1
0
kolibrios/contrib/sdk/sources/Intel-2D/sna/gen4_vertex.c
Sergey Semyonov (Serge) d605acf341 intel-2d: sna-2.99.906
git-svn-id: svn://kolibrios.org@4501 a494cfbc-eb01-0410-851d-a64ba20cac60
2014-01-21 14:20:59 +00:00

1942 lines
51 KiB
C

/*
* Copyright © 2012 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*
* Authors:
* Chris Wilson <chris@chris-wilson.co.uk>
*
*/
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include "sna.h"
#include "sna_render.h"
#include "sna_render_inline.h"
#include "gen4_vertex.h"
#ifndef sse2
#define sse2
#endif
void gen4_vertex_align(struct sna *sna, const struct sna_composite_op *op)
{
int vertex_index;
assert(op->floats_per_rect == 3*op->floats_per_vertex);
vertex_index = (sna->render.vertex_used + op->floats_per_vertex - 1) / op->floats_per_vertex;
if ((int)sna->render.vertex_size - vertex_index * op->floats_per_vertex < 2*op->floats_per_rect) {
DBG(("%s: flushing vertex buffer: new index=%d, max=%d\n",
__FUNCTION__, vertex_index, sna->render.vertex_size / op->floats_per_vertex));
if (gen4_vertex_finish(sna) < op->floats_per_rect) {
kgem_submit(&sna->kgem);
_kgem_set_mode(&sna->kgem, KGEM_RENDER);
}
vertex_index = (sna->render.vertex_used + op->floats_per_vertex - 1) / op->floats_per_vertex;
assert(vertex_index * op->floats_per_vertex <= sna->render.vertex_size);
}
sna->render.vertex_index = vertex_index;
sna->render.vertex_used = vertex_index * op->floats_per_vertex;
}
void gen4_vertex_flush(struct sna *sna)
{
DBG(("%s[%x] = %d\n", __FUNCTION__,
4*sna->render.vertex_offset,
sna->render.vertex_index - sna->render.vertex_start));
assert(sna->render.vertex_offset);
assert(sna->render.vertex_offset <= sna->kgem.nbatch);
assert(sna->render.vertex_index > sna->render.vertex_start);
assert(sna->render.vertex_used <= sna->render.vertex_size);
sna->kgem.batch[sna->render.vertex_offset] =
sna->render.vertex_index - sna->render.vertex_start;
sna->render.vertex_offset = 0;
}
int gen4_vertex_finish(struct sna *sna)
{
struct kgem_bo *bo;
unsigned int i;
unsigned hint, size;
DBG(("%s: used=%d / %d\n", __FUNCTION__,
sna->render.vertex_used, sna->render.vertex_size));
assert(sna->render.vertex_offset == 0);
assert(sna->render.vertex_used);
assert(sna->render.vertex_used <= sna->render.vertex_size);
sna_vertex_wait__locked(&sna->render);
/* Note: we only need dword alignment (currently) */
hint = CREATE_GTT_MAP;
bo = sna->render.vbo;
if (bo) {
for (i = 0; i < sna->render.nvertex_reloc; i++) {
DBG(("%s: reloc[%d] = %d\n", __FUNCTION__,
i, sna->render.vertex_reloc[i]));
sna->kgem.batch[sna->render.vertex_reloc[i]] =
kgem_add_reloc(&sna->kgem,
sna->render.vertex_reloc[i], bo,
I915_GEM_DOMAIN_VERTEX << 16,
0);
}
assert(!sna->render.active);
sna->render.nvertex_reloc = 0;
sna->render.vertex_used = 0;
sna->render.vertex_index = 0;
sna->render.vbo = NULL;
sna->render.vb_id = 0;
kgem_bo_destroy(&sna->kgem, bo);
hint |= CREATE_CACHED | CREATE_NO_THROTTLE;
} else {
if (kgem_is_idle(&sna->kgem)) {
sna->render.vertices = sna->render.vertex_data;
sna->render.vertex_size = ARRAY_SIZE(sna->render.vertex_data);
return 0;
}
}
size = 256*1024;
assert(!sna->render.active);
sna->render.vertices = NULL;
sna->render.vbo = kgem_create_linear(&sna->kgem, size, hint);
while (sna->render.vbo == NULL && size > 16*1024) {
size /= 2;
sna->render.vbo = kgem_create_linear(&sna->kgem, size, hint);
}
if (sna->render.vbo == NULL)
sna->render.vbo = kgem_create_linear(&sna->kgem,
256*1024, CREATE_GTT_MAP);
if (sna->render.vbo)
sna->render.vertices = kgem_bo_map(&sna->kgem, sna->render.vbo);
if (sna->render.vertices == NULL) {
if (sna->render.vbo) {
kgem_bo_destroy(&sna->kgem, sna->render.vbo);
sna->render.vbo = NULL;
}
sna->render.vertices = sna->render.vertex_data;
sna->render.vertex_size = ARRAY_SIZE(sna->render.vertex_data);
return 0;
}
if (sna->render.vertex_used) {
DBG(("%s: copying initial buffer x %d to handle=%d\n",
__FUNCTION__,
sna->render.vertex_used,
sna->render.vbo->handle));
assert(sizeof(float)*sna->render.vertex_used <=
__kgem_bo_size(sna->render.vbo));
memcpy(sna->render.vertices,
sna->render.vertex_data,
sizeof(float)*sna->render.vertex_used);
}
size = __kgem_bo_size(sna->render.vbo)/4;
if (size >= UINT16_MAX)
size = UINT16_MAX - 1;
DBG(("%s: create vbo handle=%d, size=%d\n",
__FUNCTION__, sna->render.vbo->handle, size));
sna->render.vertex_size = size;
return sna->render.vertex_size - sna->render.vertex_used;
}
void gen4_vertex_close(struct sna *sna)
{
struct kgem_bo *bo, *free_bo = NULL;
unsigned int i, delta = 0;
assert(sna->render.vertex_offset == 0);
if (!sna->render.vb_id)
return;
DBG(("%s: used=%d, vbo active? %d, vb=%x, nreloc=%d\n",
__FUNCTION__, sna->render.vertex_used, sna->render.vbo ? sna->render.vbo->handle : 0,
sna->render.vb_id, sna->render.nvertex_reloc));
assert(!sna->render.active);
bo = sna->render.vbo;
if (bo) {
if (sna->render.vertex_size - sna->render.vertex_used < 64) {
DBG(("%s: discarding vbo (full), handle=%d\n", __FUNCTION__, sna->render.vbo->handle));
sna->render.vbo = NULL;
sna->render.vertices = sna->render.vertex_data;
sna->render.vertex_size = ARRAY_SIZE(sna->render.vertex_data);
free_bo = bo;
} else if (!sna->kgem.has_llc && sna->render.vertices == MAP(bo->map__cpu)) {
DBG(("%s: converting CPU map to GTT\n", __FUNCTION__));
sna->render.vertices =
kgem_bo_map__gtt(&sna->kgem, sna->render.vbo);
if (sna->render.vertices == NULL) {
sna->render.vbo = NULL;
sna->render.vertices = sna->render.vertex_data;
sna->render.vertex_size = ARRAY_SIZE(sna->render.vertex_data);
free_bo = bo;
}
}
} else {
int size;
size = sna->kgem.nbatch;
size += sna->kgem.batch_size - sna->kgem.surface;
