy_int, highy_int;
float x_percent, y_percent;
float lowx_float, highx_float, lowy_float, highy_float;
float convy_float, convx_float;
int convy_int, convx_int;
int l, m;
const char *left, *right;
GLushort swapbuf; /* unsigned buffer */
if (widthin == widthout*2 && heightin == heightout*2) {
halveImage_short(components, widthin, heightin,
(const GLshort *)datain, (GLshort *)dataout,
element_size, ysize, group_size, myswap_bytes);
return;
}
convy = (float) heightin/heightout;
convx = (float) widthin/widthout;
convy_int = floor(convy);
convy_float = convy - convy_int;
convx_int = floor(convx);
convx_float = convx - convx_int;
area = convx * convy;
lowy_int = 0;
lowy_float = 0;
highy_int = convy_int;
highy_float = convy_float;
for (i = 0; i < heightout; i++) {
/* Clamp here to be sure we don't read beyond input buffer. */
if (highy_int >= heightin)
highy_int = heightin - 1;
lowx_int = 0;
lowx_float = 0;
highx_int = convx_int;
highx_float = convx_float;
for (j = 0; j < widthout; j++) {
/*
** Ok, now apply box filter to box that goes from (lowx, lowy)
** to (highx, highy) on input data into this pixel on output
** data.
*/
totals[0] = totals[1] = totals[2] = totals[3] = 0.0;
/* calculate the value for pixels in the 1st row */
xindex = lowx_int*group_size;
if((highy_int>lowy_int) && (highx_int>lowx_int)) {
y_percent = 1-lowy_float;
temp = (const char *)datain + xindex + lowy_int * ysize;
percent = y_percent * (1-lowx_float);
for (k = 0, temp_index = temp; k < components;
k++, temp_index += element_size) {
if (myswap_bytes) {
swapbuf = __GLU_SWAP_2_BYTES(temp_index);
totals[k] += *(const GLshort*)&swapbuf * percent;
} else {
totals[k] += *(const GLshort*)temp_index * percent;
}
}
left = temp;
for(l = lowx_int+1; l < highx_int; l++) {
temp += group_size;
for (k = 0, temp_index = temp; k < components;
k++, temp_index += element_size) {
if (myswap_bytes) {
swapbuf = __GLU_SWAP_2_BYTES(temp_index);
totals[k] += *(const GLshort*)&swapbuf * y_percent;
} else {
totals[k] += *(const GLshort*)temp_index * y_percent;
}
}
}
temp += group_size;
right = temp;
percent = y_percent * highx_float;
for (k = 0, temp_index = temp; k < components;
k++, temp_index += element_size) {
if (myswap_bytes) {
swapbuf = __GLU_SWAP_2_BYTES(temp_index);
totals[k] += *(const GLshort*)&swapbuf * percent;
} else {
totals[k] += *(const GLshort*)temp_index * percent;
}
}
/* calculate the value for pixels in the last row */
y_percent = highy_float;
percent = y_percent * (1-lowx_float);
temp = (const char *)datain + xindex + highy_int * ysize;
for (k = 0, temp_index = temp; k < components;
k++, temp_index += element_size) {
if (myswap_bytes) {
swapbuf = __GLU_SWAP_2_BYTES(temp_index);
totals[k] += *(const GLshort*)&swapbuf * percent;
} else {
totals[k] += *(const GLshort*)temp_index * percent;
}
}
for(l = lowx_int+1; l < highx_int; l++) {
temp += group_size;
for (k = 0, temp_index = temp; k < components;
k++, temp_index += element_size) {
if (myswap_bytes) {
swapbuf = __GLU_SWAP_2_BYTES(temp_index);
totals[k] += *(const GLshort*)&swapbuf * y_percent;
} else {
totals[k] += *(const GLshort*)temp_index * y_percent;
}
}
}
temp += group_size;
percent = y_percent * highx_float;
for (k = 0, temp_index = temp; k < components;
k++, temp_index += element_size) {
if (myswap_bytes) {
swapbuf = __GLU_SWAP_2_BYTES(temp_index);
totals[k] += *(const GLshort*)&swapbuf * percent;
} else {
totals[k] += *(const GLshort*)temp_index * percent;
}
}
/* calculate the value for pixels in the 1st and last column */
for(m = lowy_int+1; m < highy_int; m++) {
left += ysize;
right += ysize;
for (k = 0; k < components;
k++, left += element_size, right += element_size) {
if (myswap_bytes) {
swapbuf = __GLU_SWAP_2_BYTES(left);
totals[k] += *(const GLshort*)&swapbuf * (1-lowx_float);
swapbuf = __GLU_SWAP_2_BYTES(right);
totals[k] += *(const GLshort*)&swapbuf * highx_float;
} else {
totals[k] += *(const GLshort*)left * (1-lowx_float)
+ *(const GLshort*)right * highx_float;
}
}
}
} else if (highy_int > lowy_int) {
x_percent = highx_float - lowx_float;
percent = (1-lowy_float)*x_percent;
temp = (const char *)datain + xindex + lowy_int*ysize;
for (k = 0, temp_index = temp; k < components;
k++, temp_index += element_size) {
if (myswap_bytes) {
swapbuf = __GLU_SWAP_2_BYTES(temp_index);
totals[k] += *(const GLshort*)&swapbuf * percent;
} else {
totals[k] += *(const GLshort*)temp_index * percent;
}
}
for(m = lowy_int+1; m < highy_int; m++) {
temp += ysize;
for (k = 0, temp_index = temp; k < components;
k++, temp_index += element_size) {
if (myswap_bytes) {
swapbuf = __GLU_SWAP_2_BYTES(temp_index);
totals[k] += *(const GLshort*)&swapbuf * x_percent;
} else {
totals[k] += *(const GLshort*)temp_index * x_percent;
}
}
}
percent = x_percent * highy_float;
temp += ysize;
for (k = 0, temp_index = temp; k < components;
k++, temp_index += element_size) {
if (myswap_bytes) {
swapbuf = __GLU_SWAP_2_BYTES(temp_index);
totals[k] += *(const GLshort*)&swapbuf * percent;
} else {
totals[k] += *(const GLshort*)temp_index * percent;
}
}
} else if (highx_int > lowx_int) {
y_percent = highy_float - lowy_float;
percent = (1-lowx_float)*y_percent;
temp = (const char *)datain + xindex + lowy_int*ysize;
for (k = 0, temp_index = temp; k < components;
k++, temp_index += element_size) {
if (myswap_bytes) {
swapbuf = __GLU_SWAP_2_BYTES(temp_index);
totals[k] += *(const GLshort*)&swapbuf * percent;
} else {
totals[k] += *(const GLshort*)temp_index * percent;
}
}
for (l = lowx_int+1; l < highx_int; l++) {
temp += group_size;
for (k = 0, temp_index = temp; k < components;
k++, temp_index += element_size) {
if (myswap_bytes) {
swapbuf = __GLU_SWAP_2_BYTES(temp_index);
totals[k] += *(const GLshort*)&swapbuf * y_percent;
} else {
totals[k] += *(const GLshort*)temp_index * y_percent;
}
}
}
temp += group_size;
percent = y_percent * highx_float;
for (k = 0, temp_index = temp; k < components;
k++, temp_index += element_size) {
if (myswap_bytes) {
swapbuf = __GLU_SWAP_2_BYTES(temp_index);
totals[k] += *(const GLshort*)&swapbuf * percent;
} else {
totals[k] += *(const GLshort*)temp_index * percent;
}
}
} else {
percent = (highy_float-lowy_float)*(highx_float-lowx_float);
temp = (const char *)datain + xindex + lowy_int * ysize;
for (k = 0, temp_index = temp; k < components;
k++, temp_index += element_size) {
if (myswap_bytes) {
swapbuf = __GLU_SWAP_2_BYTES(temp_index);
totals[k] += *(const GLshort*)&swapbuf * percent;
} else {
totals[k] += *(const GLshort*)temp_index * percent;
}
}
}
/* this is for the pixels in the body */
temp0 = (const char *)datain + xindex + group_size +
(lowy_int+1)*ysize;
for (m = lowy_int+1; m < highy_int; m++) {
temp = temp0;
for(l = lowx_int+1; l < highx_int; l++) {
for (k = 0, temp_index = temp; k < components;
k++, temp_index += element_size) {
if (myswap_bytes) {
swapbuf = __GLU_SWAP_2_BYTES(temp_index);
totals[k] += *(const GLshort*)&swapbuf;
} else {
totals[k] += *(const GLshort*)temp_index;
}
}
temp += group_size;
}
temp0 += ysize;
}
outindex = (j + (i * widthout)) * components;
for (k = 0; k < components; k++) {
dataout[outindex + k] = totals[k]/area;
/*printf("totals[%d] = %f\n", k, totals[k]);*/
}
lowx_int = highx_int;
lowx_float = highx_float;
highx_int += convx_int;
highx_float += convx_float;
if(highx_float > 1) {
highx_float -= 1.0;
highx_int++;
}
}
lowy_int = highy_int;
lowy_float = highy_float;
highy_int += convy_int;
highy_float += convy_float;
if(highy_float > 1) {
highy_float -= 1.0;
highy_int++;
}
}
}
static void scale_internal_uint(GLint components, GLint widthin,
GLint heightin, const GLuint *datain,
GLint widthout, GLint heightout,
GLuint *dataout, GLint element_size,
GLint ysize, GLint group_size,
GLint myswap_bytes)
{
float convx;
float convy;
float percent;
/* Max components in a format is 4, so... */
float totals[4];
float area;
int i,j,k,xindex;
const char *temp, *temp0;
const char *temp_index;
int outindex;
int lowx_int, highx_int, lowy_int, highy_int;
float x_percent, y_percent;
float lowx_float, highx_float, lowy_float, highy_float;
float convy_float, convx_float;
int convy_int, convx_int;
int l, m;
const char *left, *right;
if (widthin == widthout*2 && heightin == heightout*2) {
halveImage_uint(components, widthin, heightin,
(const GLuint *)datain, (GLuint *)dataout,
element_size, ysize, group_size, myswap_bytes);
return;
}
convy = (float) heightin/heightout;
convx = (float) widthin/widthout;
convy_int = floor(convy);
convy_float = convy - convy_int;
convx_int = floor(convx);
convx_float = convx - convx_int;
area = convx * convy;
lowy_int = 0;
lowy_float = 0;
highy_int = convy_int;
highy_float = convy_float;
for (i = 0; i < heightout; i++) {
/* Clamp here to be sure we don't read beyond input buffer. */
if (highy_int >= heightin)
highy_int = heightin - 1;
lowx_int = 0;
lowx_float = 0;
highx_int = convx_int;
highx_float = convx_float;
for (j = 0; j < widthout; j++) {
/*
** Ok, now apply box filter to box that goes from (lowx, lowy)
** to (highx, highy) on input data into this pixel on output
** data.
*/
totals[0] = totals[1] = totals[2] = totals[3] = 0.0;
/* calculate the value for pixels in the 1st row */
xindex = lowx_int*group_size;
if((highy_int>lowy_int) && (highx_int>lowx_int)) {
y_percent = 1-lowy_float;
temp = (const char *)datain + xindex + lowy_int * ysize;
percent = y_percent * (1-lowx_float);
for (k = 0, temp_index = temp; k < components;
k++, temp_index += element_size) {
if (myswap_bytes) {
totals[k] += __GLU_SWAP_4_BYTES(temp_index) * percent;
} else {
totals[k] += *(const GLuint*)temp_index * percent;
}
}
left = temp;
for(l = lowx_int+1; l < highx_int; l++) {
temp += group_size;
for (k = 0, temp_index = temp; k < components;
k++, temp_index += element_size) {
if (myswap_bytes) {
totals[k] +=
__GLU_SWAP_4_BYTES(temp_index) * y_percent;
} else {
totals[k] += *(const GLuint*)temp_index * y_percent;
}
}
}
temp += group_size;
right = temp;
percent = y_percent * highx_float;
for (k = 0, temp_index = temp; k < components;
k++, temp_index += element_size) {
if (myswap_bytes) {
totals[k] += __GLU_SWAP_4_BYTES(temp_index) * percent;
} else {
totals[k] += *(const GLuint*)temp_index * percent;
}
}
/* calculate the value for pixels in the last row */
y_percent = highy_float;
percent = y_percent * (1-lowx_float);
temp = (const char *)datain + xindex + highy_int * ysize;
for (k = 0, temp_index = temp; k < components;
k++, temp_index += element_size) {
if (myswap_bytes) {
totals[k] += __GLU_SWAP_4_BYTES(temp_index) * percent;
} else {
totals[k] += *(const GLuint*)temp_index * percent;
}
}
for(l = lowx_int+1; l < highx_int; l++) {
temp += group_size;
for (k = 0, temp_index = temp; k < components;
k++, temp_index += element_size) {
if (myswap_bytes) {
totals[k] +=
__GLU_SWAP_4_BYTES(temp_index) * y_percent;
} else {
totals[k] += *(const GLuint*)temp_index * y_percent;
}
}
}
temp += group_size;
percent = y_percent * highx_float;
for (k = 0, temp_index = temp; k < components;
k++, temp_index += element_size) {
if (myswap_bytes) {
totals[k] += __GLU_SWAP_4_BYTES(temp_index) * percent;
} else {
totals[k] += *(const GLuint*)temp_index * percent;
}
}
/* calculate the value for pixels in the 1st and last column */
for(m = lowy_int+1; m < highy_int; m++) {
left += ysize;
right += ysize;
for (k = 0; k < components;
k++, left += element_size, right += element_size) {
if (myswap_bytes) {
totals[k] +=
__GLU_SWAP_4_BYTES(left) * (1-lowx_float)
+ __GLU_SWAP_4_BYTES(right) * highx_float;
} else {
totals[k] += *(const GLuint*)left * (1-lowx_float)
+ *(const GLuint*)right * highx_float;
}
}
}
} else if (highy_int > lowy_int) {
x_percent = highx_float - lowx_float;
percent = (1-lowy_float)*x_percent;
temp = (const char *)datain + xindex + lowy_int*ysize;
for (k = 0, temp_index = temp; k < components;
k++, temp_index += element_size) {
if (myswap_bytes) {
totals[k] += __GLU_SWAP_4_BYTES(temp_index) * percent;
} else {
totals[k] += *(const GLuint*)temp_index * percent;
}
}
for(m = lowy_int+1; m < highy_int; m++) {
temp += ysize;
for (k = 0, temp_index = temp; k < components;
k++, temp_index += element_size) {
if (myswap_bytes) {
totals[k] +=
__GLU_SWAP_4_BYTES(temp_index) * x_percent;
} else {
totals[k] += *(const GLuint*)temp_index * x_percent;
}
}
}
percent = x_percent * highy_float;
temp += ysize;
for (k = 0, temp_index = temp; k < components;
k++, temp_index += element_size) {
if (myswap_bytes) {
totals[k] += __GLU_SWAP_4_BYTES(temp_index) * percent;
} else {
totals[k] += *(const GLuint*)temp_index * percent;
}
}
} else if (highx_int > lowx_int) {
y_percent = highy_float - lowy_float;
percent = (1-lowx_float)*y_percent;
temp = (const char *)datain + xindex + lowy_int*ysize;
for (k = 0, temp_index = temp; k < components;
k++, temp_index += element_size) {
if (myswap_bytes) {
totals[k] += __GLU_SWAP_4_BYTES(temp_index) * percent;
} else {
totals[k] += *(const GLuint*)temp_index * percent;
}
}
for (l = lowx_int+1; l < highx_int; l++) {
temp += group_size;
for (k = 0, temp_index = temp; k < components;
k++, temp_index += element_size) {
if (myswap_bytes) {
totals[k] +=
__GLU_SWAP_4_BYTES(temp_index) * y_percent;
} else {
totals[k] += *(const GLuint*)temp_index * y_percent;
}
}
}
temp += group_size;
percent = y_percent * highx_float;
for (k = 0, temp_index = temp; k < components;
k++, temp_index += element_size) {
if (myswap_bytes) {
totals[k] += __GLU_SWAP_4_BYTES(temp_index) * percent;
} else {
totals[k] += *(const GLuint*)temp_index * percent;
}
}
} else {
percent = (highy_float-lowy_float)*(highx_float-lowx_float);
temp = (const char *)datain + xindex + lowy_int * ysize;
for (k = 0, temp_index = temp; k < components;
k++, temp_index += element_size) {
if (myswap_bytes) {
totals[k] += __GLU_SWAP_4_BYTES(temp_index) * percent;
} else {
totals[k] += *(const GLuint*)temp_index * percent;
}
}
}
/* this is for the pixels in the body */
temp0 = (const char *)datain + xindex + group_size +
(lowy_int+1)*ysize;
for (m = lowy_int+1; m < highy_int; m++) {
temp = temp0;
for(l = lowx_int+1; l < highx_int; l++) {
for (k = 0, temp_index = temp; k < components;
k++, temp_index += element_size) {
if (myswap_bytes) {
totals[k] += __GLU_SWAP_4_BYTES(temp_index);
} else {
totals[k] += *(const GLuint*)temp_index;
}
}
temp += group_size;
}
temp0 += ysize;
}
outindex = (j + (i * widthout)) * components;
for (k = 0; k < components; k++) {
/* clamp at UINT_MAX */
float value= totals[k]/area;
if (value >= (float) UINT_MAX) { /* need '=' */
dataout[outindex + k] = UINT_MAX;
}
else dataout[outindex + k] = value;
}
lowx_int = highx_int;
lowx_float = highx_float;
highx_int += convx_int;
highx_float += convx_float;
if(highx_float > 1) {
highx_float -= 1.0;
highx_int++;
}
}
lowy_int = highy_int;
lowy_float = highy_float;
highy_int += convy_int;
highy_float += convy_float;
if(highy_float > 1) {
highy_float -= 1.0;
highy_int++;
}
}
}
static void scale_internal_int(GLint components, GLint widthin,
GLint heightin, const GLint *datain,
GLint widthout, GLint heightout,
GLint *dataout, GLint element_size,
GLint ysize, GLint group_size,
GLint myswap_bytes)
{
float convx;
float convy;
float percent;
/* Max components in a format is 4, so... */
float totals[4];
float area;
int i,j,k,xindex;
const char *temp, *temp0;
const char *temp_index;
int outindex;
int lowx_int, highx_int, lowy_int, highy_int;
float x_percent, y_percent;
float lowx_float, highx_float, lowy_float, highy_float;
float convy_float, convx_float;
int convy_int, convx_int;
int l, m;
const char *left, *right;
GLuint swapbuf; /* unsigned buffer */
if (widthin == widthout*2 && heightin == heightout*2) {
halveImage_int(components, widthin, heightin,
(const GLint *)datain, (GLint *)dataout,
element_size, ysize, group_size, myswap_bytes);
return;
}
convy = (float) heightin/heightout;
convx = (float) widthin/widthout;
convy_int = floor(convy);
convy_float = convy - convy_int;
convx_int = floor(convx);
convx_float = convx - convx_int;
area = convx * convy;
lowy_int = 0;
lowy_float = 0;
highy_int = convy_int;
highy_float = convy_float;
for (i = 0; i < heightout; i++) {
/* Clamp here to be sure we don't read beyond input buffer. */
if (highy_int >= heightin)
highy_int = heightin - 1;
lowx_int = 0;
lowx_float = 0;
highx_int = convx_int;
highx_float = convx_float;
for (j = 0; j < widthout; j++) {
/*
** Ok, now apply box filter to box that goes from (lowx, lowy)
** to (highx, highy) on input data into this pixel on output
** data.
*/
totals[0] = totals[1] = totals[2] = totals[3] = 0.0;
/* calculate the value for pixels in the 1st row */
xindex = lowx_int*group_size;
if((highy_int>lowy_int) && (highx_int>lowx_int)) {
y_percent = 1-lowy_float;
temp = (const char *)datain + xindex + lowy_int * ysize;
percent = y_percent * (1-lowx_float);
for (k = 0, temp_index = temp; k < components;
k++, temp_index += element_size) {
if (myswap_bytes) {
swapbuf = __GLU_SWAP_4_BYTES(temp_index);
totals[k] += *(const GLint*)&swapbuf * percent;
} else {
totals[k] += *(const GLint*)temp_index * percent;
}
}
left = temp;
for(l = lowx_int+1; l < highx_int; l++) {
temp += group_size;
for (k = 0, temp_index = temp; k < components;
k++, temp_index += element_size) {
if (myswap_bytes) {
swapbuf = __GLU_SWAP_4_BYTES(temp_index);
totals[k] += *(const GLint*)&swapbuf * y_percent;
} else {
totals[k] += *(const GLint*)temp_index * y_percent;
}
}
}
temp += group_size;
right = temp;
percent = y_percent * highx_float;
for (k = 0, temp_index = temp; k < components;
k++, temp_index += element_size) {
if (myswap_bytes) {
swapbuf = __GLU_SWAP_4_BYTES(temp_index);
totals[k] += *(const GLint*)&swapbuf * percent;
} else {
totals[k] += *(const GLint*)temp_index * percent;
}
}
/* calculate the value for pixels in the last row */
y_percent = highy_float;
percent = y_percent * (1-lowx_float);
temp = (const char *)datain + xindex + highy_int * ysize;
for (k = 0, temp_index = temp; k < components;
k++, temp_index += element_size) {
if (myswap_bytes) {
swapbuf = __GLU_SWAP_4_BYTES(temp_index);
totals[k] += *(const GLint*)&swapbuf * percent;
} else {
totals[k] += *(const GLint*)temp_index * percent;
}
}
for(l = lowx_int+1; l < highx_int; l++) {
temp += group_size;
for (k = 0, temp_index = temp; k < components;
k++, temp_index += element_size) {
if (myswap_bytes) {
swapbuf = __GLU_SWAP_4_BYTES(temp_index);
totals[k] += *(const GLint*)&swapbuf * y_percent;
} else {
totals[k] += *(const GLint*)temp_index * y_percent;
}
}
}
temp += group_size;
percent = y_percent * highx_float;
for (k = 0, temp_index = temp; k < components;
k++, temp_index += element_size) {
if (myswap_bytes) {
swapbuf = __GLU_SWAP_4_BYTES(temp_index);
totals[k] += *(const GLint*)&swapbuf * percent;
} else {
totals[k] += *(const GLint*)temp_index * percent;
}
}
/* calculate the value for pixels in the 1st and last column */
for(m = lowy_int+1; m < highy_int; m++) {
left += ysize;
right += ysize;
for (k = 0; k < components;
k++, left += element_size, right += element_size) {
if (myswap_bytes) {
swapbuf = __GLU_SWAP_4_BYTES(left);
totals[k] += *(const GLint*)&swapbuf * (1-lowx_float);
swapbuf = __GLU_SWAP_4_BYTES(right);
totals[k] += *(const GLint*)&swapbuf * highx_float;
} else {
totals[k] += *(const GLint*)left * (1-lowx_float)
+ *(const GLint*)right * highx_float;
}
}
}
} else if (highy_int > lowy_int) {
x_percent = highx_float - lowx_float;
percent = (1-lowy_float)*x_percent;
temp = (const char *)datain + xindex + lowy_int*ysize;
for (k = 0, temp_index = temp; k < components;
k++, temp_index += element_size) {
if (myswap_bytes) {
swapbuf = __GLU_SWAP_4_BYTES(temp_index);
totals[k] += *(const GLint*)&swapbuf * percent;
} else {
totals[k] += *(const GLint*)temp_index * percent;
}
}
for(m = lowy_int+1; m < highy_int; m++) {
temp += ysize;
for (k = 0, temp_index = temp; k < components;
k++, temp_index += element_size) {
if (myswap_bytes) {
swapbuf = __GLU_SWAP_4_BYTES(temp_index);
totals[k] += *(const GLint*)&swapbuf * x_percent;
} else {
totals[k] += *(const GLint*)temp_index * x_percent;
}
}
}
percent = x_percent * highy_float;
temp += ysize;
for (k = 0, temp_index = temp; k < components;
k++, temp_index += element_size) {
if (myswap_bytes) {
swapbuf = __GLU_SWAP_4_BYTES(temp_index);
totals[k] += *(const GLint*)&swapbuf * percent;
} else {
totals[k] += *(const GLint*)temp_index * percent;
}
}
} else if (highx_int > lowx_int) {
y_percent = highy_float - lowy_float;
percent = (1-lowx_float)*y_percent;
temp = (const char *)datain + xindex + lowy_int*ysize;
for (k = 0, temp_index = temp; k < components;
k++, temp_index += element_size) {
if (myswap_bytes) {
swapbuf = __GLU_SWAP_4_BYTES(temp_index);
totals[k] += *(const GLint*)&swapbuf * percent;
} else {
totals[k] += *(const GLint*)temp_index * percent;
}
}
for (l = lowx_int+1; l < highx_int; l++) {
temp += group_size;
for (k = 0, temp_index = temp; k < components;
k++, temp_index += element_size) {
if (myswap_bytes) {
swapbuf = __GLU_SWAP_4_BYTES(temp_index);
totals[k] += *(const GLint*)&swapbuf * y_percent;
} else {
totals[k] += *(const GLint*)temp_index * y_percent;
}
}
}
temp += group_size;
percent = y_percent * highx_float;
for (k = 0, temp_index = temp; k < components;
k++, temp_index += element_size) {
if (myswap_bytes) {
swapbuf = __GLU_SWAP_4_BYTES(temp_index);
totals[k] += *(const GLint*)&swapbuf * percent;
} else {
totals[k] += *(const GLint*)temp_index * percent;
}
}
} else {
percent = (highy_float-lowy_float)*(highx_float-lowx_float);
temp = (const char *)datain + xindex + lowy_int * ysize;
for (k = 0, temp_index = temp; k < components;
k++, temp_index += element_size) {
if (myswap_bytes) {
swapbuf = __GLU_SWAP_4_BYTES(temp_index);
totals[k] += *(const GLint*)&swapbuf * percent;
} else {
totals[k] += *(const GLint*)temp_index * percent;
}
}
}
/* this is for the pixels in the body */
temp0 = (const char *)datain + xindex + group_size +
(lowy_int+1)*ysize;
for (m = lowy_int+1; m < highy_int; m++) {
temp = temp0;
for(l = lowx_int+1; l < highx_int; l++) {
for (k = 0, temp_index = temp; k < components;
k++, temp_index += element_size) {
if (myswap_bytes) {
swapbuf = __GLU_SWAP_4_BYTES(temp_index);
totals[k] += *(const GLint*)&swapbuf;
} else {
totals[k] += *(const GLint*)temp_index;
}
}
temp += group_size;
}
temp0 += ysize;
}
outindex = (j + (i * widthout)) * components;
for (k = 0; k < components; k++) {
dataout[outindex + k] = totals[k]/area;
/*printf("totals[%d] = %f\n", k, totals[k]);*/
}
lowx_int = highx_int;
lowx_float = highx_float;
highx_int += convx_int;
highx_float += convx_float;
if(highx_float > 1) {
highx_float -= 1.0;
highx_int++;
}
}
lowy_int = highy_int;
lowy_float = highy_float;
highy_int += convy_int;
highy_float += convy_float;
if(highy_float > 1) {
highy_float -= 1.0;
highy_int++;
}
}
}
static void scale_internal_float(GLint components, GLint widthin,
GLint heightin, const GLfloat *datain,
GLint widthout, GLint heightout,
GLfloat *dataout, GLint element_size,
GLint ysize, GLint group_size,
GLint myswap_bytes)
{
float convx;
float convy;
float percent;
/* Max components in a format is 4, so... */
float totals[4];
float area;
int i,j,k,xindex;
const char *temp, *temp0;
const char *temp_index;
int outindex;
int lowx_int, highx_int, lowy_int, highy_int;
float x_percent, y_percent;
float lowx_float, highx_float, lowy_float, highy_float;
float convy_float, convx_float;
int convy_int, convx_int;
int l, m;
const char *left, *right;
union { GLuint b; GLfloat f; } swapbuf;
if (widthin == widthout*2 && heightin == heightout*2) {
halveImage_float(components, widthin, heightin,
(const GLfloat *)datain, (GLfloat *)dataout,
element_size, ysize, group_size, myswap_bytes);
return;
}
convy = (float) heightin/heightout;
convx = (float) widthin/widthout;
convy_int = floor(convy);
convy_float = convy - convy_int;
convx_int = floor(convx);
convx_float = convx - convx_int;
area = convx * convy;
lowy_int = 0;
lowy_float = 0;
highy_int = convy_int;
highy_float = convy_float;
for (i = 0; i < heightout; i++) {
/* Clamp here to be sure we don't read beyond input buffer. */
if (highy_int >= heightin)
highy_int = heightin - 1;
lowx_int = 0;
lowx_float = 0;
highx_int = convx_int;
highx_float = convx_float;
