Sergey Semyonov (Serge) cb2af79a5a i915-4.6.7
git-svn-id: svn://kolibrios.org@7144 a494cfbc-eb01-0410-851d-a64ba20cac60
2018-02-02 15:17:50 +00:00

1263 lines
35 KiB
C

/*
* Copyright © 2014 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*/
/**
* DOC: Frame Buffer Compression (FBC)
*
* FBC tries to save memory bandwidth (and so power consumption) by
* compressing the amount of memory used by the display. It is total
* transparent to user space and completely handled in the kernel.
*
* The benefits of FBC are mostly visible with solid backgrounds and
* variation-less patterns. It comes from keeping the memory footprint small
* and having fewer memory pages opened and accessed for refreshing the display.
*
* i915 is responsible to reserve stolen memory for FBC and configure its
* offset on proper registers. The hardware takes care of all
* compress/decompress. However there are many known cases where we have to
* forcibly disable it to allow proper screen updates.
*/
#include "intel_drv.h"
#include "i915_drv.h"
static inline bool fbc_supported(struct drm_i915_private *dev_priv)
{
return HAS_FBC(dev_priv);
}
static inline bool fbc_on_pipe_a_only(struct drm_i915_private *dev_priv)
{
return IS_HASWELL(dev_priv) || INTEL_INFO(dev_priv)->gen >= 8;
}
static inline bool fbc_on_plane_a_only(struct drm_i915_private *dev_priv)
{
return INTEL_INFO(dev_priv)->gen < 4;
}
static inline bool no_fbc_on_multiple_pipes(struct drm_i915_private *dev_priv)
{
return INTEL_INFO(dev_priv)->gen <= 3;
}
/*
* In some platforms where the CRTC's x:0/y:0 coordinates doesn't match the
* frontbuffer's x:0/y:0 coordinates we lie to the hardware about the plane's
* origin so the x and y offsets can actually fit the registers. As a
* consequence, the fence doesn't really start exactly at the display plane
* address we program because it starts at the real start of the buffer, so we
* have to take this into consideration here.
*/
static unsigned int get_crtc_fence_y_offset(struct intel_crtc *crtc)
{
return crtc->base.y - crtc->adjusted_y;
}
/*
* For SKL+, the plane source size used by the hardware is based on the value we
* write to the PLANE_SIZE register. For BDW-, the hardware looks at the value
* we wrote to PIPESRC.
*/
static void intel_fbc_get_plane_source_size(struct intel_fbc_state_cache *cache,
int *width, int *height)
{
int w, h;
if (intel_rotation_90_or_270(cache->plane.rotation)) {
w = cache->plane.src_h;
h = cache->plane.src_w;
} else {
w = cache->plane.src_w;
h = cache->plane.src_h;
}
if (width)
*width = w;
if (height)
*height = h;
}
static int intel_fbc_calculate_cfb_size(struct drm_i915_private *dev_priv,
struct intel_fbc_state_cache *cache)
{
int lines;
intel_fbc_get_plane_source_size(cache, NULL, &lines);
if (INTEL_INFO(dev_priv)->gen >= 7)
lines = min(lines, 2048);
/* Hardware needs the full buffer stride, not just the active area. */
return lines * cache->fb.stride;
}
static void i8xx_fbc_deactivate(struct drm_i915_private *dev_priv)
{
u32 fbc_ctl;
/* Disable compression */
fbc_ctl = I915_READ(FBC_CONTROL);
if ((fbc_ctl & FBC_CTL_EN) == 0)
return;
fbc_ctl &= ~FBC_CTL_EN;
I915_WRITE(FBC_CONTROL, fbc_ctl);
/* Wait for compressing bit to clear */
if (wait_for((I915_READ(FBC_STATUS) & FBC_STAT_COMPRESSING) == 0, 10)) {
DRM_DEBUG_KMS("FBC idle timed out\n");
return;
}
}
static void i8xx_fbc_activate(struct drm_i915_private *dev_priv)
{
struct intel_fbc_reg_params *params = &dev_priv->fbc.params;
int cfb_pitch;
int i;
u32 fbc_ctl;
/* Note: fbc.threshold == 1 for i8xx */
cfb_pitch = params->cfb_size / FBC_LL_SIZE;
