turbocat 119ae0b605 Wolfenstein 3D:
- Added missing sources
- The window now opens in the center of the screen.

git-svn-id: svn://kolibrios.org@8596 a494cfbc-eb01-0410-851d-a64ba20cac60
2021-02-16 19:38:40 +00:00

2602 lines
63 KiB
C++

/*
**
** File: fmopl.c - software implementation of FM sound generator
** types OPL and OPL2
**
** Copyright (C) 2002,2003 Jarek Burczynski (bujar at mame dot net)
** Copyright (C) 1999,2000 Tatsuyuki Satoh , MultiArcadeMachineEmulator development
**
** Version 0.720003 ;D
**
Revision History:
06-05-2004 Ripper:
- Added mute support
04-30-2004 Ripper:
- Raised the main volume (may cut some quality, but at least you can hear it ;)
02-20-2004 Ripper:
- Changed YM3812Write to do what we want
04-08-2003 Jarek Burczynski:
- removed BFRDY hack. BFRDY is busy flag, and it should be 0 only when the chip
handles memory read/write or during the adpcm synthesis when the chip
requests another byte of ADPCM data.
24-07-2003 Jarek Burczynski:
- added a small hack for Y8950 status BFRDY flag (bit 3 should be set after
some (unknown) delay). Right now it's always set.
14-06-2003 Jarek Burczynski:
- implemented all of the status register flags in Y8950 emulation
- renamed Y8950SetDeltaTMemory() parameters from _rom_ to _mem_ since
they can be either RAM or ROM
08-10-2002 Jarek Burczynski (thanks to Dox for the YM3526 chip)
- corrected YM3526Read() to always set bit 2 and bit 1
to HIGH state - identical to YM3812Read (verified on real YM3526)
04-28-2002 Jarek Burczynski:
- binary exact Envelope Generator (verified on real YM3812);
compared to YM2151: the EG clock is equal to internal_clock,
rates are 2 times slower and volume resolution is one bit less
- modified interface functions (they no longer return pointer -
that's internal to the emulator now):
- new wrapper functions for OPLCreate: YM3526Init(), YM3812Init() and Y8950Init()
- corrected 'off by one' error in feedback calculations (when feedback is off)
- enabled waveform usage (credit goes to Vlad Romascanu and zazzal22)
- speeded up noise generator calculations (Nicola Salmoria)
03-24-2002 Jarek Burczynski (thanks to Dox for the YM3812 chip)
Complete rewrite (all verified on real YM3812):
- corrected sin_tab and tl_tab data
- corrected operator output calculations
- corrected waveform_select_enable register;
simply: ignore all writes to waveform_select register when
waveform_select_enable == 0 and do not change the waveform previously selected.
- corrected KSR handling
- corrected Envelope Generator: attack shape, Sustain mode and
Percussive/Non-percussive modes handling
- Envelope Generator rates are two times slower now
- LFO amplitude (tremolo) and phase modulation (vibrato)
- rhythm sounds phase generation
- white noise generator (big thanks to Olivier Galibert for mentioning Berlekamp-Massey algorithm)
- corrected key on/off handling (the 'key' signal is ORed from three sources: FM, rhythm and CSM)
- funky details (like ignoring output of operator 1 in BD rhythm sound when connect == 1)
12-28-2001 Acho A. Tang
- reflected Delta-T EOS status on Y8950 status port.
- fixed subscription range of attack/decay tables
To do:
add delay before key off in CSM mode (see CSMKeyControll)
verify volume of the FM part on the Y8950
*/
#include "../version.h"
#ifndef USE_GPL
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <string.h>
//#include "driver.h" /* use M.A.M.E. */
//#include "ymdeltat.h"
#if _MSC_VER == 1200 // Visual C++ 6
inline void logerror(...) {}
#else
#define logerror(...)
#endif
#include "fmopl.h"
#ifndef PI
#define PI 3.14159265358979323846
#endif
/* output final shift */
#if (OPL_SAMPLE_BITS==16)
#define FINAL_SH (0)
#define MAXOUT (+32767)
#define MINOUT (-32768)
#else
#define FINAL_SH (8)
#define MAXOUT (+127)
#define MINOUT (-128)
#endif
#define FREQ_SH 16 /* 16.16 fixed point (frequency calculations) */
#define EG_SH 16 /* 16.16 fixed point (EG timing) */
#define LFO_SH 24 /* 8.24 fixed point (LFO calculations) */
#define TIMER_SH 16 /* 16.16 fixed point (timers calculations) */
#define FREQ_MASK ((1<<FREQ_SH)-1)
/* envelope output entries */
#define ENV_BITS 10
#define ENV_LEN (1<<ENV_BITS)
#define ENV_STEP (128.0/ENV_LEN)
#define MAX_ATT_INDEX ((1<<(ENV_BITS-1))-1) /*511*/
#define MIN_ATT_INDEX (0)
/* sinwave entries */
#define SIN_BITS 10
#define SIN_LEN (1<<SIN_BITS)
#define SIN_MASK (SIN_LEN-1)
#define TL_RES_LEN (256) /* 8 bits addressing (real chip) */
/* register number to channel number , slot offset */
#define SLOT1 0
#define SLOT2 1
/* Envelope Generator phases */
#define EG_ATT 4
#define EG_DEC 3
#define EG_SUS 2
#define EG_REL 1
#define EG_OFF 0
/* save output as raw 16-bit sample */
/*#define SAVE_SAMPLE*/
#ifdef SAVE_SAMPLE
INLINE signed int acc_calc(signed int value)
{
if (value>=0)
{
if (value < 0x0200)
return (value & ~0);
if (value < 0x0400)
return (value & ~1);
if (value < 0x0800)
return (value & ~3);
if (value < 0x1000)
return (value & ~7);
if (value < 0x2000)
return (value & ~15);
if (value < 0x4000)
return (value & ~31);
return (value & ~63);
}
/*else value < 0*/
if (value > -0x0200)
return (~abs(value) & ~0);
if (value > -0x0400)
return (~abs(value) & ~1);
if (value > -0x0800)
return (~abs(value) & ~3);
if (value > -0x1000)
return (~abs(value) & ~7);
if (value > -0x2000)
return (~abs(value) & ~15);
if (value > -0x4000)
return (~abs(value) & ~31);
return (~abs(value) & ~63);
}
static FILE *sample[1];
#if 1 /*save to MONO file */
#define SAVE_ALL_CHANNELS \
{ signed int pom = acc_calc(lt); \
fputc((unsigned short)pom&0xff,sample[0]); \
fputc(((unsigned short)pom>>8)&0xff,sample[0]); \
}
#else /*save to STEREO file */
#define SAVE_ALL_CHANNELS \
{ signed int pom = lt; \
fputc((unsigned short)pom&0xff,sample[0]); \
fputc(((unsigned short)pom>>8)&0xff,sample[0]); \
pom = rt; \
fputc((unsigned short)pom&0xff,sample[0]); \
fputc(((unsigned short)pom>>8)&0xff,sample[0]); \
}
#endif
#endif
/* #define LOG_CYM_FILE */
#ifdef LOG_CYM_FILE
FILE * cymfile = NULL;
#endif
#define OPL_TYPE_WAVESEL 0x01 /* waveform select */
#define OPL_TYPE_ADPCM 0x02 /* DELTA-T ADPCM unit */
#define OPL_TYPE_KEYBOARD 0x04 /* keyboard interface */
#define OPL_TYPE_IO 0x08 /* I/O port */
/* ---------- Generic interface section ---------- */
#define OPL_TYPE_YM3526 (0)
#define OPL_TYPE_YM3812 (OPL_TYPE_WAVESEL)
#define OPL_TYPE_Y8950 (OPL_TYPE_ADPCM|OPL_TYPE_KEYBOARD|OPL_TYPE_IO)
typedef struct{
UINT32 ar; /* attack rate: AR<<2 */
UINT32 dr; /* decay rate: DR<<2 */
UINT32 rr; /* release rate:RR<<2 */
UINT8 KSR; /* key scale rate */
UINT8 ksl; /* keyscale level */
UINT8 ksr; /* key scale rate: kcode>>KSR */
UINT8 mul; /* multiple: mul_tab[ML] */
/* Phase Generator */
UINT32 Cnt; /* frequency counter */
UINT32 Incr; /* frequency counter step */
UINT8 FB; /* feedback shift value */
INT32 *connect1; /* slot1 output pointer */
INT32 op1_out[2]; /* slot1 output for feedback */
UINT8 CON; /* connection (algorithm) type */
/* Envelope Generator */
UINT8 eg_type; /* percussive/non-percussive mode */
UINT8 state; /* phase type */
UINT32 TL; /* total level: TL << 2 */
INT32 TLL; /* adjusted now TL */
INT32 volume; /* envelope counter */
UINT32 sl; /* sustain level: sl_tab[SL] */
UINT8 eg_sh_ar; /* (attack state) */
UINT8 eg_sel_ar; /* (attack state) */
UINT8 eg_sh_dr; /* (decay state) */
UINT8 eg_sel_dr; /* (decay state) */
UINT8 eg_sh_rr; /* (release state) */
UINT8 eg_sel_rr; /* (release state) */
UINT32 key; /* 0 = KEY OFF, >0 = KEY ON */
/* LFO */
UINT32 AMmask; /* LFO Amplitude Modulation enable mask */
UINT8 vib; /* LFO Phase Modulation enable flag (active high)*/
/* waveform select */
unsigned int wavetable;
} OPL_SLOT;
typedef struct{
OPL_SLOT SLOT[2];
/* phase generator state */
UINT32 block_fnum; /* block+fnum */
UINT32 fc; /* Freq. Increment base */
UINT32 ksl_base; /* KeyScaleLevel Base step */
UINT8 kcode; /* key code (for key scaling) */
BOOL muted;
} OPL_CH;
/* OPL state */
typedef struct fm_opl_f {
/* FM channel slots */
OPL_CH P_CH[9]; /* OPL/OPL2 chips have 9 channels*/
