1
0
kolibrios/contrib/sdk/sources/pixman/pixman-combine32.c

2505 lines
69 KiB
C
Raw Normal View History

/*
* Copyright © 2000 Keith Packard, member of The XFree86 Project, Inc.
* 2005 Lars Knoll & Zack Rusin, Trolltech
*
* Permission to use, copy, modify, distribute, and sell this software and its
* documentation for any purpose is hereby granted without fee, provided that
* the above copyright notice appear in all copies and that both that
* copyright notice and this permission notice appear in supporting
* documentation, and that the name of Keith Packard not be used in
* advertising or publicity pertaining to distribution of the software without
* specific, written prior permission. Keith Packard makes no
* representations about the suitability of this software for any purpose. It
* is provided "as is" without express or implied warranty.
*
* THE COPYRIGHT HOLDERS DISCLAIM ALL WARRANTIES WITH REGARD TO THIS
* SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND
* FITNESS, IN NO EVENT SHALL THE COPYRIGHT HOLDERS BE LIABLE FOR ANY
* SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN
* AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING
* OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS
* SOFTWARE.
*/
#ifdef HAVE_CONFIG_H
#include <config.h>
#endif
#include <math.h>
#include <string.h>
#include "pixman-private.h"
#include "pixman-combine32.h"
/* component alpha helper functions */
static void
combine_mask_ca (uint32_t *src, uint32_t *mask)
{
uint32_t a = *mask;
uint32_t x;
uint16_t xa;
if (!a)
{
*(src) = 0;
return;
}
x = *(src);
if (a == ~0)
{
x = x >> A_SHIFT;
x |= x << G_SHIFT;
x |= x << R_SHIFT;
*(mask) = x;
return;
}
xa = x >> A_SHIFT;
UN8x4_MUL_UN8x4 (x, a);
*(src) = x;
UN8x4_MUL_UN8 (a, xa);
*(mask) = a;
}
static void
combine_mask_value_ca (uint32_t *src, const uint32_t *mask)
{
uint32_t a = *mask;
uint32_t x;
if (!a)
{
*(src) = 0;
return;
}
if (a == ~0)
return;
x = *(src);
UN8x4_MUL_UN8x4 (x, a);
*(src) = x;
}
static void
combine_mask_alpha_ca (const uint32_t *src, uint32_t *mask)
{
uint32_t a = *(mask);
uint32_t x;
if (!a)
return;
x = *(src) >> A_SHIFT;
if (x == MASK)
return;
if (a == ~0)
{
x |= x << G_SHIFT;
x |= x << R_SHIFT;
*(mask) = x;
return;
}
UN8x4_MUL_UN8 (a, x);
*(mask) = a;
}
/*
* There are two ways of handling alpha -- either as a single unified value or
* a separate value for each component, hence each macro must have two
* versions. The unified alpha version has a 'u' at the end of the name,
* the component version has a 'ca'. Similarly, functions which deal with
* this difference will have two versions using the same convention.
*/
static force_inline uint32_t
combine_mask (const uint32_t *src, const uint32_t *mask, int i)
{
uint32_t s, m;
if (mask)
{
m = *(mask + i) >> A_SHIFT;
if (!m)
return 0;
}
s = *(src + i);
if (mask)
UN8x4_MUL_UN8 (s, m);
return s;
}
static void
combine_clear (pixman_implementation_t *imp,
pixman_op_t op,
uint32_t * dest,
const uint32_t * src,
const uint32_t * mask,
int width)
{
memset (dest, 0, width * sizeof(uint32_t));
}
static void
combine_dst (pixman_implementation_t *imp,
pixman_op_t op,
uint32_t * dest,
const uint32_t * src,
const uint32_t * mask,
int width)
{
return;
}
static void
combine_src_u (pixman_implementation_t *imp,
pixman_op_t op,
uint32_t * dest,
const uint32_t * src,
const uint32_t * mask,
int width)
{
int i;
if (!mask)