if (params->fb.stride < cfb_pitch)
cfb_pitch = params->fb.stride;
/* FBC_CTL wants 32B or 64B units */
if (IS_GEN2(dev_priv))
cfb_pitch = (cfb_pitch / 32) - 1;
else
cfb_pitch = (cfb_pitch / 64) - 1;
/* Clear old tags */
for (i = 0; i < (FBC_LL_SIZE / 32) + 1; i++)
I915_WRITE(FBC_TAG(i), 0);
if (IS_GEN4(dev_priv)) {
u32 fbc_ctl2;
/* Set it up... */
fbc_ctl2 = FBC_CTL_FENCE_DBL | FBC_CTL_IDLE_IMM | FBC_CTL_CPU_FENCE;
fbc_ctl2 |= FBC_CTL_PLANE(params->crtc.plane);
I915_WRITE(FBC_CONTROL2, fbc_ctl2);
I915_WRITE(FBC_FENCE_OFF, params->crtc.fence_y_offset);
}
/* enable it... */
fbc_ctl = I915_READ(FBC_CONTROL);
fbc_ctl &= 0x3fff << FBC_CTL_INTERVAL_SHIFT;
fbc_ctl |= FBC_CTL_EN | FBC_CTL_PERIODIC;
if (IS_I945GM(dev_priv))
fbc_ctl |= FBC_CTL_C3_IDLE; /* 945 needs special SR handling */
fbc_ctl |= (cfb_pitch & 0xff) << FBC_CTL_STRIDE_SHIFT;
fbc_ctl |= params->fb.fence_reg;
I915_WRITE(FBC_CONTROL, fbc_ctl);
}
static bool i8xx_fbc_is_active(struct drm_i915_private *dev_priv)
{
return I915_READ(FBC_CONTROL) & FBC_CTL_EN;
}
static void g4x_fbc_activate(struct drm_i915_private *dev_priv)
{
struct intel_fbc_reg_params *params = &dev_priv->fbc.params;
u32 dpfc_ctl;
dpfc_ctl = DPFC_CTL_PLANE(params->crtc.plane) | DPFC_SR_EN;
if (drm_format_plane_cpp(params->fb.pixel_format, 0) == 2)
dpfc_ctl |= DPFC_CTL_LIMIT_2X;
else
dpfc_ctl |= DPFC_CTL_LIMIT_1X;
dpfc_ctl |= DPFC_CTL_FENCE_EN | params->fb.fence_reg;
I915_WRITE(DPFC_FENCE_YOFF, params->crtc.fence_y_offset);
/* enable it... */
I915_WRITE(DPFC_CONTROL, dpfc_ctl | DPFC_CTL_EN);
}
static void g4x_fbc_deactivate(struct drm_i915_private *dev_priv)
{
u32 dpfc_ctl;
/* Disable compression */
dpfc_ctl = I915_READ(DPFC_CONTROL);
if (dpfc_ctl & DPFC_CTL_EN) {
dpfc_ctl &= ~DPFC_CTL_EN;
I915_WRITE(DPFC_CONTROL, dpfc_ctl);
}
}
static bool g4x_fbc_is_active(struct drm_i915_private *dev_priv)
{
return I915_READ(DPFC_CONTROL) & DPFC_CTL_EN;
}
/* This function forces a CFB recompression through the nuke operation. */
static void intel_fbc_recompress(struct drm_i915_private *dev_priv)
{
I915_WRITE(MSG_FBC_REND_STATE, FBC_REND_NUKE);
POSTING_READ(MSG_FBC_REND_STATE);
}
static void ilk_fbc_activate(struct drm_i915_private *dev_priv)
{
struct intel_fbc_reg_params *params = &dev_priv->fbc.params;
u32 dpfc_ctl;
int threshold = dev_priv->fbc.threshold;
dpfc_ctl = DPFC_CTL_PLANE(params->crtc.plane);
if (drm_format_plane_cpp(params->fb.pixel_format, 0) == 2)
threshold++;
switch (threshold) {
case 4:
case 3:
dpfc_ctl |= DPFC_CTL_LIMIT_4X;
break;
case 2:
dpfc_ctl |= DPFC_CTL_LIMIT_2X;
break;
case 1:
dpfc_ctl |= DPFC_CTL_LIMIT_1X;
break;
}
dpfc_ctl |= DPFC_CTL_FENCE_EN;
if (IS_GEN5(dev_priv))
dpfc_ctl |= params->fb.fence_reg;
I915_WRITE(ILK_DPFC_FENCE_YOFF, params->crtc.fence_y_offset);
I915_WRITE(ILK_FBC_RT_BASE, params->fb.ggtt_offset | ILK_FBC_RT_VALID);
/* enable it... */
I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl | DPFC_CTL_EN);
if (IS_GEN6(dev_priv)) {
I915_WRITE(SNB_DPFC_CTL_SA,
SNB_CPU_FENCE_ENABLE | params->fb.fence_reg);
I915_WRITE(DPFC_CPU_FENCE_OFFSET, params->crtc.fence_y_offset);
}
intel_fbc_recompress(dev_priv);
}
static void ilk_fbc_deactivate(struct drm_i915_private *dev_priv)
{
u32 dpfc_ctl;
/* Disable compression */
dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
if (dpfc_ctl & DPFC_CTL_EN) {
dpfc_ctl &= ~DPFC_CTL_EN;
I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl);
}
}
static bool ilk_fbc_is_active(struct drm_i915_private *dev_priv)
{
return I915_READ(ILK_DPFC_CONTROL) & DPFC_CTL_EN;
}
static void gen7_fbc_activate(struct drm_i915_private *dev_priv)