for (j = 0; j < widthout; j++) {
/*
** Ok, now apply box filter to box that goes from (lowx, lowy)
** to (highx, highy) on input data into this pixel on output
** data.
*/
totals[0] = totals[1] = totals[2] = totals[3] = 0.0;
/* calculate the value for pixels in the 1st row */
xindex = lowx_int*group_size;
if((highy_int>lowy_int) && (highx_int>lowx_int)) {
y_percent = 1-lowy_float;
temp = (const char *)datain + xindex + lowy_int * ysize;
percent = y_percent * (1-lowx_float);
for (k = 0, temp_index = temp; k < components;
k++, temp_index += element_size) {
if (myswap_bytes) {
swapbuf.b = __GLU_SWAP_4_BYTES(temp_index);
totals[k] += swapbuf.f * percent;
} else {
totals[k] += *(const GLfloat*)temp_index * percent;
}
}
left = temp;
for(l = lowx_int+1; l < highx_int; l++) {
temp += group_size;
for (k = 0, temp_index = temp; k < components;
k++, temp_index += element_size) {
if (myswap_bytes) {
swapbuf.b = __GLU_SWAP_4_BYTES(temp_index);
totals[k] += swapbuf.f * y_percent;
} else {
totals[k] += *(const GLfloat*)temp_index * y_percent;
}
}
}
temp += group_size;
right = temp;
percent = y_percent * highx_float;
for (k = 0, temp_index = temp; k < components;
k++, temp_index += element_size) {
if (myswap_bytes) {
swapbuf.b = __GLU_SWAP_4_BYTES(temp_index);
totals[k] += swapbuf.f * percent;
} else {
totals[k] += *(const GLfloat*)temp_index * percent;
}
}
/* calculate the value for pixels in the last row */
y_percent = highy_float;
percent = y_percent * (1-lowx_float);
temp = (const char *)datain + xindex + highy_int * ysize;
for (k = 0, temp_index = temp; k < components;
k++, temp_index += element_size) {
if (myswap_bytes) {
swapbuf.b = __GLU_SWAP_4_BYTES(temp_index);
totals[k] += swapbuf.f * percent;
} else {
totals[k] += *(const GLfloat*)temp_index * percent;
}
}
for(l = lowx_int+1; l < highx_int; l++) {
temp += group_size;
for (k = 0, temp_index = temp; k < components;
k++, temp_index += element_size) {
if (myswap_bytes) {
swapbuf.b = __GLU_SWAP_4_BYTES(temp_index);
totals[k] += swapbuf.f * y_percent;
} else {
totals[k] += *(const GLfloat*)temp_index * y_percent;
}
}
}
temp += group_size;
percent = y_percent * highx_float;
for (k = 0, temp_index = temp; k < components;
k++, temp_index += element_size) {
if (myswap_bytes) {
swapbuf.b = __GLU_SWAP_4_BYTES(temp_index);
totals[k] += swapbuf.f * percent;
} else {
totals[k] += *(const GLfloat*)temp_index * percent;
}
}
/* calculate the value for pixels in the 1st and last column */
for(m = lowy_int+1; m < highy_int; m++) {
left += ysize;
right += ysize;
for (k = 0; k < components;
k++, left += element_size, right += element_size) {
if (myswap_bytes) {
swapbuf.b = __GLU_SWAP_4_BYTES(left);
totals[k] += swapbuf.f * (1-lowx_float);
swapbuf.b = __GLU_SWAP_4_BYTES(right);
totals[k] += swapbuf.f * highx_float;
} else {
totals[k] += *(const GLfloat*)left * (1-lowx_float)
+ *(const GLfloat*)right * highx_float;
}
}
}
} else if (highy_int > lowy_int) {
x_percent = highx_float - lowx_float;
percent = (1-lowy_float)*x_percent;
temp = (const char *)datain + xindex + lowy_int*ysize;
for (k = 0, temp_index = temp; k < components;
k++, temp_index += element_size) {
if (myswap_bytes) {
swapbuf.b = __GLU_SWAP_4_BYTES(temp_index);
totals[k] += swapbuf.f * percent;
} else {
totals[k] += *(const GLfloat*)temp_index * percent;
}
}
for(m = lowy_int+1; m < highy_int; m++) {
temp += ysize;
for (k = 0, temp_index = temp; k < components;
k++, temp_index += element_size) {
if (myswap_bytes) {
swapbuf.b = __GLU_SWAP_4_BYTES(temp_index);
totals[k] += swapbuf.f * x_percent;
} else {
totals[k] += *(const GLfloat*)temp_index * x_percent;
}
}
}
percent = x_percent * highy_float;
temp += ysize;
for (k = 0, temp_index = temp; k < components;
k++, temp_index += element_size) {
if (myswap_bytes) {
swapbuf.b = __GLU_SWAP_4_BYTES(temp_index);
totals[k] += swapbuf.f * percent;
} else {
totals[k] += *(const GLfloat*)temp_index * percent;
}
}
} else if (highx_int > lowx_int) {
y_percent = highy_float - lowy_float;
percent = (1-lowx_float)*y_percent;
temp = (const char *)datain + xindex + lowy_int*ysize;
for (k = 0, temp_index = temp; k < components;
k++, temp_index += element_size) {
if (myswap_bytes) {
swapbuf.b = __GLU_SWAP_4_BYTES(temp_index);
totals[k] += swapbuf.f * percent;
} else {
totals[k] += *(const GLfloat*)temp_index * percent;
}
}
for (l = lowx_int+1; l < highx_int; l++) {
temp += group_size;
for (k = 0, temp_index = temp; k < components;
k++, temp_index += element_size) {
if (myswap_bytes) {
swapbuf.b = __GLU_SWAP_4_BYTES(temp_index);
totals[k] += swapbuf.f * y_percent;
} else {
totals[k] += *(const GLfloat*)temp_index * y_percent;
}
}
}
temp += group_size;
percent = y_percent * highx_float;
for (k = 0, temp_index = temp; k < components;
k++, temp_index += element_size) {
if (myswap_bytes) {
swapbuf.b = __GLU_SWAP_4_BYTES(temp_index);
totals[k] += swapbuf.f * percent;
} else {
totals[k] += *(const GLfloat*)temp_index * percent;
}
}
} else {
percent = (highy_float-lowy_float)*(highx_float-lowx_float);
temp = (const char *)datain + xindex + lowy_int * ysize;
for (k = 0, temp_index = temp; k < components;
k++, temp_index += element_size) {
if (myswap_bytes) {
swapbuf.b = __GLU_SWAP_4_BYTES(temp_index);
totals[k] += swapbuf.f * percent;
} else {
totals[k] += *(const GLfloat*)temp_index * percent;
}
}
}
/* this is for the pixels in the body */
temp0 = (const char *)datain + xindex + group_size +
(lowy_int+1)*ysize;
for (m = lowy_int+1; m < highy_int; m++) {
temp = temp0;
for(l = lowx_int+1; l < highx_int; l++) {
for (k = 0, temp_index = temp; k < components;
k++, temp_index += element_size) {
if (myswap_bytes) {
swapbuf.b = __GLU_SWAP_4_BYTES(temp_index);
totals[k] += swapbuf.f;
} else {
totals[k] += *(const GLfloat*)temp_index;
}
}
temp += group_size;
}
temp0 += ysize;
}
outindex = (j + (i * widthout)) * components;
for (k = 0; k < components; k++) {
dataout[outindex + k] = totals[k]/area;
/*printf("totals[%d] = %f\n", k, totals[k]);*/
}
lowx_int = highx_int;
lowx_float = highx_float;
highx_int += convx_int;
highx_float += convx_float;
if(highx_float > 1) {
highx_float -= 1.0;
highx_int++;
}
}
lowy_int = highy_int;
lowy_float = highy_float;
highy_int += convy_int;
highy_float += convy_float;
if(highy_float > 1) {
highy_float -= 1.0;
highy_int++;
}
}
}
static int checkMipmapArgs(GLenum internalFormat, GLenum format, GLenum type)
{
if (!legalFormat(format) || !legalType(type)) {
return GLU_INVALID_ENUM;
}
if (format == GL_STENCIL_INDEX) {
return GLU_INVALID_ENUM;
}
if (!isLegalFormatForPackedPixelType(format, type)) {
return GLU_INVALID_OPERATION;
}
return 0;
} /* checkMipmapArgs() */
static GLboolean legalFormat(GLenum format)
{
switch(format) {
case GL_COLOR_INDEX:
case GL_STENCIL_INDEX:
case GL_DEPTH_COMPONENT:
case GL_RED:
case GL_GREEN:
case GL_BLUE:
case GL_ALPHA:
case GL_RGB:
case GL_RGBA:
case GL_LUMINANCE:
case GL_LUMINANCE_ALPHA:
case GL_BGR:
case GL_BGRA:
return GL_TRUE;
default:
return GL_FALSE;
}
}
static GLboolean legalType(GLenum type)
{
switch(type) {
case GL_BITMAP:
case GL_BYTE:
case GL_UNSIGNED_BYTE:
case GL_SHORT:
case GL_UNSIGNED_SHORT:
case GL_INT:
case GL_UNSIGNED_INT:
case GL_FLOAT:
case GL_UNSIGNED_BYTE_3_3_2:
case GL_UNSIGNED_BYTE_2_3_3_REV:
case GL_UNSIGNED_SHORT_5_6_5:
case GL_UNSIGNED_SHORT_5_6_5_REV:
case GL_UNSIGNED_SHORT_4_4_4_4:
case GL_UNSIGNED_SHORT_4_4_4_4_REV:
case GL_UNSIGNED_SHORT_5_5_5_1:
case GL_UNSIGNED_SHORT_1_5_5_5_REV:
case GL_UNSIGNED_INT_8_8_8_8:
case GL_UNSIGNED_INT_8_8_8_8_REV:
case GL_UNSIGNED_INT_10_10_10_2:
case GL_UNSIGNED_INT_2_10_10_10_REV:
return GL_TRUE;
default:
return GL_FALSE;
}
}
/* */
static GLboolean isTypePackedPixel(GLenum type)
{
assert(legalType(type));
if (type == GL_UNSIGNED_BYTE_3_3_2 ||
type == GL_UNSIGNED_BYTE_2_3_3_REV ||
type == GL_UNSIGNED_SHORT_5_6_5 ||
type == GL_UNSIGNED_SHORT_5_6_5_REV ||
type == GL_UNSIGNED_SHORT_4_4_4_4 ||
type == GL_UNSIGNED_SHORT_4_4_4_4_REV ||
type == GL_UNSIGNED_SHORT_5_5_5_1 ||
type == GL_UNSIGNED_SHORT_1_5_5_5_REV ||
type == GL_UNSIGNED_INT_8_8_8_8 ||
type == GL_UNSIGNED_INT_8_8_8_8_REV ||
type == GL_UNSIGNED_INT_10_10_10_2 ||
type == GL_UNSIGNED_INT_2_10_10_10_REV) {
return 1;
}
else return 0;
} /* isTypePackedPixel() */
/* Determines if the packed pixel type is compatible with the format */
static GLboolean isLegalFormatForPackedPixelType(GLenum format, GLenum type)
{
/* if not a packed pixel type then return true */
if (!isTypePackedPixel(type)) {
return GL_TRUE;
}
/* 3_3_2/2_3_3_REV & 5_6_5/5_6_5_REV are only compatible with RGB */
if ((type == GL_UNSIGNED_BYTE_3_3_2 || type == GL_UNSIGNED_BYTE_2_3_3_REV||
type == GL_UNSIGNED_SHORT_5_6_5|| type == GL_UNSIGNED_SHORT_5_6_5_REV)
&& format != GL_RGB)
return GL_FALSE;
/* 4_4_4_4/4_4_4_4_REV & 5_5_5_1/1_5_5_5_REV & 8_8_8_8/8_8_8_8_REV &
* 10_10_10_2/2_10_10_10_REV are only compatible with RGBA, BGRA & ABGR_EXT.
*/
if ((type == GL_UNSIGNED_SHORT_4_4_4_4 ||
type == GL_UNSIGNED_SHORT_4_4_4_4_REV ||
type == GL_UNSIGNED_SHORT_5_5_5_1 ||
type == GL_UNSIGNED_SHORT_1_5_5_5_REV ||
type == GL_UNSIGNED_INT_8_8_8_8 ||
type == GL_UNSIGNED_INT_8_8_8_8_REV ||
type == GL_UNSIGNED_INT_10_10_10_2 ||
type == GL_UNSIGNED_INT_2_10_10_10_REV) &&
(format != GL_RGBA &&
format != GL_BGRA)) {
return GL_FALSE;
}
return GL_TRUE;
} /* isLegalFormatForPackedPixelType() */
static GLboolean isLegalLevels(GLint userLevel,GLint baseLevel,GLint maxLevel,
GLint totalLevels)
{
if (baseLevel < 0 || baseLevel < userLevel || maxLevel < baseLevel ||
totalLevels < maxLevel)
return GL_FALSE;
else return GL_TRUE;
} /* isLegalLevels() */
/* Given user requested texture size, determine if it fits. If it
* doesn't then halve both sides and make the determination again
* until it does fit (for IR only).
* Note that proxy textures are not implemented in RE* even though
* they advertise the texture extension.
* Note that proxy textures are implemented but not according to spec in
* IMPACT*.
*/
static void closestFit(GLenum target, GLint width, GLint height,
GLint internalFormat, GLenum format, GLenum type,
GLint *newWidth, GLint *newHeight)
{
/* Use proxy textures if OpenGL version is >= 1.1 */
if ( (strtod((const char *)glGetString(GL_VERSION),NULL) >= 1.1)
) {
GLint widthPowerOf2= nearestPower(width);
GLint heightPowerOf2= nearestPower(height);
GLint proxyWidth;
do {
/* compute level 1 width & height, clamping each at 1 */
GLint widthAtLevelOne= (widthPowerOf2 > 1) ?
widthPowerOf2 >> 1 :
widthPowerOf2;
GLint heightAtLevelOne= (heightPowerOf2 > 1) ?
heightPowerOf2 >> 1 :
heightPowerOf2;
GLenum proxyTarget;
assert(widthAtLevelOne > 0); assert(heightAtLevelOne > 0);
/* does width x height at level 1 & all their mipmaps fit? */
if (target == GL_TEXTURE_2D || target == GL_PROXY_TEXTURE_2D) {
proxyTarget = GL_PROXY_TEXTURE_2D;
glTexImage2D(proxyTarget, 1, /* must be non-zero */
internalFormat,
widthAtLevelOne,heightAtLevelOne,0,format,type,NULL);
} else
#if defined(GL_ARB_texture_cube_map)
if ((target == GL_TEXTURE_CUBE_MAP_POSITIVE_X_ARB) ||
(target == GL_TEXTURE_CUBE_MAP_NEGATIVE_X_ARB) ||
(target == GL_TEXTURE_CUBE_MAP_POSITIVE_Y_ARB) ||
(target == GL_TEXTURE_CUBE_MAP_NEGATIVE_Y_ARB) ||
(target == GL_TEXTURE_CUBE_MAP_POSITIVE_Z_ARB) ||
(target == GL_TEXTURE_CUBE_MAP_NEGATIVE_Z_ARB)) {
proxyTarget = GL_PROXY_TEXTURE_CUBE_MAP_ARB;
glTexImage2D(proxyTarget, 1, /* must be non-zero */
internalFormat,
widthAtLevelOne,heightAtLevelOne,0,format,type,NULL);
} else
#endif /* GL_ARB_texture_cube_map */
{
assert(target == GL_TEXTURE_1D || target == GL_PROXY_TEXTURE_1D);
proxyTarget = GL_PROXY_TEXTURE_1D;
glTexImage1D(proxyTarget, 1, /* must be non-zero */
internalFormat,widthAtLevelOne,0,format,type,NULL);
}
glGetTexLevelParameteriv(proxyTarget, 1,GL_TEXTURE_WIDTH,&proxyWidth);
/* does it fit??? */
if (proxyWidth == 0) { /* nope, so try again with these sizes */
if (widthPowerOf2 == 1 && heightPowerOf2 == 1) {
/* An 1x1 texture couldn't fit for some reason, so
* break out. This should never happen. But things
* happen. The disadvantage with this if-statement is
* that we will never be aware of when this happens
* since it will silently branch out.
*/
goto noProxyTextures;
}
widthPowerOf2= widthAtLevelOne;
heightPowerOf2= heightAtLevelOne;
}
/* else it does fit */
} while (proxyWidth == 0);
/* loop must terminate! */
/* return the width & height at level 0 that fits */
*newWidth= widthPowerOf2;
*newHeight= heightPowerOf2;
/*printf("Proxy Textures\n");*/
} /* if gluCheckExtension() */
else { /* no texture extension, so do this instead */
GLint maxsize;
noProxyTextures:
glGetIntegerv(GL_MAX_TEXTURE_SIZE, &maxsize);
/* clamp user's texture sizes to maximum sizes, if necessary */
*newWidth = nearestPower(width);
if (*newWidth > maxsize) *newWidth = maxsize;
*newHeight = nearestPower(height);
if (*newHeight > maxsize) *newHeight = maxsize;
/*printf("NO proxy textures\n");*/
}
} /* closestFit() */
GLint GLAPIENTRY
gluScaleImage(GLenum format, GLsizei widthin, GLsizei heightin,
GLenum typein, const void *datain,
GLsizei widthout, GLsizei heightout, GLenum typeout,
void *dataout)
{
int components;
GLushort *beforeImage;
GLushort *afterImage;
PixelStorageModes psm;
if (widthin == 0 || heightin == 0 || widthout == 0 || heightout == 0) {
return 0;
}
if (widthin < 0 || heightin < 0 || widthout < 0 || heightout < 0) {
return GLU_INVALID_VALUE;
}
if (!legalFormat(format) || !legalType(typein) || !legalType(typeout)) {
return GLU_INVALID_ENUM;
}
if (!isLegalFormatForPackedPixelType(format, typein)) {
return GLU_INVALID_OPERATION;
}
if (!isLegalFormatForPackedPixelType(format, typeout)) {
return GLU_INVALID_OPERATION;
}
beforeImage =
malloc(image_size(widthin, heightin, format, GL_UNSIGNED_SHORT));
afterImage =
malloc(image_size(widthout, heightout, format, GL_UNSIGNED_SHORT));
if (beforeImage == NULL || afterImage == NULL) {
free(beforeImage);
free(afterImage);
return GLU_OUT_OF_MEMORY;
}
retrieveStoreModes(&psm);
fill_image(&psm,widthin, heightin, format, typein, is_index(format),
datain, beforeImage);
components = elements_per_group(format, 0);
scale_internal(components, widthin, heightin, beforeImage,
widthout, heightout, afterImage);
empty_image(&psm,widthout, heightout, format, typeout,
is_index(format), afterImage, dataout);
free((GLbyte *) beforeImage);
free((GLbyte *) afterImage);
return 0;
}
int gluBuild1DMipmapLevelsCore(GLenum target, GLint internalFormat,
GLsizei width,
GLsizei widthPowerOf2,
GLenum format, GLenum type,
GLint userLevel, GLint baseLevel,GLint maxLevel,
const void *data)
{
GLint newwidth;
GLint level, levels;
GLushort *newImage;
GLint newImage_width;
GLushort *otherImage;
GLushort *imageTemp;
GLint memreq;
GLint cmpts;
PixelStorageModes psm;
assert(checkMipmapArgs(internalFormat,format,type) == 0);
assert(width >= 1);
otherImage = NULL;
newwidth= widthPowerOf2;
levels = computeLog(newwidth);
levels+= userLevel;
retrieveStoreModes(&psm);
newImage = (GLushort *)
malloc(image_size(width, 1, format, GL_UNSIGNED_SHORT));
newImage_width = width;
if (newImage == NULL) {
return GLU_OUT_OF_MEMORY;
}
fill_image(&psm,width, 1, format, type, is_index(format),
data, newImage);
cmpts = elements_per_group(format,type);
glPixelStorei(GL_UNPACK_ALIGNMENT, 2);
glPixelStorei(GL_UNPACK_SKIP_ROWS, 0);
glPixelStorei(GL_UNPACK_SKIP_PIXELS, 0);
glPixelStorei(GL_UNPACK_ROW_LENGTH, 0);
/*
** If swap_bytes was set, swapping occurred in fill_image.
*/
glPixelStorei(GL_UNPACK_SWAP_BYTES, GL_FALSE);
for (level = userLevel; level <= levels; level++) {
if (newImage_width == newwidth) {
/* Use newImage for this level */
if (baseLevel <= level && level <= maxLevel) {
glTexImage1D(target, level, internalFormat, newImage_width,
0, format, GL_UNSIGNED_SHORT, (void *) newImage);
}
} else {
if (otherImage == NULL) {
memreq = image_size(newwidth, 1, format, GL_UNSIGNED_SHORT);
otherImage = (GLushort *) malloc(memreq);
if (otherImage == NULL) {
glPixelStorei(GL_UNPACK_ALIGNMENT, psm.unpack_alignment);
glPixelStorei(GL_UNPACK_SKIP_ROWS, psm.unpack_skip_rows);
glPixelStorei(GL_UNPACK_SKIP_PIXELS,psm.unpack_skip_pixels);
glPixelStorei(GL_UNPACK_ROW_LENGTH, psm.unpack_row_length);
glPixelStorei(GL_UNPACK_SWAP_BYTES, psm.unpack_swap_bytes);
free(newImage);
return GLU_OUT_OF_MEMORY;
}
}
scale_internal(cmpts, newImage_width, 1, newImage,
newwidth, 1, otherImage);
/* Swap newImage and otherImage */
imageTemp = otherImage;
otherImage = newImage;
newImage = imageTemp;
newImage_width = newwidth;
if (baseLevel <= level && level <= maxLevel) {
glTexImage1D(target, level, internalFormat, newImage_width,
0, format, GL_UNSIGNED_SHORT, (void *) newImage);
}
}
if (newwidth > 1) newwidth /= 2;
}
glPixelStorei(GL_UNPACK_ALIGNMENT, psm.unpack_alignment);
glPixelStorei(GL_UNPACK_SKIP_ROWS, psm.unpack_skip_rows);
glPixelStorei(GL_UNPACK_SKIP_PIXELS, psm.unpack_skip_pixels);
glPixelStorei(GL_UNPACK_ROW_LENGTH, psm.unpack_row_length);
glPixelStorei(GL_UNPACK_SWAP_BYTES, psm.unpack_swap_bytes);
free((GLbyte *) newImage);
if (otherImage) {
free((GLbyte *) otherImage);
}
return 0;
}
GLint GLAPIENTRY
gluBuild1DMipmapLevels(GLenum target, GLint internalFormat,
GLsizei width,
GLenum format, GLenum type,
GLint userLevel, GLint baseLevel, GLint maxLevel,
const void *data)
{
int levels;
int rc= checkMipmapArgs(internalFormat,format,type);
if (rc != 0) return rc;
if (width < 1) {
return GLU_INVALID_VALUE;
}
levels = computeLog(width);
levels+= userLevel;
if (!isLegalLevels(userLevel,baseLevel,maxLevel,levels))
return GLU_INVALID_VALUE;
return gluBuild1DMipmapLevelsCore(target, internalFormat,
width,
width,format, type,
userLevel, baseLevel, maxLevel,
data);
} /* gluBuild1DMipmapLevels() */
GLint GLAPIENTRY
gluBuild1DMipmaps(GLenum target, GLint internalFormat, GLsizei width,
GLenum format, GLenum type,
const void *data)
{
GLint widthPowerOf2;
int levels;
GLint dummy;
int rc= checkMipmapArgs(internalFormat,format,type);
if (rc != 0) return rc;
if (width < 1) {
return GLU_INVALID_VALUE;
}
closestFit(target,width,1,internalFormat,format,type,&widthPowerOf2,&dummy);
levels = computeLog(widthPowerOf2);
return gluBuild1DMipmapLevelsCore(target,internalFormat,
width,
widthPowerOf2,
format,type,0,0,levels,data);
}
static int bitmapBuild2DMipmaps(GLenum target, GLint internalFormat,
GLint width, GLint height, GLenum format,
GLenum type, const void *data)
{
GLint newwidth, newheight;
GLint level, levels;
GLushort *newImage;
GLint newImage_width;
GLint newImage_height;
GLushort *otherImage;
GLushort *imageTemp;
GLint memreq;
GLint cmpts;
PixelStorageModes psm;
retrieveStoreModes(&psm);
#if 0
glGetIntegerv(GL_MAX_TEXTURE_SIZE, &maxsize);
newwidth = nearestPower(width);
if (newwidth > maxsize) newwidth = maxsize;
newheight = nearestPower(height);
if (newheight > maxsize) newheight = maxsize;
#else
closestFit(target,width,height,internalFormat,format,type,
&newwidth,&newheight);
#endif
levels = computeLog(newwidth);
level = computeLog(newheight);
if (level > levels) levels=level;
otherImage = NULL;
newImage = (GLushort *)
malloc(image_size(width, height, format, GL_UNSIGNED_SHORT));
newImage_width = width;
newImage_height = height;
if (newImage == NULL) {
return GLU_OUT_OF_MEMORY;
}
fill_image(&psm,width, height, format, type, is_index(format),
data, newImage);
cmpts = elements_per_group(format,type);
glPixelStorei(GL_UNPACK_ALIGNMENT, 2);
glPixelStorei(GL_UNPACK_SKIP_ROWS, 0);
glPixelStorei(GL_UNPACK_SKIP_PIXELS, 0);
glPixelStorei(GL_UNPACK_ROW_LENGTH, 0);