size += sna->render.vertex_used;
if (size <= 1024) {
DBG(("%s: copy to batch: %d @ %d\n", __FUNCTION__,
sna->render.vertex_used, sna->kgem.nbatch));
assert(sna->kgem.nbatch + sna->render.vertex_used <= sna->kgem.surface);
memcpy(sna->kgem.batch + sna->kgem.nbatch,
sna->render.vertex_data,
sna->render.vertex_used * 4);
delta = sna->kgem.nbatch * 4;
bo = NULL;
sna->kgem.nbatch += sna->render.vertex_used;
} else {
size = 256 * 1024;
do {
bo = kgem_create_linear(&sna->kgem, size,
CREATE_GTT_MAP | CREATE_NO_RETIRE | CREATE_NO_THROTTLE | CREATE_CACHED);
} while (bo == NULL && (size>>=1) > sizeof(float)*sna->render.vertex_used);
sna->render.vertices = NULL;
if (bo)
sna->render.vertices = kgem_bo_map(&sna->kgem, bo);
if (sna->render.vertices != NULL) {
DBG(("%s: new vbo: %d / %d\n", __FUNCTION__,
sna->render.vertex_used, __kgem_bo_size(bo)/4));
assert(sizeof(float)*sna->render.vertex_used <= __kgem_bo_size(bo));
memcpy(sna->render.vertices,
sna->render.vertex_data,
sizeof(float)*sna->render.vertex_used);
size = __kgem_bo_size(bo)/4;
if (size >= UINT16_MAX)
size = UINT16_MAX - 1;
sna->render.vbo = bo;
sna->render.vertex_size = size;
} else {
DBG(("%s: tmp vbo: %d\n", __FUNCTION__,
sna->render.vertex_used));
if (bo)
kgem_bo_destroy(&sna->kgem, bo);
bo = kgem_create_linear(&sna->kgem,
4*sna->render.vertex_used,
CREATE_NO_THROTTLE);
if (bo && !kgem_bo_write(&sna->kgem, bo,
sna->render.vertex_data,
4*sna->render.vertex_used)) {
kgem_bo_destroy(&sna->kgem, bo);
bo = NULL;
}
assert(sna->render.vbo == NULL);
sna->render.vertices = sna->render.vertex_data;
sna->render.vertex_size = ARRAY_SIZE(sna->render.vertex_data);
free_bo = bo;
}
}
}
assert(sna->render.nvertex_reloc);
for (i = 0; i < sna->render.nvertex_reloc; i++) {
DBG(("%s: reloc[%d] = %d\n", __FUNCTION__,
i, sna->render.vertex_reloc[i]));
sna->kgem.batch[sna->render.vertex_reloc[i]] =
kgem_add_reloc(&sna->kgem,
sna->render.vertex_reloc[i], bo,
I915_GEM_DOMAIN_VERTEX << 16,
delta);
}
sna->render.nvertex_reloc = 0;
sna->render.vb_id = 0;
if (sna->render.vbo == NULL) {
assert(!sna->render.active);
sna->render.vertex_used = 0;
sna->render.vertex_index = 0;
assert(sna->render.vertices == sna->render.vertex_data);
assert(sna->render.vertex_size == ARRAY_SIZE(sna->render.vertex_data));
}
if (free_bo)
kgem_bo_destroy(&sna->kgem, free_bo);
}
/* specialised vertex emission routines */
#define OUT_VERTEX(x,y) vertex_emit_2s(sna, x,y) /* XXX assert(!too_large(x, y)); */
#define OUT_VERTEX_F(v) vertex_emit(sna, v)
force_inline static float
compute_linear(const struct sna_composite_channel *channel,
int16_t x, int16_t y)
{
return ((x+channel->offset[0]) * channel->u.linear.dx +
(y+channel->offset[1]) * channel->u.linear.dy +
channel->u.linear.offset);
}
sse2 inline static void
emit_texcoord(struct sna *sna,
const struct sna_composite_channel *channel,
int16_t x, int16_t y)
{
if (channel->is_solid) {
OUT_VERTEX_F(x);
return;
}
x += channel->offset[0];
y += channel->offset[1];
if (channel->is_affine) {
float s, t;
sna_get_transformed_coordinates(x, y,
channel->transform,
&s, &t);
OUT_VERTEX_F(s * channel->scale[0]);
OUT_VERTEX_F(t * channel->scale[1]);
} else {
float s, t, w;
sna_get_transformed_coordinates_3d(x, y,
channel->transform,
&s, &t, &w);
OUT_VERTEX_F(s * channel->scale[0]);
OUT_VERTEX_F(t * channel->scale[1]);
OUT_VERTEX_F(w);
}
}
sse2 force_inline static void
emit_vertex(struct sna *sna,
const struct sna_composite_op *op,
int16_t srcX, int16_t srcY,
int16_t mskX, int16_t mskY,
int16_t dstX, int16_t dstY)
{
OUT_VERTEX(dstX, dstY);
emit_texcoord(sna, &op->src, srcX, srcY);
}
sse2 fastcall static void
emit_primitive(struct sna *sna,
const struct sna_composite_op *op,
const struct sna_composite_rectangles *r)
{
emit_vertex(sna, op,
r->src.x + r->width, r->src.y + r->height,
r->mask.x + r->width, r->mask.y + r->height,
r->dst.x + r->width, r->dst.y + r->height);
emit_vertex(sna, op,
r->src.x, r->src.y + r->height,
r->mask.x, r->mask.y + r->height,
r->dst.x, r->dst.y + r->height);
emit_vertex(sna, op,
r->src.x, r->src.y,
r->mask.x, r->mask.y,
r->dst.x, r->dst.y);
}
sse2 force_inline static void
emit_vertex_mask(struct sna *sna,
const struct sna_composite_op *op,
int16_t srcX, int16_t srcY,
int16_t mskX, int16_t mskY,
int16_t dstX, int16_t dstY)
{
OUT_VERTEX(dstX, dstY);
emit_texcoord(sna, &op->src, srcX, srcY);
emit_texcoord(sna, &op->mask, mskX, mskY);
}
sse2 fastcall static void
emit_primitive_mask(struct sna *sna,
const struct sna_composite_op *op,
const struct sna_composite_rectangles *r)
{
emit_vertex_mask(sna, op,
r->src.x + r->width, r->src.y + r->height,
r->mask.x + r->width, r->mask.y + r->height,
r->dst.x + r->width, r->dst.y + r->height);
emit_vertex_mask(sna, op,
r->src.x, r->src.y + r->height,
r->mask.x, r->mask.y + r->height,
r->dst.x, r->dst.y + r->height);
emit_vertex_mask(sna, op,
r->src.x, r->src.y,
r->mask.x, r->mask.y,
r->dst.x, r->dst.y);
}
sse2 fastcall static void
emit_primitive_solid(struct sna *sna,
const struct sna_composite_op *op,
const struct sna_composite_rectangles *r)
{
float *v;
union {
struct sna_coordinate p;
float f;
} dst;
assert(op->floats_per_rect == 6);
assert((sna->render.vertex_used % 2) == 0);
v = sna->render.vertices + sna->render.vertex_used;
sna->render.vertex_used += 6;
assert(sna->render.vertex_used <= sna->render.vertex_size);
dst.p.x = r->dst.x + r->width;
dst.p.y = r->dst.y + r->height;
v[0] = dst.f;
dst.p.x = r->dst.x;
v[2] = dst.f;
dst.p.y = r->dst.y;
v[4] = dst.f;
v[5] = v[3] = v[1] = .5;
}
sse2 fastcall static void
emit_boxes_solid(const struct sna_composite_op *op,
const BoxRec *box, int nbox,
float *v)
{
do {
union {
struct sna_coordinate p;
float f;