{
struct intel_fbc_reg_params *params = &dev_priv->fbc.params;
u32 dpfc_ctl;
int threshold = dev_priv->fbc.threshold;
dpfc_ctl = 0;
if (IS_IVYBRIDGE(dev_priv))
dpfc_ctl |= IVB_DPFC_CTL_PLANE(params->crtc.plane);
if (drm_format_plane_cpp(params->fb.pixel_format, 0) == 2)
threshold++;
switch (threshold) {
case 4:
case 3:
dpfc_ctl |= DPFC_CTL_LIMIT_4X;
break;
case 2:
dpfc_ctl |= DPFC_CTL_LIMIT_2X;
break;
case 1:
dpfc_ctl |= DPFC_CTL_LIMIT_1X;
break;
}
dpfc_ctl |= IVB_DPFC_CTL_FENCE_EN;
if (dev_priv->fbc.false_color)
dpfc_ctl |= FBC_CTL_FALSE_COLOR;
if (IS_IVYBRIDGE(dev_priv)) {
/* WaFbcAsynchFlipDisableFbcQueue:ivb */
I915_WRITE(ILK_DISPLAY_CHICKEN1,
I915_READ(ILK_DISPLAY_CHICKEN1) |
ILK_FBCQ_DIS);
} else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
/* WaFbcAsynchFlipDisableFbcQueue:hsw,bdw */
I915_WRITE(CHICKEN_PIPESL_1(params->crtc.pipe),
I915_READ(CHICKEN_PIPESL_1(params->crtc.pipe)) |
HSW_FBCQ_DIS);
}
I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl | DPFC_CTL_EN);
I915_WRITE(SNB_DPFC_CTL_SA,
SNB_CPU_FENCE_ENABLE | params->fb.fence_reg);
I915_WRITE(DPFC_CPU_FENCE_OFFSET, params->crtc.fence_y_offset);
intel_fbc_recompress(dev_priv);
}
static bool intel_fbc_hw_is_active(struct drm_i915_private *dev_priv)
{
if (INTEL_INFO(dev_priv)->gen >= 5)
return ilk_fbc_is_active(dev_priv);
else if (IS_GM45(dev_priv))
return g4x_fbc_is_active(dev_priv);
else
return i8xx_fbc_is_active(dev_priv);
}
static void intel_fbc_hw_activate(struct drm_i915_private *dev_priv)
{
struct intel_fbc *fbc = &dev_priv->fbc;
fbc->active = true;
if (INTEL_INFO(dev_priv)->gen >= 7)
gen7_fbc_activate(dev_priv);
else if (INTEL_INFO(dev_priv)->gen >= 5)
ilk_fbc_activate(dev_priv);
else if (IS_GM45(dev_priv))
g4x_fbc_activate(dev_priv);
else
i8xx_fbc_activate(dev_priv);
}
static void intel_fbc_hw_deactivate(struct drm_i915_private *dev_priv)
{
struct intel_fbc *fbc = &dev_priv->fbc;
fbc->active = false;
if (INTEL_INFO(dev_priv)->gen >= 5)
ilk_fbc_deactivate(dev_priv);
else if (IS_GM45(dev_priv))
g4x_fbc_deactivate(dev_priv);
else
i8xx_fbc_deactivate(dev_priv);
}
/**
* intel_fbc_is_active - Is FBC active?
* @dev_priv: i915 device instance
*
* This function is used to verify the current state of FBC.
* FIXME: This should be tracked in the plane config eventually
* instead of queried at runtime for most callers.
*/
bool intel_fbc_is_active(struct drm_i915_private *dev_priv)
{
return dev_priv->fbc.active;
}
static void intel_fbc_work_fn(struct work_struct *__work)
{
struct drm_i915_private *dev_priv =
container_of(__work, struct drm_i915_private, fbc.work.work);
struct intel_fbc *fbc = &dev_priv->fbc;
struct intel_fbc_work *work = &fbc->work;
struct intel_crtc *crtc = fbc->crtc;
struct drm_vblank_crtc *vblank = &dev_priv->dev->vblank[crtc->pipe];
if (drm_crtc_vblank_get(&crtc->base)) {
DRM_ERROR("vblank not available for FBC on pipe %c\n",
pipe_name(crtc->pipe));
mutex_lock(&fbc->lock);
work->scheduled = false;
mutex_unlock(&fbc->lock);
return;
}
retry:
/* Delay the actual enabling to let pageflipping cease and the
* display to settle before starting the compression. Note that
* this delay also serves a second purpose: it allows for a
* vblank to pass after disabling the FBC before we attempt
* to modify the control registers.
*
* WaFbcWaitForVBlankBeforeEnable:ilk,snb
*
* It is also worth mentioning that since work->scheduled_vblank can be
* updated multiple times by the other threads, hitting the timeout is
* not an error condition. We'll just end up hitting the "goto retry"
* case below.