/*
** If swap_bytes was set, swapping occurred in fill_image.
*/
glPixelStorei(GL_UNPACK_SWAP_BYTES, GL_FALSE);
for (level = 0; level <= levels; level++) {
if (newImage_width == newwidth && newImage_height == newheight) { /* Use newImage for this level */
glTexImage2D(target, level, internalFormat, newImage_width,
newImage_height, 0, format, GL_UNSIGNED_SHORT,
(void *) newImage);
} else {
if (otherImage == NULL) {
memreq =
image_size(newwidth, newheight, format, GL_UNSIGNED_SHORT);
otherImage = (GLushort *) malloc(memreq);
if (otherImage == NULL) {
glPixelStorei(GL_UNPACK_ALIGNMENT, psm.unpack_alignment);
glPixelStorei(GL_UNPACK_SKIP_ROWS, psm.unpack_skip_rows);
glPixelStorei(GL_UNPACK_SKIP_PIXELS,psm.unpack_skip_pixels);
glPixelStorei(GL_UNPACK_ROW_LENGTH, psm.unpack_row_length);
glPixelStorei(GL_UNPACK_SWAP_BYTES, psm.unpack_swap_bytes);
free(newImage);
return GLU_OUT_OF_MEMORY;
}
}
scale_internal(cmpts, newImage_width, newImage_height, newImage,
newwidth, newheight, otherImage);
/* Swap newImage and otherImage */
imageTemp = otherImage;
otherImage = newImage;
newImage = imageTemp;
newImage_width = newwidth;
newImage_height = newheight;
glTexImage2D(target, level, internalFormat, newImage_width,
newImage_height, 0, format, GL_UNSIGNED_SHORT,
(void *) newImage);
}
if (newwidth > 1) newwidth /= 2;
if (newheight > 1) newheight /= 2;
}
glPixelStorei(GL_UNPACK_ALIGNMENT, psm.unpack_alignment);
glPixelStorei(GL_UNPACK_SKIP_ROWS, psm.unpack_skip_rows);
glPixelStorei(GL_UNPACK_SKIP_PIXELS, psm.unpack_skip_pixels);
glPixelStorei(GL_UNPACK_ROW_LENGTH, psm.unpack_row_length);
glPixelStorei(GL_UNPACK_SWAP_BYTES, psm.unpack_swap_bytes);
free((GLbyte *) newImage);
if (otherImage) {
free((GLbyte *) otherImage);
}
return 0;
}
/* To make swapping images less error prone */
#define __GLU_INIT_SWAP_IMAGE void *tmpImage
#define __GLU_SWAP_IMAGE(a,b) tmpImage = a; a = b; b = tmpImage;
static int gluBuild2DMipmapLevelsCore(GLenum target, GLint internalFormat,
GLsizei width, GLsizei height,
GLsizei widthPowerOf2,
GLsizei heightPowerOf2,
GLenum format, GLenum type,
GLint userLevel,
GLint baseLevel,GLint maxLevel,
const void *data)
{
GLint newwidth, newheight;
GLint level, levels;
const void *usersImage; /* passed from user. Don't touch! */
void *srcImage, *dstImage; /* scratch area to build mipmapped images */
__GLU_INIT_SWAP_IMAGE;
GLint memreq;
GLint cmpts;
GLint myswap_bytes, groups_per_line, element_size, group_size;
GLint rowsize, padding;
PixelStorageModes psm;
assert(checkMipmapArgs(internalFormat,format,type) == 0);
assert(width >= 1 && height >= 1);
if(type == GL_BITMAP) {
return bitmapBuild2DMipmaps(target, internalFormat, width, height,
format, type, data);
}
srcImage = dstImage = NULL;
newwidth= widthPowerOf2;
newheight= heightPowerOf2;
levels = computeLog(newwidth);
level = computeLog(newheight);
if (level > levels) levels=level;
levels+= userLevel;
retrieveStoreModes(&psm);
myswap_bytes = psm.unpack_swap_bytes;
cmpts = elements_per_group(format,type);
if (psm.unpack_row_length > 0) {
groups_per_line = psm.unpack_row_length;
} else {
groups_per_line = width;
}
element_size = bytes_per_element(type);
group_size = element_size * cmpts;
if (element_size == 1) myswap_bytes = 0;
rowsize = groups_per_line * group_size;
padding = (rowsize % psm.unpack_alignment);
if (padding) {
rowsize += psm.unpack_alignment - padding;
}
usersImage = (const GLubyte *) data + psm.unpack_skip_rows * rowsize +
psm.unpack_skip_pixels * group_size;
glPixelStorei(GL_UNPACK_SKIP_ROWS, 0);
glPixelStorei(GL_UNPACK_SKIP_PIXELS, 0);
glPixelStorei(GL_UNPACK_ROW_LENGTH, 0);
level = userLevel;
/* already power-of-two square */
if (width == newwidth && height == newheight) {
/* Use usersImage for level userLevel */
if (baseLevel <= level && level <= maxLevel) {
glPixelStorei(GL_UNPACK_ROW_LENGTH, psm.unpack_row_length);
glTexImage2D(target, level, internalFormat, width,
height, 0, format, type,
usersImage);
}
glPixelStorei(GL_UNPACK_ROW_LENGTH, 0);
if(levels == 0) { /* we're done. clean up and return */
glPixelStorei(GL_UNPACK_ALIGNMENT, psm.unpack_alignment);
glPixelStorei(GL_UNPACK_SKIP_ROWS, psm.unpack_skip_rows);
glPixelStorei(GL_UNPACK_SKIP_PIXELS, psm.unpack_skip_pixels);
glPixelStorei(GL_UNPACK_ROW_LENGTH, psm.unpack_row_length);
glPixelStorei(GL_UNPACK_SWAP_BYTES, psm.unpack_swap_bytes);
return 0;
}
{
int nextWidth= newwidth/2;
int nextHeight= newheight/2;
/* clamp to 1 */
if (nextWidth < 1) nextWidth= 1;
if (nextHeight < 1) nextHeight= 1;
memreq = image_size(nextWidth, nextHeight, format, type);
}
switch(type) {
case GL_UNSIGNED_BYTE:
dstImage = (GLubyte *)malloc(memreq);
break;
case GL_BYTE:
dstImage = (GLbyte *)malloc(memreq);
break;
case GL_UNSIGNED_SHORT:
dstImage = (GLushort *)malloc(memreq);
break;
case GL_SHORT:
dstImage = (GLshort *)malloc(memreq);
break;
case GL_UNSIGNED_INT:
dstImage = (GLuint *)malloc(memreq);
break;
case GL_INT:
dstImage = (GLint *)malloc(memreq);
break;
case GL_FLOAT:
dstImage = (GLfloat *)malloc(memreq);
break;
case GL_UNSIGNED_BYTE_3_3_2:
case GL_UNSIGNED_BYTE_2_3_3_REV:
dstImage = (GLubyte *)malloc(memreq);
break;
case GL_UNSIGNED_SHORT_5_6_5:
case GL_UNSIGNED_SHORT_5_6_5_REV:
case GL_UNSIGNED_SHORT_4_4_4_4:
case GL_UNSIGNED_SHORT_4_4_4_4_REV:
case GL_UNSIGNED_SHORT_5_5_5_1:
case GL_UNSIGNED_SHORT_1_5_5_5_REV:
dstImage = (GLushort *)malloc(memreq);
break;
case GL_UNSIGNED_INT_8_8_8_8:
case GL_UNSIGNED_INT_8_8_8_8_REV:
case GL_UNSIGNED_INT_10_10_10_2:
case GL_UNSIGNED_INT_2_10_10_10_REV:
dstImage = (GLuint *)malloc(memreq);
break;
default:
return GLU_INVALID_ENUM;
}
if (dstImage == NULL) {
glPixelStorei(GL_UNPACK_ALIGNMENT, psm.unpack_alignment);
glPixelStorei(GL_UNPACK_SKIP_ROWS, psm.unpack_skip_rows);
glPixelStorei(GL_UNPACK_SKIP_PIXELS, psm.unpack_skip_pixels);
glPixelStorei(GL_UNPACK_ROW_LENGTH, psm.unpack_row_length);
glPixelStorei(GL_UNPACK_SWAP_BYTES, psm.unpack_swap_bytes);
return GLU_OUT_OF_MEMORY;
}
else
switch(type) {
case GL_UNSIGNED_BYTE:
halveImage_ubyte(cmpts, width, height,
(const GLubyte *)usersImage, (GLubyte *)dstImage,
element_size, rowsize, group_size);
break;
case GL_BYTE:
halveImage_byte(cmpts, width, height,
(const GLbyte *)usersImage, (GLbyte *)dstImage,
element_size, rowsize, group_size);
break;
case GL_UNSIGNED_SHORT:
halveImage_ushort(cmpts, width, height,
(const GLushort *)usersImage, (GLushort *)dstImage,
element_size, rowsize, group_size, myswap_bytes);
break;
case GL_SHORT:
halveImage_short(cmpts, width, height,
(const GLshort *)usersImage, (GLshort *)dstImage,
element_size, rowsize, group_size, myswap_bytes);
break;
case GL_UNSIGNED_INT:
halveImage_uint(cmpts, width, height,
(const GLuint *)usersImage, (GLuint *)dstImage,
element_size, rowsize, group_size, myswap_bytes);
break;
case GL_INT:
halveImage_int(cmpts, width, height,
(const GLint *)usersImage, (GLint *)dstImage,
element_size, rowsize, group_size, myswap_bytes);
break;
case GL_FLOAT:
halveImage_float(cmpts, width, height,
(const GLfloat *)usersImage, (GLfloat *)dstImage,
element_size, rowsize, group_size, myswap_bytes);
break;
case GL_UNSIGNED_BYTE_3_3_2:
assert(format == GL_RGB);
halveImagePackedPixel(3,extract332,shove332,
width,height,usersImage,dstImage,
element_size,rowsize,myswap_bytes);
break;
case GL_UNSIGNED_BYTE_2_3_3_REV:
assert(format == GL_RGB);
halveImagePackedPixel(3,extract233rev,shove233rev,
width,height,usersImage,dstImage,
element_size,rowsize,myswap_bytes);
break;
case GL_UNSIGNED_SHORT_5_6_5:
halveImagePackedPixel(3,extract565,shove565,
width,height,usersImage,dstImage,
element_size,rowsize,myswap_bytes);
break;
case GL_UNSIGNED_SHORT_5_6_5_REV:
halveImagePackedPixel(3,extract565rev,shove565rev,
width,height,usersImage,dstImage,
element_size,rowsize,myswap_bytes);
break;
case GL_UNSIGNED_SHORT_4_4_4_4:
halveImagePackedPixel(4,extract4444,shove4444,
width,height,usersImage,dstImage,
element_size,rowsize,myswap_bytes);
break;
case GL_UNSIGNED_SHORT_4_4_4_4_REV:
halveImagePackedPixel(4,extract4444rev,shove4444rev,
width,height,usersImage,dstImage,
element_size,rowsize,myswap_bytes);
break;
case GL_UNSIGNED_SHORT_5_5_5_1:
halveImagePackedPixel(4,extract5551,shove5551,
width,height,usersImage,dstImage,
element_size,rowsize,myswap_bytes);
break;
case GL_UNSIGNED_SHORT_1_5_5_5_REV:
halveImagePackedPixel(4,extract1555rev,shove1555rev,
width,height,usersImage,dstImage,
element_size,rowsize,myswap_bytes);
break;
case GL_UNSIGNED_INT_8_8_8_8:
halveImagePackedPixel(4,extract8888,shove8888,
width,height,usersImage,dstImage,
element_size,rowsize,myswap_bytes);
break;
case GL_UNSIGNED_INT_8_8_8_8_REV:
halveImagePackedPixel(4,extract8888rev,shove8888rev,
width,height,usersImage,dstImage,
element_size,rowsize,myswap_bytes);
break;
case GL_UNSIGNED_INT_10_10_10_2:
halveImagePackedPixel(4,extract1010102,shove1010102,
width,height,usersImage,dstImage,
element_size,rowsize,myswap_bytes);
break;
case GL_UNSIGNED_INT_2_10_10_10_REV:
halveImagePackedPixel(4,extract2101010rev,shove2101010rev,
width,height,usersImage,dstImage,
element_size,rowsize,myswap_bytes);
break;
default:
assert(0);
break;
}
newwidth = width/2;
newheight = height/2;
/* clamp to 1 */
if (newwidth < 1) newwidth= 1;
if (newheight < 1) newheight= 1;
myswap_bytes = 0;
rowsize = newwidth * group_size;
memreq = image_size(newwidth, newheight, format, type);
/* Swap srcImage and dstImage */
__GLU_SWAP_IMAGE(srcImage,dstImage);
switch(type) {
case GL_UNSIGNED_BYTE:
dstImage = (GLubyte *)malloc(memreq);
break;
case GL_BYTE:
dstImage = (GLbyte *)malloc(memreq);
break;
case GL_UNSIGNED_SHORT:
dstImage = (GLushort *)malloc(memreq);
break;
case GL_SHORT:
dstImage = (GLshort *)malloc(memreq);
break;
case GL_UNSIGNED_INT:
dstImage = (GLuint *)malloc(memreq);
break;
case GL_INT:
dstImage = (GLint *)malloc(memreq);
break;
case GL_FLOAT:
dstImage = (GLfloat *)malloc(memreq);
break;
case GL_UNSIGNED_BYTE_3_3_2:
case GL_UNSIGNED_BYTE_2_3_3_REV:
dstImage = (GLubyte *)malloc(memreq);
break;
case GL_UNSIGNED_SHORT_5_6_5:
case GL_UNSIGNED_SHORT_5_6_5_REV:
case GL_UNSIGNED_SHORT_4_4_4_4:
case GL_UNSIGNED_SHORT_4_4_4_4_REV:
case GL_UNSIGNED_SHORT_5_5_5_1:
case GL_UNSIGNED_SHORT_1_5_5_5_REV:
dstImage = (GLushort *)malloc(memreq);
break;
case GL_UNSIGNED_INT_8_8_8_8:
case GL_UNSIGNED_INT_8_8_8_8_REV:
case GL_UNSIGNED_INT_10_10_10_2:
case GL_UNSIGNED_INT_2_10_10_10_REV:
dstImage = (GLuint *)malloc(memreq);
break;
default:
return GLU_INVALID_ENUM;
}
if (dstImage == NULL) {
glPixelStorei(GL_UNPACK_ALIGNMENT, psm.unpack_alignment);
glPixelStorei(GL_UNPACK_SKIP_ROWS, psm.unpack_skip_rows);
glPixelStorei(GL_UNPACK_SKIP_PIXELS, psm.unpack_skip_pixels);
glPixelStorei(GL_UNPACK_ROW_LENGTH, psm.unpack_row_length);
glPixelStorei(GL_UNPACK_SWAP_BYTES, psm.unpack_swap_bytes);
free(srcImage);
return GLU_OUT_OF_MEMORY;
}
/* level userLevel+1 is in srcImage; level userLevel already saved */
level = userLevel+1;
} else { /* user's image is *not* nice power-of-2 sized square */
memreq = image_size(newwidth, newheight, format, type);
switch(type) {
case GL_UNSIGNED_BYTE:
dstImage = (GLubyte *)malloc(memreq);
break;
case GL_BYTE:
dstImage = (GLbyte *)malloc(memreq);
break;
case GL_UNSIGNED_SHORT:
dstImage = (GLushort *)malloc(memreq);
break;
case GL_SHORT:
dstImage = (GLshort *)malloc(memreq);
break;
case GL_UNSIGNED_INT:
dstImage = (GLuint *)malloc(memreq);
break;
case GL_INT:
dstImage = (GLint *)malloc(memreq);
break;
case GL_FLOAT:
dstImage = (GLfloat *)malloc(memreq);
break;
case GL_UNSIGNED_BYTE_3_3_2:
case GL_UNSIGNED_BYTE_2_3_3_REV:
dstImage = (GLubyte *)malloc(memreq);
break;
case GL_UNSIGNED_SHORT_5_6_5:
case GL_UNSIGNED_SHORT_5_6_5_REV:
case GL_UNSIGNED_SHORT_4_4_4_4:
case GL_UNSIGNED_SHORT_4_4_4_4_REV:
case GL_UNSIGNED_SHORT_5_5_5_1:
case GL_UNSIGNED_SHORT_1_5_5_5_REV:
dstImage = (GLushort *)malloc(memreq);
break;
case GL_UNSIGNED_INT_8_8_8_8:
case GL_UNSIGNED_INT_8_8_8_8_REV:
case GL_UNSIGNED_INT_10_10_10_2:
case GL_UNSIGNED_INT_2_10_10_10_REV:
dstImage = (GLuint *)malloc(memreq);
break;
default:
return GLU_INVALID_ENUM;
}
if (dstImage == NULL) {
glPixelStorei(GL_UNPACK_ALIGNMENT, psm.unpack_alignment);
glPixelStorei(GL_UNPACK_SKIP_ROWS, psm.unpack_skip_rows);
glPixelStorei(GL_UNPACK_SKIP_PIXELS, psm.unpack_skip_pixels);
glPixelStorei(GL_UNPACK_ROW_LENGTH, psm.unpack_row_length);
glPixelStorei(GL_UNPACK_SWAP_BYTES, psm.unpack_swap_bytes);
return GLU_OUT_OF_MEMORY;
}
switch(type) {
case GL_UNSIGNED_BYTE:
scale_internal_ubyte(cmpts, width, height,
(const GLubyte *)usersImage, newwidth, newheight,
(GLubyte *)dstImage, element_size,
rowsize, group_size);
break;
case GL_BYTE:
scale_internal_byte(cmpts, width, height,
(const GLbyte *)usersImage, newwidth, newheight,
(GLbyte *)dstImage, element_size,
rowsize, group_size);
break;
case GL_UNSIGNED_SHORT:
scale_internal_ushort(cmpts, width, height,
(const GLushort *)usersImage, newwidth, newheight,
(GLushort *)dstImage, element_size,
rowsize, group_size, myswap_bytes);
break;
case GL_SHORT:
scale_internal_short(cmpts, width, height,
(const GLshort *)usersImage, newwidth, newheight,
(GLshort *)dstImage, element_size,
rowsize, group_size, myswap_bytes);
break;
case GL_UNSIGNED_INT:
scale_internal_uint(cmpts, width, height,
(const GLuint *)usersImage, newwidth, newheight,
(GLuint *)dstImage, element_size,
rowsize, group_size, myswap_bytes);
break;
case GL_INT:
scale_internal_int(cmpts, width, height,
(const GLint *)usersImage, newwidth, newheight,
(GLint *)dstImage, element_size,
rowsize, group_size, myswap_bytes);
break;
case GL_FLOAT:
scale_internal_float(cmpts, width, height,
(const GLfloat *)usersImage, newwidth, newheight,
(GLfloat *)dstImage, element_size,
rowsize, group_size, myswap_bytes);
break;
case GL_UNSIGNED_BYTE_3_3_2:
scaleInternalPackedPixel(3,extract332,shove332,
width, height,usersImage,
newwidth,newheight,(void *)dstImage,
element_size,rowsize,myswap_bytes);
break;
case GL_UNSIGNED_BYTE_2_3_3_REV:
scaleInternalPackedPixel(3,extract233rev,shove233rev,
width, height,usersImage,
newwidth,newheight,(void *)dstImage,
element_size,rowsize,myswap_bytes);
break;
case GL_UNSIGNED_SHORT_5_6_5:
scaleInternalPackedPixel(3,extract565,shove565,
width, height,usersImage,
newwidth,newheight,(void *)dstImage,
element_size,rowsize,myswap_bytes);
break;
case GL_UNSIGNED_SHORT_5_6_5_REV:
scaleInternalPackedPixel(3,extract565rev,shove565rev,
width, height,usersImage,
newwidth,newheight,(void *)dstImage,
element_size,rowsize,myswap_bytes);
break;
case GL_UNSIGNED_SHORT_4_4_4_4:
scaleInternalPackedPixel(4,extract4444,shove4444,
width, height,usersImage,
newwidth,newheight,(void *)dstImage,
element_size,rowsize,myswap_bytes);
break;
case GL_UNSIGNED_SHORT_4_4_4_4_REV:
scaleInternalPackedPixel(4,extract4444rev,shove4444rev,
width, height,usersImage,
newwidth,newheight,(void *)dstImage,
element_size,rowsize,myswap_bytes);
break;
case GL_UNSIGNED_SHORT_5_5_5_1:
scaleInternalPackedPixel(4,extract5551,shove5551,
width, height,usersImage,
newwidth,newheight,(void *)dstImage,
element_size,rowsize,myswap_bytes);
break;
case GL_UNSIGNED_SHORT_1_5_5_5_REV:
scaleInternalPackedPixel(4,extract1555rev,shove1555rev,
width, height,usersImage,
newwidth,newheight,(void *)dstImage,
element_size,rowsize,myswap_bytes);
break;
case GL_UNSIGNED_INT_8_8_8_8:
scaleInternalPackedPixel(4,extract8888,shove8888,
width, height,usersImage,
newwidth,newheight,(void *)dstImage,
element_size,rowsize,myswap_bytes);
break;
case GL_UNSIGNED_INT_8_8_8_8_REV:
scaleInternalPackedPixel(4,extract8888rev,shove8888rev,
width, height,usersImage,
newwidth,newheight,(void *)dstImage,
element_size,rowsize,myswap_bytes);
break;
case GL_UNSIGNED_INT_10_10_10_2:
scaleInternalPackedPixel(4,extract1010102,shove1010102,
width, height,usersImage,
newwidth,newheight,(void *)dstImage,
element_size,rowsize,myswap_bytes);
break;
case GL_UNSIGNED_INT_2_10_10_10_REV:
scaleInternalPackedPixel(4,extract2101010rev,shove2101010rev,
width, height,usersImage,
newwidth,newheight,(void *)dstImage,
element_size,rowsize,myswap_bytes);
break;
default:
assert(0);
break;
}
myswap_bytes = 0;
rowsize = newwidth * group_size;
/* Swap dstImage and srcImage */
__GLU_SWAP_IMAGE(srcImage,dstImage);
if(levels != 0) { /* use as little memory as possible */
{
int nextWidth= newwidth/2;
int nextHeight= newheight/2;
if (nextWidth < 1) nextWidth= 1;
if (nextHeight < 1) nextHeight= 1;
memreq = image_size(nextWidth, nextHeight, format, type);
}
switch(type) {
case GL_UNSIGNED_BYTE:
dstImage = (GLubyte *)malloc(memreq);
break;
case GL_BYTE:
dstImage = (GLbyte *)malloc(memreq);
break;
case GL_UNSIGNED_SHORT:
dstImage = (GLushort *)malloc(memreq);
break;
case GL_SHORT:
dstImage = (GLshort *)malloc(memreq);
break;
case GL_UNSIGNED_INT:
dstImage = (GLuint *)malloc(memreq);
break;
case GL_INT:
dstImage = (GLint *)malloc(memreq);
break;
case GL_FLOAT:
dstImage = (GLfloat *)malloc(memreq);
break;
case GL_UNSIGNED_BYTE_3_3_2:
case GL_UNSIGNED_BYTE_2_3_3_REV:
dstImage = (GLubyte *)malloc(memreq);
break;
case GL_UNSIGNED_SHORT_5_6_5:
case GL_UNSIGNED_SHORT_5_6_5_REV:
case GL_UNSIGNED_SHORT_4_4_4_4:
case GL_UNSIGNED_SHORT_4_4_4_4_REV:
case GL_UNSIGNED_SHORT_5_5_5_1:
case GL_UNSIGNED_SHORT_1_5_5_5_REV:
dstImage = (GLushort *)malloc(memreq);
break;
case GL_UNSIGNED_INT_8_8_8_8:
case GL_UNSIGNED_INT_8_8_8_8_REV:
case GL_UNSIGNED_INT_10_10_10_2:
case GL_UNSIGNED_INT_2_10_10_10_REV:
dstImage = (GLuint *)malloc(memreq);
break;
default:
return GLU_INVALID_ENUM;
}
if (dstImage == NULL) {
glPixelStorei(GL_UNPACK_ALIGNMENT, psm.unpack_alignment);
glPixelStorei(GL_UNPACK_SKIP_ROWS, psm.unpack_skip_rows);
glPixelStorei(GL_UNPACK_SKIP_PIXELS, psm.unpack_skip_pixels);
glPixelStorei(GL_UNPACK_ROW_LENGTH, psm.unpack_row_length);
glPixelStorei(GL_UNPACK_SWAP_BYTES, psm.unpack_swap_bytes);
free(srcImage);
return GLU_OUT_OF_MEMORY;
}
}
/* level userLevel is in srcImage; nothing saved yet */
level = userLevel;
}
glPixelStorei(GL_UNPACK_SWAP_BYTES, GL_FALSE);
if (baseLevel <= level && level <= maxLevel) {
glTexImage2D(target, level, internalFormat, newwidth, newheight, 0,
format, type, (void *)srcImage);
}
level++; /* update current level for the loop */
for (; level <= levels; level++) {
switch(type) {
case GL_UNSIGNED_BYTE:
halveImage_ubyte(cmpts, newwidth, newheight,
(GLubyte *)srcImage, (GLubyte *)dstImage, element_size,
rowsize, group_size);
break;
case GL_BYTE:
halveImage_byte(cmpts, newwidth, newheight,
(GLbyte *)srcImage, (GLbyte *)dstImage, element_size,
rowsize, group_size);
break;
case GL_UNSIGNED_SHORT:
halveImage_ushort(cmpts, newwidth, newheight,
(GLushort *)srcImage, (GLushort *)dstImage, element_size,
rowsize, group_size, myswap_bytes);
break;
case GL_SHORT:
halveImage_short(cmpts, newwidth, newheight,
(GLshort *)srcImage, (GLshort *)dstImage, element_size,
rowsize, group_size, myswap_bytes);
break;
case GL_UNSIGNED_INT:
halveImage_uint(cmpts, newwidth, newheight,
(GLuint *)srcImage, (GLuint *)dstImage, element_size,
rowsize, group_size, myswap_bytes);
break;
case GL_INT:
halveImage_int(cmpts, newwidth, newheight,
(GLint *)srcImage, (GLint *)dstImage, element_size,
rowsize, group_size, myswap_bytes);
break;
case GL_FLOAT:
halveImage_float(cmpts, newwidth, newheight,
(GLfloat *)srcImage, (GLfloat *)dstImage, element_size,
rowsize, group_size, myswap_bytes);
break;
case GL_UNSIGNED_BYTE_3_3_2:
halveImagePackedPixel(3,extract332,shove332,
newwidth,newheight,
srcImage,dstImage,element_size,rowsize,
myswap_bytes);
break;
case GL_UNSIGNED_BYTE_2_3_3_REV:
halveImagePackedPixel(3,extract233rev,shove233rev,
newwidth,newheight,
srcImage,dstImage,element_size,rowsize,
myswap_bytes);
break;
case GL_UNSIGNED_SHORT_5_6_5:
halveImagePackedPixel(3,extract565,shove565,
newwidth,newheight,
srcImage,dstImage,element_size,rowsize,
myswap_bytes);
break;
case GL_UNSIGNED_SHORT_5_6_5_REV:
halveImagePackedPixel(3,extract565rev,shove565rev,
newwidth,newheight,
srcImage,dstImage,element_size,rowsize,
myswap_bytes);
break;
case GL_UNSIGNED_SHORT_4_4_4_4:
halveImagePackedPixel(4,extract4444,shove4444,
newwidth,newheight,
srcImage,dstImage,element_size,rowsize,
myswap_bytes);
break;
case GL_UNSIGNED_SHORT_4_4_4_4_REV:
halveImagePackedPixel(4,extract4444rev,shove4444rev,
newwidth,newheight,
srcImage,dstImage,element_size,rowsize,
myswap_bytes);
break;
case GL_UNSIGNED_SHORT_5_5_5_1:
halveImagePackedPixel(4,extract5551,shove5551,
newwidth,newheight,
srcImage,dstImage,element_size,rowsize,
myswap_bytes);
break;
case GL_UNSIGNED_SHORT_1_5_5_5_REV:
halveImagePackedPixel(4,extract1555rev,shove1555rev,
newwidth,newheight,
srcImage,dstImage,element_size,rowsize,
myswap_bytes);
break;
case GL_UNSIGNED_INT_8_8_8_8:
halveImagePackedPixel(4,extract8888,shove8888,
newwidth,newheight,
srcImage,dstImage,element_size,rowsize,
myswap_bytes);
break;
case GL_UNSIGNED_INT_8_8_8_8_REV:
halveImagePackedPixel(4,extract8888rev,shove8888rev,
newwidth,newheight,
srcImage,dstImage,element_size,rowsize,
myswap_bytes);
break;
case GL_UNSIGNED_INT_10_10_10_2:
halveImagePackedPixel(4,extract1010102,shove1010102,
newwidth,newheight,
srcImage,dstImage,element_size,rowsize,
myswap_bytes);
break;
case GL_UNSIGNED_INT_2_10_10_10_REV:
halveImagePackedPixel(4,extract2101010rev,shove2101010rev,
newwidth,newheight,
srcImage,dstImage,element_size,rowsize,
myswap_bytes);
break;
default:
assert(0);
break;
}
__GLU_SWAP_IMAGE(srcImage,dstImage);
if (newwidth > 1) { newwidth /= 2; rowsize /= 2;}
if (newheight > 1) newheight /= 2;
{
/* compute amount to pad per row, if any */
int rowPad= rowsize % psm.unpack_alignment;
/* should row be padded? */
if (rowPad == 0) { /* nope, row should not be padded */
/* call tex image with srcImage untouched since it's not padded */
if (baseLevel <= level && level <= maxLevel) {
glTexImage2D(target, level, internalFormat, newwidth, newheight, 0,
format, type, (void *) srcImage);
}
}
else { /* yes, row should be padded */
/* compute length of new row in bytes, including padding */
int newRowLength= rowsize + psm.unpack_alignment - rowPad;
int ii; unsigned char *dstTrav, *srcTrav; /* indices for copying */
/* allocate new image for mipmap of size newRowLength x newheight */
void *newMipmapImage= malloc((size_t) (newRowLength*newheight));
if (newMipmapImage == NULL) {
/* out of memory so return */
glPixelStorei(GL_UNPACK_ALIGNMENT, psm.unpack_alignment);
glPixelStorei(GL_UNPACK_SKIP_ROWS, psm.unpack_skip_rows);
glPixelStorei(GL_UNPACK_SKIP_PIXELS, psm.unpack_skip_pixels);
glPixelStorei(GL_UNPACK_ROW_LENGTH, psm.unpack_row_length);
glPixelStorei(GL_UNPACK_SWAP_BYTES, psm.unpack_swap_bytes);
return GLU_OUT_OF_MEMORY;
}
/* copy image from srcImage into newMipmapImage by rows */
for (ii= 0,
dstTrav= (unsigned char *) newMipmapImage,
srcTrav= (unsigned char *) srcImage;
ii< newheight;
ii++,
dstTrav+= newRowLength, /* make sure the correct distance... */
srcTrav+= rowsize) { /* ...is skipped */
memcpy(dstTrav,srcTrav,rowsize);
/* note that the pad bytes are not visited and will contain
* garbage, which is ok.