} dst;
dst.p.x = box->x2;
dst.p.y = box->y2;
v[0] = dst.f;
dst.p.x = box->x1;
v[2] = dst.f;
dst.p.y = box->y1;
v[4] = dst.f;
v[5] = v[3] = v[1] = .5;
box++;
v += 6;
} while (--nbox);
}
sse2 fastcall static void
emit_primitive_linear(struct sna *sna,
const struct sna_composite_op *op,
const struct sna_composite_rectangles *r)
{
float *v;
union {
struct sna_coordinate p;
float f;
} dst;
assert(op->floats_per_rect == 6);
assert((sna->render.vertex_used % 2) == 0);
v = sna->render.vertices + sna->render.vertex_used;
sna->render.vertex_used += 6;
assert(sna->render.vertex_used <= sna->render.vertex_size);
dst.p.x = r->dst.x + r->width;
dst.p.y = r->dst.y + r->height;
v[0] = dst.f;
dst.p.x = r->dst.x;
v[2] = dst.f;
dst.p.y = r->dst.y;
v[4] = dst.f;
v[1] = compute_linear(&op->src, r->src.x+r->width, r->src.y+r->height);
v[3] = compute_linear(&op->src, r->src.x, r->src.y+r->height);
v[5] = compute_linear(&op->src, r->src.x, r->src.y);
}
sse2 fastcall static void
emit_boxes_linear(const struct sna_composite_op *op,
const BoxRec *box, int nbox,
float *v)
{
union {
struct sna_coordinate p;
float f;
} dst;
do {
dst.p.x = box->x2;
dst.p.y = box->y2;
v[0] = dst.f;
dst.p.x = box->x1;
v[2] = dst.f;
dst.p.y = box->y1;
v[4] = dst.f;
v[1] = compute_linear(&op->src, box->x2, box->y2);
v[3] = compute_linear(&op->src, box->x1, box->y2);
v[5] = compute_linear(&op->src, box->x1, box->y1);
v += 6;
box++;
} while (--nbox);
}
sse2 fastcall static void
emit_primitive_identity_source(struct sna *sna,
const struct sna_composite_op *op,
const struct sna_composite_rectangles *r)
{
union {
struct sna_coordinate p;
float f;
} dst;
float *v;
assert(op->floats_per_rect == 9);
assert((sna->render.vertex_used % 3) == 0);
v = sna->render.vertices + sna->render.vertex_used;
sna->render.vertex_used += 9;
dst.p.x = r->dst.x + r->width;
dst.p.y = r->dst.y + r->height;
v[0] = dst.f;
dst.p.x = r->dst.x;
v[3] = dst.f;
dst.p.y = r->dst.y;
v[6] = dst.f;
v[7] = v[4] = (r->src.x + op->src.offset[0]) * op->src.scale[0];
v[1] = v[4] + r->width * op->src.scale[0];
v[8] = (r->src.y + op->src.offset[1]) * op->src.scale[1];
v[5] = v[2] = v[8] + r->height * op->src.scale[1];
}
sse2 fastcall static void
emit_boxes_identity_source(const struct sna_composite_op *op,
const BoxRec *box, int nbox,
float *v)
{
do {
union {
struct sna_coordinate p;
float f;
} dst;
dst.p.x = box->x2;
dst.p.y = box->y2;
v[0] = dst.f;
dst.p.x = box->x1;
v[3] = dst.f;
dst.p.y = box->y1;
v[6] = dst.f;
v[7] = v[4] = (box->x1 + op->src.offset[0]) * op->src.scale[0];
v[1] = (box->x2 + op->src.offset[0]) * op->src.scale[0];
v[8] = (box->y1 + op->src.offset[1]) * op->src.scale[1];
v[2] = v[5] = (box->y2 + op->src.offset[1]) * op->src.scale[1];
v += 9;
box++;
} while (--nbox);
}
sse2 fastcall static void
emit_primitive_simple_source(struct sna *sna,
const struct sna_composite_op *op,
const struct sna_composite_rectangles *r)
{
float *v;
union {
struct sna_coordinate p;
float f;
} dst;
float xx = op->src.transform->matrix[0][0];
float x0 = op->src.transform->matrix[0][2];
float yy = op->src.transform->matrix[1][1];
float y0 = op->src.transform->matrix[1][2];
float sx = op->src.scale[0];
float sy = op->src.scale[1];
int16_t tx = op->src.offset[0];
int16_t ty = op->src.offset[1];
assert(op->floats_per_rect == 9);
assert((sna->render.vertex_used % 3) == 0);
v = sna->render.vertices + sna->render.vertex_used;
sna->render.vertex_used += 3*3;
dst.p.x = r->dst.x + r->width;
dst.p.y = r->dst.y + r->height;
v[0] = dst.f;
v[1] = ((r->src.x + r->width + tx) * xx + x0) * sx;
v[5] = v[2] = ((r->src.y + r->height + ty) * yy + y0) * sy;
dst.p.x = r->dst.x;
v[3] = dst.f;
v[7] = v[4] = ((r->src.x + tx) * xx + x0) * sx;
dst.p.y = r->dst.y;
v[6] = dst.f;
v[8] = ((r->src.y + ty) * yy + y0) * sy;
}
sse2 fastcall static void
emit_boxes_simple_source(const struct sna_composite_op *op,
const BoxRec *box, int nbox,
float *v)
{
float xx = op->src.transform->matrix[0][0];
float x0 = op->src.transform->matrix[0][2];
float yy = op->src.transform->matrix[1][1];
float y0 = op->src.transform->matrix[1][2];
float sx = op->src.scale[0];
float sy = op->src.scale[1];
int16_t tx = op->src.offset[0];
int16_t ty = op->src.offset[1];
do {
union {
struct sna_coordinate p;
float f;
} dst;
dst.p.x = box->x2;
dst.p.y = box->y2;
v[0] = dst.f;
v[1] = ((box->x2 + tx) * xx + x0) * sx;
v[5] = v[2] = ((box->y2 + ty) * yy + y0) * sy;
dst.p.x = box->x1;
v[3] = dst.f;
v[7] = v[4] = ((box->x1 + tx) * xx + x0) * sx;
dst.p.y = box->y1;
v[6] = dst.f;
v[8] = ((box->y1 + ty) * yy + y0) * sy;
v += 9;
box++;
} while (--nbox);
}
sse2 fastcall static void
emit_primitive_affine_source(struct sna *sna,
const struct sna_composite_op *op,
const struct sna_composite_rectangles *r)
{
union {
struct sna_coordinate p;
float f;
} dst;
float *v;
assert(op->floats_per_rect == 9);
assert((sna->render.vertex_used % 3) == 0);
v = sna->render.vertices + sna->render.vertex_used;
sna->render.vertex_used += 9;
dst.p.x = r->dst.x + r->width;
dst.p.y = r->dst.y + r->height;
v[0] = dst.f;
_sna_get_transformed_scaled(op->src.offset[0] + r->src.x + r->width,
op->src.offset[1] + r->src.y + r->height,
op->src.transform, op->src.scale,
&v[1], &v[2]);
dst.p.x = r->dst.x;
v[3] = dst.f;
_sna_get_transformed_scaled(op->src.offset[0] + r->src.x,
op->src.offset[1] + r->src.y + r->height,
op->src.transform, op->src.scale,
&v[4], &v[5]);
dst.p.y = r->dst.y;
v[6] = dst.f;
_sna_get_transformed_scaled(op->src.offset[0] + r->src.x,
op->src.offset[1] + r->src.y,
op->src.transform, op->src.scale,
&v[7], &v[8]);
}
sse2 fastcall static void
emit_boxes_affine_source(const struct sna_composite_op *op,
const BoxRec *box, int nbox,