*/
wait_event_timeout(vblank->queue,
drm_crtc_vblank_count(&crtc->base) != work->scheduled_vblank,
msecs_to_jiffies(50));
mutex_lock(&fbc->lock);
/* Were we cancelled? */
if (!work->scheduled)
goto out;
/* Were we delayed again while this function was sleeping? */
if (drm_crtc_vblank_count(&crtc->base) == work->scheduled_vblank) {
mutex_unlock(&fbc->lock);
goto retry;
}
intel_fbc_hw_activate(dev_priv);
work->scheduled = false;
out:
mutex_unlock(&fbc->lock);
drm_crtc_vblank_put(&crtc->base);
}
static void intel_fbc_schedule_activation(struct intel_crtc *crtc)
{
struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
struct intel_fbc *fbc = &dev_priv->fbc;
struct intel_fbc_work *work = &fbc->work;
WARN_ON(!mutex_is_locked(&fbc->lock));
if (drm_crtc_vblank_get(&crtc->base)) {
DRM_ERROR("vblank not available for FBC on pipe %c\n",
pipe_name(crtc->pipe));
return;
}
/* It is useless to call intel_fbc_cancel_work() or cancel_work() in
* this function since we're not releasing fbc.lock, so it won't have an
* opportunity to grab it to discover that it was cancelled. So we just
* update the expected jiffy count. */
work->scheduled = true;
work->scheduled_vblank = drm_crtc_vblank_count(&crtc->base);
drm_crtc_vblank_put(&crtc->base);
schedule_work(&work->work);
}
static void intel_fbc_deactivate(struct drm_i915_private *dev_priv)
{
struct intel_fbc *fbc = &dev_priv->fbc;
WARN_ON(!mutex_is_locked(&fbc->lock));
/* Calling cancel_work() here won't help due to the fact that the work
* function grabs fbc->lock. Just set scheduled to false so the work
* function can know it was cancelled. */
fbc->work.scheduled = false;
if (fbc->active)
intel_fbc_hw_deactivate(dev_priv);
}
static bool multiple_pipes_ok(struct intel_crtc *crtc)
{
struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
struct drm_plane *primary = crtc->base.primary;
struct intel_fbc *fbc = &dev_priv->fbc;
enum pipe pipe = crtc->pipe;
/* Don't even bother tracking anything we don't need. */
if (!no_fbc_on_multiple_pipes(dev_priv))
return true;
WARN_ON(!drm_modeset_is_locked(&primary->mutex));
if (to_intel_plane_state(primary->state)->visible)
fbc->visible_pipes_mask |= (1 << pipe);
else
fbc->visible_pipes_mask &= ~(1 << pipe);
return (fbc->visible_pipes_mask & ~(1 << pipe)) != 0;
}
static int find_compression_threshold(struct drm_i915_private *dev_priv,
struct drm_mm_node *node,
int size,
int fb_cpp)
{
int compression_threshold = 1;
int ret;
u64 end;
/* The FBC hardware for BDW/SKL doesn't have access to the stolen
* reserved range size, so it always assumes the maximum (8mb) is used.
* If we enable FBC using a CFB on that memory range we'll get FIFO
* underruns, even if that range is not reserved by the BIOS. */
if (IS_BROADWELL(dev_priv) ||
IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv))
end = dev_priv->gtt.stolen_size - 8 * 1024 * 1024;
else
end = dev_priv->gtt.stolen_usable_size;
/* HACK: This code depends on what we will do in *_enable_fbc. If that
* code changes, this code needs to change as well.
*
* The enable_fbc code will attempt to use one of our 2 compression
* thresholds, therefore, in that case, we only have 1 resort.
*/
/* Try to over-allocate to reduce reallocations and fragmentation. */
ret = i915_gem_stolen_insert_node_in_range(dev_priv, node, size <<= 1,
4096, 0, end);
if (ret == 0)
return compression_threshold;
again:
/* HW's ability to limit the CFB is 1:4 */
if (compression_threshold > 4 ||
(fb_cpp == 2 && compression_threshold == 2))
return 0;
ret = i915_gem_stolen_insert_node_in_range(dev_priv, node, size >>= 1,
4096, 0, end);
if (ret && INTEL_INFO(dev_priv)->gen <= 4) {
return 0;
} else if (ret) {
compression_threshold <<= 1;
goto again;
} else {
return compression_threshold;
}
}
static int intel_fbc_alloc_cfb(struct intel_crtc *crtc)
{
struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
struct intel_fbc *fbc = &dev_priv->fbc;
struct drm_mm_node *uninitialized_var(compressed_llb);
int size, fb_cpp, ret;
WARN_ON(drm_mm_node_allocated(&fbc->compressed_fb));
size = intel_fbc_calculate_cfb_size(dev_priv, &fbc->state_cache);
fb_cpp = drm_format_plane_cpp(fbc->state_cache.fb.pixel_format, 0);
ret = find_compression_threshold(dev_priv, &fbc->compressed_fb,
size, fb_cpp);
if (!ret)
goto err_llb;
else if (ret > 1) {
DRM_INFO("Reducing the compressed framebuffer size. This may lead to less power savings than a non-reduced-size. Try to increase stolen memory size if available in BIOS.\n");
}
fbc->threshold = ret;
if (INTEL_INFO(dev_priv)->gen >= 5)
I915_WRITE(ILK_DPFC_CB_BASE, fbc->compressed_fb.start);
else if (IS_GM45(dev_priv)) {
I915_WRITE(DPFC_CB_BASE, fbc->compressed_fb.start);
} else {
compressed_llb = kzalloc(sizeof(*compressed_llb), GFP_KERNEL);
if (!compressed_llb)
goto err_fb;
ret = i915_gem_stolen_insert_node(dev_priv, compressed_llb,
4096, 4096);
if (ret)
goto err_fb;
fbc->compressed_llb = compressed_llb;
I915_WRITE(FBC_CFB_BASE,
dev_priv->mm.stolen_base + fbc->compressed_fb.start);
I915_WRITE(FBC_LL_BASE,