*/
}
/* ...and use this new image for mipmapping instead */
if (baseLevel <= level && level <= maxLevel) {
glTexImage2D(target, level, internalFormat, newwidth, newheight, 0,
format, type, newMipmapImage);
}
free(newMipmapImage); /* don't forget to free it! */
} /* else */
}
} /* for level */
glPixelStorei(GL_UNPACK_ALIGNMENT, psm.unpack_alignment);
glPixelStorei(GL_UNPACK_SKIP_ROWS, psm.unpack_skip_rows);
glPixelStorei(GL_UNPACK_SKIP_PIXELS, psm.unpack_skip_pixels);
glPixelStorei(GL_UNPACK_ROW_LENGTH, psm.unpack_row_length);
glPixelStorei(GL_UNPACK_SWAP_BYTES, psm.unpack_swap_bytes);
free(srcImage); /*if you get to here, a srcImage has always been malloc'ed*/
if (dstImage) { /* if it's non-rectangular and only 1 level */
free(dstImage);
}
return 0;
} /* gluBuild2DMipmapLevelsCore() */
GLint GLAPIENTRY
gluBuild2DMipmapLevels(GLenum target, GLint internalFormat,
GLsizei width, GLsizei height,
GLenum format, GLenum type,
GLint userLevel, GLint baseLevel, GLint maxLevel,
const void *data)
{
int level, levels;
int rc= checkMipmapArgs(internalFormat,format,type);
if (rc != 0) return rc;
if (width < 1 || height < 1) {
return GLU_INVALID_VALUE;
}
levels = computeLog(width);
level = computeLog(height);
if (level > levels) levels=level;
levels+= userLevel;
if (!isLegalLevels(userLevel,baseLevel,maxLevel,levels))
return GLU_INVALID_VALUE;
return gluBuild2DMipmapLevelsCore(target, internalFormat,
width, height,
width, height,
format, type,
userLevel, baseLevel, maxLevel,
data);
} /* gluBuild2DMipmapLevels() */
GLint GLAPIENTRY
gluBuild2DMipmaps(GLenum target, GLint internalFormat,
GLsizei width, GLsizei height,
GLenum format, GLenum type,
const void *data)
{
GLint widthPowerOf2, heightPowerOf2;
int level, levels;
int rc= checkMipmapArgs(internalFormat,format,type);
if (rc != 0) return rc;
if (width < 1 || height < 1) {
return GLU_INVALID_VALUE;
}
closestFit(target,width,height,internalFormat,format,type,
&widthPowerOf2,&heightPowerOf2);
levels = computeLog(widthPowerOf2);
level = computeLog(heightPowerOf2);
if (level > levels) levels=level;
return gluBuild2DMipmapLevelsCore(target,internalFormat,
width, height,
widthPowerOf2,heightPowerOf2,
format,type,
0,0,levels,data);
} /* gluBuild2DMipmaps() */
#if 0
/*
** This routine is for the limited case in which
** type == GL_UNSIGNED_BYTE && format != index &&
** unpack_alignment = 1 && unpack_swap_bytes == false
**
** so all of the work data can be kept as ubytes instead of shorts.
*/
static int fastBuild2DMipmaps(const PixelStorageModes *psm,
GLenum target, GLint components, GLint width,
GLint height, GLenum format,
GLenum type, void *data)
{
GLint newwidth, newheight;
GLint level, levels;
GLubyte *newImage;
GLint newImage_width;
GLint newImage_height;
GLubyte *otherImage;
GLubyte *imageTemp;
GLint memreq;
GLint cmpts;
#if 0
glGetIntegerv(GL_MAX_TEXTURE_SIZE, &maxsize);
newwidth = nearestPower(width);
if (newwidth > maxsize) newwidth = maxsize;
newheight = nearestPower(height);
if (newheight > maxsize) newheight = maxsize;
#else
closestFit(target,width,height,components,format,type,
&newwidth,&newheight);
#endif
levels = computeLog(newwidth);
level = computeLog(newheight);
if (level > levels) levels=level;
cmpts = elements_per_group(format,type);
otherImage = NULL;
/**
** No need to copy the user data if its in the packed correctly.
** Make sure that later routines don't change that data.
*/
if (psm->unpack_skip_rows == 0 && psm->unpack_skip_pixels == 0) {
newImage = (GLubyte *)data;
newImage_width = width;
newImage_height = height;
} else {
GLint rowsize;
GLint groups_per_line;
GLint elements_per_line;
const GLubyte *start;
const GLubyte *iter;
GLubyte *iter2;
GLint i, j;
newImage = (GLubyte *)
malloc(image_size(width, height, format, GL_UNSIGNED_BYTE));
newImage_width = width;
newImage_height = height;
if (newImage == NULL) {
return GLU_OUT_OF_MEMORY;
}
/*
** Abbreviated version of fill_image for this restricted case.
*/
if (psm->unpack_row_length > 0) {
groups_per_line = psm->unpack_row_length;
} else {
groups_per_line = width;
}
rowsize = groups_per_line * cmpts;
elements_per_line = width * cmpts;
start = (const GLubyte *) data + psm->unpack_skip_rows * rowsize +
psm->unpack_skip_pixels * cmpts;
iter2 = newImage;
for (i = 0; i < height; i++) {
iter = start;
for (j = 0; j < elements_per_line; j++) {
*iter2 = *iter;
iter++;
iter2++;
}
start += rowsize;
}
}
glPixelStorei(GL_UNPACK_ALIGNMENT, 1);
glPixelStorei(GL_UNPACK_SKIP_ROWS, 0);
glPixelStorei(GL_UNPACK_SKIP_PIXELS, 0);
glPixelStorei(GL_UNPACK_ROW_LENGTH, 0);
glPixelStorei(GL_UNPACK_SWAP_BYTES, GL_FALSE);
for (level = 0; level <= levels; level++) {
if (newImage_width == newwidth && newImage_height == newheight) {
/* Use newImage for this level */
glTexImage2D(target, level, components, newImage_width,
newImage_height, 0, format, GL_UNSIGNED_BYTE,
(void *) newImage);
} else {
if (otherImage == NULL) {
memreq =
image_size(newwidth, newheight, format, GL_UNSIGNED_BYTE);
otherImage = (GLubyte *) malloc(memreq);
if (otherImage == NULL) {
glPixelStorei(GL_UNPACK_ALIGNMENT, psm->unpack_alignment);
glPixelStorei(GL_UNPACK_SKIP_ROWS, psm->unpack_skip_rows);
glPixelStorei(GL_UNPACK_SKIP_PIXELS, psm->unpack_skip_pixels);
glPixelStorei(GL_UNPACK_ROW_LENGTH,psm->unpack_row_length);
glPixelStorei(GL_UNPACK_SWAP_BYTES,psm->unpack_swap_bytes);
return GLU_OUT_OF_MEMORY;
}
}
/*
scale_internal_ubyte(cmpts, newImage_width, newImage_height,
newImage, newwidth, newheight, otherImage);
*/
/* Swap newImage and otherImage */
imageTemp = otherImage;
otherImage = newImage;
newImage = imageTemp;
newImage_width = newwidth;
newImage_height = newheight;
glTexImage2D(target, level, components, newImage_width,
newImage_height, 0, format, GL_UNSIGNED_BYTE,
(void *) newImage);
}
if (newwidth > 1) newwidth /= 2;
if (newheight > 1) newheight /= 2;
}
glPixelStorei(GL_UNPACK_ALIGNMENT, psm->unpack_alignment);
glPixelStorei(GL_UNPACK_SKIP_ROWS, psm->unpack_skip_rows);
glPixelStorei(GL_UNPACK_SKIP_PIXELS, psm->unpack_skip_pixels);
glPixelStorei(GL_UNPACK_ROW_LENGTH, psm->unpack_row_length);
glPixelStorei(GL_UNPACK_SWAP_BYTES, psm->unpack_swap_bytes);
if (newImage != (const GLubyte *)data) {
free((GLbyte *) newImage);
}
if (otherImage && otherImage != (const GLubyte *)data) {
free((GLbyte *) otherImage);
}
return 0;
}
#endif
/*
* Utility Routines
*/
static GLint elements_per_group(GLenum format, GLenum type)
{
/*
* Return the number of elements per group of a specified format
*/
/* If the type is packedpixels then answer is 1 (ignore format) */
if (type == GL_UNSIGNED_BYTE_3_3_2 ||
type == GL_UNSIGNED_BYTE_2_3_3_REV ||
type == GL_UNSIGNED_SHORT_5_6_5 ||
type == GL_UNSIGNED_SHORT_5_6_5_REV ||
type == GL_UNSIGNED_SHORT_4_4_4_4 ||
type == GL_UNSIGNED_SHORT_4_4_4_4_REV ||
type == GL_UNSIGNED_SHORT_5_5_5_1 ||
type == GL_UNSIGNED_SHORT_1_5_5_5_REV ||
type == GL_UNSIGNED_INT_8_8_8_8 ||
type == GL_UNSIGNED_INT_8_8_8_8_REV ||
type == GL_UNSIGNED_INT_10_10_10_2 ||
type == GL_UNSIGNED_INT_2_10_10_10_REV) {
return 1;
}
/* Types are not packed pixels, so get elements per group */
switch(format) {
case GL_RGB:
case GL_BGR:
return 3;
case GL_LUMINANCE_ALPHA:
return 2;
case GL_RGBA:
case GL_BGRA:
return 4;
default:
return 1;
}
}
static GLfloat bytes_per_element(GLenum type)
{
/*
* Return the number of bytes per element, based on the element type
*/
switch(type) {
case GL_BITMAP:
return 1.0 / 8.0;
case GL_UNSIGNED_SHORT:
return(sizeof(GLushort));
case GL_SHORT:
return(sizeof(GLshort));
case GL_UNSIGNED_BYTE:
return(sizeof(GLubyte));
case GL_BYTE:
return(sizeof(GLbyte));
case GL_INT:
return(sizeof(GLint));
case GL_UNSIGNED_INT:
return(sizeof(GLuint));
case GL_FLOAT:
return(sizeof(GLfloat));
case GL_UNSIGNED_BYTE_3_3_2:
case GL_UNSIGNED_BYTE_2_3_3_REV:
return(sizeof(GLubyte));
case GL_UNSIGNED_SHORT_5_6_5:
case GL_UNSIGNED_SHORT_5_6_5_REV:
case GL_UNSIGNED_SHORT_4_4_4_4:
case GL_UNSIGNED_SHORT_4_4_4_4_REV:
case GL_UNSIGNED_SHORT_5_5_5_1:
case GL_UNSIGNED_SHORT_1_5_5_5_REV:
return(sizeof(GLushort));
case GL_UNSIGNED_INT_8_8_8_8:
case GL_UNSIGNED_INT_8_8_8_8_REV:
case GL_UNSIGNED_INT_10_10_10_2:
case GL_UNSIGNED_INT_2_10_10_10_REV:
return(sizeof(GLuint));
default:
return 4;
}
}
static GLint is_index(GLenum format)
{
return format == GL_COLOR_INDEX || format == GL_STENCIL_INDEX;
}
/*
** Compute memory required for internal packed array of data of given type
** and format.
*/
static GLint image_size(GLint width, GLint height, GLenum format, GLenum type)
{
int bytes_per_row;
int components;
assert(width > 0);
assert(height > 0);
components = elements_per_group(format,type);
if (type == GL_BITMAP) {
bytes_per_row = (width + 7) / 8;
} else {
bytes_per_row = bytes_per_element(type) * width;
}
return bytes_per_row * height * components;
}
/*
** Extract array from user's data applying all pixel store modes.
** The internal format used is an array of unsigned shorts.
*/
static void fill_image(const PixelStorageModes *psm,
GLint width, GLint height, GLenum format,
GLenum type, GLboolean index_format,
const void *userdata, GLushort *newimage)
{
GLint components;
GLint element_size;
GLint rowsize;
GLint padding;
GLint groups_per_line;
GLint group_size;
GLint elements_per_line;
const GLubyte *start;
const GLubyte *iter;
GLushort *iter2;
GLint i, j, k;
GLint myswap_bytes;
myswap_bytes = psm->unpack_swap_bytes;
components = elements_per_group(format,type);
if (psm->unpack_row_length > 0) {
groups_per_line = psm->unpack_row_length;
} else {
groups_per_line = width;
}
/* All formats except GL_BITMAP fall out trivially */
if (type == GL_BITMAP) {
GLint bit_offset;
GLint current_bit;
rowsize = (groups_per_line * components + 7) / 8;
padding = (rowsize % psm->unpack_alignment);
if (padding) {
rowsize += psm->unpack_alignment - padding;
}
start = (const GLubyte *) userdata + psm->unpack_skip_rows * rowsize +
(psm->unpack_skip_pixels * components / 8);
elements_per_line = width * components;
iter2 = newimage;
for (i = 0; i < height; i++) {
iter = start;
bit_offset = (psm->unpack_skip_pixels * components) % 8;
for (j = 0; j < elements_per_line; j++) {
/* Retrieve bit */
if (psm->unpack_lsb_first) {
current_bit = iter[0] & (1 << bit_offset);
} else {
current_bit = iter[0] & (1 << (7 - bit_offset));
}
if (current_bit) {
if (index_format) {
*iter2 = 1;
} else {
*iter2 = 65535;
}
} else {
*iter2 = 0;
}
bit_offset++;
if (bit_offset == 8) {
bit_offset = 0;
iter++;
}
iter2++;
}
start += rowsize;
}
} else {
element_size = bytes_per_element(type);
group_size = element_size * components;
if (element_size == 1) myswap_bytes = 0;
rowsize = groups_per_line * group_size;
padding = (rowsize % psm->unpack_alignment);
if (padding) {
rowsize += psm->unpack_alignment - padding;
}
start = (const GLubyte *) userdata + psm->unpack_skip_rows * rowsize +
psm->unpack_skip_pixels * group_size;
elements_per_line = width * components;
iter2 = newimage;
for (i = 0; i < height; i++) {
iter = start;
for (j = 0; j < elements_per_line; j++) {
Type_Widget widget;
float extractComponents[4];
switch(type) {
case GL_UNSIGNED_BYTE_3_3_2:
extract332(0,iter,extractComponents);
for (k = 0; k < 3; k++) {
*iter2++ = (GLushort)(extractComponents[k]*65535);
}
break;
case GL_UNSIGNED_BYTE_2_3_3_REV:
extract233rev(0,iter,extractComponents);
for (k = 0; k < 3; k++) {
*iter2++ = (GLushort)(extractComponents[k]*65535);
}
break;
case GL_UNSIGNED_BYTE:
if (index_format) {
*iter2++ = *iter;
} else {
*iter2++ = (*iter) * 257;
}
break;
case GL_BYTE:
if (index_format) {
*iter2++ = *((const GLbyte *) iter);
} else {
/* rough approx */
*iter2++ = (*((const GLbyte *) iter)) * 516;
}
break;
case GL_UNSIGNED_SHORT_5_6_5:
extract565(myswap_bytes,iter,extractComponents);
for (k = 0; k < 3; k++) {
*iter2++ = (GLushort)(extractComponents[k]*65535);
}
break;
case GL_UNSIGNED_SHORT_5_6_5_REV:
extract565rev(myswap_bytes,iter,extractComponents);
for (k = 0; k < 3; k++) {
*iter2++ = (GLushort)(extractComponents[k]*65535);
}
break;
case GL_UNSIGNED_SHORT_4_4_4_4:
extract4444(myswap_bytes,iter,extractComponents);
for (k = 0; k < 4; k++) {
*iter2++ = (GLushort)(extractComponents[k]*65535);
}
break;
case GL_UNSIGNED_SHORT_4_4_4_4_REV:
extract4444rev(myswap_bytes,iter,extractComponents);
for (k = 0; k < 4; k++) {
*iter2++ = (GLushort)(extractComponents[k]*65535);
}
break;
case GL_UNSIGNED_SHORT_5_5_5_1:
extract5551(myswap_bytes,iter,extractComponents);
for (k = 0; k < 4; k++) {
*iter2++ = (GLushort)(extractComponents[k]*65535);
}
break;
case GL_UNSIGNED_SHORT_1_5_5_5_REV:
extract1555rev(myswap_bytes,iter,extractComponents);
for (k = 0; k < 4; k++) {
*iter2++ = (GLushort)(extractComponents[k]*65535);
}
break;
case GL_UNSIGNED_SHORT:
case GL_SHORT:
if (myswap_bytes) {
widget.ub[0] = iter[1];
widget.ub[1] = iter[0];
} else {
widget.ub[0] = iter[0];
widget.ub[1] = iter[1];
}
if (type == GL_SHORT) {
if (index_format) {
*iter2++ = widget.s[0];
} else {
/* rough approx */
*iter2++ = widget.s[0]*2;
}
} else {
*iter2++ = widget.us[0];
}
break;
case GL_UNSIGNED_INT_8_8_8_8:
extract8888(myswap_bytes,iter,extractComponents);
for (k = 0; k < 4; k++) {
*iter2++ = (GLushort)(extractComponents[k]*65535);
}
break;
case GL_UNSIGNED_INT_8_8_8_8_REV:
extract8888rev(myswap_bytes,iter,extractComponents);
for (k = 0; k < 4; k++) {
*iter2++ = (GLushort)(extractComponents[k]*65535);
}
break;
case GL_UNSIGNED_INT_10_10_10_2:
extract1010102(myswap_bytes,iter,extractComponents);
for (k = 0; k < 4; k++) {
*iter2++ = (GLushort)(extractComponents[k]*65535);
}
break;
case GL_UNSIGNED_INT_2_10_10_10_REV:
extract2101010rev(myswap_bytes,iter,extractComponents);
for (k = 0; k < 4; k++) {
*iter2++ = (GLushort)(extractComponents[k]*65535);
}
break;
case GL_INT:
case GL_UNSIGNED_INT:
case GL_FLOAT:
if (myswap_bytes) {
widget.ub[0] = iter[3];
widget.ub[1] = iter[2];
widget.ub[2] = iter[1];
widget.ub[3] = iter[0];
} else {
widget.ub[0] = iter[0];
widget.ub[1] = iter[1];
widget.ub[2] = iter[2];
widget.ub[3] = iter[3];
}
if (type == GL_FLOAT) {
if (index_format) {
*iter2++ = widget.f;
} else {
*iter2++ = 65535 * widget.f;
}
} else if (type == GL_UNSIGNED_INT) {
if (index_format) {
*iter2++ = widget.ui;
} else {
*iter2++ = widget.ui >> 16;
}
} else {
if (index_format) {
*iter2++ = widget.i;
} else {
*iter2++ = widget.i >> 15;
}
}
break;
}
iter += element_size;
} /* for j */
start += rowsize;
#if 1
/* want 'iter' pointing at start, not within, row for assertion
* purposes
*/
iter= start;
#endif
} /* for i */
/* iterators should be one byte past end */
if (!isTypePackedPixel(type)) {
assert(iter2 == &newimage[width*height*components]);
}
else {
assert(iter2 == &newimage[width*height*
elements_per_group(format,0)]);
}
assert( iter == &((const GLubyte *)userdata)[rowsize*height +
psm->unpack_skip_rows * rowsize +
psm->unpack_skip_pixels * group_size] );
} /* else */
} /* fill_image() */
/*
** Insert array into user's data applying all pixel store modes.
** The internal format is an array of unsigned shorts.
** empty_image() because it is the opposite of fill_image().
*/
static void empty_image(const PixelStorageModes *psm,
GLint width, GLint height, GLenum format,
GLenum type, GLboolean index_format,
const GLushort *oldimage, void *userdata)
{
GLint components;
GLint element_size;
GLint rowsize;
GLint padding;
GLint groups_per_line;
GLint group_size;
GLint elements_per_line;
GLubyte *start;
GLubyte *iter;
const GLushort *iter2;
GLint i, j, k;
GLint myswap_bytes;
myswap_bytes = psm->pack_swap_bytes;
components = elements_per_group(format,type);
if (psm->pack_row_length > 0) {
groups_per_line = psm->pack_row_length;
} else {
groups_per_line = width;
}
/* All formats except GL_BITMAP fall out trivially */
if (type == GL_BITMAP) {
GLint bit_offset;
GLint current_bit;
rowsize = (groups_per_line * components + 7) / 8;
padding = (rowsize % psm->pack_alignment);
if (padding) {
rowsize += psm->pack_alignment - padding;
}
start = (GLubyte *) userdata + psm->pack_skip_rows * rowsize +
(psm->pack_skip_pixels * components / 8);
elements_per_line = width * components;
iter2 = oldimage;
for (i = 0; i < height; i++) {
iter = start;
bit_offset = (psm->pack_skip_pixels * components) % 8;
for (j = 0; j < elements_per_line; j++) {
if (index_format) {
current_bit = iter2[0] & 1;
} else {
if (iter2[0] > 32767) {
current_bit = 1;
} else {
current_bit = 0;
}
}
if (current_bit) {
if (psm->pack_lsb_first) {
*iter |= (1 << bit_offset);
} else {
*iter |= (1 << (7 - bit_offset));
}
} else {
if (psm->pack_lsb_first) {
*iter &= ~(1 << bit_offset);
} else {
*iter &= ~(1 << (7 - bit_offset));
}
}
bit_offset++;
if (bit_offset == 8) {
bit_offset = 0;
iter++;
}
iter2++;
}
start += rowsize;
}
} else {
float shoveComponents[4];
element_size = bytes_per_element(type);
group_size = element_size * components;
if (element_size == 1) myswap_bytes = 0;
rowsize = groups_per_line * group_size;
padding = (rowsize % psm->pack_alignment);
if (padding) {
rowsize += psm->pack_alignment - padding;
}
start = (GLubyte *) userdata + psm->pack_skip_rows * rowsize +
psm->pack_skip_pixels * group_size;
elements_per_line = width * components;
iter2 = oldimage;
for (i = 0; i < height; i++) {
iter = start;
for (j = 0; j < elements_per_line; j++) {
Type_Widget widget;
switch(type) {
case GL_UNSIGNED_BYTE_3_3_2:
for (k = 0; k < 3; k++) {
shoveComponents[k]= *iter2++ / 65535.0;
}
shove332(shoveComponents,0,(void *)iter);
break;
case GL_UNSIGNED_BYTE_2_3_3_REV:
for (k = 0; k < 3; k++) {
shoveComponents[k]= *iter2++ / 65535.0;
}
shove233rev(shoveComponents,0,(void *)iter);
break;
case GL_UNSIGNED_BYTE:
if (index_format) {
*iter = *iter2++;
} else {
*iter = *iter2++ >> 8;
}
break;
case GL_BYTE:
if (index_format) {
*((GLbyte *) iter) = *iter2++;
} else {
*((GLbyte *) iter) = *iter2++ >> 9;
}
break;
case GL_UNSIGNED_SHORT_5_6_5:
for (k = 0; k < 3; k++) {
shoveComponents[k]= *iter2++ / 65535.0;
}
shove565(shoveComponents,0,(void *)&widget.us[0]);
if (myswap_bytes) {
iter[0] = widget.ub[1];
iter[1] = widget.ub[0];
}
else {
*(GLushort *)iter = widget.us[0];
}
break;
case GL_UNSIGNED_SHORT_5_6_5_REV:
for (k = 0; k < 3; k++) {
shoveComponents[k]= *iter2++ / 65535.0;
}
shove565rev(shoveComponents,0,(void *)&widget.us[0]);
if (myswap_bytes) {
iter[0] = widget.ub[1];
iter[1] = widget.ub[0];
}
else {
*(GLushort *)iter = widget.us[0];
}
break;
case GL_UNSIGNED_SHORT_4_4_4_4:
for (k = 0; k < 4; k++) {
shoveComponents[k]= *iter2++ / 65535.0;
}
shove4444(shoveComponents,0,(void *)&widget.us[0]);
if (myswap_bytes) {
iter[0] = widget.ub[1];
iter[1] = widget.ub[0];
} else {
*(GLushort *)iter = widget.us[0];
}
break;
case GL_UNSIGNED_SHORT_4_4_4_4_REV:
for (k = 0; k < 4; k++) {
shoveComponents[k]= *iter2++ / 65535.0;
}
shove4444rev(shoveComponents,0,(void *)&widget.us[0]);
if (myswap_bytes) {
iter[0] = widget.ub[1];
iter[1] = widget.ub[0];
} else {
*(GLushort *)iter = widget.us[0];
}
break;
case GL_UNSIGNED_SHORT_5_5_5_1:
for (k = 0; k < 4; k++) {
shoveComponents[k]= *iter2++ / 65535.0;
}
shove5551(shoveComponents,0,(void *)&widget.us[0]);
if (myswap_bytes) {
iter[0] = widget.ub[1];
iter[1] = widget.ub[0];
} else {
*(GLushort *)iter = widget.us[0];
}
break;
case GL_UNSIGNED_SHORT_1_5_5_5_REV:
for (k = 0; k < 4; k++) {
shoveComponents[k]= *iter2++ / 65535.0;
}
shove1555rev(shoveComponents,0,(void *)&widget.us[0]);
if (myswap_bytes) {
iter[0] = widget.ub[1];
iter[1] = widget.ub[0];
} else {
*(GLushort *)iter = widget.us[0];
}
break;
case GL_UNSIGNED_SHORT:
case GL_SHORT:
if (type == GL_SHORT) {
if (index_format) {
widget.s[0] = *iter2++;
} else {
widget.s[0] = *iter2++ >> 1;
}
} else {
widget.us[0] = *iter2++;
}
if (myswap_bytes) {
iter[0] = widget.ub[1];
iter[1] = widget.ub[0];
} else {
iter[0] = widget.ub[0];
iter[1] = widget.ub[1];
}
break;
case GL_UNSIGNED_INT_8_8_8_8:
for (k = 0; k < 4; k++) {
shoveComponents[k]= *iter2++ / 65535.0;
}
shove8888(shoveComponents,0,(void *)&widget.ui);
if (myswap_bytes) {
iter[3] = widget.ub[0];
iter[2] = widget.ub[1];
iter[1] = widget.ub[2];
iter[0] = widget.ub[3];
} else {
*(GLuint *)iter= widget.ui;
}
break;
case GL_UNSIGNED_INT_8_8_8_8_REV:
for (k = 0; k < 4; k++) {
shoveComponents[k]= *iter2++ / 65535.0;
}
shove8888rev(shoveComponents,0,(void *)&widget.ui);
if (myswap_bytes) {
iter[3] = widget.ub[0];
iter[2] = widget.ub[1];
iter[1] = widget.ub[2];
iter[0] = widget.ub[3];
} else {
*(GLuint *)iter= widget.ui;
}
break;
case GL_UNSIGNED_INT_10_10_10_2:
for (k = 0; k < 4; k++) {
shoveComponents[k]= *iter2++ / 65535.0;
}
shove1010102(shoveComponents,0,(void *)&widget.ui);
if (myswap_bytes) {
iter[3] = widget.ub[0];
iter[2] = widget.ub[1];
iter[1] = widget.ub[2];
iter[0] = widget.ub[3];
} else {
*(GLuint *)iter= widget.ui;
}
break;
case GL_UNSIGNED_INT_2_10_10_10_REV:
for (k = 0; k < 4; k++) {
shoveComponents[k]= *iter2++ / 65535.0;
}
shove2101010rev(shoveComponents,0,(void *)&widget.ui);
if (myswap_bytes) {
iter[3] = widget.ub[0];
iter[2] = widget.ub[1];
iter[1] = widget.ub[2];
iter[0] = widget.ub[3];
} else {
*(GLuint *)iter= widget.ui;
}
break;
case GL_INT:
case GL_UNSIGNED_INT:
case GL_FLOAT:
if (type == GL_FLOAT) {
if (index_format) {
widget.f = *iter2++;
} else {
widget.f = *iter2++ / (float) 65535.0;
}
} else if (type == GL_UNSIGNED_INT) {
if (index_format) {
widget.ui = *iter2++;
} else {
widget.ui = (unsigned int) *iter2++ * 65537;
}
} else {
if (index_format) {
widget.i = *iter2++;
} else {
widget.i = ((unsigned int) *iter2++ * 65537)/2;
}
}
if (myswap_bytes) {
iter[3] = widget.ub[0];
iter[2] = widget.ub[1];
iter[1] = widget.ub[2];
iter[0] = widget.ub[3];
} else {
iter[0] = widget.ub[0];
iter[1] = widget.ub[1];
iter[2] = widget.ub[2];
iter[3] = widget.ub[3];
}
break;
}
iter += element_size;
} /* for j */
start += rowsize;
#if 1
/* want 'iter' pointing at start, not within, row for assertion
* purposes
*/
iter= start;
#endif
} /* for i */
/* iterators should be one byte past end */
if (!isTypePackedPixel(type)) {
assert(iter2 == &oldimage[width*height*components]);
}
else {
assert(iter2 == &oldimage[width*height*
elements_per_group(format,0)]);
}
assert( iter == &((GLubyte *)userdata)[rowsize*height +
psm->pack_skip_rows * rowsize +
psm->pack_skip_pixels * group_size] );
} /* else */
} /* empty_image() */
/*--------------------------------------------------------------------------
* Decimation of packed pixel types
*--------------------------------------------------------------------------
*/
static void extract332(int isSwap,
const void *packedPixel, GLfloat extractComponents[])
{
GLubyte ubyte= *(const GLubyte *)packedPixel;
isSwap= isSwap; /* turn off warnings */
/* 11100000 == 0xe0 */
/* 00011100 == 0x1c */
/* 00000011 == 0x03 */
extractComponents[0]= (float)((ubyte & 0xe0) >> 5) / 7.0;
extractComponents[1]= (float)((ubyte & 0x1c) >> 2) / 7.0; /* 7 = 2^3-1 */
extractComponents[2]= (float)((ubyte & 0x03) ) / 3.0; /* 3 = 2^2-1 */
} /* extract332() */
static void shove332(const GLfloat shoveComponents[],
int index, void *packedPixel)
{
/* 11100000 == 0xe0 */
/* 00011100 == 0x1c */
/* 00000011 == 0x03 */
assert(0.0 <= shoveComponents[0] && shoveComponents[0] <= 1.0);
assert(0.0 <= shoveComponents[1] && shoveComponents[1] <= 1.0);
assert(0.0 <= shoveComponents[2] && shoveComponents[2] <= 1.0);
/* due to limited precision, need to round before shoving */
((GLubyte *)packedPixel)[index] =
((GLubyte)((shoveComponents[0] * 7)+0.5) << 5) & 0xe0;
((GLubyte *)packedPixel)[index] |=
((GLubyte)((shoveComponents[1] * 7)+0.5) << 2) & 0x1c;
((GLubyte *)packedPixel)[index] |=
((GLubyte)((shoveComponents[2] * 3)+0.5) ) & 0x03;
} /* shove332() */
static void extract233rev(int isSwap,
const void *packedPixel, GLfloat extractComponents[])
{
GLubyte ubyte= *(const GLubyte *)packedPixel;
isSwap= isSwap; /* turn off warnings */
/* 0000,0111 == 0x07 */
/* 0011,1000 == 0x38 */
/* 1100,0000 == 0xC0 */
extractComponents[0]= (float)((ubyte & 0x07) ) / 7.0;
extractComponents[1]= (float)((ubyte & 0x38) >> 3) / 7.0;
extractComponents[2]= (float)((ubyte & 0xC0) >> 6) / 3.0;
} /* extract233rev() */
static void shove233rev(const GLfloat shoveComponents[],
int index, void *packedPixel)
{
/* 0000,0111 == 0x07 */
/* 0011,1000 == 0x38 */
/* 1100,0000 == 0xC0 */
assert(0.0 <= shoveComponents[0] && shoveComponents[0] <= 1.0);
assert(0.0 <= shoveComponents[1] && shoveComponents[1] <= 1.0);
assert(0.0 <= shoveComponents[2] && shoveComponents[2] <= 1.0);
/* due to limited precision, need to round before shoving */
((GLubyte *)packedPixel)[index] =
((GLubyte)((shoveComponents[0] * 7.0)+0.5) ) & 0x07;
((GLubyte *)packedPixel)[index]|=
((GLubyte)((shoveComponents[1] * 7.0)+0.5) << 3) & 0x38;
((GLubyte *)packedPixel)[index]|=
((GLubyte)((shoveComponents[2] * 3.0)+0.5) << 6) & 0xC0;
} /* shove233rev() */
static void extract565(int isSwap,
const void *packedPixel, GLfloat extractComponents[])
{
GLushort ushort;
if (isSwap) {
ushort= __GLU_SWAP_2_BYTES(packedPixel);
}
else {
ushort= *(const GLushort *)packedPixel;
}
/* 11111000,00000000 == 0xf800 */
/* 00000111,11100000 == 0x07e0 */
/* 00000000,00011111 == 0x001f */
extractComponents[0]=(float)((ushort & 0xf800) >> 11) / 31.0;/* 31 = 2^5-1*/
extractComponents[1]=(float)((ushort & 0x07e0) >> 5) / 63.0;/* 63 = 2^6-1*/
extractComponents[2]=(float)((ushort & 0x001f) ) / 31.0;
} /* extract565() */
static void shove565(const GLfloat shoveComponents[],
int index,void *packedPixel)
{
/* 11111000,00000000 == 0xf800 */