UINT32 eg_cnt; /* global envelope generator counter */
UINT32 eg_timer; /* global envelope generator counter works at frequency = chipclock/72 */
UINT32 eg_timer_add; /* step of eg_timer */
UINT32 eg_timer_overflow; /* envelope generator timer overlfows every 1 sample (on real chip) */
UINT8 rhythm; /* Rhythm mode */
UINT32 fn_tab[1024]; /* fnumber->increment counter */
/* LFO */
UINT8 lfo_am_depth;
UINT8 lfo_pm_depth_range;
UINT32 lfo_am_cnt;
UINT32 lfo_am_inc;
UINT32 lfo_pm_cnt;
UINT32 lfo_pm_inc;
UINT32 noise_rng; /* 23 bit noise shift register */
UINT32 noise_p; /* current noise 'phase' */
UINT32 noise_f; /* current noise period */
UINT8 wavesel; /* waveform select enable flag */
int T[2]; /* timer counters */
UINT8 st[2]; /* timer enable */
#if BUILD_Y8950
/* Delta-T ADPCM unit (Y8950) */
YM_DELTAT *deltat;
/* Keyboard and I/O ports interface */
UINT8 portDirection;
UINT8 portLatch;
OPL_PORTHANDLER_R porthandler_r;
OPL_PORTHANDLER_W porthandler_w;
int port_param;
OPL_PORTHANDLER_R keyboardhandler_r;
OPL_PORTHANDLER_W keyboardhandler_w;
int keyboard_param;
#endif
/* external event callback handlers */
OPL_TIMERHANDLER TimerHandler; /* TIMER handler */
int TimerParam; /* TIMER parameter */
OPL_IRQHANDLER IRQHandler; /* IRQ handler */
int IRQParam; /* IRQ parameter */
OPL_UPDATEHANDLER UpdateHandler;/* stream update handler */
int UpdateParam; /* stream update parameter */
UINT8 type; /* chip type */
UINT8 address; /* address register */
UINT8 status; /* status flag */
UINT8 statusmask; /* status mask */
UINT8 mode; /* Reg.08 : CSM,notesel,etc. */
int clock; /* master clock (Hz) */
int rate; /* sampling rate (Hz) */
double freqbase; /* frequency base */
double TimerBase; /* Timer base time (==sampling time)*/
} FM_OPL;
/* mapping of register number (offset) to slot number used by the emulator */
static const int slot_array[32]=
{
0, 2, 4, 1, 3, 5,-1,-1,
6, 8,10, 7, 9,11,-1,-1,
12,14,16,13,15,17,-1,-1,
-1,-1,-1,-1,-1,-1,-1,-1
};
/* key scale level */
/* table is 3dB/octave , DV converts this into 6dB/octave */
/* 0.1875 is bit 0 weight of the envelope counter (volume) expressed in the 'decibel' scale */
#define DV(db) (UINT32) (db / (0.1875/2.0))
static const UINT32 ksl_tab[8*16]=
{
/* OCT 0 */
DV( 0.000),DV( 0.000),DV( 0.000),DV( 0.000),
DV( 0.000),DV( 0.000),DV( 0.000),DV( 0.000),
DV( 0.000),DV( 0.000),DV( 0.000),DV( 0.000),
DV( 0.000),DV( 0.000),DV( 0.000),DV( 0.000),
/* OCT 1 */
DV( 0.000),DV( 0.000),DV( 0.000),DV( 0.000),
DV( 0.000),DV( 0.000),DV( 0.000),DV( 0.000),
DV( 0.000),DV( 0.750),DV( 1.125),DV( 1.500),
DV( 1.875),DV( 2.250),DV( 2.625),DV( 3.000),
/* OCT 2 */
DV( 0.000),DV( 0.000),DV( 0.000),DV( 0.000),
DV( 0.000),DV( 1.125),DV( 1.875),DV( 2.625),
DV( 3.000),DV( 3.750),DV( 4.125),DV( 4.500),
DV( 4.875),DV( 5.250),DV( 5.625),DV( 6.000),
/* OCT 3 */
DV( 0.000),DV( 0.000),DV( 0.000),DV( 1.875),
DV( 3.000),DV( 4.125),DV( 4.875),DV( 5.625),
DV( 6.000),DV( 6.750),DV( 7.125),DV( 7.500),
DV( 7.875),DV( 8.250),DV( 8.625),DV( 9.000),
/* OCT 4 */
DV( 0.000),DV( 0.000),DV( 3.000),DV( 4.875),
DV( 6.000),DV( 7.125),DV( 7.875),DV( 8.625),
DV( 9.000),DV( 9.750),DV(10.125),DV(10.500),
DV(10.875),DV(11.250),DV(11.625),DV(12.000),
/* OCT 5 */
DV( 0.000),DV( 3.000),DV( 6.000),DV( 7.875),
DV( 9.000),DV(10.125),DV(10.875),DV(11.625),
DV(12.000),DV(12.750),DV(13.125),DV(13.500),
DV(13.875),DV(14.250),DV(14.625),DV(15.000),
/* OCT 6 */
DV( 0.000),DV( 6.000),DV( 9.000),DV(10.875),
DV(12.000),DV(13.125),DV(13.875),DV(14.625),
DV(15.000),DV(15.750),DV(16.125),DV(16.500),
DV(16.875),DV(17.250),DV(17.625),DV(18.000),
/* OCT 7 */
DV( 0.000),DV( 9.000),DV(12.000),DV(13.875),
DV(15.000),DV(16.125),DV(16.875),DV(17.625),
DV(18.000),DV(18.750),DV(19.125),DV(19.500),
DV(19.875),DV(20.250),DV(20.625),DV(21.000)
};
#undef DV
/* sustain level table (3dB per step) */
/* 0 - 15: 0, 3, 6, 9,12,15,18,21,24,27,30,33,36,39,42,93 (dB)*/
#define SC(db) (UINT32) ( db * (2.0/ENV_STEP) )
static const UINT32 sl_tab[16]={
SC( 0),SC( 1),SC( 2),SC(3 ),SC(4 ),SC(5 ),SC(6 ),SC( 7),
SC( 8),SC( 9),SC(10),SC(11),SC(12),SC(13),SC(14),SC(31)
};
#undef SC
#define RATE_STEPS (8)
static const unsigned char eg_inc[15*RATE_STEPS]={
/*cycle:0 1 2 3 4 5 6 7*/
/* 0 */ 0,1, 0,1, 0,1, 0,1, /* rates 00..12 0 (increment by 0 or 1) */
/* 1 */ 0,1, 0,1, 1,1, 0,1, /* rates 00..12 1 */
/* 2 */ 0,1, 1,1, 0,1, 1,1, /* rates 00..12 2 */
/* 3 */ 0,1, 1,1, 1,1, 1,1, /* rates 00..12 3 */
/* 4 */ 1,1, 1,1, 1,1, 1,1, /* rate 13 0 (increment by 1) */
/* 5 */ 1,1, 1,2, 1,1, 1,2, /* rate 13 1 */
/* 6 */ 1,2, 1,2, 1,2, 1,2, /* rate 13 2 */
/* 7 */ 1,2, 2,2, 1,2, 2,2, /* rate 13 3 */
/* 8 */ 2,2, 2,2, 2,2, 2,2, /* rate 14 0 (increment by 2) */
/* 9 */ 2,2, 2,4, 2,2, 2,4, /* rate 14 1 */
/*10 */ 2,4, 2,4, 2,4, 2,4, /* rate 14 2 */
/*11 */ 2,4, 4,4, 2,4, 4,4, /* rate 14 3 */
/*12 */ 4,4, 4,4, 4,4, 4,4, /* rates 15 0, 15 1, 15 2, 15 3 (increment by 4) */
/*13 */ 8,8, 8,8, 8,8, 8,8, /* rates 15 2, 15 3 for attack */
/*14 */ 0,0, 0,0, 0,0, 0,0, /* infinity rates for attack and decay(s) */
};
#define O(a) (a*RATE_STEPS)
/*note that there is no O(13) in this table - it's directly in the code */
static const unsigned char eg_rate_select[16+64+16]={ /* Envelope Generator rates (16 + 64 rates + 16 RKS) */
/* 16 infinite time rates */
O(14),O(14),O(14),O(14),O(14),O(14),O(14),O(14),
O(14),O(14),O(14),O(14),O(14),O(14),O(14),O(14),
/* rates 00-12 */
O( 0),O( 1),O( 2),O( 3),
O( 0),O( 1),O( 2),O( 3),
O( 0),O( 1),O( 2),O( 3),
O( 0),O( 1),O( 2),O( 3),
O( 0),O( 1),O( 2),O( 3),
O( 0),O( 1),O( 2),O( 3),
O( 0),O( 1),O( 2),O( 3),
O( 0),O( 1),O( 2),O( 3),
O( 0),O( 1),O( 2),O( 3),
O( 0),O( 1),O( 2),O( 3),
O( 0),O( 1),O( 2),O( 3),
O( 0),O( 1),O( 2),O( 3),
O( 0),O( 1),O( 2),O( 3),
/* rate 13 */
O( 4),O( 5),O( 6),O( 7),
/* rate 14 */
O( 8),O( 9),O(10),O(11),
/* rate 15 */
O(12),O(12),O(12),O(12),
/* 16 dummy rates (same as 15 3) */
O(12),O(12),O(12),O(12),O(12),O(12),O(12),O(12),
O(12),O(12),O(12),O(12),O(12),O(12),O(12),O(12),
};
#undef O
/*rate 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 */
/*shift 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0, 0, 0, 0 */
/*mask 4095, 2047, 1023, 511, 255, 127, 63, 31, 15, 7, 3, 1, 0, 0, 0, 0 */
#define O(a) (a*1)
static const unsigned char eg_rate_shift[16+64+16]={ /* Envelope Generator counter shifts (16 + 64 rates + 16 RKS) */
/* 16 infinite time rates */
O(0),O(0),O(0),O(0),O(0),O(0),O(0),O(0),
O(0),O(0),O(0),O(0),O(0),O(0),O(0),O(0),
/* rates 00-12 */
O(12),O(12),O(12),O(12),
O(11),O(11),O(11),O(11),
O(10),O(10),O(10),O(10),
O( 9),O( 9),O( 9),O( 9),
O( 8),O( 8),O( 8),O( 8),
O( 7),O( 7),O( 7),O( 7),
O( 6),O( 6),O( 6),O( 6),
O( 5),O( 5),O( 5),O( 5),
O( 4),O( 4),O( 4),O( 4),
O( 3),O( 3),O( 3),O( 3),
O( 2),O( 2),O( 2),O( 2),
O( 1),O( 1),O( 1),O( 1),
O( 0),O( 0),O( 0),O( 0),
/* rate 13 */
O( 0),O( 0),O( 0),O( 0),
/* rate 14 */
O( 0),O( 0),O( 0),O( 0),
/* rate 15 */
O( 0),O( 0),O( 0),O( 0),
/* 16 dummy rates (same as 15 3) */
O( 0),O( 0),O( 0),O( 0),O( 0),O( 0),O( 0),O( 0),
O( 0),O( 0),O( 0),O( 0),O( 0),O( 0),O( 0),O( 0),
};
#undef O
/* multiple table */
#define ML(a) (UINT8) (a * 2)
static const UINT8 mul_tab[16]= {
/* 1/2, 1, 2, 3, 4, 5, 6, 7, 8, 9,10,10,12,12,15,15 */
ML( 0.50),ML( 1.00),ML( 2.00),ML( 3.00),ML( 4.00),ML( 5.00),ML( 6.00),ML( 7.00),
ML( 8.00),ML( 9.00),ML(10.00),ML(10.00),ML(12.00),ML(12.00),ML(15.00),ML(15.00)
};
#undef ML
/* TL_TAB_LEN is calculated as:
* 12 - sinus amplitude bits (Y axis)
* 2 - sinus sign bit (Y axis)
* TL_RES_LEN - sinus resolution (X axis)
*/
#define TL_TAB_LEN (12*2*TL_RES_LEN)
static signed int tl_tab[TL_TAB_LEN];
#define ENV_QUIET (TL_TAB_LEN>>4)
/* sin waveform table in 'decibel' scale */
/* four waveforms on OPL2 type chips */
static unsigned int sin_tab[SIN_LEN * 4];
/* LFO Amplitude Modulation table (verified on real YM3812)
27 output levels (triangle waveform); 1 level takes one of: 192, 256 or 448 samples
Length: 210 elements.
Each of the elements has to be repeated
exactly 64 times (on 64 consecutive samples).
The whole table takes: 64 * 210 = 13440 samples.
