1
0
kolibrios/contrib/media/updf/include/numbers.h

182 lines
6.6 KiB
C
Raw Normal View History

#ifndef __numbers_h__
#define __numbers_h__
#include "lispenvironment.h"
#include "yacasbase.h"
/// Whether the numeric library supports 1.0E-10 and such.
LispInt NumericSupportForMantissa();
LispObject* GcdInteger(LispObject* int1, LispObject* int2, LispEnvironment& aEnvironment);
LispObject* SinFloat(LispObject* int1, LispEnvironment& aEnvironment,LispInt aPrecision);
LispObject* CosFloat(LispObject* int1, LispEnvironment& aEnvironment,LispInt aPrecision);
LispObject* TanFloat(LispObject* int1, LispEnvironment& aEnvironment,LispInt aPrecision);
LispObject* ArcSinFloat(LispObject* int1, LispEnvironment& aEnvironment,LispInt aPrecision);
LispObject* ExpFloat(LispObject* int1, LispEnvironment& aEnvironment,LispInt aPrecision);
LispObject* LnFloat(LispObject* int1, LispEnvironment& aEnvironment,LispInt aPrecision);
LispObject* SqrtFloat(LispObject* int1, LispEnvironment& aEnvironment,LispInt aPrecision);
LispObject* ModFloat( LispObject* int1, LispObject* int2, LispEnvironment& aEnvironment,
LispInt aPrecision);
LispObject* PowerFloat(LispObject* int1, LispObject* int2,
LispEnvironment& aEnvironment,LispInt aPrecision);
LispObject* ShiftLeft( LispObject* int1, LispObject* int2, LispEnvironment& aEnvironment,LispInt aPrecision);
LispObject* ShiftRight( LispObject* int1, LispObject* int2, LispEnvironment& aEnvironment,LispInt aPrecision);
LispObject* LispFactorial(LispObject* int1, LispEnvironment& aEnvironment,LispInt aPrecision);
// methods generally useful for all numeric libraries
const unsigned GUARD_BITS = 8; // we leave this many guard bits untruncated in various situations when we need to truncate precision by hand
template<class T> inline T MAX(T x, T y) { if (x<y) return y; else return x; }
template<class T> inline T MIN(T x, T y) { if (x>y) return y; else return x; }
const long DIST_BITS = 1; // at least this many bits of difference - used in precision tracking
/// DIST(x, y) returns 1 if abs(x-y) >= DIST_BITS. See documentation for precision tracking.
template<class T> inline T DIST(T x, T y) { return (x>=y+DIST_BITS || y>=x+DIST_BITS) ? 0 : 1; }
/** Base number class.
*/
class ANumber;
/// Main class for multiple-precision arithmetic.
/// All calculations are done at given precision. Integers grow as needed, floats don't grow beyond given precision.
class BigNumber : public YacasBase
{
public: //constructors
BigNumber(const LispChar * aString,LispInt aPrecision,LispInt aBase=10);
/// copy constructor
BigNumber(const BigNumber& aOther);
// no constructors from int or double to avoid automatic conversions
BigNumber(LispInt aPrecision = 20);
~BigNumber();
// assign from another number
void SetTo(const BigNumber& aOther);
// assign from string, precision in base digits
void SetTo(const LispChar * aString,LispInt aPrecision,LispInt aBase=10);
// assign from a platform type
void SetTo(long value);
inline void SetTo(LispInt value) { SetTo(long(value)); };
void SetTo(double value);
public: // Convert back to other types
/// ToString : return string representation of number in aResult to given precision (base digits)
void ToString(LispString& aResult, LispInt aPrecision, LispInt aBase=10) const;
/// Give approximate representation as a double number
double Double() const;
public://basic object manipulation
LispBoolean Equals(const BigNumber& aOther) const;
LispBoolean IsInt() const;
LispBoolean IsIntValue() const;
LispBoolean IsSmall() const;
void BecomeInt();
void BecomeFloat(LispInt aPrecision=0);
LispBoolean LessThan(const BigNumber& aOther) const;
public://arithmetic
/// Multiply two numbers at given precision and put result in *this
void Multiply(const BigNumber& aX, const BigNumber& aY, LispInt aPrecision);
/** Multiply two numbers, and add to *this (this is useful and generally efficient to implement).
* This is most likely going to be used by internal functions only, using aResult as an accumulator.
*/
void MultiplyAdd(const BigNumber& aX, const BigNumber& aY, LispInt aPrecision);
/// Add two numbers at given precision and return result in *this
void Add(const BigNumber& aX, const BigNumber& aY, LispInt aPrecision);
/// Negate the given number, return result in *this
void Negate(const BigNumber& aX);
/// Divide two numbers and return result in *this. Note: if the two arguments are integer, it should return an integer result!
void Divide(const BigNumber& aX, const BigNumber& aY, LispInt aPrecision);
/// integer operation: *this = y mod z
void Mod(const BigNumber& aY, const BigNumber& aZ);
/// For debugging purposes, dump internal state of this object into a string
void DumpDebugInfo();
public:
/// assign self to Floor(aX) if possible
void Floor(const BigNumber& aX);
/// set precision (in bits)
void Precision(LispInt aPrecision);
public:/// Bitwise operations, return result in *this.
void ShiftLeft( const BigNumber& aX, LispInt aNrToShift);
void ShiftRight( const BigNumber& aX, LispInt aNrToShift);
void BitAnd(const BigNumber& aX, const BigNumber& aY);
void BitOr(const BigNumber& aX, const BigNumber& aY);
void BitXor(const BigNumber& aX, const BigNumber& aY);
void BitNot(const BigNumber& aX);
/// Bit count operation: return the number of significant bits if integer, return the binary exponent if float (shortcut for binary logarithm)
/// give bit count as a platform integer
signed long BitCount() const;
/// Give sign (-1, 0, 1)
LispInt Sign() const;
public:
inline LispInt GetPrecision() const {return iPrecision;};
private:
BigNumber& operator=(const BigNumber& aOther)
{
// copy constructor not written yet, hence the assert
LISPASSERT(0);
return *this;
}
public:
ReferenceCount iReferenceCount;
private:
LispInt iPrecision;
public:
/// Internal library wrapper starts here.
inline void SetIsInteger(LispBoolean aIsInteger) {iType = (aIsInteger ? KInt : KFloat);}
enum ENumType
{
KInt = 0,
KFloat
};
ENumType iType;
ANumber* iNumber;
/// Internal library wrapper ends here.
};
/// bits_to_digits and digits_to_bits, utility functions
/// to convert the number of digits in some base (usually 10) to bits and back
// lookup table for Ln(n)/Ln(2). This works whether or not we have math.h.
// table range is from 2 to this value:
unsigned log2_table_range();
// convert the number of digits in given base to the number of bits, and back.
// need to round the number of digits.
// These functions only work for aBase inside the allowed table range.
unsigned long digits_to_bits(unsigned long aDigits, unsigned aBase);
unsigned long bits_to_digits(unsigned long abits, unsigned aBase);
#endif