/* 00000111,11100000 == 0x07e0 */
/* 00000000,00011111 == 0x001f */
assert(0.0 <= shoveComponents[0] && shoveComponents[0] <= 1.0);
assert(0.0 <= shoveComponents[1] && shoveComponents[1] <= 1.0);
assert(0.0 <= shoveComponents[2] && shoveComponents[2] <= 1.0);
/* due to limited precision, need to round before shoving */
((GLushort *)packedPixel)[index] =
((GLushort)((shoveComponents[0] * 31)+0.5) << 11) & 0xf800;
((GLushort *)packedPixel)[index]|=
((GLushort)((shoveComponents[1] * 63)+0.5) << 5) & 0x07e0;
((GLushort *)packedPixel)[index]|=
((GLushort)((shoveComponents[2] * 31)+0.5) ) & 0x001f;
} /* shove565() */
static void extract565rev(int isSwap,
const void *packedPixel, GLfloat extractComponents[])
{
GLushort ushort;
if (isSwap) {
ushort= __GLU_SWAP_2_BYTES(packedPixel);
}
else {
ushort= *(const GLushort *)packedPixel;
}
/* 00000000,00011111 == 0x001f */
/* 00000111,11100000 == 0x07e0 */
/* 11111000,00000000 == 0xf800 */
extractComponents[0]= (float)((ushort & 0x001F) ) / 31.0;
extractComponents[1]= (float)((ushort & 0x07E0) >> 5) / 63.0;
extractComponents[2]= (float)((ushort & 0xF800) >> 11) / 31.0;
} /* extract565rev() */
static void shove565rev(const GLfloat shoveComponents[],
int index,void *packedPixel)
{
/* 00000000,00011111 == 0x001f */
/* 00000111,11100000 == 0x07e0 */
/* 11111000,00000000 == 0xf800 */
assert(0.0 <= shoveComponents[0] && shoveComponents[0] <= 1.0);
assert(0.0 <= shoveComponents[1] && shoveComponents[1] <= 1.0);
assert(0.0 <= shoveComponents[2] && shoveComponents[2] <= 1.0);
/* due to limited precision, need to round before shoving */
((GLushort *)packedPixel)[index] =
((GLushort)((shoveComponents[0] * 31.0)+0.5) ) & 0x001F;
((GLushort *)packedPixel)[index]|=
((GLushort)((shoveComponents[1] * 63.0)+0.5) << 5) & 0x07E0;
((GLushort *)packedPixel)[index]|=
((GLushort)((shoveComponents[2] * 31.0)+0.5) << 11) & 0xF800;
} /* shove565rev() */
static void extract4444(int isSwap,const void *packedPixel,
GLfloat extractComponents[])
{
GLushort ushort;
if (isSwap) {
ushort= __GLU_SWAP_2_BYTES(packedPixel);
}
else {
ushort= *(const GLushort *)packedPixel;
}
/* 11110000,00000000 == 0xf000 */
/* 00001111,00000000 == 0x0f00 */
/* 00000000,11110000 == 0x00f0 */
/* 00000000,00001111 == 0x000f */
extractComponents[0]= (float)((ushort & 0xf000) >> 12) / 15.0;/* 15=2^4-1 */
extractComponents[1]= (float)((ushort & 0x0f00) >> 8) / 15.0;
extractComponents[2]= (float)((ushort & 0x00f0) >> 4) / 15.0;
extractComponents[3]= (float)((ushort & 0x000f) ) / 15.0;
} /* extract4444() */
static void shove4444(const GLfloat shoveComponents[],
int index,void *packedPixel)
{
assert(0.0 <= shoveComponents[0] && shoveComponents[0] <= 1.0);
assert(0.0 <= shoveComponents[1] && shoveComponents[1] <= 1.0);
assert(0.0 <= shoveComponents[2] && shoveComponents[2] <= 1.0);
assert(0.0 <= shoveComponents[3] && shoveComponents[3] <= 1.0);
/* due to limited precision, need to round before shoving */
((GLushort *)packedPixel)[index] =
((GLushort)((shoveComponents[0] * 15)+0.5) << 12) & 0xf000;
((GLushort *)packedPixel)[index]|=
((GLushort)((shoveComponents[1] * 15)+0.5) << 8) & 0x0f00;
((GLushort *)packedPixel)[index]|=
((GLushort)((shoveComponents[2] * 15)+0.5) << 4) & 0x00f0;
((GLushort *)packedPixel)[index]|=
((GLushort)((shoveComponents[3] * 15)+0.5) ) & 0x000f;
} /* shove4444() */
static void extract4444rev(int isSwap,const void *packedPixel,
GLfloat extractComponents[])
{
GLushort ushort;
if (isSwap) {
ushort= __GLU_SWAP_2_BYTES(packedPixel);
}
else {
ushort= *(const GLushort *)packedPixel;
}
/* 00000000,00001111 == 0x000f */
/* 00000000,11110000 == 0x00f0 */
/* 00001111,00000000 == 0x0f00 */
/* 11110000,00000000 == 0xf000 */
/* 15 = 2^4-1 */
extractComponents[0]= (float)((ushort & 0x000F) ) / 15.0;
extractComponents[1]= (float)((ushort & 0x00F0) >> 4) / 15.0;
extractComponents[2]= (float)((ushort & 0x0F00) >> 8) / 15.0;
extractComponents[3]= (float)((ushort & 0xF000) >> 12) / 15.0;
} /* extract4444rev() */
static void shove4444rev(const GLfloat shoveComponents[],
int index,void *packedPixel)
{
/* 00000000,00001111 == 0x000f */
/* 00000000,11110000 == 0x00f0 */
/* 00001111,00000000 == 0x0f00 */
/* 11110000,00000000 == 0xf000 */
assert(0.0 <= shoveComponents[0] && shoveComponents[0] <= 1.0);
assert(0.0 <= shoveComponents[1] && shoveComponents[1] <= 1.0);
assert(0.0 <= shoveComponents[2] && shoveComponents[2] <= 1.0);
assert(0.0 <= shoveComponents[3] && shoveComponents[3] <= 1.0);
/* due to limited precision, need to round before shoving */
((GLushort *)packedPixel)[index] =
((GLushort)((shoveComponents[0] * 15)+0.5) ) & 0x000F;
((GLushort *)packedPixel)[index]|=
((GLushort)((shoveComponents[1] * 15)+0.5) << 4) & 0x00F0;
((GLushort *)packedPixel)[index]|=
((GLushort)((shoveComponents[2] * 15)+0.5) << 8) & 0x0F00;
((GLushort *)packedPixel)[index]|=
((GLushort)((shoveComponents[3] * 15)+0.5) << 12) & 0xF000;
} /* shove4444rev() */
static void extract5551(int isSwap,const void *packedPixel,
GLfloat extractComponents[])
{
GLushort ushort;
if (isSwap) {
ushort= __GLU_SWAP_2_BYTES(packedPixel);
}
else {
ushort= *(const GLushort *)packedPixel;
}
/* 11111000,00000000 == 0xf800 */
/* 00000111,11000000 == 0x07c0 */
/* 00000000,00111110 == 0x003e */
/* 00000000,00000001 == 0x0001 */
extractComponents[0]=(float)((ushort & 0xf800) >> 11) / 31.0;/* 31 = 2^5-1*/
extractComponents[1]=(float)((ushort & 0x07c0) >> 6) / 31.0;
extractComponents[2]=(float)((ushort & 0x003e) >> 1) / 31.0;
extractComponents[3]=(float)((ushort & 0x0001) );
} /* extract5551() */
static void shove5551(const GLfloat shoveComponents[],
int index,void *packedPixel)
{
/* 11111000,00000000 == 0xf800 */
/* 00000111,11000000 == 0x07c0 */
/* 00000000,00111110 == 0x003e */
/* 00000000,00000001 == 0x0001 */
assert(0.0 <= shoveComponents[0] && shoveComponents[0] <= 1.0);
assert(0.0 <= shoveComponents[1] && shoveComponents[1] <= 1.0);
assert(0.0 <= shoveComponents[2] && shoveComponents[2] <= 1.0);
assert(0.0 <= shoveComponents[3] && shoveComponents[3] <= 1.0);
/* due to limited precision, need to round before shoving */
((GLushort *)packedPixel)[index] =
((GLushort)((shoveComponents[0] * 31)+0.5) << 11) & 0xf800;
((GLushort *)packedPixel)[index]|=
((GLushort)((shoveComponents[1] * 31)+0.5) << 6) & 0x07c0;
((GLushort *)packedPixel)[index]|=
((GLushort)((shoveComponents[2] * 31)+0.5) << 1) & 0x003e;
((GLushort *)packedPixel)[index]|=
((GLushort)((shoveComponents[3])+0.5) ) & 0x0001;
} /* shove5551() */
static void extract1555rev(int isSwap,const void *packedPixel,
GLfloat extractComponents[])
{
GLushort ushort;
if (isSwap) {
ushort= __GLU_SWAP_2_BYTES(packedPixel);
}
else {
ushort= *(const GLushort *)packedPixel;
}
/* 00000000,00011111 == 0x001F */
/* 00000011,11100000 == 0x03E0 */
/* 01111100,00000000 == 0x7C00 */
/* 10000000,00000000 == 0x8000 */
/* 31 = 2^5-1 */
extractComponents[0]= (float)((ushort & 0x001F) ) / 31.0;
extractComponents[1]= (float)((ushort & 0x03E0) >> 5) / 31.0;
extractComponents[2]= (float)((ushort & 0x7C00) >> 10) / 31.0;
extractComponents[3]= (float)((ushort & 0x8000) >> 15);
} /* extract1555rev() */
static void shove1555rev(const GLfloat shoveComponents[],
int index,void *packedPixel)
{
/* 00000000,00011111 == 0x001F */
/* 00000011,11100000 == 0x03E0 */
/* 01111100,00000000 == 0x7C00 */
/* 10000000,00000000 == 0x8000 */
assert(0.0 <= shoveComponents[0] && shoveComponents[0] <= 1.0);
assert(0.0 <= shoveComponents[1] && shoveComponents[1] <= 1.0);
assert(0.0 <= shoveComponents[2] && shoveComponents[2] <= 1.0);
assert(0.0 <= shoveComponents[3] && shoveComponents[3] <= 1.0);
/* due to limited precision, need to round before shoving */
((GLushort *)packedPixel)[index] =
((GLushort)((shoveComponents[0] * 31)+0.5) ) & 0x001F;
((GLushort *)packedPixel)[index]|=
((GLushort)((shoveComponents[1] * 31)+0.5) << 5) & 0x03E0;
((GLushort *)packedPixel)[index]|=
((GLushort)((shoveComponents[2] * 31)+0.5) << 10) & 0x7C00;
((GLushort *)packedPixel)[index]|=
((GLushort)((shoveComponents[3])+0.5) << 15) & 0x8000;
} /* shove1555rev() */
static void extract8888(int isSwap,
const void *packedPixel, GLfloat extractComponents[])
{
GLuint uint;
if (isSwap) {
uint= __GLU_SWAP_4_BYTES(packedPixel);
}
else {
uint= *(const GLuint *)packedPixel;
}
/* 11111111,00000000,00000000,00000000 == 0xff000000 */
/* 00000000,11111111,00000000,00000000 == 0x00ff0000 */
/* 00000000,00000000,11111111,00000000 == 0x0000ff00 */
/* 00000000,00000000,00000000,11111111 == 0x000000ff */
/* 255 = 2^8-1 */
extractComponents[0]= (float)((uint & 0xff000000) >> 24) / 255.0;
extractComponents[1]= (float)((uint & 0x00ff0000) >> 16) / 255.0;
extractComponents[2]= (float)((uint & 0x0000ff00) >> 8) / 255.0;
extractComponents[3]= (float)((uint & 0x000000ff) ) / 255.0;
} /* extract8888() */
static void shove8888(const GLfloat shoveComponents[],
int index,void *packedPixel)
{
/* 11111111,00000000,00000000,00000000 == 0xff000000 */
/* 00000000,11111111,00000000,00000000 == 0x00ff0000 */
/* 00000000,00000000,11111111,00000000 == 0x0000ff00 */
/* 00000000,00000000,00000000,11111111 == 0x000000ff */
assert(0.0 <= shoveComponents[0] && shoveComponents[0] <= 1.0);
assert(0.0 <= shoveComponents[1] && shoveComponents[1] <= 1.0);
assert(0.0 <= shoveComponents[2] && shoveComponents[2] <= 1.0);
assert(0.0 <= shoveComponents[3] && shoveComponents[3] <= 1.0);
/* due to limited precision, need to round before shoving */
((GLuint *)packedPixel)[index] =
((GLuint)((shoveComponents[0] * 255)+0.5) << 24) & 0xff000000;
((GLuint *)packedPixel)[index]|=
((GLuint)((shoveComponents[1] * 255)+0.5) << 16) & 0x00ff0000;
((GLuint *)packedPixel)[index]|=
((GLuint)((shoveComponents[2] * 255)+0.5) << 8) & 0x0000ff00;
((GLuint *)packedPixel)[index]|=
((GLuint)((shoveComponents[3] * 255)+0.5) ) & 0x000000ff;
} /* shove8888() */
static void extract8888rev(int isSwap,
const void *packedPixel,GLfloat extractComponents[])
{
GLuint uint;
if (isSwap) {
uint= __GLU_SWAP_4_BYTES(packedPixel);
}
else {
uint= *(const GLuint *)packedPixel;
}
/* 00000000,00000000,00000000,11111111 == 0x000000ff */
/* 00000000,00000000,11111111,00000000 == 0x0000ff00 */
/* 00000000,11111111,00000000,00000000 == 0x00ff0000 */
/* 11111111,00000000,00000000,00000000 == 0xff000000 */
/* 255 = 2^8-1 */
extractComponents[0]= (float)((uint & 0x000000FF) ) / 255.0;
extractComponents[1]= (float)((uint & 0x0000FF00) >> 8) / 255.0;
extractComponents[2]= (float)((uint & 0x00FF0000) >> 16) / 255.0;
extractComponents[3]= (float)((uint & 0xFF000000) >> 24) / 255.0;
} /* extract8888rev() */
static void shove8888rev(const GLfloat shoveComponents[],
int index,void *packedPixel)
{
/* 00000000,00000000,00000000,11111111 == 0x000000ff */
/* 00000000,00000000,11111111,00000000 == 0x0000ff00 */
/* 00000000,11111111,00000000,00000000 == 0x00ff0000 */
/* 11111111,00000000,00000000,00000000 == 0xff000000 */
assert(0.0 <= shoveComponents[0] && shoveComponents[0] <= 1.0);
assert(0.0 <= shoveComponents[1] && shoveComponents[1] <= 1.0);
assert(0.0 <= shoveComponents[2] && shoveComponents[2] <= 1.0);
assert(0.0 <= shoveComponents[3] && shoveComponents[3] <= 1.0);
/* due to limited precision, need to round before shoving */
((GLuint *)packedPixel)[index] =
((GLuint)((shoveComponents[0] * 255)+0.5) ) & 0x000000FF;
((GLuint *)packedPixel)[index]|=
((GLuint)((shoveComponents[1] * 255)+0.5) << 8) & 0x0000FF00;
((GLuint *)packedPixel)[index]|=
((GLuint)((shoveComponents[2] * 255)+0.5) << 16) & 0x00FF0000;
((GLuint *)packedPixel)[index]|=
((GLuint)((shoveComponents[3] * 255)+0.5) << 24) & 0xFF000000;
} /* shove8888rev() */
static void extract1010102(int isSwap,
const void *packedPixel,GLfloat extractComponents[])
{
GLuint uint;
if (isSwap) {
uint= __GLU_SWAP_4_BYTES(packedPixel);
}
else {
uint= *(const GLuint *)packedPixel;
}
/* 11111111,11000000,00000000,00000000 == 0xffc00000 */
/* 00000000,00111111,11110000,00000000 == 0x003ff000 */
/* 00000000,00000000,00001111,11111100 == 0x00000ffc */
/* 00000000,00000000,00000000,00000011 == 0x00000003 */
/* 1023 = 2^10-1 */
extractComponents[0]= (float)((uint & 0xffc00000) >> 22) / 1023.0;
extractComponents[1]= (float)((uint & 0x003ff000) >> 12) / 1023.0;
extractComponents[2]= (float)((uint & 0x00000ffc) >> 2) / 1023.0;
extractComponents[3]= (float)((uint & 0x00000003) ) / 3.0;
} /* extract1010102() */
static void shove1010102(const GLfloat shoveComponents[],
int index,void *packedPixel)
{
/* 11111111,11000000,00000000,00000000 == 0xffc00000 */
/* 00000000,00111111,11110000,00000000 == 0x003ff000 */
/* 00000000,00000000,00001111,11111100 == 0x00000ffc */
/* 00000000,00000000,00000000,00000011 == 0x00000003 */
assert(0.0 <= shoveComponents[0] && shoveComponents[0] <= 1.0);
assert(0.0 <= shoveComponents[1] && shoveComponents[1] <= 1.0);
assert(0.0 <= shoveComponents[2] && shoveComponents[2] <= 1.0);
assert(0.0 <= shoveComponents[3] && shoveComponents[3] <= 1.0);
/* due to limited precision, need to round before shoving */
((GLuint *)packedPixel)[index] =
((GLuint)((shoveComponents[0] * 1023)+0.5) << 22) & 0xffc00000;
((GLuint *)packedPixel)[index]|=
((GLuint)((shoveComponents[1] * 1023)+0.5) << 12) & 0x003ff000;
((GLuint *)packedPixel)[index]|=
((GLuint)((shoveComponents[2] * 1023)+0.5) << 2) & 0x00000ffc;
((GLuint *)packedPixel)[index]|=
((GLuint)((shoveComponents[3] * 3)+0.5) ) & 0x00000003;
} /* shove1010102() */
static void extract2101010rev(int isSwap,
const void *packedPixel,
GLfloat extractComponents[])
{
GLuint uint;
if (isSwap) {
uint= __GLU_SWAP_4_BYTES(packedPixel);
}
else {
uint= *(const GLuint *)packedPixel;
}
/* 00000000,00000000,00000011,11111111 == 0x000003FF */
/* 00000000,00001111,11111100,00000000 == 0x000FFC00 */
/* 00111111,11110000,00000000,00000000 == 0x3FF00000 */
/* 11000000,00000000,00000000,00000000 == 0xC0000000 */
/* 1023 = 2^10-1 */
extractComponents[0]= (float)((uint & 0x000003FF) ) / 1023.0;
extractComponents[1]= (float)((uint & 0x000FFC00) >> 10) / 1023.0;
extractComponents[2]= (float)((uint & 0x3FF00000) >> 20) / 1023.0;
extractComponents[3]= (float)((uint & 0xC0000000) >> 30) / 3.0;
/* 3 = 2^2-1 */
} /* extract2101010rev() */
static void shove2101010rev(const GLfloat shoveComponents[],
int index,void *packedPixel)
{
/* 00000000,00000000,00000011,11111111 == 0x000003FF */
/* 00000000,00001111,11111100,00000000 == 0x000FFC00 */
/* 00111111,11110000,00000000,00000000 == 0x3FF00000 */
/* 11000000,00000000,00000000,00000000 == 0xC0000000 */
assert(0.0 <= shoveComponents[0] && shoveComponents[0] <= 1.0);
assert(0.0 <= shoveComponents[1] && shoveComponents[1] <= 1.0);
assert(0.0 <= shoveComponents[2] && shoveComponents[2] <= 1.0);
assert(0.0 <= shoveComponents[3] && shoveComponents[3] <= 1.0);
/* due to limited precision, need to round before shoving */
((GLuint *)packedPixel)[index] =
((GLuint)((shoveComponents[0] * 1023)+0.5) ) & 0x000003FF;
((GLuint *)packedPixel)[index]|=
((GLuint)((shoveComponents[1] * 1023)+0.5) << 10) & 0x000FFC00;
((GLuint *)packedPixel)[index]|=
((GLuint)((shoveComponents[2] * 1023)+0.5) << 20) & 0x3FF00000;
((GLuint *)packedPixel)[index]|=
((GLuint)((shoveComponents[3] * 3)+0.5) << 30) & 0xC0000000;
} /* shove2101010rev() */
static void scaleInternalPackedPixel(int components,
void (*extractPackedPixel)
(int, const void *,GLfloat []),
void (*shovePackedPixel)
(const GLfloat [], int, void *),
GLint widthIn,GLint heightIn,
const void *dataIn,
GLint widthOut,GLint heightOut,
void *dataOut,
GLint pixelSizeInBytes,
GLint rowSizeInBytes,GLint isSwap)
{
float convx;
float convy;
float percent;
/* Max components in a format is 4, so... */
float totals[4];
float extractTotals[4], extractMoreTotals[4], shoveTotals[4];
float area;
int i,j,k,xindex;
const char *temp, *temp0;
int outindex;
int lowx_int, highx_int, lowy_int, highy_int;
float x_percent, y_percent;
float lowx_float, highx_float, lowy_float, highy_float;
float convy_float, convx_float;
int convy_int, convx_int;
int l, m;
const char *left, *right;
if (widthIn == widthOut*2 && heightIn == heightOut*2) {
halveImagePackedPixel(components,extractPackedPixel,shovePackedPixel,
widthIn, heightIn, dataIn, dataOut,
pixelSizeInBytes,rowSizeInBytes,isSwap);
return;
}
convy = (float) heightIn/heightOut;
convx = (float) widthIn/widthOut;
convy_int = floor(convy);
convy_float = convy - convy_int;
convx_int = floor(convx);
convx_float = convx - convx_int;
area = convx * convy;
lowy_int = 0;
lowy_float = 0;
highy_int = convy_int;
highy_float = convy_float;
for (i = 0; i < heightOut; i++) {
lowx_int = 0;
lowx_float = 0;
highx_int = convx_int;
highx_float = convx_float;
for (j = 0; j < widthOut; j++) {
/*
** Ok, now apply box filter to box that goes from (lowx, lowy)
** to (highx, highy) on input data into this pixel on output
** data.
*/
totals[0] = totals[1] = totals[2] = totals[3] = 0.0;
/* calculate the value for pixels in the 1st row */
xindex = lowx_int*pixelSizeInBytes;
if((highy_int>lowy_int) && (highx_int>lowx_int)) {
y_percent = 1-lowy_float;
temp = (const char *)dataIn + xindex + lowy_int * rowSizeInBytes;
percent = y_percent * (1-lowx_float);
#if 0
for (k = 0, temp_index = temp; k < components;
k++, temp_index += element_size) {
if (myswap_bytes) {
totals[k] += __GLU_SWAP_2_BYTES(temp_index) * percent;
} else {
totals[k] += *(const GLushort*)temp_index * percent;
}
}
#else
(*extractPackedPixel)(isSwap,temp,extractTotals);
for (k = 0; k < components; k++) {
totals[k]+= extractTotals[k] * percent;
}
#endif
left = temp;
for(l = lowx_int+1; l < highx_int; l++) {
temp += pixelSizeInBytes;
#if 0
for (k = 0, temp_index = temp; k < components;
k++, temp_index += element_size) {
if (myswap_bytes) {
totals[k] +=
__GLU_SWAP_2_BYTES(temp_index) * y_percent;
} else {
totals[k] += *(const GLushort*)temp_index * y_percent;
}
}
#else
(*extractPackedPixel)(isSwap,temp,extractTotals);
for (k = 0; k < components; k++) {
totals[k]+= extractTotals[k] * y_percent;
}
#endif
}
temp += pixelSizeInBytes;
right = temp;
percent = y_percent * highx_float;
#if 0
for (k = 0, temp_index = temp; k < components;
k++, temp_index += element_size) {
if (myswap_bytes) {
totals[k] += __GLU_SWAP_2_BYTES(temp_index) * percent;
} else {
totals[k] += *(const GLushort*)temp_index * percent;
}
}
#else
(*extractPackedPixel)(isSwap,temp,extractTotals);
for (k = 0; k < components; k++) {
totals[k]+= extractTotals[k] * percent;
}
#endif
/* calculate the value for pixels in the last row */
y_percent = highy_float;
percent = y_percent * (1-lowx_float);
temp = (const char *)dataIn + xindex + highy_int * rowSizeInBytes;
#if 0
for (k = 0, temp_index = temp; k < components;
k++, temp_index += element_size) {
if (myswap_bytes) {
totals[k] += __GLU_SWAP_2_BYTES(temp_index) * percent;
} else {
totals[k] += *(const GLushort*)temp_index * percent;
}
}
#else
(*extractPackedPixel)(isSwap,temp,extractTotals);
for (k = 0; k < components; k++) {
totals[k]+= extractTotals[k] * percent;
}
#endif
for(l = lowx_int+1; l < highx_int; l++) {
temp += pixelSizeInBytes;
#if 0
for (k = 0, temp_index = temp; k < components;
k++, temp_index += element_size) {
if (myswap_bytes) {
totals[k] +=
__GLU_SWAP_2_BYTES(temp_index) * y_percent;
} else {
totals[k] += *(const GLushort*)temp_index * y_percent;
}
}
#else
(*extractPackedPixel)(isSwap,temp,extractTotals);
for (k = 0; k < components; k++) {
totals[k]+= extractTotals[k] * y_percent;
}
#endif
}
temp += pixelSizeInBytes;
percent = y_percent * highx_float;
#if 0
for (k = 0, temp_index = temp; k < components;
k++, temp_index += element_size) {
if (myswap_bytes) {
totals[k] += __GLU_SWAP_2_BYTES(temp_index) * percent;
} else {
totals[k] += *(const GLushort*)temp_index * percent;
}
}
#else
(*extractPackedPixel)(isSwap,temp,extractTotals);
for (k = 0; k < components; k++) {
totals[k]+= extractTotals[k] * percent;
}
#endif
/* calculate the value for pixels in the 1st and last column */
for(m = lowy_int+1; m < highy_int; m++) {
left += rowSizeInBytes;
right += rowSizeInBytes;
#if 0
for (k = 0; k < components;
k++, left += element_size, right += element_size) {
if (myswap_bytes) {
totals[k] +=
__GLU_SWAP_2_BYTES(left) * (1-lowx_float) +
__GLU_SWAP_2_BYTES(right) * highx_float;
} else {
totals[k] += *(const GLushort*)left * (1-lowx_float)
+ *(const GLushort*)right * highx_float;
}
}
#else
(*extractPackedPixel)(isSwap,left,extractTotals);
(*extractPackedPixel)(isSwap,right,extractMoreTotals);
for (k = 0; k < components; k++) {
totals[k]+= (extractTotals[k]*(1-lowx_float) +
extractMoreTotals[k]*highx_float);
}
#endif
}
} else if (highy_int > lowy_int) {
x_percent = highx_float - lowx_float;
percent = (1-lowy_float)*x_percent;
temp = (const char *)dataIn + xindex + lowy_int*rowSizeInBytes;
#if 0
for (k = 0, temp_index = temp; k < components;
k++, temp_index += element_size) {
if (myswap_bytes) {
totals[k] += __GLU_SWAP_2_BYTES(temp_index) * percent;
} else {
totals[k] += *(const GLushort*)temp_index * percent;
}
}
#else
(*extractPackedPixel)(isSwap,temp,extractTotals);
for (k = 0; k < components; k++) {
totals[k]+= extractTotals[k] * percent;
}
#endif
for(m = lowy_int+1; m < highy_int; m++) {
temp += rowSizeInBytes;
#if 0
for (k = 0, temp_index = temp; k < components;
k++, temp_index += element_size) {
if (myswap_bytes) {
totals[k] +=
__GLU_SWAP_2_BYTES(temp_index) * x_percent;
} else {
totals[k] += *(const GLushort*)temp_index * x_percent;
}
}
#else
(*extractPackedPixel)(isSwap,temp,extractTotals);
for (k = 0; k < components; k++) {
totals[k]+= extractTotals[k] * x_percent;
}
#endif
}
percent = x_percent * highy_float;
temp += rowSizeInBytes;
#if 0
for (k = 0, temp_index = temp; k < components;
k++, temp_index += element_size) {
if (myswap_bytes) {
totals[k] += __GLU_SWAP_2_BYTES(temp_index) * percent;
} else {
totals[k] += *(const GLushort*)temp_index * percent;
}
}
#else
(*extractPackedPixel)(isSwap,temp,extractTotals);
for (k = 0; k < components; k++) {
totals[k]+= extractTotals[k] * percent;
}
#endif
} else if (highx_int > lowx_int) {
y_percent = highy_float - lowy_float;
percent = (1-lowx_float)*y_percent;
temp = (const char *)dataIn + xindex + lowy_int*rowSizeInBytes;
#if 0
for (k = 0, temp_index = temp; k < components;
k++, temp_index += element_size) {
if (myswap_bytes) {
totals[k] += __GLU_SWAP_2_BYTES(temp_index) * percent;
} else {
totals[k] += *(const GLushort*)temp_index * percent;
}
}
#else
(*extractPackedPixel)(isSwap,temp,extractTotals);
for (k = 0; k < components; k++) {
totals[k]+= extractTotals[k] * percent;
}
#endif
for (l = lowx_int+1; l < highx_int; l++) {
temp += pixelSizeInBytes;
#if 0
for (k = 0, temp_index = temp; k < components;
k++, temp_index += element_size) {
if (myswap_bytes) {
totals[k] +=
__GLU_SWAP_2_BYTES(temp_index) * y_percent;
} else {
totals[k] += *(const GLushort*)temp_index * y_percent;
}
}
#else
(*extractPackedPixel)(isSwap,temp,extractTotals);
for (k = 0; k < components; k++) {
totals[k]+= extractTotals[k] * y_percent;
}
#endif
}
temp += pixelSizeInBytes;
percent = y_percent * highx_float;
#if 0
for (k = 0, temp_index = temp; k < components;
k++, temp_index += element_size) {
if (myswap_bytes) {
totals[k] += __GLU_SWAP_2_BYTES(temp_index) * percent;
} else {
totals[k] += *(const GLushort*)temp_index * percent;
}
}
#else
(*extractPackedPixel)(isSwap,temp,extractTotals);
for (k = 0; k < components; k++) {
totals[k]+= extractTotals[k] * percent;
}
#endif
} else {
percent = (highy_float-lowy_float)*(highx_float-lowx_float);
temp = (const char *)dataIn + xindex + lowy_int * rowSizeInBytes;
#if 0
for (k = 0, temp_index = temp; k < components;
k++, temp_index += element_size) {
if (myswap_bytes) {
totals[k] += __GLU_SWAP_2_BYTES(temp_index) * percent;
} else {
totals[k] += *(const GLushort*)temp_index * percent;
}
}
#else
(*extractPackedPixel)(isSwap,temp,extractTotals);
for (k = 0; k < components; k++) {
totals[k]+= extractTotals[k] * percent;
}
#endif
}
/* this is for the pixels in the body */
temp0 = (const char *)dataIn + xindex + pixelSizeInBytes + (lowy_int+1)*rowSizeInBytes;
for (m = lowy_int+1; m < highy_int; m++) {
temp = temp0;
for(l = lowx_int+1; l < highx_int; l++) {
#if 0
for (k = 0, temp_index = temp; k < components;
k++, temp_index += element_size) {
if (myswap_bytes) {
totals[k] += __GLU_SWAP_2_BYTES(temp_index);
} else {
totals[k] += *(const GLushort*)temp_index;
}
}
#else
(*extractPackedPixel)(isSwap,temp,extractTotals);
for (k = 0; k < components; k++) {
totals[k]+= extractTotals[k];
}
#endif
temp += pixelSizeInBytes;
}
temp0 += rowSizeInBytes;
}
outindex = (j + (i * widthOut)); /* * (components == 1) */
#if 0
for (k = 0; k < components; k++) {
dataout[outindex + k] = totals[k]/area;
/*printf("totals[%d] = %f\n", k, totals[k]);*/
}
#else
for (k = 0; k < components; k++) {
shoveTotals[k]= totals[k]/area;
}
(*shovePackedPixel)(shoveTotals,outindex,(void *)dataOut);
#endif
lowx_int = highx_int;
lowx_float = highx_float;
highx_int += convx_int;
highx_float += convx_float;
if(highx_float > 1) {
highx_float -= 1.0;
highx_int++;
}
}
lowy_int = highy_int;
lowy_float = highy_float;
highy_int += convy_int;
highy_float += convy_float;
if(highy_float > 1) {
highy_float -= 1.0;
highy_int++;
}
}
assert(outindex == (widthOut*heightOut - 1));
} /* scaleInternalPackedPixel() */
/* rowSizeInBytes is at least the width (in bytes) due to padding on
* inputs; not always equal. Output NEVER has row padding.