When AM = 1 data is used directly
When AM = 0 data is divided by 4 before being used (loosing precision is important)
*/
#define LFO_AM_TAB_ELEMENTS 210
static const UINT8 lfo_am_table[LFO_AM_TAB_ELEMENTS] = {
0,0,0,0,0,0,0,
1,1,1,1,
2,2,2,2,
3,3,3,3,
4,4,4,4,
5,5,5,5,
6,6,6,6,
7,7,7,7,
8,8,8,8,
9,9,9,9,
10,10,10,10,
11,11,11,11,
12,12,12,12,
13,13,13,13,
14,14,14,14,
15,15,15,15,
16,16,16,16,
17,17,17,17,
18,18,18,18,
19,19,19,19,
20,20,20,20,
21,21,21,21,
22,22,22,22,
23,23,23,23,
24,24,24,24,
25,25,25,25,
26,26,26,
25,25,25,25,
24,24,24,24,
23,23,23,23,
22,22,22,22,
21,21,21,21,
20,20,20,20,
19,19,19,19,
18,18,18,18,
17,17,17,17,
16,16,16,16,
15,15,15,15,
14,14,14,14,
13,13,13,13,
12,12,12,12,
11,11,11,11,
10,10,10,10,
9,9,9,9,
8,8,8,8,
7,7,7,7,
6,6,6,6,
5,5,5,5,
4,4,4,4,
3,3,3,3,
2,2,2,2,
1,1,1,1
};
/* LFO Phase Modulation table (verified on real YM3812) */
static const INT8 lfo_pm_table[8*8*2] = {
/* FNUM2/FNUM = 00 0xxxxxxx (0x0000) */
0, 0, 0, 0, 0, 0, 0, 0, /*LFO PM depth = 0*/
0, 0, 0, 0, 0, 0, 0, 0, /*LFO PM depth = 1*/
/* FNUM2/FNUM = 00 1xxxxxxx (0x0080) */
0, 0, 0, 0, 0, 0, 0, 0, /*LFO PM depth = 0*/
1, 0, 0, 0,-1, 0, 0, 0, /*LFO PM depth = 1*/
/* FNUM2/FNUM = 01 0xxxxxxx (0x0100) */
1, 0, 0, 0,-1, 0, 0, 0, /*LFO PM depth = 0*/
2, 1, 0,-1,-2,-1, 0, 1, /*LFO PM depth = 1*/
/* FNUM2/FNUM = 01 1xxxxxxx (0x0180) */
1, 0, 0, 0,-1, 0, 0, 0, /*LFO PM depth = 0*/
3, 1, 0,-1,-3,-1, 0, 1, /*LFO PM depth = 1*/
/* FNUM2/FNUM = 10 0xxxxxxx (0x0200) */
2, 1, 0,-1,-2,-1, 0, 1, /*LFO PM depth = 0*/
4, 2, 0,-2,-4,-2, 0, 2, /*LFO PM depth = 1*/
/* FNUM2/FNUM = 10 1xxxxxxx (0x0280) */
2, 1, 0,-1,-2,-1, 0, 1, /*LFO PM depth = 0*/
5, 2, 0,-2,-5,-2, 0, 2, /*LFO PM depth = 1*/
/* FNUM2/FNUM = 11 0xxxxxxx (0x0300) */
3, 1, 0,-1,-3,-1, 0, 1, /*LFO PM depth = 0*/
6, 3, 0,-3,-6,-3, 0, 3, /*LFO PM depth = 1*/
/* FNUM2/FNUM = 11 1xxxxxxx (0x0380) */
3, 1, 0,-1,-3,-1, 0, 1, /*LFO PM depth = 0*/
7, 3, 0,-3,-7,-3, 0, 3 /*LFO PM depth = 1*/
};
/* lock level of common table */
static int num_lock = 0;
static void *cur_chip = NULL; /* current chip pointer */
static OPL_SLOT *SLOT7_1, *SLOT7_2, *SLOT8_1, *SLOT8_2;
static signed int phase_modulation; /* phase modulation input (SLOT 2) */
static signed int output[1];
#if BUILD_Y8950
static INT32 output_deltat[4]; /* for Y8950 DELTA-T, chip is mono, that 4 here is just for safety */
#endif
static UINT32 LFO_AM;
static INT32 LFO_PM;
#define INLINE inline
INLINE int limit( int val, int max, int min ) {
if ( val > max )
val = max;
else if ( val < min )
val = min;
return val;
}
/* status set and IRQ handling */
INLINE void OPL_STATUS_SET(FM_OPL *OPL,int flag)
{
/* set status flag */
OPL->status |= flag;
if(!(OPL->status & 0x80))
{
if(OPL->status & OPL->statusmask)
{ /* IRQ on */
OPL->status |= 0x80;
/* callback user interrupt handler (IRQ is OFF to ON) */
if(OPL->IRQHandler) (OPL->IRQHandler)(OPL->IRQParam,1);
}
}
}
/* status reset and IRQ handling */
INLINE void OPL_STATUS_RESET(FM_OPL *OPL,int flag)
{
/* reset status flag */
OPL->status &=~flag;
if((OPL->status & 0x80))
{
if (!(OPL->status & OPL->statusmask) )
{
OPL->status &= 0x7f;
/* callback user interrupt handler (IRQ is ON to OFF) */
if(OPL->IRQHandler) (OPL->IRQHandler)(OPL->IRQParam,0);
}
}
}
/* IRQ mask set */
INLINE void OPL_STATUSMASK_SET(FM_OPL *OPL,int flag)
{
OPL->statusmask = flag;
/* IRQ handling check */
OPL_STATUS_SET(OPL,0);
OPL_STATUS_RESET(OPL,0);
}
/* advance LFO to next sample */
INLINE void advance_lfo(FM_OPL *OPL)
{
UINT8 tmp;
/* LFO */
OPL->lfo_am_cnt += OPL->lfo_am_inc;
if (OPL->lfo_am_cnt >= (LFO_AM_TAB_ELEMENTS<<LFO_SH) ) /* lfo_am_table is 210 elements long */
OPL->lfo_am_cnt -= (LFO_AM_TAB_ELEMENTS<<LFO_SH);
tmp = lfo_am_table[ OPL->lfo_am_cnt >> LFO_SH ];
if (OPL->lfo_am_depth)
LFO_AM = tmp;
else
LFO_AM = tmp>>2;
OPL->lfo_pm_cnt += OPL->lfo_pm_inc;
LFO_PM = ((OPL->lfo_pm_cnt>>LFO_SH) & 7) | OPL->lfo_pm_depth_range;
}
/* advance to next sample */
INLINE void advance(FM_OPL *OPL)
{
OPL_CH *CH;
OPL_SLOT *op;
int i;
OPL->eg_timer += OPL->eg_timer_add;
while (OPL->eg_timer >= OPL->eg_timer_overflow)
{
OPL->eg_timer -= OPL->eg_timer_overflow;
OPL->eg_cnt++;
for (i=0; i<9*2; i++)
{
CH = &OPL->P_CH[i/2];
op = &CH->SLOT[i&1];
/* Envelope Generator */
switch(op->state)
{
case EG_ATT: /* attack phase */
if ( !(OPL->eg_cnt & ((1<<op->eg_sh_ar)-1) ) )
{
op->volume += (~op->volume *
(eg_inc[op->eg_sel_ar + ((OPL->eg_cnt>>op->eg_sh_ar)&7)])
) >>3;
if (op->volume <= MIN_ATT_INDEX)
{
op->volume = MIN_ATT_INDEX;
op->state = EG_DEC;
}
}
break;
case EG_DEC: /* decay phase */
if ( !(OPL->eg_cnt & ((1<<op->eg_sh_dr)-1) ) )
{
op->volume += eg_inc[op->eg_sel_dr + ((OPL->eg_cnt>>op->eg_sh_dr)&7)];
if ( (UINT32) op->volume >= op->sl )
op->state = EG_SUS;
}
break;
case EG_SUS: /* sustain phase */
/* this is important behaviour:
one can change percusive/non-percussive modes on the fly and
the chip will remain in sustain phase - verified on real YM3812 */
if(op->eg_type) /* non-percussive mode */
{
/* do nothing */
}
else /* percussive mode */
{
/* during sustain phase chip adds Release Rate (in percussive mode) */
if ( !(OPL->eg_cnt & ((1<<op->eg_sh_rr)-1) ) )
{
op->volume += eg_inc[op->eg_sel_rr + ((OPL->eg_cnt>>op->eg_sh_rr)&7)];
if ( op->volume >= MAX_ATT_INDEX )
op->volume = MAX_ATT_INDEX;
}
/* else do nothing in sustain phase */
}
break;
case EG_REL: /* release phase */
if ( !(OPL->eg_cnt & ((1<<op->eg_sh_rr)-1) ) )
{
op->volume += eg_inc[op->eg_sel_rr + ((OPL->eg_cnt>>op->eg_sh_rr)&7)];
if ( op->volume >= MAX_ATT_INDEX )
{
op->volume = MAX_ATT_INDEX;
op->state = EG_OFF;
}
}
break;
default:
break;
}
}
}
for (i=0; i<9*2; i++)
{
CH = &OPL->P_CH[i/2];
op = &CH->SLOT[i&1];
/* Phase Generator */
if(op->vib)
{
UINT8 block;
unsigned int block_fnum = CH->block_fnum;
unsigned int fnum_lfo = (block_fnum&0x0380) >> 7;
signed int lfo_fn_table_index_offset = lfo_pm_table[LFO_PM + 16*fnum_lfo ];
if (lfo_fn_table_index_offset) /* LFO phase modulation active */
{
block_fnum += lfo_fn_table_index_offset;
block = (block_fnum&0x1c00) >> 10;
op->Cnt += (OPL->fn_tab[block_fnum&0x03ff] >> (7-block)) * op->mul;
}
else /* LFO phase modulation = zero */
{
op->Cnt += op->Incr;
}
}
else /* LFO phase modulation disabled for this operator */
{
op->Cnt += op->Incr;
}
}
/* The Noise Generator of the YM3812 is 23-bit shift register.
* Period is equal to 2^23-2 samples.
* Register works at sampling frequency of the chip, so output
* can change on every sample.
*
* Output of the register and input to the bit 22 is:
* bit0 XOR bit14 XOR bit15 XOR bit22
*
* Simply use bit 22 as the noise output.
*/
OPL->noise_p += OPL->noise_f;
i = OPL->noise_p >> FREQ_SH; /* number of events (shifts of the shift register) */
OPL->noise_p &= FREQ_MASK;
while (i)
{
/*
UINT32 j;
j = ( (OPL->noise_rng) ^ (OPL->noise_rng>>14) ^ (OPL->noise_rng>>15) ^ (OPL->noise_rng>>22) ) & 1;
OPL->noise_rng = (j<<22) | (OPL->noise_rng>>1);
*/
/*
Instead of doing all the logic operations above, we
use a trick here (and use bit 0 as the noise output).
The difference is only that the noise bit changes one
step ahead. This doesn't matter since we don't know
what is real state of the noise_rng after the reset.