float *v)
{
do {
union {
struct sna_coordinate p;
float f;
} dst;
dst.p.x = box->x2;
dst.p.y = box->y2;
v[0] = dst.f;
_sna_get_transformed_scaled(op->src.offset[0] + box->x2,
op->src.offset[1] + box->y2,
op->src.transform, op->src.scale,
&v[1], &v[2]);
dst.p.x = box->x1;
v[3] = dst.f;
_sna_get_transformed_scaled(op->src.offset[0] + box->x1,
op->src.offset[1] + box->y2,
op->src.transform, op->src.scale,
&v[4], &v[5]);
dst.p.y = box->y1;
v[6] = dst.f;
_sna_get_transformed_scaled(op->src.offset[0] + box->x1,
op->src.offset[1] + box->y1,
op->src.transform, op->src.scale,
&v[7], &v[8]);
box++;
v += 9;
} while (--nbox);
}
sse2 fastcall static void
emit_primitive_identity_mask(struct sna *sna,
const struct sna_composite_op *op,
const struct sna_composite_rectangles *r)
{
union {
struct sna_coordinate p;
float f;
} dst;
float msk_x, msk_y;
float w, h;
float *v;
msk_x = r->mask.x + op->mask.offset[0];
msk_y = r->mask.y + op->mask.offset[1];
w = r->width;
h = r->height;
DBG(("%s: dst=(%d, %d), mask=(%f, %f) x (%f, %f)\n",
__FUNCTION__, r->dst.x, r->dst.y, msk_x, msk_y, w, h));
assert(op->floats_per_rect == 12);
assert((sna->render.vertex_used % 4) == 0);
v = sna->render.vertices + sna->render.vertex_used;
sna->render.vertex_used += 12;
dst.p.x = r->dst.x + r->width;
dst.p.y = r->dst.y + r->height;
v[0] = dst.f;
v[2] = (msk_x + w) * op->mask.scale[0];
v[7] = v[3] = (msk_y + h) * op->mask.scale[1];
dst.p.x = r->dst.x;
v[4] = dst.f;
v[10] = v[6] = msk_x * op->mask.scale[0];
dst.p.y = r->dst.y;
v[8] = dst.f;
v[11] = msk_y * op->mask.scale[1];
v[9] = v[5] = v[1] = .5;
}
sse2 fastcall static void
emit_boxes_identity_mask(const struct sna_composite_op *op,
const BoxRec *box, int nbox,
float *v)
{
float msk_x = op->mask.offset[0];
float msk_y = op->mask.offset[1];
do {
union {
struct sna_coordinate p;
float f;
} dst;
dst.p.x = box->x2;
dst.p.y = box->y2;
v[0] = dst.f;
v[2] = (msk_x + box->x2) * op->mask.scale[0];
v[7] = v[3] = (msk_y + box->y2) * op->mask.scale[1];
dst.p.x = box->x1;
v[4] = dst.f;
v[10] = v[6] = (msk_x + box->x1) * op->mask.scale[0];
dst.p.y = box->y1;
v[8] = dst.f;
v[11] = (msk_y + box->y1) * op->mask.scale[1];
v[9] = v[5] = v[1] = .5;
v += 12;
box++;
} while (--nbox);
}
sse2 fastcall static void
emit_primitive_linear_identity_mask(struct sna *sna,
const struct sna_composite_op *op,
const struct sna_composite_rectangles *r)
{
union {
struct sna_coordinate p;
float f;
} dst;
float msk_x, msk_y;
float w, h;
float *v;
msk_x = r->mask.x + op->mask.offset[0];
msk_y = r->mask.y + op->mask.offset[1];
w = r->width;
h = r->height;
DBG(("%s: dst=(%d, %d), mask=(%f, %f) x (%f, %f)\n",
__FUNCTION__, r->dst.x, r->dst.y, msk_x, msk_y, w, h));
assert(op->floats_per_rect == 12);
assert((sna->render.vertex_used % 4) == 0);
v = sna->render.vertices + sna->render.vertex_used;
sna->render.vertex_used += 12;
dst.p.x = r->dst.x + r->width;
dst.p.y = r->dst.y + r->height;
v[0] = dst.f;
v[2] = (msk_x + w) * op->mask.scale[0];
v[7] = v[3] = (msk_y + h) * op->mask.scale[1];
dst.p.x = r->dst.x;
v[4] = dst.f;
v[10] = v[6] = msk_x * op->mask.scale[0];
dst.p.y = r->dst.y;
v[8] = dst.f;
v[11] = msk_y * op->mask.scale[1];
v[1] = compute_linear(&op->src, r->src.x+r->width, r->src.y+r->height);
v[5] = compute_linear(&op->src, r->src.x, r->src.y+r->height);
v[9] = compute_linear(&op->src, r->src.x, r->src.y);
}
sse2 fastcall static void
emit_boxes_linear_identity_mask(const struct sna_composite_op *op,
const BoxRec *box, int nbox,
float *v)
{
float msk_x = op->mask.offset[0];
float msk_y = op->mask.offset[1];
do {
union {
struct sna_coordinate p;
float f;
} dst;
dst.p.x = box->x2;
dst.p.y = box->y2;
v[0] = dst.f;
v[2] = (msk_x + box->x2) * op->mask.scale[0];
v[7] = v[3] = (msk_y + box->y2) * op->mask.scale[1];
dst.p.x = box->x1;
v[4] = dst.f;
v[10] = v[6] = (msk_x + box->x1) * op->mask.scale[0];
dst.p.y = box->y1;
v[8] = dst.f;
v[11] = (msk_y + box->y1) * op->mask.scale[1];
v[1] = compute_linear(&op->src, box->x2, box->y2);
v[5] = compute_linear(&op->src, box->x1, box->y2);
v[9] = compute_linear(&op->src, box->x1, box->y1);
v += 12;
box++;
} while (--nbox);
}
sse2 fastcall static void
emit_primitive_identity_source_mask(struct sna *sna,
const struct sna_composite_op *op,
const struct sna_composite_rectangles *r)
{
union {
struct sna_coordinate p;
float f;
} dst;
float src_x, src_y;
float msk_x, msk_y;
float w, h;
float *v;
src_x = r->src.x + op->src.offset[0];
src_y = r->src.y + op->src.offset[1];
msk_x = r->mask.x + op->mask.offset[0];
msk_y = r->mask.y + op->mask.offset[1];
w = r->width;
h = r->height;
assert(op->floats_per_rect == 15);
assert((sna->render.vertex_used % 5) == 0);
v = sna->render.vertices + sna->render.vertex_used;
sna->render.vertex_used += 15;
dst.p.x = r->dst.x + r->width;
dst.p.y = r->dst.y + r->height;
v[0] = dst.f;
v[1] = (src_x + w) * op->src.scale[0];
v[2] = (src_y + h) * op->src.scale[1];
v[3] = (msk_x + w) * op->mask.scale[0];
v[4] = (msk_y + h) * op->mask.scale[1];
dst.p.x = r->dst.x;
v[5] = dst.f;
v[6] = src_x * op->src.scale[0];
v[7] = v[2];
v[8] = msk_x * op->mask.scale[0];
v[9] = v[4];
dst.p.y = r->dst.y;
v[10] = dst.f;
v[11] = v[6];
v[12] = src_y * op->src.scale[1];
v[13] = v[8];
v[14] = msk_y * op->mask.scale[1];
}
sse2 fastcall static void
emit_primitive_simple_source_identity(struct sna *sna,
const struct sna_composite_op *op,
const struct sna_composite_rectangles *r)
{
float *v;
union {
struct sna_coordinate p;
float f;
} dst;
float xx = op->src.transform->matrix[0][0];
float x0 = op->src.transform->matrix[0][2];
float yy = op->src.transform->matrix[1][1];
float y0 = op->src.transform->matrix[1][2];
float sx = op->src.scale[0];