*/
static void halveImagePackedPixel(int components,
void (*extractPackedPixel)
(int, const void *,GLfloat []),
void (*shovePackedPixel)
(const GLfloat [],int, void *),
GLint width, GLint height,
const void *dataIn, void *dataOut,
GLint pixelSizeInBytes,
GLint rowSizeInBytes, GLint isSwap)
{
/* handle case where there is only 1 column/row */
if (width == 1 || height == 1) {
assert(!(width == 1 && height == 1)); /* can't be 1x1 */
halve1DimagePackedPixel(components,extractPackedPixel,shovePackedPixel,
width,height,dataIn,dataOut,pixelSizeInBytes,
rowSizeInBytes,isSwap);
return;
}
{
int ii, jj;
int halfWidth= width / 2;
int halfHeight= height / 2;
const char *src= (const char *) dataIn;
int padBytes= rowSizeInBytes - (width*pixelSizeInBytes);
int outIndex= 0;
for (ii= 0; ii< halfHeight; ii++) {
for (jj= 0; jj< halfWidth; jj++) {
#define BOX4 4
float totals[4]; /* 4 is maximum components */
float extractTotals[BOX4][4]; /* 4 is maximum components */
int cc;
(*extractPackedPixel)(isSwap,src,
&extractTotals[0][0]);
(*extractPackedPixel)(isSwap,(src+pixelSizeInBytes),
&extractTotals[1][0]);
(*extractPackedPixel)(isSwap,(src+rowSizeInBytes),
&extractTotals[2][0]);
(*extractPackedPixel)(isSwap,
(src+rowSizeInBytes+pixelSizeInBytes),
&extractTotals[3][0]);
for (cc = 0; cc < components; cc++) {
int kk;
/* grab 4 pixels to average */
totals[cc]= 0.0;
/* totals[RED]= extractTotals[0][RED]+extractTotals[1][RED]+
* extractTotals[2][RED]+extractTotals[3][RED];
* totals[RED]/= 4.0;
*/
for (kk = 0; kk < BOX4; kk++) {
totals[cc]+= extractTotals[kk][cc];
}
totals[cc]/= (float)BOX4;
}
(*shovePackedPixel)(totals,outIndex,dataOut);
outIndex++;
/* skip over to next square of 4 */
src+= pixelSizeInBytes + pixelSizeInBytes;
}
/* skip past pad bytes, if any, to get to next row */
src+= padBytes;
/* src is at beginning of a row here, but it's the second row of
* the square block of 4 pixels that we just worked on so we
* need to go one more row.
* i.e.,
* OO...
* here -->OO...
* but want -->OO...
* OO...
* ...
*/
src+= rowSizeInBytes;
}
/* both pointers must reach one byte after the end */
assert(src == &((const char *)dataIn)[rowSizeInBytes*height]);
assert(outIndex == halfWidth * halfHeight);
}
} /* halveImagePackedPixel() */
static void halve1DimagePackedPixel(int components,
void (*extractPackedPixel)
(int, const void *,GLfloat []),
void (*shovePackedPixel)
(const GLfloat [],int, void *),
GLint width, GLint height,
const void *dataIn, void *dataOut,
GLint pixelSizeInBytes,
GLint rowSizeInBytes, GLint isSwap)
{
int halfWidth= width / 2;
int halfHeight= height / 2;
const char *src= (const char *) dataIn;
int jj;
assert(width == 1 || height == 1); /* must be 1D */
assert(width != height); /* can't be square */
if (height == 1) { /* 1 row */
int outIndex= 0;
assert(width != 1); /* widthxheight can't be 1x1 */
halfHeight= 1;
/* one horizontal row with possible pad bytes */
for (jj= 0; jj< halfWidth; jj++) {
#define BOX2 2
float totals[4]; /* 4 is maximum components */
float extractTotals[BOX2][4]; /* 4 is maximum components */
int cc;
/* average two at a time, instead of four */
(*extractPackedPixel)(isSwap,src,
&extractTotals[0][0]);
(*extractPackedPixel)(isSwap,(src+pixelSizeInBytes),
&extractTotals[1][0]);
for (cc = 0; cc < components; cc++) {
int kk;
/* grab 2 pixels to average */
totals[cc]= 0.0;
/* totals[RED]= extractTotals[0][RED]+extractTotals[1][RED];
* totals[RED]/= 2.0;
*/
for (kk = 0; kk < BOX2; kk++) {
totals[cc]+= extractTotals[kk][cc];
}
totals[cc]/= (float)BOX2;
}
(*shovePackedPixel)(totals,outIndex,dataOut);
outIndex++;
/* skip over to next group of 2 */
src+= pixelSizeInBytes + pixelSizeInBytes;
}
{
int padBytes= rowSizeInBytes - (width*pixelSizeInBytes);
src+= padBytes; /* for assertion only */
}
assert(src == &((const char *)dataIn)[rowSizeInBytes]);
assert(outIndex == halfWidth * halfHeight);
}
else if (width == 1) { /* 1 column */
int outIndex= 0;
assert(height != 1); /* widthxheight can't be 1x1 */
halfWidth= 1;
/* one vertical column with possible pad bytes per row */
/* average two at a time */
for (jj= 0; jj< halfHeight; jj++) {
#define BOX2 2
float totals[4]; /* 4 is maximum components */
float extractTotals[BOX2][4]; /* 4 is maximum components */
int cc;
/* average two at a time, instead of four */
(*extractPackedPixel)(isSwap,src,
&extractTotals[0][0]);
(*extractPackedPixel)(isSwap,(src+rowSizeInBytes),
&extractTotals[1][0]);
for (cc = 0; cc < components; cc++) {
int kk;
/* grab 2 pixels to average */
totals[cc]= 0.0;
/* totals[RED]= extractTotals[0][RED]+extractTotals[1][RED];
* totals[RED]/= 2.0;
*/
for (kk = 0; kk < BOX2; kk++) {
totals[cc]+= extractTotals[kk][cc];
}
totals[cc]/= (float)BOX2;
}
(*shovePackedPixel)(totals,outIndex,dataOut);
outIndex++;
src+= rowSizeInBytes + rowSizeInBytes; /* go to row after next */
}
assert(src == &((const char *)dataIn)[rowSizeInBytes*height]);
assert(outIndex == halfWidth * halfHeight);
}
} /* halve1DimagePackedPixel() */
/*===========================================================================*/
#ifdef RESOLVE_3D_TEXTURE_SUPPORT
/*
* This section ensures that GLU 1.3 will load and run on
* a GL 1.1 implementation. It dynamically resolves the
* call to glTexImage3D() which might not be available.
* Or is it might be supported as an extension.
* Contributed by Gerk Huisma <gerk@five-d.demon.nl>.
*/
typedef void (GLAPIENTRY *TexImage3Dproc)( GLenum target, GLint level,
GLenum internalFormat,
GLsizei width, GLsizei height,
GLsizei depth, GLint border,
GLenum format, GLenum type,
const GLvoid *pixels );
static TexImage3Dproc pTexImage3D = 0;
#if !defined(_WIN32) && !defined(__WIN32__)
# include <dlfcn.h>
# include <sys/types.h>
#else
WINGDIAPI PROC WINAPI wglGetProcAddress(LPCSTR);
#endif
static void gluTexImage3D( GLenum target, GLint level,
GLenum internalFormat,
GLsizei width, GLsizei height,
GLsizei depth, GLint border,
GLenum format, GLenum type,
const GLvoid *pixels )
{
if (!pTexImage3D) {
#if defined(_WIN32) || defined(__WIN32__)
pTexImage3D = (TexImage3Dproc) wglGetProcAddress("glTexImage3D");
if (!pTexImage3D)
pTexImage3D = (TexImage3Dproc) wglGetProcAddress("glTexImage3DEXT");
#else
void *libHandle = dlopen("libgl.so", RTLD_LAZY);
pTexImage3D = TexImage3Dproc) dlsym(libHandle, "glTexImage3D" );
if (!pTexImage3D)
pTexImage3D = (TexImage3Dproc) dlsym(libHandle,"glTexImage3DEXT");
dlclose(libHandle);
#endif
}
/* Now call glTexImage3D */
if (pTexImage3D)
pTexImage3D(target, level, internalFormat, width, height,
depth, border, format, type, pixels);
}
#else
/* Only bind to a GL 1.2 implementation: */
#define gluTexImage3D glTexImage3D
#endif
static GLint imageSize3D(GLint width, GLint height, GLint depth,
GLenum format, GLenum type)
{
int components= elements_per_group(format,type);
int bytes_per_row= bytes_per_element(type) * width;
assert(width > 0 && height > 0 && depth > 0);
assert(type != GL_BITMAP);
return bytes_per_row * height * depth * components;
} /* imageSize3D() */
static void fillImage3D(const PixelStorageModes *psm,
GLint width, GLint height, GLint depth, GLenum format,
GLenum type, GLboolean indexFormat,
const void *userImage, GLushort *newImage)
{
int myswapBytes;
int components;
int groupsPerLine;
int elementSize;
int groupSize;
int rowSize;
int padding;
int elementsPerLine;
int rowsPerImage;
int imageSize;
const GLubyte *start, *rowStart, *iter;
GLushort *iter2;
int ww, hh, dd, k;
myswapBytes= psm->unpack_swap_bytes;
components= elements_per_group(format,type);
if (psm->unpack_row_length > 0) {
groupsPerLine= psm->unpack_row_length;
}
else {
groupsPerLine= width;
}
elementSize= bytes_per_element(type);
groupSize= elementSize * components;
if (elementSize == 1) myswapBytes= 0;
/* 3dstuff begin */
if (psm->unpack_image_height > 0) {
rowsPerImage= psm->unpack_image_height;
}
else {
rowsPerImage= height;
}
/* 3dstuff end */
rowSize= groupsPerLine * groupSize;
padding= rowSize % psm->unpack_alignment;
if (padding) {
rowSize+= psm->unpack_alignment - padding;
}
imageSize= rowsPerImage * rowSize; /* 3dstuff */
start= (const GLubyte *)userImage + psm->unpack_skip_rows * rowSize +
psm->unpack_skip_pixels * groupSize +
/*3dstuff*/
psm->unpack_skip_images * imageSize;
elementsPerLine = width * components;
iter2= newImage;
for (dd= 0; dd < depth; dd++) {
rowStart= start;
for (hh= 0; hh < height; hh++) {
iter= rowStart;
for (ww= 0; ww < elementsPerLine; ww++) {
Type_Widget widget;
float extractComponents[4];
switch(type) {
case GL_UNSIGNED_BYTE:
if (indexFormat) {
*iter2++ = *iter;
} else {
*iter2++ = (*iter) * 257;
}
break;
case GL_BYTE:
if (indexFormat) {
*iter2++ = *((const GLbyte *) iter);
} else {
/* rough approx */
*iter2++ = (*((const GLbyte *) iter)) * 516;
}
break;
case GL_UNSIGNED_BYTE_3_3_2:
extract332(0,iter,extractComponents);
for (k = 0; k < 3; k++) {
*iter2++ = (GLushort)(extractComponents[k]*65535);
}
break;
case GL_UNSIGNED_BYTE_2_3_3_REV:
extract233rev(0,iter,extractComponents);
for (k = 0; k < 3; k++) {
*iter2++ = (GLushort)(extractComponents[k]*65535);
}
break;
case GL_UNSIGNED_SHORT_5_6_5:
extract565(myswapBytes,iter,extractComponents);
for (k = 0; k < 3; k++) {
*iter2++ = (GLushort)(extractComponents[k]*65535);
}
break;
case GL_UNSIGNED_SHORT_5_6_5_REV:
extract565rev(myswapBytes,iter,extractComponents);
for (k = 0; k < 3; k++) {
*iter2++ = (GLushort)(extractComponents[k]*65535);
}
break;
case GL_UNSIGNED_SHORT_4_4_4_4:
extract4444(myswapBytes,iter,extractComponents);
for (k = 0; k < 4; k++) {
*iter2++ = (GLushort)(extractComponents[k]*65535);
}
break;
case GL_UNSIGNED_SHORT_4_4_4_4_REV:
extract4444rev(myswapBytes,iter,extractComponents);
for (k = 0; k < 4; k++) {
*iter2++ = (GLushort)(extractComponents[k]*65535);
}
break;
case GL_UNSIGNED_SHORT_5_5_5_1:
extract5551(myswapBytes,iter,extractComponents);
for (k = 0; k < 4; k++) {
*iter2++ = (GLushort)(extractComponents[k]*65535);
}
break;
case GL_UNSIGNED_SHORT_1_5_5_5_REV:
extract1555rev(myswapBytes,iter,extractComponents);
for (k = 0; k < 4; k++) {
*iter2++ = (GLushort)(extractComponents[k]*65535);
}
break;
case GL_UNSIGNED_SHORT:
case GL_SHORT:
if (myswapBytes) {
widget.ub[0] = iter[1];
widget.ub[1] = iter[0];
} else {
widget.ub[0] = iter[0];
widget.ub[1] = iter[1];
}
if (type == GL_SHORT) {
if (indexFormat) {
*iter2++ = widget.s[0];
} else {
/* rough approx */
*iter2++ = widget.s[0]*2;
}
} else {
*iter2++ = widget.us[0];
}
break;
case GL_UNSIGNED_INT_8_8_8_8:
extract8888(myswapBytes,iter,extractComponents);
for (k = 0; k < 4; k++) {
*iter2++ = (GLushort)(extractComponents[k]*65535);
}
break;
case GL_UNSIGNED_INT_8_8_8_8_REV:
extract8888rev(myswapBytes,iter,extractComponents);
for (k = 0; k < 4; k++) {
*iter2++ = (GLushort)(extractComponents[k]*65535);
}
break;
case GL_UNSIGNED_INT_10_10_10_2:
extract1010102(myswapBytes,iter,extractComponents);
for (k = 0; k < 4; k++) {
*iter2++ = (GLushort)(extractComponents[k]*65535);
}
break;
case GL_UNSIGNED_INT_2_10_10_10_REV:
extract2101010rev(myswapBytes,iter,extractComponents);
for (k = 0; k < 4; k++) {
*iter2++ = (GLushort)(extractComponents[k]*65535);
}
break;
case GL_INT:
case GL_UNSIGNED_INT:
case GL_FLOAT:
if (myswapBytes) {
widget.ub[0] = iter[3];
widget.ub[1] = iter[2];
widget.ub[2] = iter[1];
widget.ub[3] = iter[0];
} else {
widget.ub[0] = iter[0];
widget.ub[1] = iter[1];
widget.ub[2] = iter[2];
widget.ub[3] = iter[3];
}
if (type == GL_FLOAT) {
if (indexFormat) {
*iter2++ = widget.f;
} else {
*iter2++ = 65535 * widget.f;
}
} else if (type == GL_UNSIGNED_INT) {
if (indexFormat) {
*iter2++ = widget.ui;
} else {
*iter2++ = widget.ui >> 16;
}
} else {
if (indexFormat) {
*iter2++ = widget.i;
} else {
*iter2++ = widget.i >> 15;
}
}
break;
default:
assert(0);
}
iter+= elementSize;
} /* for ww */
rowStart+= rowSize;
iter= rowStart; /* for assertion purposes */
} /* for hh */
start+= imageSize;
} /* for dd */
/* iterators should be one byte past end */
if (!isTypePackedPixel(type)) {
assert(iter2 == &newImage[width*height*depth*components]);
}
else {
assert(iter2 == &newImage[width*height*depth*
elements_per_group(format,0)]);
}
assert( iter == &((const GLubyte *)userImage)[rowSize*height*depth +
psm->unpack_skip_rows * rowSize +
psm->unpack_skip_pixels * groupSize +
/*3dstuff*/
psm->unpack_skip_images * imageSize] );
} /* fillImage3D () */
static void scaleInternal3D(GLint components,
GLint widthIn, GLint heightIn, GLint depthIn,
const GLushort *dataIn,
GLint widthOut, GLint heightOut, GLint depthOut,
GLushort *dataOut)
{
float x, lowx, highx, convx, halfconvx;
float y, lowy, highy, convy, halfconvy;
float z, lowz, highz, convz, halfconvz;
float xpercent,ypercent,zpercent;
float percent;
/* Max components in a format is 4, so... */
float totals[4];
float volume;
int i,j,d,k,zint,yint,xint,xindex,yindex,zindex;
int temp;
convz = (float) depthIn/depthOut;
convy = (float) heightIn/heightOut;
convx = (float) widthIn/widthOut;
halfconvx = convx/2;
halfconvy = convy/2;
halfconvz = convz/2;
for (d = 0; d < depthOut; d++) {
z = convz * (d+0.5);
if (depthIn > depthOut) {
highz = z + halfconvz;
lowz = z - halfconvz;
} else {
highz = z + 0.5;
lowz = z - 0.5;
}
for (i = 0; i < heightOut; i++) {
y = convy * (i+0.5);
if (heightIn > heightOut) {
highy = y + halfconvy;
lowy = y - halfconvy;
} else {
highy = y + 0.5;
lowy = y - 0.5;
}
for (j = 0; j < widthOut; j++) {
x = convx * (j+0.5);
if (widthIn > widthOut) {
highx = x + halfconvx;
lowx = x - halfconvx;
} else {
highx = x + 0.5;
lowx = x - 0.5;
}
/*
** Ok, now apply box filter to box that goes from (lowx, lowy,
** lowz) to (highx, highy, highz) on input data into this pixel
** on output data.
*/
totals[0] = totals[1] = totals[2] = totals[3] = 0.0;
volume = 0.0;
z = lowz;
zint = floor(z);
while (z < highz) {
zindex = (zint + depthIn) % depthIn;
if (highz < zint+1) {
zpercent = highz - z;
} else {
zpercent = zint+1 - z;
}
y = lowy;
yint = floor(y);
while (y < highy) {
yindex = (yint + heightIn) % heightIn;
if (highy < yint+1) {
ypercent = highy - y;
} else {
ypercent = yint+1 - y;
}
x = lowx;
xint = floor(x);
while (x < highx) {
xindex = (xint + widthIn) % widthIn;
if (highx < xint+1) {
xpercent = highx - x;
} else {
xpercent = xint+1 - x;
}
percent = xpercent * ypercent * zpercent;
volume += percent;
temp = (xindex + (yindex*widthIn) +
(zindex*widthIn*heightIn)) * components;
for (k = 0; k < components; k++) {
assert(0 <= (temp+k) &&
(temp+k) <
(widthIn*heightIn*depthIn*components));
totals[k] += dataIn[temp + k] * percent;
}
xint++;
x = xint;
} /* while x */
yint++;
y = yint;
} /* while y */
zint++;
z = zint;
} /* while z */
temp = (j + (i * widthOut) +
(d*widthOut*heightOut)) * components;
for (k = 0; k < components; k++) {
/* totals[] should be rounded in the case of enlarging an
* RGB ramp when the type is 332 or 4444
*/
assert(0 <= (temp+k) &&
(temp+k) < (widthOut*heightOut*depthOut*components));
dataOut[temp + k] = (totals[k]+0.5)/volume;
}
} /* for j */
} /* for i */
} /* for d */
} /* scaleInternal3D() */
static void emptyImage3D(const PixelStorageModes *psm,
GLint width, GLint height, GLint depth,
GLenum format, GLenum type, GLboolean indexFormat,
const GLushort *oldImage, void *userImage)
{
int myswapBytes;
int components;
int groupsPerLine;
int elementSize;
int groupSize;
int rowSize;
int padding;
GLubyte *start, *rowStart, *iter;
int elementsPerLine;
const GLushort *iter2;
int ii, jj, dd, k;
int rowsPerImage;
int imageSize;
myswapBytes= psm->pack_swap_bytes;
components = elements_per_group(format,type);
if (psm->pack_row_length > 0) {
groupsPerLine = psm->pack_row_length;
}
else {
groupsPerLine = width;
}
elementSize= bytes_per_element(type);
groupSize= elementSize * components;
if (elementSize == 1) myswapBytes= 0;
/* 3dstuff begin */
if (psm->pack_image_height > 0) {
rowsPerImage= psm->pack_image_height;
}
else {
rowsPerImage= height;
}
/* 3dstuff end */
rowSize = groupsPerLine * groupSize;
padding = rowSize % psm->pack_alignment;
if (padding) {
rowSize+= psm->pack_alignment - padding;
}
imageSize= rowsPerImage * rowSize; /* 3dstuff */
start = (GLubyte *)userImage + psm->pack_skip_rows * rowSize +
psm->pack_skip_pixels * groupSize +
/*3dstuff*/
psm->pack_skip_images * imageSize;
elementsPerLine= width * components;
iter2 = oldImage;
for (dd= 0; dd < depth; dd++) {
rowStart= start;
for (ii= 0; ii< height; ii++) {
iter = rowStart;
for (jj = 0; jj < elementsPerLine; jj++) {
Type_Widget widget;
float shoveComponents[4];
switch(type){
case GL_UNSIGNED_BYTE:
if (indexFormat) {
*iter = *iter2++;
} else {
*iter = *iter2++ >> 8;
}
break;
case GL_BYTE:
if (indexFormat) {
*((GLbyte *) iter) = *iter2++;
} else {
*((GLbyte *) iter) = *iter2++ >> 9;
}
break;
case GL_UNSIGNED_BYTE_3_3_2:
for (k = 0; k < 3; k++) {
shoveComponents[k]= *iter2++ / 65535.0;
}
shove332(shoveComponents,0,(void *)iter);
break;
case GL_UNSIGNED_BYTE_2_3_3_REV:
for (k = 0; k < 3; k++) {
shoveComponents[k]= *iter2++ / 65535.0;
}
shove233rev(shoveComponents,0,(void *)iter);
break;
case GL_UNSIGNED_SHORT_5_6_5:
for (k = 0; k < 3; k++) {
shoveComponents[k]= *iter2++ / 65535.0;
}
shove565(shoveComponents,0,(void *)&widget.us[0]);
if (myswapBytes) {
iter[0] = widget.ub[1];
iter[1] = widget.ub[0];
}
else {
*(GLushort *)iter = widget.us[0];
}
break;
case GL_UNSIGNED_SHORT_5_6_5_REV:
for (k = 0; k < 3; k++) {
shoveComponents[k]= *iter2++ / 65535.0;
}
shove565rev(shoveComponents,0,(void *)&widget.us[0]);
if (myswapBytes) {
iter[0] = widget.ub[1];
iter[1] = widget.ub[0];
}
else {
*(GLushort *)iter = widget.us[0];
}
break;
case GL_UNSIGNED_SHORT_4_4_4_4:
for (k = 0; k < 4; k++) {
shoveComponents[k]= *iter2++ / 65535.0;
}
shove4444(shoveComponents,0,(void *)&widget.us[0]);
if (myswapBytes) {
iter[0] = widget.ub[1];
iter[1] = widget.ub[0];
} else {
*(GLushort *)iter = widget.us[0];
}
break;
case GL_UNSIGNED_SHORT_4_4_4_4_REV:
for (k = 0; k < 4; k++) {
shoveComponents[k]= *iter2++ / 65535.0;
}
shove4444rev(shoveComponents,0,(void *)&widget.us[0]);
if (myswapBytes) {
iter[0] = widget.ub[1];
iter[1] = widget.ub[0];
} else {
*(GLushort *)iter = widget.us[0];
}
break;
case GL_UNSIGNED_SHORT_5_5_5_1:
for (k = 0; k < 4; k++) {
shoveComponents[k]= *iter2++ / 65535.0;
}
shove5551(shoveComponents,0,(void *)&widget.us[0]);
if (myswapBytes) {
iter[0] = widget.ub[1];
iter[1] = widget.ub[0];
} else {
*(GLushort *)iter = widget.us[0];
}
break;
case GL_UNSIGNED_SHORT_1_5_5_5_REV:
for (k = 0; k < 4; k++) {
shoveComponents[k]= *iter2++ / 65535.0;
}
shove1555rev(shoveComponents,0,(void *)&widget.us[0]);
if (myswapBytes) {
iter[0] = widget.ub[1];
iter[1] = widget.ub[0];
} else {
*(GLushort *)iter = widget.us[0];
}
break;
case GL_UNSIGNED_SHORT:
case GL_SHORT:
if (type == GL_SHORT) {
if (indexFormat) {
widget.s[0] = *iter2++;
} else {
widget.s[0] = *iter2++ >> 1;
}
} else {
widget.us[0] = *iter2++;
}
if (myswapBytes) {
iter[0] = widget.ub[1];
iter[1] = widget.ub[0];
} else {
iter[0] = widget.ub[0];
iter[1] = widget.ub[1];
}
break;
case GL_UNSIGNED_INT_8_8_8_8:
for (k = 0; k < 4; k++) {
shoveComponents[k]= *iter2++ / 65535.0;
}
shove8888(shoveComponents,0,(void *)&widget.ui);
if (myswapBytes) {
iter[3] = widget.ub[0];
iter[2] = widget.ub[1];
iter[1] = widget.ub[2];
iter[0] = widget.ub[3];
} else {
*(GLuint *)iter= widget.ui;
}
break;
case GL_UNSIGNED_INT_8_8_8_8_REV:
for (k = 0; k < 4; k++) {
shoveComponents[k]= *iter2++ / 65535.0;
}
shove8888rev(shoveComponents,0,(void *)&widget.ui);
if (myswapBytes) {
iter[3] = widget.ub[0];
iter[2] = widget.ub[1];
iter[1] = widget.ub[2];
iter[0] = widget.ub[3];
} else {
*(GLuint *)iter= widget.ui;
}
break;
case GL_UNSIGNED_INT_10_10_10_2:
for (k = 0; k < 4; k++) {
shoveComponents[k]= *iter2++ / 65535.0;
}
shove1010102(shoveComponents,0,(void *)&widget.ui);
if (myswapBytes) {
iter[3] = widget.ub[0];
iter[2] = widget.ub[1];
iter[1] = widget.ub[2];
iter[0] = widget.ub[3];
} else {
*(GLuint *)iter= widget.ui;
}
break;
case GL_UNSIGNED_INT_2_10_10_10_REV:
for (k = 0; k < 4; k++) {
shoveComponents[k]= *iter2++ / 65535.0;
}
shove2101010rev(shoveComponents,0,(void *)&widget.ui);
if (myswapBytes) {
iter[3] = widget.ub[0];
iter[2] = widget.ub[1];
iter[1] = widget.ub[2];
iter[0] = widget.ub[3];
} else {
*(GLuint *)iter= widget.ui;
}
break;
case GL_INT:
case GL_UNSIGNED_INT:
case GL_FLOAT:
if (type == GL_FLOAT) {
if (indexFormat) {
widget.f = *iter2++;
} else {
widget.f = *iter2++ / (float) 65535.0;
}
} else if (type == GL_UNSIGNED_INT) {
if (indexFormat) {
widget.ui = *iter2++;
} else {
widget.ui = (unsigned int) *iter2++ * 65537;
}
} else {
if (indexFormat) {
widget.i = *iter2++;
} else {
widget.i = ((unsigned int) *iter2++ * 65537)/2;
}
}
if (myswapBytes) {
iter[3] = widget.ub[0];
iter[2] = widget.ub[1];
iter[1] = widget.ub[2];
iter[0] = widget.ub[3];
} else {
iter[0] = widget.ub[0];
iter[1] = widget.ub[1];
iter[2] = widget.ub[2];
iter[3] = widget.ub[3];
}
break;
default:
assert(0);
}
iter+= elementSize;
} /* for jj */
rowStart+= rowSize;
} /* for ii */
start+= imageSize;
} /* for dd */
/* iterators should be one byte past end */
if (!isTypePackedPixel(type)) {
assert(iter2 == &oldImage[width*height*depth*components]);
}
else {
assert(iter2 == &oldImage[width*height*depth*
elements_per_group(format,0)]);
}
assert( iter == &((GLubyte *)userImage)[rowSize*height*depth +
psm->unpack_skip_rows * rowSize +
psm->unpack_skip_pixels * groupSize +
/*3dstuff*/
psm->unpack_skip_images * imageSize] );
} /* emptyImage3D() */
static
int gluScaleImage3D(GLenum format,
GLint widthIn, GLint heightIn, GLint depthIn,
GLenum typeIn, const void *dataIn,
GLint widthOut, GLint heightOut, GLint depthOut,
GLenum typeOut, void *dataOut)
{
int components;
GLushort *beforeImage, *afterImage;
PixelStorageModes psm;
if (widthIn == 0 || heightIn == 0 || depthIn == 0 ||
widthOut == 0 || heightOut == 0 || depthOut == 0) {
return 0;
}
if (widthIn < 0 || heightIn < 0 || depthIn < 0 ||
widthOut < 0 || heightOut < 0 || depthOut < 0) {
return GLU_INVALID_VALUE;
}
if (!legalFormat(format) || !legalType(typeIn) || !legalType(typeOut) ||
typeIn == GL_BITMAP || typeOut == GL_BITMAP) {
return GLU_INVALID_ENUM;
}
if (!isLegalFormatForPackedPixelType(format, typeIn)) {
return GLU_INVALID_OPERATION;
}
if (!isLegalFormatForPackedPixelType(format, typeOut)) {
return GLU_INVALID_OPERATION;
}
beforeImage = malloc(imageSize3D(widthIn, heightIn, depthIn, format,
GL_UNSIGNED_SHORT));
afterImage = malloc(imageSize3D(widthOut, heightOut, depthOut, format,
GL_UNSIGNED_SHORT));
if (beforeImage == NULL || afterImage == NULL) {
free(beforeImage);
free(afterImage);
return GLU_OUT_OF_MEMORY;
}
retrieveStoreModes3D(&psm);
fillImage3D(&psm,widthIn,heightIn,depthIn,format,typeIn, is_index(format),
dataIn, beforeImage);
components = elements_per_group(format,0);
scaleInternal3D(components,widthIn,heightIn,depthIn,beforeImage,
widthOut,heightOut,depthOut,afterImage);
emptyImage3D(&psm,widthOut,heightOut,depthOut,format,typeOut,
is_index(format),afterImage, dataOut);
free((void *) beforeImage);
free((void *) afterImage);
return 0;
} /* gluScaleImage3D() */
static void closestFit3D(GLenum target, GLint width, GLint height, GLint depth,
GLint internalFormat, GLenum format, GLenum type,
GLint *newWidth, GLint *newHeight, GLint *newDepth)
{
GLint widthPowerOf2= nearestPower(width);
GLint heightPowerOf2= nearestPower(height);
GLint depthPowerOf2= nearestPower(depth);
GLint proxyWidth;
do {
/* compute level 1 width & height & depth, clamping each at 1 */
GLint widthAtLevelOne= (widthPowerOf2 > 1) ?
