forked from KolibriOS/kolibrios
369 lines
10 KiB
C
369 lines
10 KiB
C
|
/* cairo - a vector graphics library with display and print output
|
||
|
*
|
||
|
* Copyright © 2002 University of Southern California
|
||
|
*
|
||
|
* This library is free software; you can redistribute it and/or
|
||
|
* modify it either under the terms of the GNU Lesser General Public
|
||
|
* License version 2.1 as published by the Free Software Foundation
|
||
|
* (the "LGPL") or, at your option, under the terms of the Mozilla
|
||
|
* Public License Version 1.1 (the "MPL"). If you do not alter this
|
||
|
* notice, a recipient may use your version of this file under either
|
||
|
* the MPL or the LGPL.
|
||
|
*
|
||
|
* You should have received a copy of the LGPL along with this library
|
||
|
* in the file COPYING-LGPL-2.1; if not, write to the Free Software
|
||
|
* Foundation, Inc., 51 Franklin Street, Suite 500, Boston, MA 02110-1335, USA
|
||
|
* You should have received a copy of the MPL along with this library
|
||
|
* in the file COPYING-MPL-1.1
|
||
|
*
|
||
|
* The contents of this file are subject to the Mozilla Public License
|
||
|
* Version 1.1 (the "License"); you may not use this file except in
|
||
|
* compliance with the License. You may obtain a copy of the License at
|
||
|
* http://www.mozilla.org/MPL/
|
||
|
*
|
||
|
* This software is distributed on an "AS IS" basis, WITHOUT WARRANTY
|
||
|
* OF ANY KIND, either express or implied. See the LGPL or the MPL for
|
||
|
* the specific language governing rights and limitations.
|
||
|
*
|
||
|
* The Original Code is the cairo graphics library.
|
||
|
*
|
||
|
* The Initial Developer of the Original Code is University of Southern
|
||
|
* California.
|
||
|
*
|
||
|
* Contributor(s):
|
||
|
* Carl D. Worth <cworth@cworth.org>
|
||
|
*/
|
||
|
|
||
|
#include "cairoint.h"
|
||
|
|
||
|
#include "cairo-slope-private.h"
|
||
|
|
||
|
cairo_bool_t
|
||
|
_cairo_spline_init (cairo_spline_t *spline,
|
||
|
cairo_spline_add_point_func_t add_point_func,
|
||
|
void *closure,
|
||
|
const cairo_point_t *a, const cairo_point_t *b,
|
||
|
const cairo_point_t *c, const cairo_point_t *d)
|
||
|
{
|
||
|
spline->add_point_func = add_point_func;
|
||
|
spline->closure = closure;
|
||
|
|
||
|
spline->knots.a = *a;
|
||
|
spline->knots.b = *b;
|
||
|
spline->knots.c = *c;
|
||
|
spline->knots.d = *d;
|
||
|
|
||
|
if (a->x != b->x || a->y != b->y)
|
||
|
_cairo_slope_init (&spline->initial_slope, &spline->knots.a, &spline->knots.b);
|
||
|
else if (a->x != c->x || a->y != c->y)
|
||
|
_cairo_slope_init (&spline->initial_slope, &spline->knots.a, &spline->knots.c);
|
||
|
else if (a->x != d->x || a->y != d->y)
|
||
|
_cairo_slope_init (&spline->initial_slope, &spline->knots.a, &spline->knots.d);
|
||
|
else
|
||
|
return FALSE;
|
||
|
|
||
|
if (c->x != d->x || c->y != d->y)
|
||
|
_cairo_slope_init (&spline->final_slope, &spline->knots.c, &spline->knots.d);
|
||
|
else if (b->x != d->x || b->y != d->y)
|
||
|
_cairo_slope_init (&spline->final_slope, &spline->knots.b, &spline->knots.d);
|
||
|
else
|
||
|