dev_priv->mm.stolen_base + compressed_llb->start);
}
DRM_DEBUG_KMS("reserved %llu bytes of contiguous stolen space for FBC, threshold: %d\n",
fbc->compressed_fb.size, fbc->threshold);
return 0;
err_fb:
kfree(compressed_llb);
i915_gem_stolen_remove_node(dev_priv, &fbc->compressed_fb);
err_llb:
pr_info_once("drm: not enough stolen space for compressed buffer (need %d more bytes), disabling. Hint: you may be able to increase stolen memory size in the BIOS to avoid this.\n", size);
return -ENOSPC;
}
static void __intel_fbc_cleanup_cfb(struct drm_i915_private *dev_priv)
{
struct intel_fbc *fbc = &dev_priv->fbc;
if (drm_mm_node_allocated(&fbc->compressed_fb))
i915_gem_stolen_remove_node(dev_priv, &fbc->compressed_fb);
if (fbc->compressed_llb) {
i915_gem_stolen_remove_node(dev_priv, fbc->compressed_llb);
kfree(fbc->compressed_llb);
}
}
void intel_fbc_cleanup_cfb(struct drm_i915_private *dev_priv)
{
struct intel_fbc *fbc = &dev_priv->fbc;
if (!fbc_supported(dev_priv))
return;
mutex_lock(&fbc->lock);
__intel_fbc_cleanup_cfb(dev_priv);
mutex_unlock(&fbc->lock);
}
static bool stride_is_valid(struct drm_i915_private *dev_priv,
unsigned int stride)
{
/* These should have been caught earlier. */
WARN_ON(stride < 512);
WARN_ON((stride & (64 - 1)) != 0);
/* Below are the additional FBC restrictions. */
if (IS_GEN2(dev_priv) || IS_GEN3(dev_priv))
return stride == 4096 || stride == 8192;
if (IS_GEN4(dev_priv) && !IS_G4X(dev_priv) && stride < 2048)
return false;
if (stride > 16384)
return false;
return true;
}
static bool pixel_format_is_valid(struct drm_i915_private *dev_priv,
uint32_t pixel_format)
{
switch (pixel_format) {
case DRM_FORMAT_XRGB8888:
case DRM_FORMAT_XBGR8888:
return true;
case DRM_FORMAT_XRGB1555:
case DRM_FORMAT_RGB565:
/* 16bpp not supported on gen2 */
if (IS_GEN2(dev_priv))
return false;
/* WaFbcOnly1to1Ratio:ctg */
if (IS_G4X(dev_priv))
return false;
return true;
default:
return false;
}
}
/*
* For some reason, the hardware tracking starts looking at whatever we
* programmed as the display plane base address register. It does not look at
* the X and Y offset registers. That's why we look at the crtc->adjusted{x,y}
* variables instead of just looking at the pipe/plane size.
*/
static bool intel_fbc_hw_tracking_covers_screen(struct intel_crtc *crtc)
{
struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
struct intel_fbc *fbc = &dev_priv->fbc;
unsigned int effective_w, effective_h, max_w, max_h;
if (INTEL_INFO(dev_priv)->gen >= 8 || IS_HASWELL(dev_priv)) {
max_w = 4096;
max_h = 4096;
} else if (IS_G4X(dev_priv) || INTEL_INFO(dev_priv)->gen >= 5) {
max_w = 4096;
max_h = 2048;
} else {
max_w = 2048;
max_h = 1536;
}
intel_fbc_get_plane_source_size(&fbc->state_cache, &effective_w,
&effective_h);
effective_w += crtc->adjusted_x;
effective_h += crtc->adjusted_y;
return effective_w <= max_w && effective_h <= max_h;
}
static void intel_fbc_update_state_cache(struct intel_crtc *crtc)
{
struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
struct intel_fbc *fbc = &dev_priv->fbc;
struct intel_fbc_state_cache *cache = &fbc->state_cache;
struct intel_crtc_state *crtc_state =
to_intel_crtc_state(crtc->base.state);
struct intel_plane_state *plane_state =
to_intel_plane_state(crtc->base.primary->state);
struct drm_framebuffer *fb = plane_state->base.fb;
struct drm_i915_gem_object *obj;
WARN_ON(!drm_modeset_is_locked(&crtc->base.mutex));
WARN_ON(!drm_modeset_is_locked(&crtc->base.primary->mutex));
cache->crtc.mode_flags = crtc_state->base.adjusted_mode.flags;
if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
cache->crtc.hsw_bdw_pixel_rate =
ilk_pipe_pixel_rate(crtc_state);
cache->plane.rotation = plane_state->base.rotation;
cache->plane.src_w = drm_rect_width(&plane_state->src) >> 16;
cache->plane.src_h = drm_rect_height(&plane_state->src) >> 16;
cache->plane.visible = plane_state->visible;
if (!cache->plane.visible)
return;
obj = intel_fb_obj(fb);
/* FIXME: We lack the proper locking here, so only run this on the
* platforms that need. */
if (INTEL_INFO(dev_priv)->gen >= 5 && INTEL_INFO(dev_priv)->gen < 7)
cache->fb.ilk_ggtt_offset = i915_gem_obj_ggtt_offset(obj);
cache->fb.pixel_format = fb->pixel_format;
cache->fb.stride = fb->pitches[0];
cache->fb.fence_reg = obj->fence_reg;
cache->fb.tiling_mode = obj->tiling_mode;
}
static bool intel_fbc_can_activate(struct intel_crtc *crtc)
{
struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
struct intel_fbc *fbc = &dev_priv->fbc;
struct intel_fbc_state_cache *cache = &fbc->state_cache;
if (!cache->plane.visible) {
fbc->no_fbc_reason = "primary plane not visible";
return false;
}
if ((cache->crtc.mode_flags & DRM_MODE_FLAG_INTERLACE) ||
(cache->crtc.mode_flags & DRM_MODE_FLAG_DBLSCAN)) {
fbc->no_fbc_reason = "incompatible mode";
return false;
}
if (!intel_fbc_hw_tracking_covers_screen(crtc)) {
fbc->no_fbc_reason = "mode too large for compression";
return false;
}
/* The use of a CPU fence is mandatory in order to detect writes
* by the CPU to the scanout and trigger updates to the FBC.