*/
if (OPL->noise_rng & 1) OPL->noise_rng ^= 0x800302;
OPL->noise_rng >>= 1;
i--;
}
}
INLINE signed int op_calc(UINT32 phase, unsigned int env, signed int pm, unsigned int wave_tab)
{
UINT32 p;
p = (env<<4) + sin_tab[wave_tab + ((((signed int)((phase & ~FREQ_MASK) + (pm<<16))) >> FREQ_SH ) & SIN_MASK) ];
if (p >= TL_TAB_LEN)
return 0;
return tl_tab[p];
}
INLINE signed int op_calc1(UINT32 phase, unsigned int env, signed int pm, unsigned int wave_tab)
{
UINT32 p;
p = (env<<4) + sin_tab[wave_tab + ((((signed int)((phase & ~FREQ_MASK) + pm )) >> FREQ_SH ) & SIN_MASK) ];
if (p >= TL_TAB_LEN)
return 0;
return tl_tab[p];
}
#define volume_calc(OP) ((OP)->TLL + ((UINT32)(OP)->volume) + (LFO_AM & (OP)->AMmask))
/* calculate output */
INLINE void OPL_CALC_CH( OPL_CH *CH )
{
OPL_SLOT *SLOT;
unsigned int env;
signed int out;
phase_modulation = 0;
/* SLOT 1 */
SLOT = &CH->SLOT[SLOT1];
env = volume_calc(SLOT);
out = SLOT->op1_out[0] + SLOT->op1_out[1];
SLOT->op1_out[0] = SLOT->op1_out[1];
if(!CH->muted || SLOT->connect1!=output)
*SLOT->connect1 += SLOT->op1_out[0];
SLOT->op1_out[1] = 0;
if( env < ENV_QUIET )
{
if (!SLOT->FB)
out = 0;
SLOT->op1_out[1] = op_calc1(SLOT->Cnt, env, (out<<SLOT->FB), SLOT->wavetable );
}
if(CH->muted) return;
/* SLOT 2 */
SLOT++;
env = volume_calc(SLOT);
if( env < ENV_QUIET )
output[0] += op_calc(SLOT->Cnt, env, phase_modulation, SLOT->wavetable);
}
/*
operators used in the rhythm sounds generation process:
Envelope Generator:
channel operator register number Bass High Snare Tom Top
/ slot number TL ARDR SLRR Wave Drum Hat Drum Tom Cymbal
6 / 0 12 50 70 90 f0 +
6 / 1 15 53 73 93 f3 +
7 / 0 13 51 71 91 f1 +
7 / 1 16 54 74 94 f4 +
8 / 0 14 52 72 92 f2 +
8 / 1 17 55 75 95 f5 +
Phase Generator:
channel operator register number Bass High Snare Tom Top
/ slot number MULTIPLE Drum Hat Drum Tom Cymbal
6 / 0 12 30 +
6 / 1 15 33 +
7 / 0 13 31 + + +
7 / 1 16 34 ----- n o t u s e d -----
8 / 0 14 32 +
8 / 1 17 35 + +
channel operator register number Bass High Snare Tom Top
number number BLK/FNUM2 FNUM Drum Hat Drum Tom Cymbal
6 12,15 B6 A6 +
7 13,16 B7 A7 + + +
8 14,17 B8 A8 + + +
*/
/* calculate rhythm */
INLINE void OPL_CALC_RH( OPL_CH *CH, unsigned int noise )
{
OPL_SLOT *SLOT;
signed int out;
unsigned int env;
/* Bass Drum (verified on real YM3812):
- depends on the channel 6 'connect' register:
when connect = 0 it works the same as in normal (non-rhythm) mode (op1->op2->out)
when connect = 1 _only_ operator 2 is present on output (op2->out), operator 1 is ignored
- output sample always is multiplied by 2
*/
phase_modulation = 0;
/* SLOT 1 */
SLOT = &CH[6].SLOT[SLOT1];
env = volume_calc(SLOT);
out = SLOT->op1_out[0] + SLOT->op1_out[1];
SLOT->op1_out[0] = SLOT->op1_out[1];
if (!SLOT->CON)
phase_modulation = SLOT->op1_out[0];
/* else ignore output of operator 1 */
SLOT->op1_out[1] = 0;
if( env < ENV_QUIET )
{
if (!SLOT->FB)
out = 0;
SLOT->op1_out[1] = op_calc1(SLOT->Cnt, env, (out<<SLOT->FB), SLOT->wavetable );
}
/* SLOT 2 */
SLOT++;
env = volume_calc(SLOT);
if( env < ENV_QUIET && !CH->muted)
output[0] += op_calc(SLOT->Cnt, env, phase_modulation, SLOT->wavetable) * 2;
/* Phase generation is based on: */
/* HH (13) channel 7->slot 1 combined with channel 8->slot 2 (same combination as TOP CYMBAL but different output phases) */
/* SD (16) channel 7->slot 1 */
/* TOM (14) channel 8->slot 1 */
/* TOP (17) channel 7->slot 1 combined with channel 8->slot 2 (same combination as HIGH HAT but different output phases) */
/* Envelope generation based on: */
/* HH channel 7->slot1 */
/* SD channel 7->slot2 */
/* TOM channel 8->slot1 */
/* TOP channel 8->slot2 */
/* The following formulas can be well optimized.
I leave them in direct form for now (in case I've missed something).
*/
/* High Hat (verified on real YM3812) */
env = volume_calc(SLOT7_1);
if( env < ENV_QUIET && !CH->muted)
{
/* high hat phase generation:
phase = d0 or 234 (based on frequency only)
phase = 34 or 2d0 (based on noise)
*/
/* base frequency derived from operator 1 in channel 7 */
unsigned char bit7 = ((SLOT7_1->Cnt>>FREQ_SH)>>7)&1;
unsigned char bit3 = ((SLOT7_1->Cnt>>FREQ_SH)>>3)&1;
unsigned char bit2 = ((SLOT7_1->Cnt>>FREQ_SH)>>2)&1;
unsigned char res1 = (bit2 ^ bit7) | bit3;
/* when res1 = 0 phase = 0x000 | 0xd0; */
/* when res1 = 1 phase = 0x200 | (0xd0>>2); */
UINT32 phase = res1 ? (0x200|(0xd0>>2)) : 0xd0;
/* enable gate based on frequency of operator 2 in channel 8 */
unsigned char bit5e= ((SLOT8_2->Cnt>>FREQ_SH)>>5)&1;
unsigned char bit3e= ((SLOT8_2->Cnt>>FREQ_SH)>>3)&1;
unsigned char res2 = (bit3e ^ bit5e);
/* when res2 = 0 pass the phase from calculation above (res1); */
/* when res2 = 1 phase = 0x200 | (0xd0>>2); */
if (res2)
phase = (0x200|(0xd0>>2));
/* when phase & 0x200 is set and noise=1 then phase = 0x200|0xd0 */
/* when phase & 0x200 is set and noise=0 then phase = 0x200|(0xd0>>2), ie no change */
if (phase&0x200)
{
if (noise)
phase = 0x200|0xd0;
}
else
/* when phase & 0x200 is clear and noise=1 then phase = 0xd0>>2 */
/* when phase & 0x200 is clear and noise=0 then phase = 0xd0, ie no change */
{
if (noise)
phase = 0xd0>>2;
}
output[0] += op_calc(phase<<FREQ_SH, env, 0, SLOT7_1->wavetable) * 2;
}
/* Snare Drum (verified on real YM3812) */
env = volume_calc(SLOT7_2);
if( env < ENV_QUIET && !CH->muted)
{
/* base frequency derived from operator 1 in channel 7 */
unsigned char bit8 = ((SLOT7_1->Cnt>>FREQ_SH)>>8)&1;
/* when bit8 = 0 phase = 0x100; */
/* when bit8 = 1 phase = 0x200; */
UINT32 phase = bit8 ? 0x200 : 0x100;
/* Noise bit XOR'es phase by 0x100 */
/* when noisebit = 0 pass the phase from calculation above */
/* when noisebit = 1 phase ^= 0x100; */
/* in other words: phase ^= (noisebit<<8); */
if (noise)
phase ^= 0x100;
output[0] += op_calc(phase<<FREQ_SH, env, 0, SLOT7_2->wavetable) * 2;
}
/* Tom Tom (verified on real YM3812) */
env = volume_calc(SLOT8_1);
if( env < ENV_QUIET && !CH->muted)
output[0] += op_calc(SLOT8_1->Cnt, env, 0, SLOT8_1->wavetable) * 2;
/* Top Cymbal (verified on real YM3812) */
env = volume_calc(SLOT8_2);
if( env < ENV_QUIET && !CH->muted)
{
/* base frequency derived from operator 1 in channel 7 */
unsigned char bit7 = ((SLOT7_1->Cnt>>FREQ_SH)>>7)&1;
unsigned char bit3 = ((SLOT7_1->Cnt>>FREQ_SH)>>3)&1;
unsigned char bit2 = ((SLOT7_1->Cnt>>FREQ_SH)>>2)&1;
unsigned char res1 = (bit2 ^ bit7) | bit3;
/* when res1 = 0 phase = 0x000 | 0x100; */
/* when res1 = 1 phase = 0x200 | 0x100; */
UINT32 phase = res1 ? 0x300 : 0x100;
/* enable gate based on frequency of operator 2 in channel 8 */
unsigned char bit5e= ((SLOT8_2->Cnt>>FREQ_SH)>>5)&1;
unsigned char bit3e= ((SLOT8_2->Cnt>>FREQ_SH)>>3)&1;
unsigned char res2 = (bit3e ^ bit5e);
/* when res2 = 0 pass the phase from calculation above (res1); */
/* when res2 = 1 phase = 0x200 | 0x100; */
if (res2)
phase = 0x300;
output[0] += op_calc(phase<<FREQ_SH, env, 0, SLOT8_2->wavetable) * 2;
}
}
/* generic table initialize */
static int init_tables(void)
{
signed int i,x;
signed int n;
double o,m;
for (x=0; x<TL_RES_LEN; x++)
{
m = (1<<16) / pow(2, (x+1) * (ENV_STEP/4.0) / 8.0);
m = floor(m);
/* we never reach (1<<16) here due to the (x+1) */
/* result fits within 16 bits at maximum */
n = (int)m; /* 16 bits here */
n >>= 4; /* 12 bits here */
if (n&1) /* round to nearest */
n = (n>>1)+1;
else
n = n>>1;
/* 11 bits here (rounded) */
n <<= 1; /* 12 bits here (as in real chip) */
tl_tab[ x*2 + 0 ] = n;
tl_tab[ x*2 + 1 ] = -tl_tab[ x*2 + 0 ];