_cairo_slope_init (&spline->final_slope, &spline->knots.a, &spline->knots.d);
|
||
|
|
||
|
return TRUE;
|
||
|
}
|
||
|
|
||
|
static cairo_status_t
|
||
|
_cairo_spline_add_point (cairo_spline_t *spline, cairo_point_t *point)
|
||
|
{
|
||
|
cairo_point_t *prev;
|
||
|
|
||
|
prev = &spline->last_point;
|
||
|
if (prev->x == point->x && prev->y == point->y)
|
||
|
return CAIRO_STATUS_SUCCESS;
|
||
|
|
||
|
spline->last_point = *point;
|
||
|
return spline->add_point_func (spline->closure, point);
|
||
|
}
|
||
|
|
||
|
static void
|
||
|
_lerp_half (const cairo_point_t *a, const cairo_point_t *b, cairo_point_t *result)
|
||
|
{
|
||
|
result->x = a->x + ((b->x - a->x) >> 1);
|
||
|
result->y = a->y + ((b->y - a->y) >> 1);
|
||
|
}
|
||
|
|
||
|
static void
|
||
|
_de_casteljau (cairo_spline_knots_t *s1, cairo_spline_knots_t *s2)
|
||
|
{
|
||
|
cairo_point_t ab, bc, cd;
|
||
|
cairo_point_t abbc, bccd;
|
||
|
cairo_point_t final;
|
||
|
|
||
|
_lerp_half (&s1->a, &s1->b, &ab);
|
||
|
_lerp_half (&s1->b, &s1->c, &bc);
|
||
|
_lerp_half (&s1->c, &s1->d, &cd);
|
||
|
_lerp_half (&ab, &bc, &abbc);
|
||
|
_lerp_half (&bc, &cd, &bccd);
|
||
|
_lerp_half (&abbc, &bccd, &final);
|
||
|
|
||
|
s2->a = final;
|
||
|
s2->b = bccd;
|
||
|
s2->c = cd;
|
||
|
s2->d = s1->d;
|
||
|
|
||
|
s1->b = ab;
|
||
|
s1->c = abbc;
|
||
|
s1->d = final;
|
||
|
}
|
||
|
|
||
|
/* Return an upper bound on the error (squared) that could result from
|
||
|
* approximating a spline as a line segment connecting the two endpoints. */
|
||
|
static double
|
||
|
_cairo_spline_error_squared (const cairo_spline_knots_t *knots)
|
||
|
{
|
||
|
double bdx, bdy, berr;
|
||
|
double cdx, cdy, cerr;
|
||
|
|
||
|
/* We are going to compute the distance (squared) between each of the the b
|
||
|
* and c control points and the segment a-b. The maximum of these two
|
||
|
* distances will be our approximation error. */
|
||
|
|
||
|
bdx = _cairo_fixed_to_double (knots->b.x - knots->a.x);
|
||
|
bdy = _cairo_fixed_to_double (knots->b.y - knots->a.y);
|
||
|
|
||
|
cdx = _cairo_fixed_to_double (knots->c.x - knots->a.x);
|
||
|
cdy = _cairo_fixed_to_double (knots->c.y - knots->a.y);
|
||
|
|
||
|
if (knots->a.x != knots->d.x || knots->a.y != knots->d.y) {
|
||
|
/* Intersection point (px):
|
||
|
* px = p1 + u(p2 - p1)
|
||
|
* (p - px) ∙ (p2 - p1) = 0
|
||
|
* Thus:
|
||
|
* u = ((p - p1) ∙ (p2 - p1)) / ∥p2 - p1∥²;
|
||
|
*/
|
||
|
|
||
|
double dx, dy, u, v;
|
||
|
|
||
|
dx = _cairo_fixed_to_double (knots->d.x - knots->a.x);
|
||
|
dy = _cairo_fixed_to_double (knots->d.y - knots->a.y);
|
||
|
v = dx * dx + dy * dy;
|
||
|
|
||
|
u = bdx * dx + bdy * dy;
|
||
|
if (u <= 0) {
|
||
|
/* bdx -= 0;
|
||
|
* bdy -= 0;
|
||
|
*/
|
||
|
} else if (u >= v) {
|
||
|
bdx -= dx;
|
||
|
bdy -= dy;
|
||
|
} else {
|
||
|
bdx -= u/v * dx;
|
||
|
bdy -= u/v * dy;
|
||
|
}
|
||
|
|
||
|
u = cdx * dx + cdy * dy;
|
||
|
if (u <= 0) {
|
||
|
/* cdx -= 0;
|
||
|
* cdy -= 0;
|
||
|
*/
|
||
|
} else if (u >= v) {
|
||
|
cdx -= dx;
|
||
|
cdy -= dy;
|
||
|
} else {
|
||
|
cdx -= u/v * dx;
|
||
|
cdy -= u/v * dy;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