*/
if (cache->fb.tiling_mode != I915_TILING_X ||
cache->fb.fence_reg == I915_FENCE_REG_NONE) {
fbc->no_fbc_reason = "framebuffer not tiled or fenced";
return false;
}
if (INTEL_INFO(dev_priv)->gen <= 4 && !IS_G4X(dev_priv) &&
cache->plane.rotation != BIT(DRM_ROTATE_0)) {
fbc->no_fbc_reason = "rotation unsupported";
return false;
}
if (!stride_is_valid(dev_priv, cache->fb.stride)) {
fbc->no_fbc_reason = "framebuffer stride not supported";
return false;
}
if (!pixel_format_is_valid(dev_priv, cache->fb.pixel_format)) {
fbc->no_fbc_reason = "pixel format is invalid";
return false;
}
/* WaFbcExceedCdClockThreshold:hsw,bdw */
if ((IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) &&
cache->crtc.hsw_bdw_pixel_rate >= dev_priv->cdclk_freq * 95 / 100) {
fbc->no_fbc_reason = "pixel rate is too big";
return false;
}
/* It is possible for the required CFB size change without a
* crtc->disable + crtc->enable since it is possible to change the
* stride without triggering a full modeset. Since we try to
* over-allocate the CFB, there's a chance we may keep FBC enabled even
* if this happens, but if we exceed the current CFB size we'll have to
* disable FBC. Notice that it would be possible to disable FBC, wait
* for a frame, free the stolen node, then try to reenable FBC in case
* we didn't get any invalidate/deactivate calls, but this would require
* a lot of tracking just for a specific case. If we conclude it's an
* important case, we can implement it later. */
if (intel_fbc_calculate_cfb_size(dev_priv, &fbc->state_cache) >
fbc->compressed_fb.size * fbc->threshold) {
fbc->no_fbc_reason = "CFB requirements changed";
return false;
}
return true;
}
static bool intel_fbc_can_choose(struct intel_crtc *crtc)
{
struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
struct intel_fbc *fbc = &dev_priv->fbc;
bool enable_by_default = IS_BROADWELL(dev_priv);
if (intel_vgpu_active(dev_priv->dev)) {
fbc->no_fbc_reason = "VGPU is active";
return false;
}
if (i915.enable_fbc < 0 && !enable_by_default) {
fbc->no_fbc_reason = "disabled per chip default";
return false;
}
if (!i915.enable_fbc) {
fbc->no_fbc_reason = "disabled per module param";
return false;
}
if (fbc_on_pipe_a_only(dev_priv) && crtc->pipe != PIPE_A) {
fbc->no_fbc_reason = "no enabled pipes can have FBC";
return false;
}
if (fbc_on_plane_a_only(dev_priv) && crtc->plane != PLANE_A) {
fbc->no_fbc_reason = "no enabled planes can have FBC";
return false;
}
return true;
}
static void intel_fbc_get_reg_params(struct intel_crtc *crtc,
struct intel_fbc_reg_params *params)
{
struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
struct intel_fbc *fbc = &dev_priv->fbc;
struct intel_fbc_state_cache *cache = &fbc->state_cache;
/* Since all our fields are integer types, use memset here so the
* comparison function can rely on memcmp because the padding will be
* zero. */
memset(params, 0, sizeof(*params));
params->crtc.pipe = crtc->pipe;
params->crtc.plane = crtc->plane;
params->crtc.fence_y_offset = get_crtc_fence_y_offset(crtc);
params->fb.pixel_format = cache->fb.pixel_format;
params->fb.stride = cache->fb.stride;
params->fb.fence_reg = cache->fb.fence_reg;
params->cfb_size = intel_fbc_calculate_cfb_size(dev_priv, cache);
params->fb.ggtt_offset = cache->fb.ilk_ggtt_offset;
}
static bool intel_fbc_reg_params_equal(struct intel_fbc_reg_params *params1,
struct intel_fbc_reg_params *params2)
{
/* We can use this since intel_fbc_get_reg_params() does a memset. */
return memcmp(params1, params2, sizeof(*params1)) == 0;
}
void intel_fbc_pre_update(struct intel_crtc *crtc)
{
struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
struct intel_fbc *fbc = &dev_priv->fbc;
if (!fbc_supported(dev_priv))
return;
mutex_lock(&fbc->lock);
if (!multiple_pipes_ok(crtc)) {
fbc->no_fbc_reason = "more than one pipe active";
goto deactivate;
}
if (!fbc->enabled || fbc->crtc != crtc)
goto unlock;
intel_fbc_update_state_cache(crtc);
deactivate:
intel_fbc_deactivate(dev_priv);
unlock:
mutex_unlock(&fbc->lock);
}
static void __intel_fbc_post_update(struct intel_crtc *crtc)
{
struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
struct intel_fbc *fbc = &dev_priv->fbc;
struct intel_fbc_reg_params old_params;
WARN_ON(!mutex_is_locked(&fbc->lock));
if (!fbc->enabled || fbc->crtc != crtc)
return;
if (!intel_fbc_can_activate(crtc)) {
WARN_ON(fbc->active);
return;
}
old_params = fbc->params;
intel_fbc_get_reg_params(crtc, &fbc->params);
/* If the scanout has not changed, don't modify the FBC settings.