for (i=1; i<12; i++)
{
tl_tab[ x*2+0 + i*2*TL_RES_LEN ] = tl_tab[ x*2+0 ]>>i;
tl_tab[ x*2+1 + i*2*TL_RES_LEN ] = -tl_tab[ x*2+0 + i*2*TL_RES_LEN ];
}
#if 0
logerror("tl %04i", x*2);
for (i=0; i<12; i++)
logerror(", [%02i] %5i", i*2, tl_tab[ x*2 /*+1*/ + i*2*TL_RES_LEN ] );
logerror("\n");
#endif
}
/*logerror("FMOPL.C: TL_TAB_LEN = %i elements (%i bytes)\n",TL_TAB_LEN, (int)sizeof(tl_tab));*/
for (i=0; i<SIN_LEN; i++)
{
/* non-standard sinus */
m = sin( ((i*2)+1) * PI / SIN_LEN ); /* checked against the real chip */
/* we never reach zero here due to ((i*2)+1) */
if (m>0.0)
o = 8*log(1.0/m)/log(2.0); /* convert to 'decibels' */
else
o = 8*log(-1.0/m)/log(2.0); /* convert to 'decibels' */
o = o / (ENV_STEP/4);
n = (int)(2.0*o);
if (n&1) /* round to nearest */
n = (n>>1)+1;
else
n = n>>1;
sin_tab[ i ] = n*2 + (m>=0.0? 0: 1 );
/*logerror("FMOPL.C: sin [%4i (hex=%03x)]= %4i (tl_tab value=%5i)\n", i, i, sin_tab[i], tl_tab[sin_tab[i]] );*/
}
for (i=0; i<SIN_LEN; i++)
{
/* waveform 1: __ __ */
/* / \____/ \____*/
/* output only first half of the sinus waveform (positive one) */
if (i & (1<<(SIN_BITS-1)) )
sin_tab[1*SIN_LEN+i] = TL_TAB_LEN;
else
sin_tab[1*SIN_LEN+i] = sin_tab[i];
/* waveform 2: __ __ __ __ */
/* / \/ \/ \/ \*/
/* abs(sin) */
sin_tab[2*SIN_LEN+i] = sin_tab[i & (SIN_MASK>>1) ];
/* waveform 3: _ _ _ _ */
/* / |_/ |_/ |_/ |_*/
/* abs(output only first quarter of the sinus waveform) */
if (i & (1<<(SIN_BITS-2)) )
sin_tab[3*SIN_LEN+i] = TL_TAB_LEN;
else
sin_tab[3*SIN_LEN+i] = sin_tab[i & (SIN_MASK>>2)];
/*logerror("FMOPL.C: sin1[%4i]= %4i (tl_tab value=%5i)\n", i, sin_tab[1*SIN_LEN+i], tl_tab[sin_tab[1*SIN_LEN+i]] );
logerror("FMOPL.C: sin2[%4i]= %4i (tl_tab value=%5i)\n", i, sin_tab[2*SIN_LEN+i], tl_tab[sin_tab[2*SIN_LEN+i]] );
logerror("FMOPL.C: sin3[%4i]= %4i (tl_tab value=%5i)\n", i, sin_tab[3*SIN_LEN+i], tl_tab[sin_tab[3*SIN_LEN+i]] );*/
}
/*logerror("FMOPL.C: ENV_QUIET= %08x (dec*8=%i)\n", ENV_QUIET, ENV_QUIET*8 );*/
#ifdef SAVE_SAMPLE
sample[0]=fopen("sampsum.pcm","wb");
#endif
return 1;
}
static void OPLCloseTable( void )
{
#ifdef SAVE_SAMPLE
fclose(sample[0]);
#endif
}
static void OPL_initalize(FM_OPL *OPL)
{
int i;
/* frequency base */
OPL->freqbase = (OPL->rate) ? ((double)OPL->clock / 72.0) / OPL->rate : 0;
#if 0
OPL->rate = (double)OPL->clock / 72.0;
OPL->freqbase = 1.0;
#endif
/*logerror("freqbase=%f\n", OPL->freqbase);*/
/* Timer base time */
OPL->TimerBase = 1.0 / ((double)OPL->clock / 72.0 );
/* make fnumber -> increment counter table */
for( i=0 ; i < 1024 ; i++ )
{
/* opn phase increment counter = 20bit */
OPL->fn_tab[i] = (UINT32)( (double)i * 64 * OPL->freqbase * (1<<(FREQ_SH-10)) ); /* -10 because chip works with 10.10 fixed point, while we use 16.16 */
#if 0
logerror("FMOPL.C: fn_tab[%4i] = %08x (dec=%8i)\n",
i, OPL->fn_tab[i]>>6, OPL->fn_tab[i]>>6 );
#endif
}
#if 0
for( i=0 ; i < 16 ; i++ )
{
logerror("FMOPL.C: sl_tab[%i] = %08x\n",
i, sl_tab[i] );
}
for( i=0 ; i < 8 ; i++ )
{
int j;
logerror("FMOPL.C: ksl_tab[oct=%2i] =",i);
for (j=0; j<16; j++)
{
logerror("%08x ", ksl_tab[i*16+j] );
}
logerror("\n");
}
#endif
/* Amplitude modulation: 27 output levels (triangle waveform); 1 level takes one of: 192, 256 or 448 samples */
/* One entry from LFO_AM_TABLE lasts for 64 samples */
OPL->lfo_am_inc = (UINT32) ((1.0 / 64.0 ) * (1<<LFO_SH) * OPL->freqbase);
/* Vibrato: 8 output levels (triangle waveform); 1 level takes 1024 samples */
OPL->lfo_pm_inc = (UINT32) ((1.0 / 1024.0) * (1<<LFO_SH) * OPL->freqbase);
/*logerror ("OPL->lfo_am_inc = %8x ; OPL->lfo_pm_inc = %8x\n", OPL->lfo_am_inc, OPL->lfo_pm_inc);*/
/* Noise generator: a step takes 1 sample */
OPL->noise_f = (UINT32) ((1.0 / 1.0) * (1<<FREQ_SH) * OPL->freqbase);
OPL->eg_timer_add = (UINT32) ((1<<EG_SH) * OPL->freqbase);
OPL->eg_timer_overflow = ( 1 ) * (1<<EG_SH);
/*logerror("OPLinit eg_timer_add=%8x eg_timer_overflow=%8x\n", OPL->eg_timer_add, OPL->eg_timer_overflow);*/
}
INLINE void FM_KEYON(OPL_SLOT *SLOT, UINT32 key_set)
{
if( !SLOT->key )
{
/* restart Phase Generator */
SLOT->Cnt = 0;
/* phase -> Attack */
SLOT->state = EG_ATT;
}
SLOT->key |= key_set;
}
INLINE void FM_KEYOFF(OPL_SLOT *SLOT, UINT32 key_clr)
{
if( SLOT->key )
{
SLOT->key &= key_clr;
if( !SLOT->key )
{
/* phase -> Release */
if (SLOT->state>EG_REL)
SLOT->state = EG_REL;
}
}
}
/* update phase increment counter of operator (also update the EG rates if necessary) */
INLINE void CALC_FCSLOT(OPL_CH *CH,OPL_SLOT *SLOT)
{
int ksr;
/* (frequency) phase increment counter */
SLOT->Incr = CH->fc * SLOT->mul;
ksr = CH->kcode >> SLOT->KSR;
if( SLOT->ksr != ksr )
{
SLOT->ksr = ksr;
/* calculate envelope generator rates */
if ((SLOT->ar + SLOT->ksr) < 16+62)
{
SLOT->eg_sh_ar = eg_rate_shift [SLOT->ar + SLOT->ksr ];
SLOT->eg_sel_ar = eg_rate_select[SLOT->ar + SLOT->ksr ];
}
else
{
SLOT->eg_sh_ar = 0;
SLOT->eg_sel_ar = 13*RATE_STEPS;
}
SLOT->eg_sh_dr = eg_rate_shift [SLOT->dr + SLOT->ksr ];
SLOT->eg_sel_dr = eg_rate_select[SLOT->dr + SLOT->ksr ];
SLOT->eg_sh_rr = eg_rate_shift [SLOT->rr + SLOT->ksr ];
SLOT->eg_sel_rr = eg_rate_select[SLOT->rr + SLOT->ksr ];
}
}
/* set multi,am,vib,EG-TYP,KSR,mul */
INLINE void set_mul(FM_OPL *OPL,int slot,int v)
{
OPL_CH *CH = &OPL->P_CH[slot/2];
OPL_SLOT *SLOT = &CH->SLOT[slot&1];
SLOT->mul = mul_tab[v&0x0f];
SLOT->KSR = (v&0x10) ? 0 : 2;
SLOT->eg_type = (v&0x20);
SLOT->vib = (v&0x40);
SLOT->AMmask = (v&0x80) ? ~0 : 0;
CALC_FCSLOT(CH,SLOT);
}
/* set ksl & tl */
INLINE void set_ksl_tl(FM_OPL *OPL,int slot,int v)
{
OPL_CH *CH = &OPL->P_CH[slot/2];
OPL_SLOT *SLOT = &CH->SLOT[slot&1];
int ksl = v>>6; /* 0 / 1.5 / 3.0 / 6.0 dB/OCT */
SLOT->ksl = ksl ? 3-ksl : 31;
SLOT->TL = (v&0x3f)<<(ENV_BITS-1-7); /* 7 bits TL (bit 6 = always 0) */
SLOT->TLL = SLOT->TL + (CH->ksl_base>>SLOT->ksl);
}
/* set attack rate & decay rate */
INLINE void set_ar_dr(FM_OPL *OPL,int slot,int v)
{
OPL_CH *CH = &OPL->P_CH[slot/2];
OPL_SLOT *SLOT = &CH->SLOT[slot&1];
SLOT->ar = (v>>4) ? 16 + ((v>>4) <<2) : 0;
if ((SLOT->ar + SLOT->ksr) < 16+62)
{
SLOT->eg_sh_ar = eg_rate_shift [SLOT->ar + SLOT->ksr ];
SLOT->eg_sel_ar = eg_rate_select[SLOT->ar + SLOT->ksr ];
}
else
{
SLOT->eg_sh_ar = 0;
SLOT->eg_sel_ar = 13*RATE_STEPS;
}
SLOT->dr = (v&0x0f)? 16 + ((v&0x0f)<<2) : 0;
SLOT->eg_sh_dr = eg_rate_shift [SLOT->dr + SLOT->ksr ];
SLOT->eg_sel_dr = eg_rate_select[SLOT->dr + SLOT->ksr ];
}
/* set sustain level & release rate */
INLINE void set_sl_rr(FM_OPL *OPL,int slot,int v)
{
OPL_CH *CH = &OPL->P_CH[slot/2];
OPL_SLOT *SLOT = &CH->SLOT[slot&1];
SLOT->sl = sl_tab[ v>>4 ];
SLOT->rr = (v&0x0f)? 16 + ((v&0x0f)<<2) : 0;
SLOT->eg_sh_rr = eg_rate_shift [SLOT->rr + SLOT->ksr ];
SLOT->eg_sel_rr = eg_rate_select[SLOT->rr + SLOT->ksr ];
}
/* write a value v to register r on OPL chip */
static void OPLWriteReg(FM_OPL *OPL, int r, int v)
{
OPL_CH *CH;
int slot;
int block_fnum;
/* adjust bus to 8 bits */
r &= 0xff;
v &= 0xff;
#ifdef LOG_CYM_FILE
if ((cymfile) && (r!=0) )
{
fputc( (unsigned char)r, cymfile );
fputc( (unsigned char)v, cymfile );
}
#endif
switch(r&0xe0)
{
case 0x00: /* 00-1f:control */
switch(r&0x1f)
{
case 0x01: /* waveform select enable */
if(OPL->type&OPL_TYPE_WAVESEL)
{
OPL->wavesel = v&0x20;
/* do not change the waveform previously selected */
}
break;
case 0x02: /* Timer 1 */
OPL->T[0] = (256-v)*4;
break;
case 0x03: /* Timer 2 */
OPL->T[1] = (256-v)*16;
break;
case 0x04: /* IRQ clear / mask and Timer enable */
if(v&0x80)
{ /* IRQ flag clear */