widthPowerOf2 >> 1 :
widthPowerOf2;
GLint heightAtLevelOne= (heightPowerOf2 > 1) ?
heightPowerOf2 >> 1 :
heightPowerOf2;
GLint depthAtLevelOne= (depthPowerOf2 > 1) ?
depthPowerOf2 >> 1 :
depthPowerOf2;
GLenum proxyTarget = GL_PROXY_TEXTURE_3D;
assert(widthAtLevelOne > 0);
assert(heightAtLevelOne > 0);
assert(depthAtLevelOne > 0);
/* does width x height x depth at level 1 & all their mipmaps fit? */
assert(target == GL_TEXTURE_3D || target == GL_PROXY_TEXTURE_3D);
gluTexImage3D(proxyTarget, 1, /* must be non-zero */
internalFormat,
widthAtLevelOne,heightAtLevelOne,depthAtLevelOne,
0,format,type,NULL);
glGetTexLevelParameteriv(proxyTarget, 1,GL_TEXTURE_WIDTH,&proxyWidth);
/* does it fit??? */
if (proxyWidth == 0) { /* nope, so try again with these sizes */
if (widthPowerOf2 == 1 && heightPowerOf2 == 1 &&
depthPowerOf2 == 1) {
*newWidth= *newHeight= *newDepth= 1; /* must fit 1x1x1 texture */
return;
}
widthPowerOf2= widthAtLevelOne;
heightPowerOf2= heightAtLevelOne;
depthPowerOf2= depthAtLevelOne;
}
/* else it does fit */
} while (proxyWidth == 0);
/* loop must terminate! */
/* return the width & height at level 0 that fits */
*newWidth= widthPowerOf2;
*newHeight= heightPowerOf2;
*newDepth= depthPowerOf2;
/*printf("Proxy Textures\n");*/
} /* closestFit3D() */
static void halveImagePackedPixelSlice(int components,
void (*extractPackedPixel)
(int, const void *,GLfloat []),
void (*shovePackedPixel)
(const GLfloat [],int, void *),
GLint width, GLint height, GLint depth,
const void *dataIn, void *dataOut,
GLint pixelSizeInBytes,
GLint rowSizeInBytes,
GLint imageSizeInBytes,
GLint isSwap)
{
int ii, jj;
int halfWidth= width / 2;
int halfHeight= height / 2;
int halfDepth= depth / 2;
const char *src= (const char *)dataIn;
int outIndex= 0;
assert((width == 1 || height == 1) && depth >= 2);
if (width == height) { /* a 1-pixel column viewed from top */
assert(width == 1 && height == 1);
assert(depth >= 2);
for (ii= 0; ii< halfDepth; ii++) {
float totals[4];
float extractTotals[BOX2][4];
int cc;
(*extractPackedPixel)(isSwap,src,&extractTotals[0][0]);
(*extractPackedPixel)(isSwap,(src+imageSizeInBytes),
&extractTotals[1][0]);
for (cc = 0; cc < components; cc++) {
int kk;
/* average 2 pixels since only a column */
totals[cc]= 0.0;
/* totals[RED]= extractTotals[0][RED]+extractTotals[1][RED];
* totals[RED]/= 2.0;
*/
for (kk = 0; kk < BOX2; kk++) {
totals[cc]+= extractTotals[kk][cc];
}
totals[cc]/= (float)BOX2;
} /* for cc */
(*shovePackedPixel)(totals,outIndex,dataOut);
outIndex++;
/* skip over to next group of 2 */
src+= imageSizeInBytes + imageSizeInBytes;
} /* for ii */
}
else if (height == 1) { /* horizontal slice viewed from top */
assert(width != 1);
for (ii= 0; ii< halfDepth; ii++) {
for (jj= 0; jj< halfWidth; jj++) {
float totals[4];
float extractTotals[BOX4][4];
int cc;
(*extractPackedPixel)(isSwap,src,
&extractTotals[0][0]);
(*extractPackedPixel)(isSwap,(src+pixelSizeInBytes),
&extractTotals[1][0]);
(*extractPackedPixel)(isSwap,(src+imageSizeInBytes),
&extractTotals[2][0]);
(*extractPackedPixel)(isSwap,
(src+imageSizeInBytes+pixelSizeInBytes),
&extractTotals[3][0]);
for (cc = 0; cc < components; cc++) {
int kk;
/* grab 4 pixels to average */
totals[cc]= 0.0;
/* totals[RED]= extractTotals[0][RED]+extractTotals[1][RED]+
* extractTotals[2][RED]+extractTotals[3][RED];
* totals[RED]/= 4.0;
*/
for (kk = 0; kk < BOX4; kk++) {
totals[cc]+= extractTotals[kk][cc];
}
totals[cc]/= (float)BOX4;
}
(*shovePackedPixel)(totals,outIndex,dataOut);
outIndex++;
/* skip over to next horizontal square of 4 */
src+= imageSizeInBytes + imageSizeInBytes;
}
}
/* assert() */
}
else if (width == 1) { /* vertical slice viewed from top */
assert(height != 1);
for (ii= 0; ii< halfDepth; ii++) {
for (jj= 0; jj< halfHeight; jj++) {
float totals[4];
float extractTotals[BOX4][4];
int cc;
(*extractPackedPixel)(isSwap,src,
&extractTotals[0][0]);
(*extractPackedPixel)(isSwap,(src+rowSizeInBytes),
&extractTotals[1][0]);
(*extractPackedPixel)(isSwap,(src+imageSizeInBytes),
&extractTotals[2][0]);
(*extractPackedPixel)(isSwap,
(src+imageSizeInBytes+rowSizeInBytes),
&extractTotals[3][0]);
for (cc = 0; cc < components; cc++) {
int kk;
/* grab 4 pixels to average */
totals[cc]= 0.0;
/* totals[RED]= extractTotals[0][RED]+extractTotals[1][RED]+
* extractTotals[2][RED]+extractTotals[3][RED];
* totals[RED]/= 4.0;
*/
for (kk = 0; kk < BOX4; kk++) {
totals[cc]+= extractTotals[kk][cc];
}
totals[cc]/= (float)BOX4;
}
(*shovePackedPixel)(totals,outIndex,dataOut);
outIndex++;
/* skip over to next vertical square of 4 */
src+= imageSizeInBytes + imageSizeInBytes;
}
}
/* assert() */
}
} /* halveImagePackedPixelSlice() */
static void halveImagePackedPixel3D(int components,
void (*extractPackedPixel)
(int, const void *,GLfloat []),
void (*shovePackedPixel)
(const GLfloat [],int, void *),
GLint width, GLint height, GLint depth,
const void *dataIn, void *dataOut,
GLint pixelSizeInBytes,
GLint rowSizeInBytes,
GLint imageSizeInBytes,
GLint isSwap)
{
if (depth == 1) {
assert(1 <= width && 1 <= height);
halveImagePackedPixel(components,extractPackedPixel,shovePackedPixel,
width,height,dataIn,dataOut,pixelSizeInBytes,
rowSizeInBytes,isSwap);
return;
}
/* a horizontal or vertical slice viewed from top */
else if (width == 1 || height == 1) {
assert(1 <= depth);
halveImagePackedPixelSlice(components,
extractPackedPixel,shovePackedPixel,
width, height, depth, dataIn, dataOut,
pixelSizeInBytes, rowSizeInBytes,
imageSizeInBytes, isSwap);
return;
}
{
int ii, jj, dd;
int halfWidth= width / 2;
int halfHeight= height / 2;
int halfDepth= depth / 2;
const char *src= (const char *) dataIn;
int padBytes= rowSizeInBytes - (width*pixelSizeInBytes);
int outIndex= 0;
for (dd= 0; dd < halfDepth; dd++) {
for (ii= 0; ii< halfHeight; ii++) {
for (jj= 0; jj< halfWidth; jj++) {
#define BOX8 8
float totals[4]; /* 4 is maximum components */
float extractTotals[BOX8][4]; /* 4 is maximum components */
int cc;
(*extractPackedPixel)(isSwap,src,
&extractTotals[0][0]);
(*extractPackedPixel)(isSwap,(src+pixelSizeInBytes),
&extractTotals[1][0]);
(*extractPackedPixel)(isSwap,(src+rowSizeInBytes),
&extractTotals[2][0]);
(*extractPackedPixel)(isSwap,
(src+rowSizeInBytes+pixelSizeInBytes),
&extractTotals[3][0]);
(*extractPackedPixel)(isSwap,(src+imageSizeInBytes),
&extractTotals[4][0]);
(*extractPackedPixel)(isSwap,(src+pixelSizeInBytes+imageSizeInBytes),
&extractTotals[5][0]);
(*extractPackedPixel)(isSwap,(src+rowSizeInBytes+imageSizeInBytes),
&extractTotals[6][0]);
(*extractPackedPixel)(isSwap,
(src+rowSizeInBytes+pixelSizeInBytes+imageSizeInBytes),
&extractTotals[7][0]);
for (cc = 0; cc < components; cc++) {
int kk;
/* grab 8 pixels to average */
totals[cc]= 0.0;
/* totals[RED]= extractTotals[0][RED]+extractTotals[1][RED]+
* extractTotals[2][RED]+extractTotals[3][RED]+
* extractTotals[4][RED]+extractTotals[5][RED]+
* extractTotals[6][RED]+extractTotals[7][RED];
* totals[RED]/= 8.0;
*/
for (kk = 0; kk < BOX8; kk++) {
totals[cc]+= extractTotals[kk][cc];
}
totals[cc]/= (float)BOX8;
}
(*shovePackedPixel)(totals,outIndex,dataOut);
outIndex++;
/* skip over to next square of 4 */
src+= pixelSizeInBytes + pixelSizeInBytes;
}
/* skip past pad bytes, if any, to get to next row */
src+= padBytes;
/* src is at beginning of a row here, but it's the second row of
* the square block of 4 pixels that we just worked on so we
* need to go one more row.
* i.e.,
* OO...
* here -->OO...
* but want -->OO...
* OO...
* ...
*/
src+= rowSizeInBytes;
}
src+= imageSizeInBytes;
} /* for dd */
/* both pointers must reach one byte after the end */
assert(src == &((const char *)dataIn)[rowSizeInBytes*height*depth]);
assert(outIndex == halfWidth * halfHeight * halfDepth);
} /* for dd */
} /* halveImagePackedPixel3D() */
static int gluBuild3DMipmapLevelsCore(GLenum target, GLint internalFormat,
GLsizei width,
GLsizei height,
GLsizei depth,
GLsizei widthPowerOf2,
GLsizei heightPowerOf2,
GLsizei depthPowerOf2,
GLenum format, GLenum type,
GLint userLevel,
GLint baseLevel,GLint maxLevel,
const void *data)
{
GLint newWidth, newHeight, newDepth;
GLint level, levels;
const void *usersImage;
void *srcImage, *dstImage;
__GLU_INIT_SWAP_IMAGE;
GLint memReq;
GLint cmpts;
GLint myswapBytes, groupsPerLine, elementSize, groupSize;
GLint rowsPerImage, imageSize;
GLint rowSize, padding;
PixelStorageModes psm;
assert(checkMipmapArgs(internalFormat,format,type) == 0);
assert(width >= 1 && height >= 1 && depth >= 1);
assert(type != GL_BITMAP);
srcImage = dstImage = NULL;
newWidth= widthPowerOf2;
newHeight= heightPowerOf2;
newDepth= depthPowerOf2;
levels = computeLog(newWidth);
level = computeLog(newHeight);
if (level > levels) levels=level;
level = computeLog(newDepth);
if (level > levels) levels=level;
levels+= userLevel;
retrieveStoreModes3D(&psm);
myswapBytes = psm.unpack_swap_bytes;
cmpts = elements_per_group(format,type);
if (psm.unpack_row_length > 0) {
groupsPerLine = psm.unpack_row_length;
} else {
groupsPerLine = width;
}
elementSize = bytes_per_element(type);
groupSize = elementSize * cmpts;
if (elementSize == 1) myswapBytes = 0;
/* 3dstuff begin */
if (psm.unpack_image_height > 0) {
rowsPerImage= psm.unpack_image_height;
}
else {
rowsPerImage= height;
}
/* 3dstuff end */
rowSize = groupsPerLine * groupSize;
padding = (rowSize % psm.unpack_alignment);
if (padding) {
rowSize += psm.unpack_alignment - padding;
}
imageSize= rowsPerImage * rowSize; /* 3dstuff */
usersImage = (const GLubyte *)data + psm.unpack_skip_rows * rowSize +
psm.unpack_skip_pixels * groupSize +
/* 3dstuff */
psm.unpack_skip_images * imageSize;
glPixelStorei(GL_UNPACK_SKIP_ROWS, 0);
glPixelStorei(GL_UNPACK_SKIP_PIXELS, 0);
glPixelStorei(GL_UNPACK_ROW_LENGTH, 0);
glPixelStorei(GL_UNPACK_SKIP_IMAGES, 0);
glPixelStorei(GL_UNPACK_IMAGE_HEIGHT, 0);
level = userLevel;
if (width == newWidth && height == newHeight && depth == newDepth) {
/* Use usersImage for level userLevel */
if (baseLevel <= level && level <= maxLevel) {
gluTexImage3D(target, level, internalFormat, width,
height, depth, 0, format, type,
usersImage);
}
if(levels == 0) { /* we're done. clean up and return */
glPixelStorei(GL_UNPACK_ALIGNMENT, psm.unpack_alignment);
glPixelStorei(GL_UNPACK_SKIP_ROWS, psm.unpack_skip_rows);
glPixelStorei(GL_UNPACK_SKIP_PIXELS, psm.unpack_skip_pixels);
glPixelStorei(GL_UNPACK_ROW_LENGTH, psm.unpack_row_length);
glPixelStorei(GL_UNPACK_SWAP_BYTES, psm.unpack_swap_bytes);
glPixelStorei(GL_UNPACK_SKIP_IMAGES, psm.unpack_skip_images);
glPixelStorei(GL_UNPACK_IMAGE_HEIGHT, psm.unpack_image_height);
return 0;
}
{
int nextWidth= newWidth/2;
int nextHeight= newHeight/2;
int nextDepth= newDepth/2;
/* clamp to 1 */
if (nextWidth < 1) nextWidth= 1;
if (nextHeight < 1) nextHeight= 1;
if (nextDepth < 1) nextDepth= 1;
memReq = imageSize3D(nextWidth, nextHeight, nextDepth, format, type);
}
switch(type) {
case GL_UNSIGNED_BYTE:
dstImage = (GLubyte *)malloc(memReq);
break;
case GL_BYTE:
dstImage = (GLbyte *)malloc(memReq);
break;
case GL_UNSIGNED_SHORT:
dstImage = (GLushort *)malloc(memReq);
break;
case GL_SHORT:
dstImage = (GLshort *)malloc(memReq);
break;
case GL_UNSIGNED_INT:
dstImage = (GLuint *)malloc(memReq);
break;
case GL_INT:
dstImage = (GLint *)malloc(memReq);
break;
case GL_FLOAT:
dstImage = (GLfloat *)malloc(memReq);
break;
case GL_UNSIGNED_BYTE_3_3_2:
case GL_UNSIGNED_BYTE_2_3_3_REV:
dstImage = (GLubyte *)malloc(memReq);
break;
case GL_UNSIGNED_SHORT_5_6_5:
case GL_UNSIGNED_SHORT_5_6_5_REV:
case GL_UNSIGNED_SHORT_4_4_4_4:
case GL_UNSIGNED_SHORT_4_4_4_4_REV:
case GL_UNSIGNED_SHORT_5_5_5_1:
case GL_UNSIGNED_SHORT_1_5_5_5_REV:
dstImage = (GLushort *)malloc(memReq);
break;
case GL_UNSIGNED_INT_8_8_8_8:
case GL_UNSIGNED_INT_8_8_8_8_REV:
case GL_UNSIGNED_INT_10_10_10_2:
case GL_UNSIGNED_INT_2_10_10_10_REV:
dstImage = (GLuint *)malloc(memReq);
break;
default:
return GLU_INVALID_ENUM; /* assertion */
}
if (dstImage == NULL) {
glPixelStorei(GL_UNPACK_ALIGNMENT, psm.unpack_alignment);
glPixelStorei(GL_UNPACK_SKIP_ROWS, psm.unpack_skip_rows);
glPixelStorei(GL_UNPACK_SKIP_PIXELS, psm.unpack_skip_pixels);
glPixelStorei(GL_UNPACK_ROW_LENGTH, psm.unpack_row_length);
glPixelStorei(GL_UNPACK_SWAP_BYTES, psm.unpack_swap_bytes);
glPixelStorei(GL_UNPACK_SKIP_IMAGES, psm.unpack_skip_images);
glPixelStorei(GL_UNPACK_IMAGE_HEIGHT, psm.unpack_image_height);
return GLU_OUT_OF_MEMORY;
}
else
switch(type) {
case GL_UNSIGNED_BYTE:
if (depth > 1) {
halveImage3D(cmpts,extractUbyte,shoveUbyte,
width,height,depth,
usersImage,dstImage,elementSize,groupSize,rowSize,
imageSize,myswapBytes);
}
else {
halveImage_ubyte(cmpts,width,height,usersImage,dstImage,
elementSize,rowSize,groupSize);
}
break;
case GL_BYTE:
if (depth > 1) {
halveImage3D(cmpts,extractSbyte,shoveSbyte,
width,height,depth,
usersImage,dstImage,elementSize,groupSize,rowSize,
imageSize,myswapBytes);
}
else {
halveImage_byte(cmpts,width,height,usersImage,dstImage,
elementSize,rowSize,groupSize);
}
break;
case GL_UNSIGNED_SHORT:
if (depth > 1) {
halveImage3D(cmpts,extractUshort,shoveUshort,
width,height,depth,
usersImage,dstImage,elementSize,groupSize,rowSize,
imageSize,myswapBytes);
}
else {
halveImage_ushort(cmpts,width,height,usersImage,dstImage,
elementSize,rowSize,groupSize,myswapBytes);
}
break;
case GL_SHORT:
if (depth > 1) {
halveImage3D(cmpts,extractSshort,shoveSshort,
width,height,depth,
usersImage,dstImage,elementSize,groupSize,rowSize,
imageSize,myswapBytes);
}
else {
halveImage_short(cmpts,width,height,usersImage,dstImage,
elementSize,rowSize,groupSize,myswapBytes);
}
break;
case GL_UNSIGNED_INT:
if (depth > 1) {
halveImage3D(cmpts,extractUint,shoveUint,
width,height,depth,
usersImage,dstImage,elementSize,groupSize,rowSize,
imageSize,myswapBytes);
}
else {
halveImage_uint(cmpts,width,height,usersImage,dstImage,
elementSize,rowSize,groupSize,myswapBytes);
}
break;
case GL_INT:
if (depth > 1) {
halveImage3D(cmpts,extractSint,shoveSint,
width,height,depth,
usersImage,dstImage,elementSize,groupSize,rowSize,
imageSize,myswapBytes);
}
else {
halveImage_int(cmpts,width,height,usersImage,dstImage,
elementSize,rowSize,groupSize,myswapBytes);
}
break;
case GL_FLOAT:
if (depth > 1 ) {
halveImage3D(cmpts,extractFloat,shoveFloat,
width,height,depth,
usersImage,dstImage,elementSize,groupSize,rowSize,
imageSize,myswapBytes);
}
else {
halveImage_float(cmpts,width,height,usersImage,dstImage,
elementSize,rowSize,groupSize,myswapBytes);
}
break;
case GL_UNSIGNED_BYTE_3_3_2:
assert(format == GL_RGB);
halveImagePackedPixel3D(3,extract332,shove332,
width,height,depth,usersImage,dstImage,
elementSize,rowSize,imageSize,myswapBytes);
break;
case GL_UNSIGNED_BYTE_2_3_3_REV:
assert(format == GL_RGB);
halveImagePackedPixel3D(3,extract233rev,shove233rev,
width,height,depth,usersImage,dstImage,
elementSize,rowSize,imageSize,myswapBytes);
break;
case GL_UNSIGNED_SHORT_5_6_5:
halveImagePackedPixel3D(3,extract565,shove565,
width,height,depth,usersImage,dstImage,
elementSize,rowSize,imageSize,myswapBytes);
break;
case GL_UNSIGNED_SHORT_5_6_5_REV:
halveImagePackedPixel3D(3,extract565rev,shove565rev,
width,height,depth,usersImage,dstImage,
elementSize,rowSize,imageSize,myswapBytes);
break;
case GL_UNSIGNED_SHORT_4_4_4_4:
halveImagePackedPixel3D(4,extract4444,shove4444,
width,height,depth,usersImage,dstImage,
elementSize,rowSize,imageSize,myswapBytes);
break;
case GL_UNSIGNED_SHORT_4_4_4_4_REV:
halveImagePackedPixel3D(4,extract4444rev,shove4444rev,
width,height,depth,usersImage,dstImage,
elementSize,rowSize,imageSize,myswapBytes);
break;
case GL_UNSIGNED_SHORT_5_5_5_1:
halveImagePackedPixel3D(4,extract5551,shove5551,
width,height,depth,usersImage,dstImage,
elementSize,rowSize,imageSize,myswapBytes);
break;
case GL_UNSIGNED_SHORT_1_5_5_5_REV:
halveImagePackedPixel3D(4,extract1555rev,shove1555rev,
width,height,depth,usersImage,dstImage,
elementSize,rowSize,imageSize,myswapBytes);
break;
case GL_UNSIGNED_INT_8_8_8_8:
halveImagePackedPixel3D(4,extract8888,shove8888,
width,height,depth,usersImage,dstImage,
elementSize,rowSize,imageSize,myswapBytes);
break;
case GL_UNSIGNED_INT_8_8_8_8_REV:
halveImagePackedPixel3D(4,extract8888rev,shove8888rev,
width,height,depth,usersImage,dstImage,
elementSize,rowSize,imageSize,myswapBytes);
break;
case GL_UNSIGNED_INT_10_10_10_2:
halveImagePackedPixel3D(4,extract1010102,shove1010102,
width,height,depth,usersImage,dstImage,
elementSize,rowSize,imageSize,myswapBytes);
break;
case GL_UNSIGNED_INT_2_10_10_10_REV:
halveImagePackedPixel3D(4,extract2101010rev,shove2101010rev,
width,height,depth,usersImage,dstImage,
elementSize,rowSize,imageSize,myswapBytes);
break;
default:
assert(0);
break;
}
newWidth = width/2;
newHeight = height/2;
newDepth = depth/2;
/* clamp to 1 */
if (newWidth < 1) newWidth= 1;
if (newHeight < 1) newHeight= 1;
if (newDepth < 1) newDepth= 1;
myswapBytes = 0;
rowSize = newWidth * groupSize;
imageSize= rowSize * newHeight; /* 3dstuff */
memReq = imageSize3D(newWidth, newHeight, newDepth, format, type);
/* Swap srcImage and dstImage */
__GLU_SWAP_IMAGE(srcImage,dstImage);
switch(type) {
case GL_UNSIGNED_BYTE:
dstImage = (GLubyte *)malloc(memReq);
break;
case GL_BYTE:
dstImage = (GLbyte *)malloc(memReq);
break;
case GL_UNSIGNED_SHORT:
dstImage = (GLushort *)malloc(memReq);
break;
case GL_SHORT:
dstImage = (GLshort *)malloc(memReq);
break;
case GL_UNSIGNED_INT:
dstImage = (GLuint *)malloc(memReq);
break;
case GL_INT:
dstImage = (GLint *)malloc(memReq);
break;
case GL_FLOAT:
dstImage = (GLfloat *)malloc(memReq);
break;
case GL_UNSIGNED_BYTE_3_3_2:
case GL_UNSIGNED_BYTE_2_3_3_REV:
dstImage = (GLubyte *)malloc(memReq);
break;
case GL_UNSIGNED_SHORT_5_6_5:
case GL_UNSIGNED_SHORT_5_6_5_REV:
case GL_UNSIGNED_SHORT_4_4_4_4:
case GL_UNSIGNED_SHORT_4_4_4_4_REV:
case GL_UNSIGNED_SHORT_5_5_5_1:
case GL_UNSIGNED_SHORT_1_5_5_5_REV:
dstImage = (GLushort *)malloc(memReq);
break;
case GL_UNSIGNED_INT_8_8_8_8:
case GL_UNSIGNED_INT_8_8_8_8_REV:
case GL_UNSIGNED_INT_10_10_10_2:
case GL_UNSIGNED_INT_2_10_10_10_REV:
dstImage = (GLuint *)malloc(memReq);
break;
default:
return GLU_INVALID_ENUM; /* assertion */
}
if (dstImage == NULL) {
glPixelStorei(GL_UNPACK_ALIGNMENT, psm.unpack_alignment);
glPixelStorei(GL_UNPACK_SKIP_ROWS, psm.unpack_skip_rows);
glPixelStorei(GL_UNPACK_SKIP_PIXELS, psm.unpack_skip_pixels);
glPixelStorei(GL_UNPACK_ROW_LENGTH, psm.unpack_row_length);
glPixelStorei(GL_UNPACK_SWAP_BYTES, psm.unpack_swap_bytes);
glPixelStorei(GL_UNPACK_SKIP_IMAGES, psm.unpack_skip_images);
glPixelStorei(GL_UNPACK_IMAGE_HEIGHT, psm.unpack_image_height);
free(srcImage);
return GLU_OUT_OF_MEMORY;
}
/* level userLevel+1 is in srcImage; level userLevel already saved */
level = userLevel+1;
} else {/* user's image is *not* nice power-of-2 sized square */
memReq = imageSize3D(newWidth, newHeight, newDepth, format, type);
switch(type) {
case GL_UNSIGNED_BYTE:
dstImage = (GLubyte *)malloc(memReq);
break;
case GL_BYTE:
dstImage = (GLbyte *)malloc(memReq);
break;
case GL_UNSIGNED_SHORT:
dstImage = (GLushort *)malloc(memReq);
break;
case GL_SHORT:
dstImage = (GLshort *)malloc(memReq);
break;
case GL_UNSIGNED_INT:
dstImage = (GLuint *)malloc(memReq);
break;
case GL_INT:
dstImage = (GLint *)malloc(memReq);
break;
case GL_FLOAT:
dstImage = (GLfloat *)malloc(memReq);
break;
case GL_UNSIGNED_BYTE_3_3_2:
case GL_UNSIGNED_BYTE_2_3_3_REV:
dstImage = (GLubyte *)malloc(memReq);
break;
case GL_UNSIGNED_SHORT_5_6_5:
case GL_UNSIGNED_SHORT_5_6_5_REV:
case GL_UNSIGNED_SHORT_4_4_4_4:
case GL_UNSIGNED_SHORT_4_4_4_4_REV:
case GL_UNSIGNED_SHORT_5_5_5_1:
case GL_UNSIGNED_SHORT_1_5_5_5_REV:
dstImage = (GLushort *)malloc(memReq);
break;
case GL_UNSIGNED_INT_8_8_8_8:
case GL_UNSIGNED_INT_8_8_8_8_REV:
case GL_UNSIGNED_INT_10_10_10_2:
case GL_UNSIGNED_INT_2_10_10_10_REV:
dstImage = (GLuint *)malloc(memReq);
break;
default:
return GLU_INVALID_ENUM; /* assertion */
}
if (dstImage == NULL) {
glPixelStorei(GL_UNPACK_ALIGNMENT, psm.unpack_alignment);
glPixelStorei(GL_UNPACK_SKIP_ROWS, psm.unpack_skip_rows);