* Note that we make the fundamental assumption that the fb->obj
* cannot be unpinned (and have its GTT offset and fence revoked)
* without first being decoupled from the scanout and FBC disabled.
*/
if (fbc->active &&
intel_fbc_reg_params_equal(&old_params, &fbc->params))
return;
intel_fbc_deactivate(dev_priv);
intel_fbc_schedule_activation(crtc);
fbc->no_fbc_reason = "FBC enabled (active or scheduled)";
}
void intel_fbc_post_update(struct intel_crtc *crtc)
{
struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
struct intel_fbc *fbc = &dev_priv->fbc;
if (!fbc_supported(dev_priv))
return;
mutex_lock(&fbc->lock);
__intel_fbc_post_update(crtc);
mutex_unlock(&fbc->lock);
}
static unsigned int intel_fbc_get_frontbuffer_bit(struct intel_fbc *fbc)
{
if (fbc->enabled)
return to_intel_plane(fbc->crtc->base.primary)->frontbuffer_bit;
else
return fbc->possible_framebuffer_bits;
}
void intel_fbc_invalidate(struct drm_i915_private *dev_priv,
unsigned int frontbuffer_bits,
enum fb_op_origin origin)
{
struct intel_fbc *fbc = &dev_priv->fbc;
if (!fbc_supported(dev_priv))
return;
if (origin == ORIGIN_GTT || origin == ORIGIN_FLIP)
return;
mutex_lock(&fbc->lock);
fbc->busy_bits |= intel_fbc_get_frontbuffer_bit(fbc) & frontbuffer_bits;
if (fbc->enabled && fbc->busy_bits)
intel_fbc_deactivate(dev_priv);
mutex_unlock(&fbc->lock);
}
void intel_fbc_flush(struct drm_i915_private *dev_priv,
unsigned int frontbuffer_bits, enum fb_op_origin origin)
{
struct intel_fbc *fbc = &dev_priv->fbc;
if (!fbc_supported(dev_priv))
return;
if (origin == ORIGIN_GTT || origin == ORIGIN_FLIP)
return;
mutex_lock(&fbc->lock);
fbc->busy_bits &= ~frontbuffer_bits;
if (!fbc->busy_bits && fbc->enabled &&
(frontbuffer_bits & intel_fbc_get_frontbuffer_bit(fbc))) {
if (fbc->active)
intel_fbc_recompress(dev_priv);
else
__intel_fbc_post_update(fbc->crtc);
}
mutex_unlock(&fbc->lock);
}
/**
* intel_fbc_choose_crtc - select a CRTC to enable FBC on
* @dev_priv: i915 device instance
* @state: the atomic state structure
*
* This function looks at the proposed state for CRTCs and planes, then chooses
* which pipe is going to have FBC by setting intel_crtc_state->enable_fbc to
* true.
*
* Later, intel_fbc_enable is going to look for state->enable_fbc and then maybe
* enable FBC for the chosen CRTC. If it does, it will set dev_priv->fbc.crtc.
*/
void intel_fbc_choose_crtc(struct drm_i915_private *dev_priv,
struct drm_atomic_state *state)
{
struct intel_fbc *fbc = &dev_priv->fbc;
struct drm_crtc *crtc;
struct drm_crtc_state *crtc_state;
struct drm_plane *plane;
struct drm_plane_state *plane_state;
bool fbc_crtc_present = false;
int i, j;
mutex_lock(&fbc->lock);
for_each_crtc_in_state(state, crtc, crtc_state, i) {
if (fbc->crtc == to_intel_crtc(crtc)) {
fbc_crtc_present = true;
break;
}
}
/* This atomic commit doesn't involve the CRTC currently tied to FBC. */
if (!fbc_crtc_present && fbc->crtc != NULL)
goto out;
/* Simply choose the first CRTC that is compatible and has a visible
* plane. We could go for fancier schemes such as checking the plane
* size, but this would just affect the few platforms that don't tie FBC
* to pipe or plane A. */
for_each_plane_in_state(state, plane, plane_state, i) {
struct intel_plane_state *intel_plane_state =
to_intel_plane_state(plane_state);
if (!intel_plane_state->visible)
continue;
for_each_crtc_in_state(state, crtc, crtc_state, j) {
struct intel_crtc_state *intel_crtc_state =
to_intel_crtc_state(crtc_state);
if (plane_state->crtc != crtc)
continue;
if (!intel_fbc_can_choose(to_intel_crtc(crtc)))
break;
intel_crtc_state->enable_fbc = true;
goto out;
}
}
out:
mutex_unlock(&fbc->lock);
}
/**
* intel_fbc_enable: tries to enable FBC on the CRTC
* @crtc: the CRTC
*
* This function checks if the given CRTC was chosen for FBC, then enables it if
* possible. Notice that it doesn't activate FBC. It is valid to call
* intel_fbc_enable multiple times for the same pipe without an
* intel_fbc_disable in the middle, as long as it is deactivated.