OPL_STATUS_RESET(OPL,0x7f-0x08); /* don't reset BFRDY flag or we will have to call deltat module to set the flag */
}
else
{ /* set IRQ mask ,timer enable*/
UINT8 st1 = v&1;
UINT8 st2 = (v>>1)&1;
/* IRQRST,T1MSK,t2MSK,EOSMSK,BRMSK,x,ST2,ST1 */
OPL_STATUS_RESET(OPL, v & (0x78-0x08) );
OPL_STATUSMASK_SET(OPL, (~v) & 0x78 );
/* timer 2 */
if(OPL->st[1] != st2)
{
double interval = st2 ? (double)OPL->T[1]*OPL->TimerBase : 0.0;
OPL->st[1] = st2;
if (OPL->TimerHandler) (OPL->TimerHandler)(OPL->TimerParam+1,interval);
}
/* timer 1 */
if(OPL->st[0] != st1)
{
double interval = st1 ? (double)OPL->T[0]*OPL->TimerBase : 0.0;
OPL->st[0] = st1;
if (OPL->TimerHandler) (OPL->TimerHandler)(OPL->TimerParam+0,interval);
}
}
break;
#if BUILD_Y8950
case 0x06: /* Key Board OUT */
if(OPL->type&OPL_TYPE_KEYBOARD)
{
if(OPL->keyboardhandler_w)
OPL->keyboardhandler_w(OPL->keyboard_param,v);
else
logerror("Y8950: write unmapped KEYBOARD port\n");
}
break;
case 0x07: /* DELTA-T control 1 : START,REC,MEMDATA,REPT,SPOFF,x,x,RST */
if(OPL->type&OPL_TYPE_ADPCM)
YM_DELTAT_ADPCM_Write(OPL->deltat,r-0x07,v);
break;
#endif
case 0x08: /* MODE,DELTA-T control 2 : CSM,NOTESEL,x,x,smpl,da/ad,64k,rom */
OPL->mode = v;
#if BUILD_Y8950
if(OPL->type&OPL_TYPE_ADPCM)
YM_DELTAT_ADPCM_Write(OPL->deltat,r-0x07,v&0x0f); /* mask 4 LSBs in register 08 for DELTA-T unit */
#endif
break;
#if BUILD_Y8950
case 0x09: /* START ADD */
case 0x0a:
case 0x0b: /* STOP ADD */
case 0x0c:
case 0x0d: /* PRESCALE */
case 0x0e:
case 0x0f: /* ADPCM data write */
case 0x10: /* DELTA-N */
case 0x11: /* DELTA-N */
case 0x12: /* ADPCM volume */
if(OPL->type&OPL_TYPE_ADPCM)
YM_DELTAT_ADPCM_Write(OPL->deltat,r-0x07,v);
break;
case 0x15: /* DAC data high 8 bits (F7,F6...F2) */
case 0x16: /* DAC data low 2 bits (F1, F0 in bits 7,6) */
case 0x17: /* DAC data shift (S2,S1,S0 in bits 2,1,0) */
logerror("FMOPL.C: DAC data register written, but not implemented reg=%02x val=%02x\n",r,v);
break;
case 0x18: /* I/O CTRL (Direction) */
if(OPL->type&OPL_TYPE_IO)
OPL->portDirection = v&0x0f;
break;
case 0x19: /* I/O DATA */
if(OPL->type&OPL_TYPE_IO)
{
OPL->portLatch = v;
if(OPL->porthandler_w)
OPL->porthandler_w(OPL->port_param,v&OPL->portDirection);
}
break;
#endif
default:
logerror("FMOPL.C: write to unknown register: %02x\n",r);
break;
}
break;
case 0x20: /* am ON, vib ON, ksr, eg_type, mul */
slot = slot_array[r&0x1f];
if(slot < 0) return;
set_mul(OPL,slot,v);
break;
case 0x40:
slot = slot_array[r&0x1f];
if(slot < 0) return;
set_ksl_tl(OPL,slot,v);
break;
case 0x60:
slot = slot_array[r&0x1f];
if(slot < 0) return;
set_ar_dr(OPL,slot,v);
break;
case 0x80:
slot = slot_array[r&0x1f];
if(slot < 0) return;
set_sl_rr(OPL,slot,v);
break;
case 0xa0:
if (r == 0xbd) /* am depth, vibrato depth, r,bd,sd,tom,tc,hh */
{
OPL->lfo_am_depth = v & 0x80;
OPL->lfo_pm_depth_range = (v&0x40) ? 8 : 0;
OPL->rhythm = v&0x3f;
if(OPL->rhythm&0x20)
{
/* BD key on/off */
if(v&0x10)
{
FM_KEYON (&OPL->P_CH[6].SLOT[SLOT1], 2);
FM_KEYON (&OPL->P_CH[6].SLOT[SLOT2], 2);
}
else
{
FM_KEYOFF(&OPL->P_CH[6].SLOT[SLOT1],~2);
FM_KEYOFF(&OPL->P_CH[6].SLOT[SLOT2],~2);
}
/* HH key on/off */
if(v&0x01) FM_KEYON (&OPL->P_CH[7].SLOT[SLOT1], 2);
else FM_KEYOFF(&OPL->P_CH[7].SLOT[SLOT1],~2);
/* SD key on/off */
if(v&0x08) FM_KEYON (&OPL->P_CH[7].SLOT[SLOT2], 2);
else FM_KEYOFF(&OPL->P_CH[7].SLOT[SLOT2],~2);
/* TOM key on/off */
if(v&0x04) FM_KEYON (&OPL->P_CH[8].SLOT[SLOT1], 2);
else FM_KEYOFF(&OPL->P_CH[8].SLOT[SLOT1],~2);
/* TOP-CY key on/off */
if(v&0x02) FM_KEYON (&OPL->P_CH[8].SLOT[SLOT2], 2);
else FM_KEYOFF(&OPL->P_CH[8].SLOT[SLOT2],~2);
}
else
{
/* BD key off */
FM_KEYOFF(&OPL->P_CH[6].SLOT[SLOT1],~2);
FM_KEYOFF(&OPL->P_CH[6].SLOT[SLOT2],~2);
/* HH key off */
FM_KEYOFF(&OPL->P_CH[7].SLOT[SLOT1],~2);
/* SD key off */
FM_KEYOFF(&OPL->P_CH[7].SLOT[SLOT2],~2);
/* TOM key off */
FM_KEYOFF(&OPL->P_CH[8].SLOT[SLOT1],~2);
/* TOP-CY off */
FM_KEYOFF(&OPL->P_CH[8].SLOT[SLOT2],~2);
}
return;
}
/* keyon,block,fnum */
if( (r&0x0f) > 8) return;
CH = &OPL->P_CH[r&0x0f];
if(!(r&0x10))
{ /* a0-a8 */
block_fnum = (CH->block_fnum&0x1f00) | v;
}
else
{ /* b0-b8 */
block_fnum = ((v&0x1f)<<8) | (CH->block_fnum&0xff);
if(v&0x20)
{
FM_KEYON (&CH->SLOT[SLOT1], 1);
FM_KEYON (&CH->SLOT[SLOT2], 1);
}
else
{
FM_KEYOFF(&CH->SLOT[SLOT1],~1);
FM_KEYOFF(&CH->SLOT[SLOT2],~1);
}
}
/* update */
if(CH->block_fnum != (UINT32) block_fnum)
{
UINT8 block = block_fnum >> 10;
CH->block_fnum = block_fnum;
CH->ksl_base = ksl_tab[block_fnum>>6];
CH->fc = OPL->fn_tab[block_fnum&0x03ff] >> (7-block);
/* BLK 2,1,0 bits -> bits 3,2,1 of kcode */
CH->kcode = (CH->block_fnum&0x1c00)>>9;
/* the info below is actually opposite to what is stated in the Manuals (verifed on real YM3812) */
/* if notesel == 0 -> lsb of kcode is bit 10 (MSB) of fnum */
/* if notesel == 1 -> lsb of kcode is bit 9 (MSB-1) of fnum */
if (OPL->mode&0x40)
CH->kcode |= (CH->block_fnum&0x100)>>8; /* notesel == 1 */
else
CH->kcode |= (CH->block_fnum&0x200)>>9; /* notesel == 0 */
/* refresh Total Level in both SLOTs of this channel */
CH->SLOT[SLOT1].TLL = CH->SLOT[SLOT1].TL + (CH->ksl_base>>CH->SLOT[SLOT1].ksl);
CH->SLOT[SLOT2].TLL = CH->SLOT[SLOT2].TL + (CH->ksl_base>>CH->SLOT[SLOT2].ksl);
/* refresh frequency counter in both SLOTs of this channel */
CALC_FCSLOT(CH,&CH->SLOT[SLOT1]);
CALC_FCSLOT(CH,&CH->SLOT[SLOT2]);
}
break;
case 0xc0:
/* FB,C */
if( (r&0x0f) > 8) return;
CH = &OPL->P_CH[r&0x0f];
CH->SLOT[SLOT1].FB = (v>>1)&7 ? ((v>>1)&7) + 7 : 0;
CH->SLOT[SLOT1].CON = v&1;
CH->SLOT[SLOT1].connect1 = CH->SLOT[SLOT1].CON ? &output[0] : &phase_modulation;
break;
case 0xe0: /* waveform select */
/* simply ignore write to the waveform select register if selecting not enabled in test register */
if(OPL->wavesel)
{
slot = slot_array[r&0x1f];
if(slot < 0) return;
CH = &OPL->P_CH[slot/2];
CH->SLOT[slot&1].wavetable = (v&0x03)*SIN_LEN;
}
break;
}
}
static void OPLMute(FM_OPL *OPL,int channel,BOOL mute)
{
if(channel<0 || channel>8) return;
OPL_CH *CH = &OPL->P_CH[channel];
CH->muted=mute;
/* if(!mute)
{
if(ChannelMuted[channel]&1)
{
FM_KEYON (&CH->SLOT[SLOT1], 1);
FM_KEYON (&CH->SLOT[SLOT2], 1);
}
ChannelMuted[channel]=0;
}
else
{
if(CH->SLOT[SLOT1].volume<MIN_ATT_INDEX)
{
FM_KEYOFF(&CH->SLOT[SLOT1],~1);
FM_KEYOFF(&CH->SLOT[SLOT2],~1);
CH->SLOT[SLOT1].volume = MAX_ATT_INDEX;
CH->SLOT[SLOT1].state = EG_OFF;
CH->SLOT[SLOT2].volume = MAX_ATT_INDEX;
CH->SLOT[SLOT2].state = EG_OFF;
ChannelMuted[channel]=3; // muted + keyon flag
}
else
{
MessageBox(NULL,"HmMEMmSDUHSoi","arghl",MB_OK);
ChannelMuted[channel]=2; // muted
}
}*/
}
#ifdef LOG_CYM_FILE
static void cymfile_callback (int n)
{
if (cymfile)
{
fputc( (unsigned char)0, cymfile );
}
}
#endif
/* lock/unlock for common table */
static int OPL_LockTable(void)
{
num_lock++;
if(num_lock>1) return 0;
/* first time */
cur_chip = NULL;
/* allocate total level table (128kb space) */
if( !init_tables() )
{
num_lock--;
return -1;
}
#ifdef LOG_CYM_FILE
cymfile = fopen("3812_.cym","wb");
if (cymfile)
timer_pulse ( TIME_IN_HZ(110), 0, cymfile_callback); /*110 Hz pulse timer*/
else
logerror("Could not create file 3812_.cym\n");
#endif
return 0;
}
static void OPL_UnLockTable(void)
{
if(num_lock) num_lock--;
if(num_lock) return;
/* last time */
cur_chip = NULL;
OPLCloseTable();
#ifdef LOG_CYM_FILE
fclose (cymfile);
cymfile = NULL;
#endif
}
static void OPLResetChip(FM_OPL *OPL)
{
int c,s;
int i;
OPL->eg_timer = 0;
OPL->eg_cnt = 0;
OPL->noise_rng = 1; /* noise shift register */
OPL->mode = 0; /* normal mode */