float sy = op->src.scale[1];
int16_t tx = op->src.offset[0];
int16_t ty = op->src.offset[1];
float msk_x = r->mask.x + op->mask.offset[0];
float msk_y = r->mask.y + op->mask.offset[1];
float w = r->width, h = r->height;
assert(op->floats_per_rect == 15);
assert((sna->render.vertex_used % 5) == 0);
v = sna->render.vertices + sna->render.vertex_used;
sna->render.vertex_used += 3*5;
dst.p.x = r->dst.x + r->width;
dst.p.y = r->dst.y + r->height;
v[0] = dst.f;
v[1] = ((r->src.x + r->width + tx) * xx + x0) * sx;
v[2] = ((r->src.y + r->height + ty) * yy + y0) * sy;
v[3] = (msk_x + w) * op->mask.scale[0];
v[4] = (msk_y + h) * op->mask.scale[1];
dst.p.x = r->dst.x;
v[5] = dst.f;
v[6] = ((r->src.x + tx) * xx + x0) * sx;
v[7] = v[2];
v[8] = msk_x * op->mask.scale[0];
v[9] = v[4];
dst.p.y = r->dst.y;
v[10] = dst.f;
v[11] = v[6];
v[12] = ((r->src.y + ty) * yy + y0) * sy;
v[13] = v[8];
v[14] = msk_y * op->mask.scale[1];
}
sse2 fastcall static void
emit_primitive_affine_source_identity(struct sna *sna,
const struct sna_composite_op *op,
const struct sna_composite_rectangles *r)
{
float *v;
union {
struct sna_coordinate p;
float f;
} dst;
float msk_x = r->mask.x + op->mask.offset[0];
float msk_y = r->mask.y + op->mask.offset[1];
float w = r->width, h = r->height;
assert(op->floats_per_rect == 15);
assert((sna->render.vertex_used % 5) == 0);
v = sna->render.vertices + sna->render.vertex_used;
sna->render.vertex_used += 3*5;
dst.p.x = r->dst.x + r->width;
dst.p.y = r->dst.y + r->height;
v[0] = dst.f;
_sna_get_transformed_scaled(op->src.offset[0] + r->src.x + r->width,
op->src.offset[1] + r->src.y + r->height,
op->src.transform, op->src.scale,
&v[1], &v[2]);
v[3] = (msk_x + w) * op->mask.scale[0];
v[4] = (msk_y + h) * op->mask.scale[1];
dst.p.x = r->dst.x;
v[5] = dst.f;
_sna_get_transformed_scaled(op->src.offset[0] + r->src.x,
op->src.offset[1] + r->src.y + r->height,
op->src.transform, op->src.scale,
&v[6], &v[7]);
v[8] = msk_x * op->mask.scale[0];
v[9] = v[4];
dst.p.y = r->dst.y;
v[10] = dst.f;
_sna_get_transformed_scaled(op->src.offset[0] + r->src.x,
op->src.offset[1] + r->src.y,
op->src.transform, op->src.scale,
&v[11], &v[12]);
v[13] = v[8];
v[14] = msk_y * op->mask.scale[1];
}
/* SSE4_2 */
#if defined(sse4_2)
sse4_2 fastcall static void
emit_primitive_linear__sse4_2(struct sna *sna,
const struct sna_composite_op *op,
const struct sna_composite_rectangles *r)
{
float *v;
union {
struct sna_coordinate p;
float f;
} dst;
assert(op->floats_per_rect == 6);
assert((sna->render.vertex_used % 2) == 0);
v = sna->render.vertices + sna->render.vertex_used;
sna->render.vertex_used += 6;
assert(sna->render.vertex_used <= sna->render.vertex_size);
dst.p.x = r->dst.x + r->width;
dst.p.y = r->dst.y + r->height;
v[0] = dst.f;
dst.p.x = r->dst.x;
v[2] = dst.f;
dst.p.y = r->dst.y;
v[4] = dst.f;
v[1] = compute_linear(&op->src, r->src.x+r->width, r->src.y+r->height);
v[3] = compute_linear(&op->src, r->src.x, r->src.y+r->height);
v[5] = compute_linear(&op->src, r->src.x, r->src.y);
}
sse4_2 fastcall static void
emit_boxes_linear__sse4_2(const struct sna_composite_op *op,
const BoxRec *box, int nbox,
float *v)
{
union {
struct sna_coordinate p;
float f;
} dst;
do {
dst.p.x = box->x2;
dst.p.y = box->y2;
v[0] = dst.f;
dst.p.x = box->x1;
v[2] = dst.f;
dst.p.y = box->y1;
v[4] = dst.f;
v[1] = compute_linear(&op->src, box->x2, box->y2);
v[3] = compute_linear(&op->src, box->x1, box->y2);
v[5] = compute_linear(&op->src, box->x1, box->y1);
v += 6;
box++;
} while (--nbox);
}
sse4_2 fastcall static void
emit_primitive_identity_source__sse4_2(struct sna *sna,
const struct sna_composite_op *op,
const struct sna_composite_rectangles *r)
{
union {
struct sna_coordinate p;
float f;
} dst;
float *v;
assert(op->floats_per_rect == 9);
assert((sna->render.vertex_used % 3) == 0);
v = sna->render.vertices + sna->render.vertex_used;
sna->render.vertex_used += 9;
dst.p.x = r->dst.x + r->width;
dst.p.y = r->dst.y + r->height;
v[0] = dst.f;
dst.p.x = r->dst.x;
v[3] = dst.f;
dst.p.y = r->dst.y;
v[6] = dst.f;
v[7] = v[4] = (r->src.x + op->src.offset[0]) * op->src.scale[0];
v[1] = v[4] + r->width * op->src.scale[0];
v[8] = (r->src.y + op->src.offset[1]) * op->src.scale[1];
v[5] = v[2] = v[8] + r->height * op->src.scale[1];
}
sse4_2 fastcall static void
emit_boxes_identity_source__sse4_2(const struct sna_composite_op *op,
const BoxRec *box, int nbox,
float *v)
{
do {
union {
struct sna_coordinate p;
float f;
} dst;
dst.p.x = box->x2;
dst.p.y = box->y2;
v[0] = dst.f;
dst.p.x = box->x1;
v[3] = dst.f;
dst.p.y = box->y1;
v[6] = dst.f;
v[7] = v[4] = (box->x1 + op->src.offset[0]) * op->src.scale[0];
v[1] = (box->x2 + op->src.offset[0]) * op->src.scale[0];
v[8] = (box->y1 + op->src.offset[1]) * op->src.scale[1];
v[2] = v[5] = (box->y2 + op->src.offset[1]) * op->src.scale[1];
v += 9;
box++;
} while (--nbox);
}
sse4_2 fastcall static void
emit_primitive_simple_source__sse4_2(struct sna *sna,
const struct sna_composite_op *op,
const struct sna_composite_rectangles *r)
{
float *v;
union {
struct sna_coordinate p;
float f;
} dst;
float xx = op->src.transform->matrix[0][0];
float x0 = op->src.transform->matrix[0][2];
float yy = op->src.transform->matrix[1][1];
float y0 = op->src.transform->matrix[1][2];
float sx = op->src.scale[0];
float sy = op->src.scale[1];
int16_t tx = op->src.offset[0];
int16_t ty = op->src.offset[1];
assert(op->floats_per_rect == 9);
assert((sna->render.vertex_used % 3) == 0);
v = sna->render.vertices + sna->render.vertex_used;
sna->render.vertex_used += 3*3;
dst.p.x = r->dst.x + r->width;
dst.p.y = r->dst.y + r->height;
v[0] = dst.f;
v[1] = ((r->src.x + r->width + tx) * xx + x0) * sx;