glPixelStorei(GL_UNPACK_SKIP_PIXELS, psm.unpack_skip_pixels);
glPixelStorei(GL_UNPACK_ROW_LENGTH, psm.unpack_row_length);
glPixelStorei(GL_UNPACK_SWAP_BYTES, psm.unpack_swap_bytes);
glPixelStorei(GL_UNPACK_SKIP_IMAGES, psm.unpack_skip_images);
glPixelStorei(GL_UNPACK_IMAGE_HEIGHT, psm.unpack_image_height);
return GLU_OUT_OF_MEMORY;
}
/*printf("Build3DMipmaps(): ScaleImage3D %d %d %d->%d %d %d\n",
width,height,depth,newWidth,newHeight,newDepth);*/
gluScaleImage3D(format, width, height, depth, type, usersImage,
newWidth, newHeight, newDepth, type, dstImage);
myswapBytes = 0;
rowSize = newWidth * groupSize;
imageSize = rowSize * newHeight; /* 3dstuff */
/* Swap dstImage and srcImage */
__GLU_SWAP_IMAGE(srcImage,dstImage);
if(levels != 0) { /* use as little memory as possible */
{
int nextWidth= newWidth/2;
int nextHeight= newHeight/2;
int nextDepth= newDepth/2;
if (nextWidth < 1) nextWidth= 1;
if (nextHeight < 1) nextHeight= 1;
if (nextDepth < 1) nextDepth= 1;
memReq = imageSize3D(nextWidth, nextHeight, nextDepth, format, type);
}
switch(type) {
case GL_UNSIGNED_BYTE:
dstImage = (GLubyte *)malloc(memReq);
break;
case GL_BYTE:
dstImage = (GLbyte *)malloc(memReq);
break;
case GL_UNSIGNED_SHORT:
dstImage = (GLushort *)malloc(memReq);
break;
case GL_SHORT:
dstImage = (GLshort *)malloc(memReq);
break;
case GL_UNSIGNED_INT:
dstImage = (GLuint *)malloc(memReq);
break;
case GL_INT:
dstImage = (GLint *)malloc(memReq);
break;
case GL_FLOAT:
dstImage = (GLfloat *)malloc(memReq);
break;
case GL_UNSIGNED_BYTE_3_3_2:
case GL_UNSIGNED_BYTE_2_3_3_REV:
dstImage = (GLubyte *)malloc(memReq);
break;
case GL_UNSIGNED_SHORT_5_6_5:
case GL_UNSIGNED_SHORT_5_6_5_REV:
case GL_UNSIGNED_SHORT_4_4_4_4:
case GL_UNSIGNED_SHORT_4_4_4_4_REV:
case GL_UNSIGNED_SHORT_5_5_5_1:
case GL_UNSIGNED_SHORT_1_5_5_5_REV:
dstImage = (GLushort *)malloc(memReq);
break;
case GL_UNSIGNED_INT_8_8_8_8:
case GL_UNSIGNED_INT_8_8_8_8_REV:
case GL_UNSIGNED_INT_10_10_10_2:
case GL_UNSIGNED_INT_2_10_10_10_REV:
dstImage = (GLuint *)malloc(memReq);
break;
default:
return GLU_INVALID_ENUM; /* assertion */
}
if (dstImage == NULL) {
glPixelStorei(GL_UNPACK_ALIGNMENT, psm.unpack_alignment);
glPixelStorei(GL_UNPACK_SKIP_ROWS, psm.unpack_skip_rows);
glPixelStorei(GL_UNPACK_SKIP_PIXELS, psm.unpack_skip_pixels);
glPixelStorei(GL_UNPACK_ROW_LENGTH, psm.unpack_row_length);
glPixelStorei(GL_UNPACK_SWAP_BYTES, psm.unpack_swap_bytes);
glPixelStorei(GL_UNPACK_SKIP_IMAGES, psm.unpack_skip_images);
glPixelStorei(GL_UNPACK_IMAGE_HEIGHT, psm.unpack_image_height);
free(srcImage);
return GLU_OUT_OF_MEMORY;
}
}
/* level userLevel is in srcImage; nothing saved yet */
level = userLevel;
}
glPixelStorei(GL_UNPACK_SWAP_BYTES, GL_FALSE);
if (baseLevel <= level && level <= maxLevel) {
gluTexImage3D(target, level, internalFormat, newWidth, newHeight, newDepth,
0,format, type, (void *)srcImage);
}
level++; /* update current level for the loop */
for (; level <= levels; level++) {
switch(type) {
case GL_UNSIGNED_BYTE:
if (newDepth > 1) {
halveImage3D(cmpts,extractUbyte,shoveUbyte,
newWidth,newHeight,newDepth,
srcImage,dstImage,elementSize,groupSize,rowSize,
imageSize,myswapBytes);
}
else {
halveImage_ubyte(cmpts,newWidth,newHeight,srcImage,dstImage,
elementSize,rowSize,groupSize);
}
break;
case GL_BYTE:
if (newDepth > 1) {
halveImage3D(cmpts,extractSbyte,shoveSbyte,
newWidth,newHeight,newDepth,
srcImage,dstImage,elementSize,groupSize,rowSize,
imageSize,myswapBytes);
}
else {
halveImage_byte(cmpts,newWidth,newHeight,srcImage,dstImage,
elementSize,rowSize,groupSize);
}
break;
case GL_UNSIGNED_SHORT:
if (newDepth > 1) {
halveImage3D(cmpts,extractUshort,shoveUshort,
newWidth,newHeight,newDepth,
srcImage,dstImage,elementSize,groupSize,rowSize,
imageSize,myswapBytes);
}
else {
halveImage_ushort(cmpts,newWidth,newHeight,srcImage,dstImage,
elementSize,rowSize,groupSize,myswapBytes);
}
break;
case GL_SHORT:
if (newDepth > 1) {
halveImage3D(cmpts,extractSshort,shoveSshort,
newWidth,newHeight,newDepth,
srcImage,dstImage,elementSize,groupSize,rowSize,
imageSize,myswapBytes);
}
else {
halveImage_short(cmpts,newWidth,newHeight,srcImage,dstImage,
elementSize,rowSize,groupSize,myswapBytes);
}
break;
case GL_UNSIGNED_INT:
if (newDepth > 1) {
halveImage3D(cmpts,extractUint,shoveUint,
newWidth,newHeight,newDepth,
srcImage,dstImage,elementSize,groupSize,rowSize,
imageSize,myswapBytes);
}
else {
halveImage_uint(cmpts,newWidth,newHeight,srcImage,dstImage,
elementSize,rowSize,groupSize,myswapBytes);
}
break;
case GL_INT:
if (newDepth > 1) {
halveImage3D(cmpts,extractSint,shoveSint,
newWidth,newHeight,newDepth,
srcImage,dstImage,elementSize,groupSize,rowSize,
imageSize,myswapBytes);
}
else {
halveImage_int(cmpts,newWidth,newHeight,srcImage,dstImage,
elementSize,rowSize,groupSize,myswapBytes);
}
break;
case GL_FLOAT:
if (newDepth > 1) {
halveImage3D(cmpts,extractFloat,shoveFloat,
newWidth,newHeight,newDepth,
srcImage,dstImage,elementSize,groupSize,rowSize,
imageSize,myswapBytes);
}
else {
halveImage_float(cmpts,newWidth,newHeight,srcImage,dstImage,
elementSize,rowSize,groupSize,myswapBytes);
}
break;
case GL_UNSIGNED_BYTE_3_3_2:
halveImagePackedPixel3D(3,extract332,shove332,
newWidth,newHeight,newDepth,
srcImage,dstImage,elementSize,rowSize,
imageSize,myswapBytes);
break;
case GL_UNSIGNED_BYTE_2_3_3_REV:
halveImagePackedPixel3D(3,extract233rev,shove233rev,
newWidth,newHeight,newDepth,
srcImage,dstImage,elementSize,rowSize,
imageSize,myswapBytes);
break;
case GL_UNSIGNED_SHORT_5_6_5:
halveImagePackedPixel3D(3,extract565,shove565,
newWidth,newHeight,newDepth,
srcImage,dstImage,elementSize,rowSize,
imageSize,myswapBytes);
break;
case GL_UNSIGNED_SHORT_5_6_5_REV:
halveImagePackedPixel3D(3,extract565rev,shove565rev,
newWidth,newHeight,newDepth,
srcImage,dstImage,elementSize,rowSize,
imageSize,myswapBytes);
break;
case GL_UNSIGNED_SHORT_4_4_4_4:
halveImagePackedPixel3D(4,extract4444,shove4444,
newWidth,newHeight,newDepth,
srcImage,dstImage,elementSize,rowSize,
imageSize,myswapBytes);
break;
case GL_UNSIGNED_SHORT_4_4_4_4_REV:
halveImagePackedPixel3D(4,extract4444rev,shove4444rev,
newWidth,newHeight,newDepth,
srcImage,dstImage,elementSize,rowSize,
imageSize,myswapBytes);
break;
case GL_UNSIGNED_SHORT_5_5_5_1:
halveImagePackedPixel3D(4,extract5551,shove5551,
newWidth,newHeight,newDepth,
srcImage,dstImage,elementSize,rowSize,
imageSize,myswapBytes);
break;
case GL_UNSIGNED_SHORT_1_5_5_5_REV:
halveImagePackedPixel3D(4,extract1555rev,shove1555rev,
newWidth,newHeight,newDepth,
srcImage,dstImage,elementSize,rowSize,
imageSize,myswapBytes);
break;
case GL_UNSIGNED_INT_8_8_8_8:
halveImagePackedPixel3D(4,extract8888,shove8888,
newWidth,newHeight,newDepth,
srcImage,dstImage,elementSize,rowSize,
imageSize,myswapBytes);
break;
case GL_UNSIGNED_INT_8_8_8_8_REV:
halveImagePackedPixel3D(4,extract8888rev,shove8888rev,
newWidth,newHeight,newDepth,
srcImage,dstImage,elementSize,rowSize,
imageSize,myswapBytes);
break;
case GL_UNSIGNED_INT_10_10_10_2:
halveImagePackedPixel3D(4,extract1010102,shove1010102,
newWidth,newHeight,newDepth,
srcImage,dstImage,elementSize,rowSize,
imageSize,myswapBytes);
break;
case GL_UNSIGNED_INT_2_10_10_10_REV:
halveImagePackedPixel3D(4,extract2101010rev,shove2101010rev,
newWidth,newHeight,newDepth,
srcImage,dstImage,elementSize,rowSize,
imageSize,myswapBytes);
break;
default:
assert(0);
break;
}
__GLU_SWAP_IMAGE(srcImage,dstImage);
if (newWidth > 1) { newWidth /= 2; rowSize /= 2;}
if (newHeight > 1) { newHeight /= 2; imageSize = rowSize * newHeight; }
if (newDepth > 1) newDepth /= 2;
{
/* call tex image with srcImage untouched since it's not padded */
if (baseLevel <= level && level <= maxLevel) {
gluTexImage3D(target, level, internalFormat, newWidth, newHeight,
newDepth,0, format, type, (void *) srcImage);
}
}
} /* for level */
glPixelStorei(GL_UNPACK_ALIGNMENT, psm.unpack_alignment);
glPixelStorei(GL_UNPACK_SKIP_ROWS, psm.unpack_skip_rows);
glPixelStorei(GL_UNPACK_SKIP_PIXELS, psm.unpack_skip_pixels);
glPixelStorei(GL_UNPACK_ROW_LENGTH, psm.unpack_row_length);
glPixelStorei(GL_UNPACK_SWAP_BYTES, psm.unpack_swap_bytes);
glPixelStorei(GL_UNPACK_SKIP_IMAGES, psm.unpack_skip_images);
glPixelStorei(GL_UNPACK_IMAGE_HEIGHT, psm.unpack_image_height);
free(srcImage); /*if you get to here, a srcImage has always been malloc'ed*/
if (dstImage) { /* if it's non-rectangular and only 1 level */
free(dstImage);
}
return 0;
} /* gluBuild3DMipmapLevelsCore() */
GLint GLAPIENTRY
gluBuild3DMipmapLevels(GLenum target, GLint internalFormat,
GLsizei width, GLsizei height, GLsizei depth,
GLenum format, GLenum type,
GLint userLevel, GLint baseLevel, GLint maxLevel,
const void *data)
{
int level, levels;
int rc= checkMipmapArgs(internalFormat,format,type);
if (rc != 0) return rc;
if (width < 1 || height < 1 || depth < 1) {
return GLU_INVALID_VALUE;
}
if(type == GL_BITMAP) {
return GLU_INVALID_ENUM;
}
levels = computeLog(width);
level = computeLog(height);
if (level > levels) levels=level;
level = computeLog(depth);
if (level > levels) levels=level;
levels+= userLevel;
if (!isLegalLevels(userLevel,baseLevel,maxLevel,levels))
return GLU_INVALID_VALUE;
return gluBuild3DMipmapLevelsCore(target, internalFormat,
width, height, depth,
width, height, depth,
format, type,
userLevel, baseLevel, maxLevel,
data);
} /* gluBuild3DMipmapLevels() */
GLint GLAPIENTRY
gluBuild3DMipmaps(GLenum target, GLint internalFormat,
GLsizei width, GLsizei height, GLsizei depth,
GLenum format, GLenum type, const void *data)
{
GLint widthPowerOf2, heightPowerOf2, depthPowerOf2;
int level, levels;
int rc= checkMipmapArgs(internalFormat,format,type);
if (rc != 0) return rc;
if (width < 1 || height < 1 || depth < 1) {
return GLU_INVALID_VALUE;
}
if(type == GL_BITMAP) {
return GLU_INVALID_ENUM;
}
closestFit3D(target,width,height,depth,internalFormat,format,type,
&widthPowerOf2,&heightPowerOf2,&depthPowerOf2);
levels = computeLog(widthPowerOf2);
level = computeLog(heightPowerOf2);
if (level > levels) levels=level;
level = computeLog(depthPowerOf2);
if (level > levels) levels=level;
return gluBuild3DMipmapLevelsCore(target, internalFormat,
width, height, depth,
widthPowerOf2, heightPowerOf2,
depthPowerOf2,
format, type, 0, 0, levels,
data);
} /* gluBuild3DMipmaps() */
static GLdouble extractUbyte(int isSwap, const void *ubyte)
{
isSwap= isSwap; /* turn off warnings */
assert(*((const GLubyte *)ubyte) <= 255);
return (GLdouble)(*((const GLubyte *)ubyte));
} /* extractUbyte() */
static void shoveUbyte(GLdouble value, int index, void *data)
{
assert(0.0 <= value && value < 256.0);
((GLubyte *)data)[index]= (GLubyte)value;
} /* shoveUbyte() */
static GLdouble extractSbyte(int isSwap, const void *sbyte)
{
isSwap= isSwap; /* turn off warnings */
assert(*((const GLbyte *)sbyte) <= 127);
return (GLdouble)(*((const GLbyte *)sbyte));
} /* extractSbyte() */
static void shoveSbyte(GLdouble value, int index, void *data)
{
((GLbyte *)data)[index]= (GLbyte)value;
} /* shoveSbyte() */
static GLdouble extractUshort(int isSwap, const void *uitem)
{
GLushort ushort;
if (isSwap) {
ushort= __GLU_SWAP_2_BYTES(uitem);
}
else {
ushort= *(const GLushort *)uitem;
}
assert(ushort <= 65535);
return (GLdouble)ushort;
} /* extractUshort() */
static void shoveUshort(GLdouble value, int index, void *data)
{
assert(0.0 <= value && value < 65536.0);
((GLushort *)data)[index]= (GLushort)value;
} /* shoveUshort() */
static GLdouble extractSshort(int isSwap, const void *sitem)
{
GLshort sshort;
if (isSwap) {
sshort= __GLU_SWAP_2_BYTES(sitem);
}
else {
sshort= *(const GLshort *)sitem;
}
assert(sshort <= 32767);
return (GLdouble)sshort;
} /* extractSshort() */
static void shoveSshort(GLdouble value, int index, void *data)
{
assert(0.0 <= value && value < 32768.0);
((GLshort *)data)[index]= (GLshort)value;
} /* shoveSshort() */
static GLdouble extractUint(int isSwap, const void *uitem)
{
GLuint uint;
if (isSwap) {
uint= __GLU_SWAP_4_BYTES(uitem);
}
else {
uint= *(const GLuint *)uitem;
}
assert(uint <= 0xffffffff);
return (GLdouble)uint;
} /* extractUint() */
static void shoveUint(GLdouble value, int index, void *data)
{
assert(0.0 <= value && value <= (GLdouble) UINT_MAX);
((GLuint *)data)[index]= (GLuint)value;
} /* shoveUint() */
static GLdouble extractSint(int isSwap, const void *sitem)
{
GLint sint;
if (isSwap) {
sint= __GLU_SWAP_4_BYTES(sitem);
}
else {
sint= *(const GLint *)sitem;
}
assert(sint <= 0x7fffffff);
return (GLdouble)sint;
} /* extractSint() */
static void shoveSint(GLdouble value, int index, void *data)
{
assert(0.0 <= value && value <= (GLdouble) INT_MAX);
((GLint *)data)[index]= (GLint)value;
} /* shoveSint() */
static GLdouble extractFloat(int isSwap, const void *item)
{
GLfloat ffloat;
if (isSwap) {
ffloat= __GLU_SWAP_4_BYTES(item);
}
else {
ffloat= *(const GLfloat *)item;
}
assert(ffloat <= 1.0);
return (GLdouble)ffloat;
} /* extractFloat() */
static void shoveFloat(GLdouble value, int index, void *data)
{
assert(0.0 <= value && value <= 1.0);
((GLfloat *)data)[index]= value;
} /* shoveFloat() */
static void halveImageSlice(int components,
GLdouble (*extract)(int, const void *),
void (*shove)(GLdouble, int, void *),
GLint width, GLint height, GLint depth,
const void *dataIn, void *dataOut,
GLint elementSizeInBytes,
GLint groupSizeInBytes,
GLint rowSizeInBytes,
GLint imageSizeInBytes,
GLint isSwap)
{
int ii, jj;
int halfWidth= width / 2;
int halfHeight= height / 2;
int halfDepth= depth / 2;
const char *src= (const char *)dataIn;
int rowPadBytes= rowSizeInBytes - (width * groupSizeInBytes);
int imagePadBytes= imageSizeInBytes - (width*height*groupSizeInBytes);
int outIndex= 0;
assert((width == 1 || height == 1) && depth >= 2);
if (width == height) { /* a 1-pixel column viewed from top */
/* printf("1-column\n");*/
assert(width == 1 && height == 1);
assert(depth >= 2);
for (ii= 0; ii< halfDepth; ii++) {
int cc;
for (cc = 0; cc < components; cc++) {
double totals[4];
double extractTotals[BOX2][4];
int kk;
extractTotals[0][cc]= (*extract)(isSwap,src);
extractTotals[1][cc]= (*extract)(isSwap,(src+imageSizeInBytes));
/* average 2 pixels since only a column */
totals[cc]= 0.0;
/* totals[RED]= extractTotals[0][RED]+extractTotals[1][RED];
* totals[RED]/= 2.0;
*/
for (kk = 0; kk < BOX2; kk++) {
totals[cc]+= extractTotals[kk][cc];
}
totals[cc]/= (double)BOX2;
(*shove)(totals[cc],outIndex,dataOut);
outIndex++;
src+= elementSizeInBytes;
} /* for cc */
/* skip over to next group of 2 */
src+= rowSizeInBytes;
} /* for ii */
assert(src == &((const char *)dataIn)[rowSizeInBytes*height*depth]);
assert(outIndex == halfDepth * components);
}
else if (height == 1) { /* horizontal slice viewed from top */
/* printf("horizontal slice\n"); */
assert(width != 1);
for (ii= 0; ii< halfDepth; ii++) {
for (jj= 0; jj< halfWidth; jj++) {
int cc;
for (cc = 0; cc < components; cc++) {
int kk;
double totals[4];
double extractTotals[BOX4][4];
extractTotals[0][cc]=(*extract)(isSwap,src);
extractTotals[1][cc]=(*extract)(isSwap,
(src+groupSizeInBytes));
extractTotals[2][cc]=(*extract)(isSwap,
(src+imageSizeInBytes));
extractTotals[3][cc]=(*extract)(isSwap,
(src+imageSizeInBytes+groupSizeInBytes));
/* grab 4 pixels to average */
totals[cc]= 0.0;
/* totals[RED]= extractTotals[0][RED]+extractTotals[1][RED]+
* extractTotals[2][RED]+extractTotals[3][RED];
* totals[RED]/= 4.0;
*/
for (kk = 0; kk < BOX4; kk++) {
totals[cc]+= extractTotals[kk][cc];
}
totals[cc]/= (double)BOX4;
(*shove)(totals[cc],outIndex,dataOut);
outIndex++;
src+= elementSizeInBytes;
} /* for cc */
/* skip over to next horizontal square of 4 */
src+= groupSizeInBytes;
} /* for jj */
src+= rowPadBytes;
src+= rowSizeInBytes;
} /* for ii */
assert(src == &((const char *)dataIn)[rowSizeInBytes*height*depth]);
assert(outIndex == halfWidth * halfDepth * components);
}
else if (width == 1) { /* vertical slice viewed from top */
/* printf("vertical slice\n"); */
assert(height != 1);
for (ii= 0; ii< halfDepth; ii++) {
for (jj= 0; jj< halfHeight; jj++) {
int cc;
for (cc = 0; cc < components; cc++) {
int kk;
double totals[4];
double extractTotals[BOX4][4];
extractTotals[0][cc]=(*extract)(isSwap,src);
extractTotals[1][cc]=(*extract)(isSwap,
(src+rowSizeInBytes));
extractTotals[2][cc]=(*extract)(isSwap,
(src+imageSizeInBytes));
extractTotals[3][cc]=(*extract)(isSwap,
(src+imageSizeInBytes+rowSizeInBytes));
/* grab 4 pixels to average */
totals[cc]= 0.0;
/* totals[RED]= extractTotals[0][RED]+extractTotals[1][RED]+
* extractTotals[2][RED]+extractTotals[3][RED];
* totals[RED]/= 4.0;
*/
for (kk = 0; kk < BOX4; kk++) {
totals[cc]+= extractTotals[kk][cc];
}
totals[cc]/= (double)BOX4;
(*shove)(totals[cc],outIndex,dataOut);
outIndex++;
src+= elementSizeInBytes;
} /* for cc */
src+= rowPadBytes;
/* skip over to next vertical square of 4 */
src+= rowSizeInBytes;
} /* for jj */
src+= imagePadBytes;
src+= imageSizeInBytes;
} /* for ii */
assert(src == &((const char *)dataIn)[rowSizeInBytes*height*depth]);
assert(outIndex == halfHeight * halfDepth * components);
}
} /* halveImageSlice() */
static void halveImage3D(int components,
GLdouble (*extract)(int, const void *),
void (*shove)(GLdouble, int, void *),
GLint width, GLint height, GLint depth,
const void *dataIn, void *dataOut,
GLint elementSizeInBytes,
GLint groupSizeInBytes,
GLint rowSizeInBytes,
GLint imageSizeInBytes,
GLint isSwap)
{
assert(depth > 1);
/* a horizontal/vertical/one-column slice viewed from top */
if (width == 1 || height == 1) {
assert(1 <= depth);
halveImageSlice(components,extract,shove, width, height, depth,
dataIn, dataOut, elementSizeInBytes, groupSizeInBytes,
rowSizeInBytes, imageSizeInBytes, isSwap);
return;
}
{
int ii, jj, dd;
int halfWidth= width / 2;
int halfHeight= height / 2;
int halfDepth= depth / 2;
const char *src= (const char *) dataIn;
int rowPadBytes= rowSizeInBytes - (width*groupSizeInBytes);
int imagePadBytes= imageSizeInBytes - (width*height*groupSizeInBytes);
int outIndex= 0;
for (dd= 0; dd < halfDepth; dd++) {
for (ii= 0; ii< halfHeight; ii++) {
for (jj= 0; jj< halfWidth; jj++) {
int cc;
for (cc= 0; cc < components; cc++) {
int kk;
#define BOX8 8
double totals[4]; /* 4 is maximum components */
double extractTotals[BOX8][4]; /* 4 is maximum components */
extractTotals[0][cc]= (*extract)(isSwap,src);
extractTotals[1][cc]= (*extract)(isSwap,
(src+groupSizeInBytes));
extractTotals[2][cc]= (*extract)(isSwap,
(src+rowSizeInBytes));
extractTotals[3][cc]= (*extract)(isSwap,
(src+rowSizeInBytes+groupSizeInBytes));
extractTotals[4][cc]= (*extract)(isSwap,
(src+imageSizeInBytes));
extractTotals[5][cc]= (*extract)(isSwap,
(src+groupSizeInBytes+imageSizeInBytes));
extractTotals[6][cc]= (*extract)(isSwap,
(src+rowSizeInBytes+imageSizeInBytes));
extractTotals[7][cc]= (*extract)(isSwap,
(src+rowSizeInBytes+groupSizeInBytes+imageSizeInBytes));
totals[cc]= 0.0;
/* totals[RED]= extractTotals[0][RED]+extractTotals[1][RED]+
* extractTotals[2][RED]+extractTotals[3][RED]+
* extractTotals[4][RED]+extractTotals[5][RED]+
* extractTotals[6][RED]+extractTotals[7][RED];
* totals[RED]/= 8.0;
*/
for (kk = 0; kk < BOX8; kk++) {
totals[cc]+= extractTotals[kk][cc];
}
totals[cc]/= (double)BOX8;
(*shove)(totals[cc],outIndex,dataOut);
outIndex++;
src+= elementSizeInBytes; /* go to next component */
} /* for cc */
/* skip over to next square of 4 */
src+= groupSizeInBytes;
} /* for jj */
/* skip past pad bytes, if any, to get to next row */
src+= rowPadBytes;
/* src is at beginning of a row here, but it's the second row of
* the square block of 4 pixels that we just worked on so we
* need to go one more row.
* i.e.,
* OO...
* here -->OO...
* but want -->OO...
* OO...
* ...
*/
src+= rowSizeInBytes;
} /* for ii */
/* skip past pad bytes, if any, to get to next image */
src+= imagePadBytes;
src+= imageSizeInBytes;
} /* for dd */
/* both pointers must reach one byte after the end */
assert(src == &((const char *)dataIn)[rowSizeInBytes*height*depth]);
assert(outIndex == halfWidth * halfHeight * halfDepth * components);
}
} /* halveImage3D() */
/*** mipmap.c ***/