OPL_STATUS_RESET(OPL,0x7f);
/* reset with register write */
OPLWriteReg(OPL,0x01,0); /* wavesel disable */
OPLWriteReg(OPL,0x02,0); /* Timer1 */
OPLWriteReg(OPL,0x03,0); /* Timer2 */
OPLWriteReg(OPL,0x04,0); /* IRQ mask clear */
for(i = 0xff ; i >= 0x20 ; i-- ) OPLWriteReg(OPL,i,0);
/* reset operator parameters */
for( c = 0 ; c < 9 ; c++ )
{
OPL_CH *CH = &OPL->P_CH[c];
for(s = 0 ; s < 2 ; s++ )
{
/* wave table */
CH->SLOT[s].wavetable = 0;
CH->SLOT[s].state = EG_OFF;
CH->SLOT[s].volume = MAX_ATT_INDEX;
}
}
#if BUILD_Y8950
if(OPL->type&OPL_TYPE_ADPCM)
{
YM_DELTAT *DELTAT = OPL->deltat;
DELTAT->freqbase = OPL->freqbase;
DELTAT->output_pointer = &output_deltat[0];
DELTAT->portshift = 5;
DELTAT->output_range = 1<<23;
YM_DELTAT_ADPCM_Reset(DELTAT,0);
}
#endif
}
/* Create one of virtual YM3812/YM3526/Y8950 */
/* 'clock' is chip clock in Hz */
/* 'rate' is sampling rate */
static FM_OPL *OPLCreate(int type, int clock, int rate)
{
char *ptr;
FM_OPL *OPL;
int state_size;
if (OPL_LockTable() ==-1) return NULL;
/* calculate OPL state size */
state_size = sizeof(FM_OPL);
#if BUILD_Y8950
if (type&OPL_TYPE_ADPCM) state_size+= sizeof(YM_DELTAT);
#endif
/* allocate memory block */
ptr = (char *) malloc(state_size);
if (ptr==NULL)
return NULL;
/* clear */
memset(ptr,0,state_size);
OPL = (FM_OPL *)(void *)ptr; // ptr comes from malloc, so it is correctly aligned
ptr += sizeof(FM_OPL);
#if BUILD_Y8950
if (type&OPL_TYPE_ADPCM)
{
OPL->deltat = (YM_DELTAT *)ptr;
}
ptr += sizeof(YM_DELTAT);
#endif
OPL->type = type;
OPL->clock = clock;
OPL->rate = rate;
/* init global tables */
OPL_initalize(OPL);
return OPL;
}
/* Destroy one of virtual YM3812 */
static void OPLDestroy(FM_OPL *OPL)
{
OPL_UnLockTable();
free(OPL);
}
/* Optional handlers */
static void OPLSetTimerHandler(FM_OPL *OPL,OPL_TIMERHANDLER TimerHandler,int channelOffset)
{
OPL->TimerHandler = TimerHandler;
OPL->TimerParam = channelOffset;
}
static void OPLSetIRQHandler(FM_OPL *OPL,OPL_IRQHANDLER IRQHandler,int param)
{
OPL->IRQHandler = IRQHandler;
OPL->IRQParam = param;
}
static void OPLSetUpdateHandler(FM_OPL *OPL,OPL_UPDATEHANDLER UpdateHandler,int param)
{
OPL->UpdateHandler = UpdateHandler;
OPL->UpdateParam = param;
}
#if defined(BUILD_YM3526) || defined(BUILD_Y8950)
static int OPLWrite(FM_OPL *OPL,int a,int v)
{
if( !(a&1) )
{ /* address port */
OPL->address = v & 0xff;
}
else
{ /* data port */
if(OPL->UpdateHandler) OPL->UpdateHandler(OPL->UpdateParam,0);
OPLWriteReg(OPL,OPL->address,v);
}
return OPL->status>>7;
}
#endif
static unsigned char OPLRead(FM_OPL *OPL,int a)
{
if( !(a&1) )
{
/* status port */
#if BUILD_Y8950
if(OPL->type&OPL_TYPE_ADPCM) /* Y8950 */
{
return (OPL->status & (OPL->statusmask|0x80)) | (OPL->deltat->PCM_BSY&1);
}
#endif
/* OPL and OPL2 */
return OPL->status & (OPL->statusmask|0x80);
}
#if BUILD_Y8950
/* data port */
switch(OPL->address)
{
case 0x05: /* KeyBoard IN */
if(OPL->type&OPL_TYPE_KEYBOARD)
{
if(OPL->keyboardhandler_r)
return OPL->keyboardhandler_r(OPL->keyboard_param);
else
logerror("Y8950: read unmapped KEYBOARD port\n");
}
return 0;
case 0x0f: /* ADPCM-DATA */
if(OPL->type&OPL_TYPE_ADPCM)
{
UINT8 val;
val = YM_DELTAT_ADPCM_Read(OPL->deltat);
/*logerror("Y8950: read ADPCM value read=%02x\n",val);*/
return val;
}
return 0;
case 0x19: /* I/O DATA */
if(OPL->type&OPL_TYPE_IO)
{
if(OPL->porthandler_r)
return OPL->porthandler_r(OPL->port_param);
else
logerror("Y8950:read unmapped I/O port\n");
}
return 0;
case 0x1a: /* PCM-DATA */
if(OPL->type&OPL_TYPE_ADPCM)
{
logerror("Y8950 A/D convertion is accessed but not implemented !\n");
return 0x80; /* 2's complement PCM data - result from A/D convertion */
}
return 0;
}
#endif
return 0xff;
}
/* CSM Key Controll */
INLINE void CSMKeyControll(OPL_CH *CH)
{
FM_KEYON (&CH->SLOT[SLOT1], 4);
FM_KEYON (&CH->SLOT[SLOT2], 4);
/* The key off should happen exactly one sample later - not implemented correctly yet */
FM_KEYOFF(&CH->SLOT[SLOT1], ~4);
FM_KEYOFF(&CH->SLOT[SLOT2], ~4);
}
static int OPLTimerOver(FM_OPL *OPL,int c)
{
if( c )
{ /* Timer B */
OPL_STATUS_SET(OPL,0x20);
}
else
{ /* Timer A */
OPL_STATUS_SET(OPL,0x40);
/* CSM mode key,TL controll */
if( OPL->mode & 0x80 )
{ /* CSM mode total level latch and auto key on */
int ch;
if(OPL->UpdateHandler) OPL->UpdateHandler(OPL->UpdateParam,0);
for(ch=0; ch<9; ch++)
CSMKeyControll( &OPL->P_CH[ch] );
}
}
/* reload timer */
if (OPL->TimerHandler) (OPL->TimerHandler)(OPL->TimerParam+c,(double)OPL->T[c]*OPL->TimerBase);
return OPL->status>>7;
}
#define MAX_OPL_CHIPS 2
#if (BUILD_YM3812)
static FM_OPL *OPL_YM3812[MAX_OPL_CHIPS]; /* array of pointers to the YM3812's */
static int YM3812NumChips = 0; /* number of chips */
int YM3812Init(int num, int clock, int rate)
{
int i;
if (YM3812NumChips)
return -1; /* duplicate init. */
YM3812NumChips = num;
for (i = 0;i < YM3812NumChips; i++)
{
/* emulator create */
OPL_YM3812[i] = OPLCreate(OPL_TYPE_YM3812,clock,rate);
if(OPL_YM3812[i] == NULL)
{
/* it's really bad - we run out of memeory */
YM3812NumChips = 0;
return -1;
}
/* reset */
YM3812ResetChip(i);
}
return 0;
}
void YM3812Shutdown(void)
{
int i;
for (i = 0;i < YM3812NumChips; i++)
{
/* emulator shutdown */
OPLDestroy(OPL_YM3812[i]);
OPL_YM3812[i] = NULL;
}
YM3812NumChips = 0;
}
void YM3812ResetChip(int which)
{
OPLResetChip(OPL_YM3812[which]);
}
int YM3812Write(int which, int a, int v)
{
OPLWriteReg(OPL_YM3812[which], a, v);
return (OPL_YM3812[which]->status>>7);
}
unsigned char YM3812Read(int which, int a)
{
/* YM3812 always returns bit2 and bit1 in HIGH state */
return OPLRead(OPL_YM3812[which], a) | 0x06 ;
}
void YM3812Mute(int which, int channel, BOOL mute)
{
OPLMute(OPL_YM3812[which], channel, mute);
}
int YM3812TimerOver(int which, int c)
{
return OPLTimerOver(OPL_YM3812[which], c);
}
void YM3812SetTimerHandler(int which, OPL_TIMERHANDLER TimerHandler, int channelOffset)
{
OPLSetTimerHandler(OPL_YM3812[which], TimerHandler, channelOffset);
}
void YM3812SetIRQHandler(int which,OPL_IRQHANDLER IRQHandler,int param)
{
OPLSetIRQHandler(OPL_YM3812[which], IRQHandler, param);
}
void YM3812SetUpdateHandler(int which,OPL_UPDATEHANDLER UpdateHandler,int param)
{
OPLSetUpdateHandler(OPL_YM3812[which], UpdateHandler, param);
}
/*
** Generate samples for one of the YM3812's
**
** 'which' is the virtual YM3812 number
** '*buffer' is the output buffer pointer
** 'length' is the number of samples that should be generated
*/
void YM3812UpdateOne(int which, INT16 *buffer, int length)
{
FM_OPL *OPL = OPL_YM3812[which];
UINT8 rhythm = OPL->rhythm&0x20;
OPLSAMPLE *buf = buffer;
int i;
if( (void *)OPL != cur_chip ){
cur_chip = (void *)OPL;
/* rhythm slots */
SLOT7_1 = &OPL->P_CH[7].SLOT[SLOT1];
SLOT7_2 = &OPL->P_CH[7].SLOT[SLOT2];
SLOT8_1 = &OPL->P_CH[8].SLOT[SLOT1];
SLOT8_2 = &OPL->P_CH[8].SLOT[SLOT2];
}
for( i=0; i < length ; i++ )
{
int lt;
output[0] = 0;
advance_lfo(OPL);
/* FM part */
OPL_CALC_CH(&OPL->P_CH[0]);
OPL_CALC_CH(&OPL->P_CH[1]);
OPL_CALC_CH(&OPL->P_CH[2]);
OPL_CALC_CH(&OPL->P_CH[3]);
OPL_CALC_CH(&OPL->P_CH[4]);
OPL_CALC_CH(&OPL->P_CH[5]);
if(!rhythm)
{
OPL_CALC_CH(&OPL->P_CH[6]);
OPL_CALC_CH(&OPL->P_CH[7]);
OPL_CALC_CH(&OPL->P_CH[8]);
}
else /* Rhythm part */
{
OPL_CALC_RH(&OPL->P_CH[0], (OPL->noise_rng>>0)&1 );
}
lt = output[0];
// lt >>= FINAL_SH;
lt<<=2;
/* limit check */
lt = limit( lt , MAXOUT, MINOUT );
#ifdef SAVE_SAMPLE
if (which==0)
{
SAVE_ALL_CHANNELS
}
#endif
/* store to sound buffer */
/* #if (OPL_SAMPLE_BITS == 16)