v[5] = v[2] = ((r->src.y + r->height + ty) * yy + y0) * sy;
dst.p.x = r->dst.x;
v[3] = dst.f;
v[7] = v[4] = ((r->src.x + tx) * xx + x0) * sx;
dst.p.y = r->dst.y;
v[6] = dst.f;
v[8] = ((r->src.y + ty) * yy + y0) * sy;
}
sse4_2 fastcall static void
emit_boxes_simple_source__sse4_2(const struct sna_composite_op *op,
const BoxRec *box, int nbox,
float *v)
{
float xx = op->src.transform->matrix[0][0];
float x0 = op->src.transform->matrix[0][2];
float yy = op->src.transform->matrix[1][1];
float y0 = op->src.transform->matrix[1][2];
float sx = op->src.scale[0];
float sy = op->src.scale[1];
int16_t tx = op->src.offset[0];
int16_t ty = op->src.offset[1];
do {
union {
struct sna_coordinate p;
float f;
} dst;
dst.p.x = box->x2;
dst.p.y = box->y2;
v[0] = dst.f;
v[1] = ((box->x2 + tx) * xx + x0) * sx;
v[5] = v[2] = ((box->y2 + ty) * yy + y0) * sy;
dst.p.x = box->x1;
v[3] = dst.f;
v[7] = v[4] = ((box->x1 + tx) * xx + x0) * sx;
dst.p.y = box->y1;
v[6] = dst.f;
v[8] = ((box->y1 + ty) * yy + y0) * sy;
v += 9;
box++;
} while (--nbox);
}
sse4_2 fastcall static void
emit_primitive_identity_mask__sse4_2(struct sna *sna,
const struct sna_composite_op *op,
const struct sna_composite_rectangles *r)
{
union {
struct sna_coordinate p;
float f;
} dst;
float msk_x, msk_y;
float w, h;
float *v;
msk_x = r->mask.x + op->mask.offset[0];
msk_y = r->mask.y + op->mask.offset[1];
w = r->width;
h = r->height;
DBG(("%s: dst=(%d, %d), mask=(%f, %f) x (%f, %f)\n",
__FUNCTION__, r->dst.x, r->dst.y, msk_x, msk_y, w, h));
assert(op->floats_per_rect == 12);
assert((sna->render.vertex_used % 4) == 0);
v = sna->render.vertices + sna->render.vertex_used;
sna->render.vertex_used += 12;
dst.p.x = r->dst.x + r->width;
dst.p.y = r->dst.y + r->height;
v[0] = dst.f;
v[2] = (msk_x + w) * op->mask.scale[0];
v[7] = v[3] = (msk_y + h) * op->mask.scale[1];
dst.p.x = r->dst.x;
v[4] = dst.f;
v[10] = v[6] = msk_x * op->mask.scale[0];
dst.p.y = r->dst.y;
v[8] = dst.f;
v[11] = msk_y * op->mask.scale[1];
v[9] = v[5] = v[1] = .5;
}
sse4_2 fastcall static void
emit_boxes_identity_mask__sse4_2(const struct sna_composite_op *op,
const BoxRec *box, int nbox,
float *v)
{
float msk_x = op->mask.offset[0];
float msk_y = op->mask.offset[1];
do {
union {
struct sna_coordinate p;
float f;
} dst;
dst.p.x = box->x2;
dst.p.y = box->y2;
v[0] = dst.f;
v[2] = (msk_x + box->x2) * op->mask.scale[0];
v[7] = v[3] = (msk_y + box->y2) * op->mask.scale[1];
dst.p.x = box->x1;
v[4] = dst.f;
v[10] = v[6] = (msk_x + box->x1) * op->mask.scale[0];
dst.p.y = box->y1;
v[8] = dst.f;
v[11] = (msk_y + box->y1) * op->mask.scale[1];
v[9] = v[5] = v[1] = .5;
v += 12;
box++;
} while (--nbox);
}
sse4_2 fastcall static void
emit_primitive_linear_identity_mask__sse4_2(struct sna *sna,
const struct sna_composite_op *op,
const struct sna_composite_rectangles *r)
{
union {
struct sna_coordinate p;
float f;
} dst;
float msk_x, msk_y;
float w, h;
float *v;
msk_x = r->mask.x + op->mask.offset[0];
msk_y = r->mask.y + op->mask.offset[1];
w = r->width;
h = r->height;
DBG(("%s: dst=(%d, %d), mask=(%f, %f) x (%f, %f)\n",
__FUNCTION__, r->dst.x, r->dst.y, msk_x, msk_y, w, h));
assert(op->floats_per_rect == 12);
assert((sna->render.vertex_used % 4) == 0);
v = sna->render.vertices + sna->render.vertex_used;
sna->render.vertex_used += 12;
dst.p.x = r->dst.x + r->width;
dst.p.y = r->dst.y + r->height;
v[0] = dst.f;
v[2] = (msk_x + w) * op->mask.scale[0];
v[7] = v[3] = (msk_y + h) * op->mask.scale[1];
dst.p.x = r->dst.x;
v[4] = dst.f;
v[10] = v[6] = msk_x * op->mask.scale[0];
dst.p.y = r->dst.y;
v[8] = dst.f;
v[11] = msk_y * op->mask.scale[1];
v[1] = compute_linear(&op->src, r->src.x+r->width, r->src.y+r->height);
v[5] = compute_linear(&op->src, r->src.x, r->src.y+r->height);
v[9] = compute_linear(&op->src, r->src.x, r->src.y);
}
sse4_2 fastcall static void
emit_boxes_linear_identity_mask__sse4_2(const struct sna_composite_op *op,
const BoxRec *box, int nbox,
float *v)
{
float msk_x = op->mask.offset[0];
float msk_y = op->mask.offset[1];
do {
union {
struct sna_coordinate p;
float f;
} dst;
dst.p.x = box->x2;
dst.p.y = box->y2;
v[0] = dst.f;
v[2] = (msk_x + box->x2) * op->mask.scale[0];
v[7] = v[3] = (msk_y + box->y2) * op->mask.scale[1];
dst.p.x = box->x1;
v[4] = dst.f;
v[10] = v[6] = (msk_x + box->x1) * op->mask.scale[0];
dst.p.y = box->y1;
v[8] = dst.f;
v[11] = (msk_y + box->y1) * op->mask.scale[1];
v[1] = compute_linear(&op->src, box->x2, box->y2);
v[5] = compute_linear(&op->src, box->x1, box->y2);
v[9] = compute_linear(&op->src, box->x1, box->y1);
v += 12;
box++;
} while (--nbox);
}
#endif
/* AVX2 */
#if defined(avx2)
avx2 fastcall static void
emit_primitive_linear__avx2(struct sna *sna,
const struct sna_composite_op *op,
const struct sna_composite_rectangles *r)
{
float *v;
union {
struct sna_coordinate p;
float f;
} dst;
assert(op->floats_per_rect == 6);
assert((sna->render.vertex_used % 2) == 0);
v = sna->render.vertices + sna->render.vertex_used;
sna->render.vertex_used += 6;
assert(sna->render.vertex_used <= sna->render.vertex_size);
dst.p.x = r->dst.x + r->width;
dst.p.y = r->dst.y + r->height;
v[0] = dst.f;
dst.p.x = r->dst.x;
v[2] = dst.f;
dst.p.y = r->dst.y;
v[4] = dst.f;
v[1] = compute_linear(&op->src, r->src.x+r->width, r->src.y+r->height);
v[3] = compute_linear(&op->src, r->src.x, r->src.y+r->height);
v[5] = compute_linear(&op->src, r->src.x, r->src.y);
}
avx2 fastcall static void
emit_boxes_linear__avx2(const struct sna_composite_op *op,
const BoxRec *box, int nbox,
float *v)
{
union {
struct sna_coordinate p;
float f;
} dst;
do {
dst.p.x = box->x2;
dst.p.y = box->y2;
v[0] = dst.f;
dst.p.x = box->x1;
v[2] = dst.f;