berr = bdx * bdx + bdy * bdy;
|
||
|
cerr = cdx * cdx + cdy * cdy;
|
||
|
if (berr > cerr)
|
||
|
return berr;
|
||
|
else
|
||
|
return cerr;
|
||
|
}
|
||
|
|
||
|
static cairo_status_t
|
||
|
_cairo_spline_decompose_into (cairo_spline_knots_t *s1, double tolerance_squared, cairo_spline_t *result)
|
||
|
{
|
||
|
cairo_spline_knots_t s2;
|
||
|
cairo_status_t status;
|
||
|
|
||
|
if (_cairo_spline_error_squared (s1) < tolerance_squared)
|
||
|
return _cairo_spline_add_point (result, &s1->a);
|
||
|
|
||
|
_de_casteljau (s1, &s2);
|
||
|
|
||
|
status = _cairo_spline_decompose_into (s1, tolerance_squared, result);
|
||
|
if (unlikely (status))
|
||
|
return status;
|
||
|
|
||
|
return _cairo_spline_decompose_into (&s2, tolerance_squared, result);
|
||
|
}
|
||
|
|
||
|
cairo_status_t
|
||
|
_cairo_spline_decompose (cairo_spline_t *spline, double tolerance)
|
||
|
{
|
||
|
cairo_spline_knots_t s1;
|
||
|
cairo_status_t status;
|
||
|
|
||
|
s1 = spline->knots;
|
||
|
spline->last_point = s1.a;
|
||
|
status = _cairo_spline_decompose_into (&s1, tolerance * tolerance, spline);
|
||
|
if (unlikely (status))
|
||
|
return status;
|
||
|
|
||
|
return _cairo_spline_add_point (spline, &spline->knots.d);
|
||
|
}
|
||
|
|
||
|
/* Note: this function is only good for computing bounds in device space. */
|
||
|
cairo_status_t
|
||
|
_cairo_spline_bound (cairo_spline_add_point_func_t add_point_func,
|
||
|
void *closure,
|
||
|
const cairo_point_t *p0, const cairo_point_t *p1,
|
||
|
const cairo_point_t *p2, const cairo_point_t *p3)
|
||
|
{
|
||
|
double x0, x1, x2, x3;
|
||
|
double y0, y1, y2, y3;
|
||
|
double a, b, c;
|
||
|
double t[4];
|
||
|
int t_num = 0, i;
|
||
|
cairo_status_t status;
|
||
|
|
||
|
x0 = _cairo_fixed_to_double (p0->x);
|
||
|
y0 = _cairo_fixed_to_double (p0->y);
|
||
|
x1 = _cairo_fixed_to_double (p1->x);
|
||
|
y1 = _cairo_fixed_to_double (p1->y);
|
||
|
x2 = _cairo_fixed_to_double (p2->x);
|
||
|
y2 = _cairo_fixed_to_double (p2->y);
|
||
|
x3 = _cairo_fixed_to_double (p3->x);
|
||
|
y3 = _cairo_fixed_to_double (p3->y);
|
||
|
|
||
|
/* The spline can be written as a polynomial of the four points:
|
||
|
*
|
||
|
* (1-t)³p0 + 3t(1-t)²p1 + 3t²(1-t)p2 + t³p3
|
||
|
*
|
||
|
* for 0≤t≤1. Now, the X and Y components of the spline follow the
|
||
|
* same polynomial but with x and y replaced for p. To find the
|
||
|
* bounds of the spline, we just need to find the X and Y bounds.
|
||
|
* To find the bound, we take the derivative and equal it to zero,
|
||
|
* and solve to find the t's that give the extreme points.
|
||
|
*
|
||
|
* Here is the derivative of the curve, sorted on t:
|
||
|
*
|
||
|
* 3t²(-p0+3p1-3p2+p3) + 2t(3p0-6p1+3p2) -3p0+3p1
|
||
|
*
|
||
|
* Let:
|
||
|
*
|
||
|
* a = -p0+3p1-3p2+p3
|
||
|
* b = p0-2p1+p2
|
||
|
* c = -p0+p1
|
||
|
*
|
||
|
* Gives:
|
||
|
*
|
||
|
* a.t² + 2b.t + c = 0
|
||
|
*
|
||
|
* With:
|
||
|
*
|
||
|
* delta = b*b - a*c
|
||
|
*
|
||
|
* the extreme points are at -c/2b if a is zero, at (-b±√delta)/a if
|
||
|
* delta is positive, and at -b/a if delta is zero.