*/
void intel_fbc_enable(struct intel_crtc *crtc)
{
struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
struct intel_fbc *fbc = &dev_priv->fbc;
if (!fbc_supported(dev_priv))
return;
mutex_lock(&fbc->lock);
if (fbc->enabled) {
WARN_ON(fbc->crtc == NULL);
if (fbc->crtc == crtc) {
WARN_ON(!crtc->config->enable_fbc);
WARN_ON(fbc->active);
}
goto out;
}
if (!crtc->config->enable_fbc)
goto out;
WARN_ON(fbc->active);
WARN_ON(fbc->crtc != NULL);
intel_fbc_update_state_cache(crtc);
if (intel_fbc_alloc_cfb(crtc)) {
fbc->no_fbc_reason = "not enough stolen memory";
goto out;
}
DRM_DEBUG_KMS("Enabling FBC on pipe %c\n", pipe_name(crtc->pipe));
fbc->no_fbc_reason = "FBC enabled but not active yet\n";
fbc->enabled = true;
fbc->crtc = crtc;
out:
mutex_unlock(&fbc->lock);
}
/**
* __intel_fbc_disable - disable FBC
* @dev_priv: i915 device instance
*
* This is the low level function that actually disables FBC. Callers should
* grab the FBC lock.
*/
static void __intel_fbc_disable(struct drm_i915_private *dev_priv)
{
struct intel_fbc *fbc = &dev_priv->fbc;
struct intel_crtc *crtc = fbc->crtc;
WARN_ON(!mutex_is_locked(&fbc->lock));
WARN_ON(!fbc->enabled);
WARN_ON(fbc->active);
WARN_ON(crtc->active);
DRM_DEBUG_KMS("Disabling FBC on pipe %c\n", pipe_name(crtc->pipe));
__intel_fbc_cleanup_cfb(dev_priv);
fbc->enabled = false;
fbc->crtc = NULL;
}
/**
* intel_fbc_disable - disable FBC if it's associated with crtc
* @crtc: the CRTC
*
* This function disables FBC if it's associated with the provided CRTC.
*/
void intel_fbc_disable(struct intel_crtc *crtc)
{
struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
struct intel_fbc *fbc = &dev_priv->fbc;
if (!fbc_supported(dev_priv))
return;
mutex_lock(&fbc->lock);
if (fbc->crtc == crtc) {
WARN_ON(!fbc->enabled);
WARN_ON(fbc->active);
__intel_fbc_disable(dev_priv);
}
mutex_unlock(&fbc->lock);
cancel_work_sync(&fbc->work.work);
}
/**
* intel_fbc_global_disable - globally disable FBC
* @dev_priv: i915 device instance
*
* This function disables FBC regardless of which CRTC is associated with it.
*/
void intel_fbc_global_disable(struct drm_i915_private *dev_priv)
{
struct intel_fbc *fbc = &dev_priv->fbc;
if (!fbc_supported(dev_priv))
return;
mutex_lock(&fbc->lock);
if (fbc->enabled)
__intel_fbc_disable(dev_priv);
mutex_unlock(&fbc->lock);
cancel_work_sync(&fbc->work.work);
}
/**
* intel_fbc_init_pipe_state - initialize FBC's CRTC visibility tracking
* @dev_priv: i915 device instance
*
* The FBC code needs to track CRTC visibility since the older platforms can't
* have FBC enabled while multiple pipes are used. This function does the
* initial setup at driver load to make sure FBC is matching the real hardware.
*/
void intel_fbc_init_pipe_state(struct drm_i915_private *dev_priv)
{
struct intel_crtc *crtc;
/* Don't even bother tracking anything if we don't need. */
if (!no_fbc_on_multiple_pipes(dev_priv))
return;
for_each_intel_crtc(dev_priv->dev, crtc)
if (intel_crtc_active(&crtc->base) &&
to_intel_plane_state(crtc->base.primary->state)->visible)
dev_priv->fbc.visible_pipes_mask |= (1 << crtc->pipe);
}
/**
* intel_fbc_init - Initialize FBC
* @dev_priv: the i915 device
*
* This function might be called during PM init process.
*/
void intel_fbc_init(struct drm_i915_private *dev_priv)
{
struct intel_fbc *fbc = &dev_priv->fbc;
enum pipe pipe;
INIT_WORK(&fbc->work.work, intel_fbc_work_fn);
mutex_init(&fbc->lock);
fbc->enabled = false;
fbc->active = false;
fbc->work.scheduled = false;
if (!HAS_FBC(dev_priv)) {
fbc->no_fbc_reason = "unsupported by this chipset";
return;
}
for_each_pipe(dev_priv, pipe) {
fbc->possible_framebuffer_bits |=
INTEL_FRONTBUFFER_PRIMARY(pipe);
if (fbc_on_pipe_a_only(dev_priv))
break;
}
/* This value was pulled out of someone's hat */
if (INTEL_INFO(dev_priv)->gen <= 4 && !IS_GM45(dev_priv))
I915_WRITE(FBC_CONTROL, 500 << FBC_CTL_INTERVAL_SHIFT);
/* We still don't have any sort of hardware state readout for FBC, so
* deactivate it in case the BIOS activated it to make sure software
* matches the hardware state. */
if (intel_fbc_hw_is_active(dev_priv))
intel_fbc_hw_deactivate(dev_priv);
}