dst.p.y = box->y1;
v[4] = dst.f;
v[1] = compute_linear(&op->src, box->x2, box->y2);
v[3] = compute_linear(&op->src, box->x1, box->y2);
v[5] = compute_linear(&op->src, box->x1, box->y1);
v += 6;
box++;
} while (--nbox);
}
avx2 fastcall static void
emit_primitive_identity_source__avx2(struct sna *sna,
const struct sna_composite_op *op,
const struct sna_composite_rectangles *r)
{
union {
struct sna_coordinate p;
float f;
} dst;
float *v;
assert(op->floats_per_rect == 9);
assert((sna->render.vertex_used % 3) == 0);
v = sna->render.vertices + sna->render.vertex_used;
sna->render.vertex_used += 9;
dst.p.x = r->dst.x + r->width;
dst.p.y = r->dst.y + r->height;
v[0] = dst.f;
dst.p.x = r->dst.x;
v[3] = dst.f;
dst.p.y = r->dst.y;
v[6] = dst.f;
v[7] = v[4] = (r->src.x + op->src.offset[0]) * op->src.scale[0];
v[1] = v[4] + r->width * op->src.scale[0];
v[8] = (r->src.y + op->src.offset[1]) * op->src.scale[1];
v[5] = v[2] = v[8] + r->height * op->src.scale[1];
}
avx2 fastcall static void
emit_boxes_identity_source__avx2(const struct sna_composite_op *op,
const BoxRec *box, int nbox,
float *v)
{
do {
union {
struct sna_coordinate p;
float f;
} dst;
dst.p.x = box->x2;
dst.p.y = box->y2;
v[0] = dst.f;
dst.p.x = box->x1;
v[3] = dst.f;
dst.p.y = box->y1;
v[6] = dst.f;
v[7] = v[4] = (box->x1 + op->src.offset[0]) * op->src.scale[0];
v[1] = (box->x2 + op->src.offset[0]) * op->src.scale[0];
v[8] = (box->y1 + op->src.offset[1]) * op->src.scale[1];
v[2] = v[5] = (box->y2 + op->src.offset[1]) * op->src.scale[1];
v += 9;
box++;
} while (--nbox);
}
avx2 fastcall static void
emit_primitive_simple_source__avx2(struct sna *sna,
const struct sna_composite_op *op,
const struct sna_composite_rectangles *r)
{
float *v;
union {
struct sna_coordinate p;
float f;
} dst;
float xx = op->src.transform->matrix[0][0];
float x0 = op->src.transform->matrix[0][2];
float yy = op->src.transform->matrix[1][1];
float y0 = op->src.transform->matrix[1][2];
float sx = op->src.scale[0];
float sy = op->src.scale[1];
int16_t tx = op->src.offset[0];
int16_t ty = op->src.offset[1];
assert(op->floats_per_rect == 9);
assert((sna->render.vertex_used % 3) == 0);
v = sna->render.vertices + sna->render.vertex_used;
sna->render.vertex_used += 3*3;
dst.p.x = r->dst.x + r->width;
dst.p.y = r->dst.y + r->height;
v[0] = dst.f;
v[1] = ((r->src.x + r->width + tx) * xx + x0) * sx;
v[5] = v[2] = ((r->src.y + r->height + ty) * yy + y0) * sy;
dst.p.x = r->dst.x;
v[3] = dst.f;
v[7] = v[4] = ((r->src.x + tx) * xx + x0) * sx;
dst.p.y = r->dst.y;
v[6] = dst.f;
v[8] = ((r->src.y + ty) * yy + y0) * sy;
}
avx2 fastcall static void
emit_boxes_simple_source__avx2(const struct sna_composite_op *op,
const BoxRec *box, int nbox,
float *v)
{
float xx = op->src.transform->matrix[0][0];
float x0 = op->src.transform->matrix[0][2];
float yy = op->src.transform->matrix[1][1];
float y0 = op->src.transform->matrix[1][2];
float sx = op->src.scale[0];
float sy = op->src.scale[1];
int16_t tx = op->src.offset[0];
int16_t ty = op->src.offset[1];
do {
union {
struct sna_coordinate p;
float f;
} dst;
dst.p.x = box->x2;
dst.p.y = box->y2;
v[0] = dst.f;
v[1] = ((box->x2 + tx) * xx + x0) * sx;
v[5] = v[2] = ((box->y2 + ty) * yy + y0) * sy;
dst.p.x = box->x1;
v[3] = dst.f;
v[7] = v[4] = ((box->x1 + tx) * xx + x0) * sx;
dst.p.y = box->y1;
v[6] = dst.f;
v[8] = ((box->y1 + ty) * yy + y0) * sy;
v += 9;
box++;
} while (--nbox);
}
avx2 fastcall static void
emit_primitive_identity_mask__avx2(struct sna *sna,
const struct sna_composite_op *op,
const struct sna_composite_rectangles *r)
{
union {
struct sna_coordinate p;
float f;
} dst;
float msk_x, msk_y;
float w, h;
float *v;
msk_x = r->mask.x + op->mask.offset[0];
msk_y = r->mask.y + op->mask.offset[1];
w = r->width;
h = r->height;
DBG(("%s: dst=(%d, %d), mask=(%f, %f) x (%f, %f)\n",
__FUNCTION__, r->dst.x, r->dst.y, msk_x, msk_y, w, h));
assert(op->floats_per_rect == 12);
assert((sna->render.vertex_used % 4) == 0);
v = sna->render.vertices + sna->render.vertex_used;
sna->render.vertex_used += 12;
dst.p.x = r->dst.x + r->width;
dst.p.y = r->dst.y + r->height;
v[0] = dst.f;
v[2] = (msk_x + w) * op->mask.scale[0];
v[7] = v[3] = (msk_y + h) * op->mask.scale[1];
dst.p.x = r->dst.x;
v[4] = dst.f;
v[10] = v[6] = msk_x * op->mask.scale[0];
dst.p.y = r->dst.y;
v[8] = dst.f;
v[11] = msk_y * op->mask.scale[1];
v[9] = v[5] = v[1] = .5;
}
avx2 fastcall static void
emit_boxes_identity_mask__avx2(const struct sna_composite_op *op,
const BoxRec *box, int nbox,
float *v)
{
float msk_x = op->mask.offset[0];
float msk_y = op->mask.offset[1];
do {
union {
struct sna_coordinate p;
float f;
} dst;
dst.p.x = box->x2;
dst.p.y = box->y2;
v[0] = dst.f;
v[2] = (msk_x + box->x2) * op->mask.scale[0];
v[7] = v[3] = (msk_y + box->y2) * op->mask.scale[1];
dst.p.x = box->x1;
v[4] = dst.f;
v[10] = v[6] = (msk_x + box->x1) * op->mask.scale[0];
dst.p.y = box->y1;
v[8] = dst.f;
v[11] = (msk_y + box->y1) * op->mask.scale[1];
v[9] = v[5] = v[1] = .5;
v += 12;
box++;
} while (--nbox);
}
avx2 fastcall static void
emit_primitive_linear_identity_mask__avx2(struct sna *sna,
const struct sna_composite_op *op,
const struct sna_composite_rectangles *r)
{
union {
struct sna_coordinate p;
float f;
} dst;
float msk_x, msk_y;
float w, h;
float *v;
msk_x = r->mask.x + op->mask.offset[0];
msk_y = r->mask.y + op->mask.offset[1];
w = r->width;
h = r->height;
DBG(("%s: dst=(%d, %d), mask=(%f, %f) x (%f, %f)\n",
__FUNCTION__, r->dst.x, r->dst.y, msk_x, msk_y, w, h));
assert(op->floats_per_rect == 12);
assert((sna->render.vertex_used % 4) == 0);
v = sna->render.vertices + sna->render.vertex_used;
sna->render.vertex_used += 12;
dst.p.x = r->dst.x + r->width;