lt += 32768;
#else
lt += 128;
#endif*/
// buf[i] = lt;
buf[i*2] = lt; // stereo version
buf[i*2+1] = lt;
advance(OPL);
}
}
#endif /* BUILD_YM3812 */
#if (BUILD_YM3526)
static FM_OPL *OPL_YM3526[MAX_OPL_CHIPS]; /* array of pointers to the YM3526's */
static int YM3526NumChips = 0; /* number of chips */
int YM3526Init(int num, int clock, int rate)
{
int i;
if (YM3526NumChips)
return -1; /* duplicate init. */
YM3526NumChips = num;
for (i = 0;i < YM3526NumChips; i++)
{
/* emulator create */
OPL_YM3526[i] = OPLCreate(OPL_TYPE_YM3526,clock,rate);
if(OPL_YM3526[i] == NULL)
{
/* it's really bad - we run out of memeory */
YM3526NumChips = 0;
return -1;
}
/* reset */
YM3526ResetChip(i);
}
return 0;
}
void YM3526Shutdown(void)
{
int i;
for (i = 0;i < YM3526NumChips; i++)
{
/* emulator shutdown */
OPLDestroy(OPL_YM3526[i]);
OPL_YM3526[i] = NULL;
}
YM3526NumChips = 0;
}
void YM3526ResetChip(int which)
{
OPLResetChip(OPL_YM3526[which]);
}
int YM3526Write(int which, int a, int v)
{
return OPLWrite(OPL_YM3526[which], a, v);
}
unsigned char YM3526Read(int which, int a)
{
/* YM3526 always returns bit2 and bit1 in HIGH state */
return OPLRead(OPL_YM3526[which], a) | 0x06 ;
}
int YM3526TimerOver(int which, int c)
{
return OPLTimerOver(OPL_YM3526[which], c);
}
void YM3526SetTimerHandler(int which, OPL_TIMERHANDLER TimerHandler, int channelOffset)
{
OPLSetTimerHandler(OPL_YM3526[which], TimerHandler, channelOffset);
}
void YM3526SetIRQHandler(int which,OPL_IRQHANDLER IRQHandler,int param)
{
OPLSetIRQHandler(OPL_YM3526[which], IRQHandler, param);
}
void YM3526SetUpdateHandler(int which,OPL_UPDATEHANDLER UpdateHandler,int param)
{
OPLSetUpdateHandler(OPL_YM3526[which], UpdateHandler, param);
}
/*
** Generate samples for one of the YM3526's
**
** 'which' is the virtual YM3526 number
** '*buffer' is the output buffer pointer
** 'length' is the number of samples that should be generated
*/
void YM3526UpdateOne(int which, INT16 *buffer, int length)
{
FM_OPL *OPL = OPL_YM3526[which];
UINT8 rhythm = OPL->rhythm&0x20;
OPLSAMPLE *buf = buffer;
int i;
if( (void *)OPL != cur_chip ){
cur_chip = (void *)OPL;
/* rhythm slots */
SLOT7_1 = &OPL->P_CH[7].SLOT[SLOT1];
SLOT7_2 = &OPL->P_CH[7].SLOT[SLOT2];
SLOT8_1 = &OPL->P_CH[8].SLOT[SLOT1];
SLOT8_2 = &OPL->P_CH[8].SLOT[SLOT2];
}
for( i=0; i < length ; i++ )
{
int lt;
output[0] = 0;
advance_lfo(OPL);
/* FM part */
OPL_CALC_CH(&OPL->P_CH[0]);
OPL_CALC_CH(&OPL->P_CH[1]);
OPL_CALC_CH(&OPL->P_CH[2]);
OPL_CALC_CH(&OPL->P_CH[3]);
OPL_CALC_CH(&OPL->P_CH[4]);
OPL_CALC_CH(&OPL->P_CH[5]);
if(!rhythm)
{
OPL_CALC_CH(&OPL->P_CH[6]);
OPL_CALC_CH(&OPL->P_CH[7]);
OPL_CALC_CH(&OPL->P_CH[8]);
}
else /* Rhythm part */
{
OPL_CALC_RH(&OPL->P_CH[0], (OPL->noise_rng>>0)&1 );
}
lt = output[0];
lt >>= FINAL_SH;
/* limit check */
lt = limit( lt , MAXOUT, MINOUT );
#ifdef SAVE_SAMPLE
if (which==0)
{
SAVE_ALL_CHANNELS
}
#endif
/* store to sound buffer */
buf[i] = lt;
advance(OPL);
}
}
#endif /* BUILD_YM3526 */
#if BUILD_Y8950
static FM_OPL *OPL_Y8950[MAX_OPL_CHIPS]; /* array of pointers to the Y8950's */
static int Y8950NumChips = 0; /* number of chips */
static void Y8950_deltat_status_set(UINT8 which, UINT8 changebits)
{
OPL_STATUS_SET(OPL_Y8950[which], changebits);
}
static void Y8950_deltat_status_reset(UINT8 which, UINT8 changebits)
{
OPL_STATUS_RESET(OPL_Y8950[which], changebits);
}
int Y8950Init(int num, int clock, int rate)
{
int i;
if (Y8950NumChips)
return -1; /* duplicate init. */
Y8950NumChips = num;
for (i = 0;i < Y8950NumChips; i++)
{
/* emulator create */
OPL_Y8950[i] = OPLCreate(OPL_TYPE_Y8950,clock,rate);
if(OPL_Y8950[i] == NULL)
{
/* it's really bad - we run out of memeory */
Y8950NumChips = 0;
return -1;
}
OPL_Y8950[i]->deltat->status_set_handler = Y8950_deltat_status_set;
OPL_Y8950[i]->deltat->status_reset_handler = Y8950_deltat_status_reset;
OPL_Y8950[i]->deltat->status_change_which_chip = i;
OPL_Y8950[i]->deltat->status_change_EOS_bit = 0x10; /* status flag: set bit4 on End Of Sample */
OPL_Y8950[i]->deltat->status_change_BRDY_bit = 0x08; /* status flag: set bit3 on BRDY (End Of: ADPCM analysis/synthesis, memory reading/writing) */
/*OPL_Y8950[i]->deltat->write_time = 10.0 / clock;*/ /* a single byte write takes 10 cycles of main clock */
/*OPL_Y8950[i]->deltat->read_time = 8.0 / clock;*/ /* a single byte read takes 8 cycles of main clock */
/* reset */
Y8950ResetChip(i);
}
return 0;
}
void Y8950Shutdown(void)
{
int i;
for (i = 0;i < Y8950NumChips; i++)
{
/* emulator shutdown */
OPLDestroy(OPL_Y8950[i]);
OPL_Y8950[i] = NULL;
}
Y8950NumChips = 0;
}
void Y8950ResetChip(int which)
{
OPLResetChip(OPL_Y8950[which]);
}
int Y8950Write(int which, int a, int v)
{
return OPLWrite(OPL_Y8950[which], a, v);
}
unsigned char Y8950Read(int which, int a)
{
return OPLRead(OPL_Y8950[which], a);
}
int Y8950TimerOver(int which, int c)
{
return OPLTimerOver(OPL_Y8950[which], c);
}
void Y8950SetTimerHandler(int which, OPL_TIMERHANDLER TimerHandler, int channelOffset)
{
OPLSetTimerHandler(OPL_Y8950[which], TimerHandler, channelOffset);
}
void Y8950SetIRQHandler(int which,OPL_IRQHANDLER IRQHandler,int param)
{
OPLSetIRQHandler(OPL_Y8950[which], IRQHandler, param);
}
void Y8950SetUpdateHandler(int which,OPL_UPDATEHANDLER UpdateHandler,int param)
{
OPLSetUpdateHandler(OPL_Y8950[which], UpdateHandler, param);
}
void Y8950SetDeltaTMemory(int which, void * deltat_mem_ptr, int deltat_mem_size )
{
FM_OPL *OPL = OPL_Y8950[which];
OPL->deltat->memory = (UINT8 *)(deltat_mem_ptr);
OPL->deltat->memory_size = deltat_mem_size;
}
/*
** Generate samples for one of the Y8950's
**
** 'which' is the virtual Y8950 number
** '*buffer' is the output buffer pointer
** 'length' is the number of samples that should be generated
*/
void Y8950UpdateOne(int which, INT16 *buffer, int length)
{
int i;
FM_OPL *OPL = OPL_Y8950[which];
UINT8 rhythm = OPL->rhythm&0x20;
YM_DELTAT *DELTAT = OPL->deltat;
OPLSAMPLE *buf = buffer;
if( (void *)OPL != cur_chip ){
cur_chip = (void *)OPL;
/* rhythm slots */
SLOT7_1 = &OPL->P_CH[7].SLOT[SLOT1];
SLOT7_2 = &OPL->P_CH[7].SLOT[SLOT2];
SLOT8_1 = &OPL->P_CH[8].SLOT[SLOT1];
SLOT8_2 = &OPL->P_CH[8].SLOT[SLOT2];
}
for( i=0; i < length ; i++ )
{
int lt;
output[0] = 0;
output_deltat[0] = 0;
advance_lfo(OPL);
/* deltaT ADPCM */
if( DELTAT->portstate&0x80 )
YM_DELTAT_ADPCM_CALC(DELTAT);
/* FM part */
OPL_CALC_CH(&OPL->P_CH[0]);
OPL_CALC_CH(&OPL->P_CH[1]);
OPL_CALC_CH(&OPL->P_CH[2]);
OPL_CALC_CH(&OPL->P_CH[3]);
OPL_CALC_CH(&OPL->P_CH[4]);
OPL_CALC_CH(&OPL->P_CH[5]);
if(!rhythm)
{
OPL_CALC_CH(&OPL->P_CH[6]);
OPL_CALC_CH(&OPL->P_CH[7]);
OPL_CALC_CH(&OPL->P_CH[8]);
}
else /* Rhythm part */
{
OPL_CALC_RH(&OPL->P_CH[0], (OPL->noise_rng>>0)&1 );
}
lt = output[0] + (output_deltat[0]>>11);
lt >>= FINAL_SH;
/* limit check */
lt = limit( lt , MAXOUT, MINOUT );
#ifdef SAVE_SAMPLE
if (which==0)
{
SAVE_ALL_CHANNELS
}
#endif
/* store to sound buffer */
buf[i] = lt;
advance(OPL);
}
}
void Y8950SetPortHandler(int which,OPL_PORTHANDLER_W PortHandler_w,OPL_PORTHANDLER_R PortHandler_r,int param)
{
FM_OPL *OPL = OPL_Y8950[which];
OPL->porthandler_w = PortHandler_w;
OPL->porthandler_r = PortHandler_r;
OPL->port_param = param;
}
void Y8950SetKeyboardHandler(int which,OPL_PORTHANDLER_W KeyboardHandler_w,OPL_PORTHANDLER_R KeyboardHandler_r,int param)
{
FM_OPL *OPL = OPL_Y8950[which];
OPL->keyboardhandler_w = KeyboardHandler_w;
OPL->keyboardhandler_r = KeyboardHandler_r;
OPL->keyboard_param = param;
}
#endif
#endif // ifndef USE_GPL