|
||
|
*/
|
||
|
|
||
|
#define ADD(t0) \
|
||
|
{ \
|
||
|
double _t0 = (t0); \
|
||
|
if (0 < _t0 && _t0 < 1) \
|
||
|
t[t_num++] = _t0; \
|
||
|
}
|
||
|
|
||
|
#define FIND_EXTREMES(a,b,c) \
|
||
|
{ \
|
||
|
if (a == 0) { \
|
||
|
if (b != 0) \
|
||
|
ADD (-c / (2*b)); \
|
||
|
} else { \
|
||
|
double b2 = b * b; \
|
||
|
double delta = b2 - a * c; \
|
||
|
if (delta > 0) { \
|
||
|
cairo_bool_t feasible; \
|
||
|
double _2ab = 2 * a * b; \
|
||
|
/* We are only interested in solutions t that satisfy 0<t<1 \
|
||
|
* here. We do some checks to avoid sqrt if the solutions \
|
||
|
* are not in that range. The checks can be derived from: \
|
||
|
* \
|
||
|
* 0 < (-b±√delta)/a < 1 \
|
||
|
*/ \
|
||
|
if (_2ab >= 0) \
|
||
|
feasible = delta > b2 && delta < a*a + b2 + _2ab; \
|
||
|
else if (-b / a >= 1) \
|
||
|
feasible = delta < b2 && delta > a*a + b2 + _2ab; \
|
||
|
else \
|
||
|
feasible = delta < b2 || delta < a*a + b2 + _2ab; \
|
||
|
\
|
||
|
if (unlikely (feasible)) { \
|
||
|
double sqrt_delta = sqrt (delta); \
|
||
|
ADD ((-b - sqrt_delta) / a); \
|
||
|
ADD ((-b + sqrt_delta) / a); \
|
||
|
} \
|
||
|
} else if (delta == 0) { \
|
||
|
ADD (-b / a); \
|
||
|
} \
|
||
|
} \
|
||
|
}
|
||
|
|
||
|
/* Find X extremes */
|
||
|
a = -x0 + 3*x1 - 3*x2 + x3;
|
||
|
b = x0 - 2*x1 + x2;
|
||
|
c = -x0 + x1;
|
||
|
FIND_EXTREMES (a, b, c);
|
||
|
|
||
|
/* Find Y extremes */
|
||
|
a = -y0 + 3*y1 - 3*y2 + y3;
|
||
|
b = y0 - 2*y1 + y2;
|
||
|
c = -y0 + y1;
|
||
|
FIND_EXTREMES (a, b, c);
|
||
|
|
||
|
status = add_point_func (closure, p0);
|
||
|
if (unlikely (status))
|
||
|
return status;
|
||
|
|
||
|
for (i = 0; i < t_num; i++) {
|
||
|
cairo_point_t p;
|
||
|
double x, y;
|
||
|
double t_1_0, t_0_1;
|
||
|
double t_2_0, t_0_2;
|
||
|
double t_3_0, t_2_1_3, t_1_2_3, t_0_3;
|
||
|
|
||
|
t_1_0 = t[i]; /* t */
|
||
|
t_0_1 = 1 - t_1_0; /* (1 - t) */
|
||
|
|
||
|
t_2_0 = t_1_0 * t_1_0; /* t * t */
|
||
|
t_0_2 = t_0_1 * t_0_1; /* (1 - t) * (1 - t) */
|
||
|
|
||
|
t_3_0 = t_2_0 * t_1_0; /* t * t * t */
|
||
|
t_2_1_3 = t_2_0 * t_0_1 * 3; /* t * t * (1 - t) * 3 */
|
||
|
t_1_2_3 = t_1_0 * t_0_2 * 3; /* t * (1 - t) * (1 - t) * 3 */
|
||
|
t_0_3 = t_0_1 * t_0_2; /* (1 - t) * (1 - t) * (1 - t) */
|
||
|
|
||
|
/* Bezier polynomial */
|
||
|
x = x0 * t_0_3
|
||
|
+ x1 * t_1_2_3
|
||
|
+ x2 * t_2_1_3
|
||
|
+ x3 * t_3_0;
|
||
|
y = y0 * t_0_3
|
||
|
+ y1 * t_1_2_3
|
||
|
+ y2 * t_2_1_3
|
||
|
+ y3 * t_3_0;
|
||
|
|
||
|
p.x = _cairo_fixed_from_double (x);
|
||
|
p.y = _cairo_fixed_from_double (y);
|
||
|
status = add_point_func (closure, &p);
|
||
|
if (unlikely (status))
|
||
|
return status;
|
||
|
}
|
||
|
|
||
|
return add_point_func (closure, p3);
|
||
|
}
|