dst.p.y = r->dst.y + r->height;
v[0] = dst.f;
v[2] = (msk_x + w) * op->mask.scale[0];
v[7] = v[3] = (msk_y + h) * op->mask.scale[1];
dst.p.x = r->dst.x;
v[4] = dst.f;
v[10] = v[6] = msk_x * op->mask.scale[0];
dst.p.y = r->dst.y;
v[8] = dst.f;
v[11] = msk_y * op->mask.scale[1];
v[1] = compute_linear(&op->src, r->src.x+r->width, r->src.y+r->height);
v[5] = compute_linear(&op->src, r->src.x, r->src.y+r->height);
v[9] = compute_linear(&op->src, r->src.x, r->src.y);
}
avx2 fastcall static void
emit_boxes_linear_identity_mask__avx2(const struct sna_composite_op *op,
const BoxRec *box, int nbox,
float *v)
{
float msk_x = op->mask.offset[0];
float msk_y = op->mask.offset[1];
do {
union {
struct sna_coordinate p;
float f;
} dst;
dst.p.x = box->x2;
dst.p.y = box->y2;
v[0] = dst.f;
v[2] = (msk_x + box->x2) * op->mask.scale[0];
v[7] = v[3] = (msk_y + box->y2) * op->mask.scale[1];
dst.p.x = box->x1;
v[4] = dst.f;
v[10] = v[6] = (msk_x + box->x1) * op->mask.scale[0];
dst.p.y = box->y1;
v[8] = dst.f;
v[11] = (msk_y + box->y1) * op->mask.scale[1];
v[1] = compute_linear(&op->src, box->x2, box->y2);
v[5] = compute_linear(&op->src, box->x1, box->y2);
v[9] = compute_linear(&op->src, box->x1, box->y1);
v += 12;
box++;
} while (--nbox);
}
#endif
unsigned gen4_choose_composite_emitter(struct sna *sna, struct sna_composite_op *tmp)
{
unsigned vb;
if (tmp->mask.bo) {
if (tmp->mask.transform == NULL) {
if (tmp->src.is_solid) {
DBG(("%s: solid, identity mask\n", __FUNCTION__));
#if defined(avx2)
if (sna->cpu_features & AVX2) {
tmp->prim_emit = emit_primitive_identity_mask__avx2;
} else
#endif
#if defined(sse4_2)
if (sna->cpu_features & SSE4_2) {
tmp->prim_emit = emit_primitive_identity_mask__sse4_2;
} else
#endif
{
tmp->prim_emit = emit_primitive_identity_mask;
}
tmp->floats_per_vertex = 4;
vb = 1 | 2 << 2;
} else if (tmp->src.is_linear) {
DBG(("%s: linear, identity mask\n", __FUNCTION__));
#if defined(avx2)
if (sna->cpu_features & AVX2) {
tmp->prim_emit = emit_primitive_linear_identity_mask__avx2;
} else
#endif
#if defined(sse4_2)
if (sna->cpu_features & SSE4_2) {
tmp->prim_emit = emit_primitive_linear_identity_mask__sse4_2;
} else
#endif
{
tmp->prim_emit = emit_primitive_linear_identity_mask;
}
tmp->floats_per_vertex = 4;
vb = 1 | 2 << 2;
} else if (tmp->src.transform == NULL) {
DBG(("%s: identity source, identity mask\n", __FUNCTION__));
tmp->prim_emit = emit_primitive_identity_source_mask;
tmp->floats_per_vertex = 5;
vb = 2 << 2 | 2;
} else if (tmp->src.is_affine) {
tmp->src.scale[0] /= tmp->src.transform->matrix[2][2];
tmp->src.scale[1] /= tmp->src.transform->matrix[2][2];
if (!sna_affine_transform_is_rotation(tmp->src.transform)) {
DBG(("%s: simple src, identity mask\n", __FUNCTION__));
tmp->prim_emit = emit_primitive_simple_source_identity;
} else {
DBG(("%s: affine src, identity mask\n", __FUNCTION__));
tmp->prim_emit = emit_primitive_affine_source_identity;
}
tmp->floats_per_vertex = 5;
vb = 2 << 2 | 2;
} else {
DBG(("%s: projective source, identity mask\n", __FUNCTION__));
tmp->prim_emit = emit_primitive_mask;
tmp->floats_per_vertex = 6;
vb = 2 << 2 | 3;
}
} else {
tmp->prim_emit = emit_primitive_mask;
tmp->floats_per_vertex = 1;
vb = 0;
if (tmp->mask.is_solid) {
tmp->floats_per_vertex += 1;
vb |= 1 << 2;
} else if (tmp->mask.is_affine) {
tmp->floats_per_vertex += 2;
vb |= 2 << 2;
}else {
tmp->floats_per_vertex += 3;
vb |= 3 << 2;
}
if (tmp->src.is_solid) {
tmp->floats_per_vertex += 1;
vb |= 1;
} else if (tmp->src.is_affine) {
tmp->floats_per_vertex += 2;
vb |= 2 ;
}else {
tmp->floats_per_vertex += 3;
vb |= 3;
}
DBG(("%s: general mask: floats-per-vertex=%d, vb=%x\n",
__FUNCTION__,tmp->floats_per_vertex, vb));
}
} else {
#if 0
if (tmp->src.is_solid) {
DBG(("%s: solid, no mask\n", __FUNCTION__));
tmp->prim_emit = emit_primitive_solid;
if (tmp->src.is_opaque && tmp->op == PictOpOver)
tmp->op = PictOpSrc;
tmp->floats_per_vertex = 2;
vb = 1;
} else if (tmp->src.is_linear) {
DBG(("%s: linear, no mask\n", __FUNCTION__));
#if defined(avx2)
if (sna->cpu_features & AVX2) {
tmp->prim_emit = emit_primitive_linear__avx2;
} else
#endif
#if defined(sse4_2)
if (sna->cpu_features & SSE4_2) {
tmp->prim_emit = emit_primitive_linear__sse4_2;
} else
#endif
{
tmp->prim_emit = emit_primitive_linear;
}
tmp->floats_per_vertex = 2;
vb = 1;
} else if (tmp->src.transform == NULL) {
DBG(("%s: identity src, no mask\n", __FUNCTION__));
#if defined(avx2)
if (sna->cpu_features & AVX2) {
tmp->prim_emit = emit_primitive_identity_source__avx2;
} else
#endif
#if defined(sse4_2)
if (sna->cpu_features & SSE4_2) {
tmp->prim_emit = emit_primitive_identity_source__sse4_2;
} else
#endif
{
tmp->prim_emit = emit_primitive_identity_source;
}
tmp->floats_per_vertex = 3;
vb = 2;
} else if (tmp->src.is_affine) {
tmp->src.scale[0] /= tmp->src.transform->matrix[2][2];
tmp->src.scale[1] /= tmp->src.transform->matrix[2][2];
if (!sna_affine_transform_is_rotation(tmp->src.transform)) {
DBG(("%s: simple src, no mask\n", __FUNCTION__));
#if defined(avx2)
if (sna->cpu_features & AVX2) {
tmp->prim_emit = emit_primitive_simple_source__avx2;
} else
#endif
#if defined(sse4_2)
if (sna->cpu_features & SSE4_2) {
tmp->prim_emit = emit_primitive_simple_source__sse4_2;
} else
#endif
{
tmp->prim_emit = emit_primitive_simple_source;
}
} else {
DBG(("%s: affine src, no mask\n", __FUNCTION__));
tmp->prim_emit = emit_primitive_affine_source;
}
tmp->floats_per_vertex = 3;
vb = 2;
} else {
DBG(("%s: projective src, no mask\n", __FUNCTION__));
assert(!tmp->src.is_solid);
tmp->prim_emit = emit_primitive;
tmp->floats_per_vertex = 4;
vb = 3;
}
#endif
}
tmp->floats_per_rect = 3 * tmp->floats_per_vertex;
return vb;
}