{
memcpy (dest, src, width * sizeof (uint32_t));
}
else
{
for (i = 0; i < width; ++i)
{
uint32_t s = combine_mask (src, mask, i);
*(dest + i) = s;
}
}
}
static void
combine_over_u (pixman_implementation_t *imp,
pixman_op_t op,
uint32_t * dest,
const uint32_t * src,
const uint32_t * mask,
int width)
{
int i;
if (!mask)
{
for (i = 0; i < width; ++i)
{
uint32_t s = *(src + i);
uint32_t a = ALPHA_8 (s);
if (a == 0xFF)
{
*(dest + i) = s;
}
else if (s)
{
uint32_t d = *(dest + i);
uint32_t ia = a ^ 0xFF;
UN8x4_MUL_UN8_ADD_UN8x4 (d, ia, s);
*(dest + i) = d;
}
}
}
else
{
for (i = 0; i < width; ++i)
{
uint32_t m = ALPHA_8 (*(mask + i));
if (m == 0xFF)
{
uint32_t s = *(src + i);
uint32_t a = ALPHA_8 (s);
if (a == 0xFF)
{
*(dest + i) = s;
}
else if (s)
{
uint32_t d = *(dest + i);
uint32_t ia = a ^ 0xFF;
UN8x4_MUL_UN8_ADD_UN8x4 (d, ia, s);
*(dest + i) = d;
}
}
else if (m)
{
uint32_t s = *(src + i);
if (s)
{
uint32_t d = *(dest + i);
UN8x4_MUL_UN8 (s, m);
UN8x4_MUL_UN8_ADD_UN8x4 (d, ALPHA_8 (~s), s);
*(dest + i) = d;
}
}
}
}
}
static void
combine_over_reverse_u (pixman_implementation_t *imp,
pixman_op_t op,
uint32_t * dest,
const uint32_t * src,
const uint32_t * mask,
int width)
{
int i;
for (i = 0; i < width; ++i)
{
uint32_t s = combine_mask (src, mask, i);
uint32_t d = *(dest + i);
uint32_t ia = ALPHA_8 (~*(dest + i));
UN8x4_MUL_UN8_ADD_UN8x4 (s, ia, d);
*(dest + i) = s;
}
}
static void
combine_in_u (pixman_implementation_t *imp,
pixman_op_t op,
uint32_t * dest,
const uint32_t * src,
const uint32_t * mask,
int width)
{
int i;
for (i = 0; i < width; ++i)
{
uint32_t s = combine_mask (src, mask, i);
uint32_t a = ALPHA_8 (*(dest + i));
UN8x4_MUL_UN8 (s, a);
*(dest + i) = s;
}
}
static void
combine_in_reverse_u (pixman_implementation_t *imp,
pixman_op_t op,
uint32_t * dest,
const uint32_t * src,
const uint32_t * mask,
int width)
{
int i;
for (i = 0; i < width; ++i)
{
uint32_t s = combine_mask (src, mask, i);
uint32_t d = *(dest + i);
uint32_t a = ALPHA_8 (s);
UN8x4_MUL_UN8 (d, a);
*(dest + i) = d;
}
}
static void
combine_out_u (pixman_implementation_t *imp,
pixman_op_t op,
uint32_t * dest,
const uint32_t * src,
const uint32_t * mask,
int width)
{
int i;
for (i = 0; i < width; ++i)
{
uint32_t s = combine_mask (src, mask, i);
uint32_t a = ALPHA_8 (~*(dest + i));
UN8x4_MUL_UN8 (s, a);
*(dest + i) = s;
}
}
static void
combine_out_reverse_u (pixman_implementation_t *imp,
pixman_op_t op,
uint32_t * dest,
const uint32_t * src,
const uint32_t * mask,
int width)
{
int i;
for (i = 0; i < width; ++i)
{
uint32_t s = combine_mask (src, mask, i);
uint32_t d = *(dest + i);
uint32_t a = ALPHA_8 (~s);
UN8x4_MUL_UN8 (d, a);
*(dest + i) = d;
}
}
static void
combine_atop_u (pixman_implementation_t *imp,
pixman_op_t op,
uint32_t * dest,
const uint32_t * src,
const uint32_t * mask,
int width)
{
int i;
for (i = 0; i < width; ++i)
{
uint32_t s = combine_mask (src, mask, i);
uint32_t d = *(dest + i);
uint32_t dest_a = ALPHA_8 (d);
uint32_t src_ia = ALPHA_8 (~s);
UN8x4_MUL_UN8_ADD_UN8x4_MUL_UN8 (s, dest_a, d, src_ia);
*(dest + i) = s;
}
}
static void
combine_atop_reverse_u (pixman_implementation_t *imp,
pixman_op_t op,
uint32_t * dest,
const uint32_t * src,
const uint32_t * mask,
int width)
{
int i;
for (i = 0; i < width; ++i)
{
uint32_t s = combine_mask (src, mask, i);
uint32_t d = *(dest + i);
uint32_t src_a = ALPHA_8 (s);
uint32_t dest_ia = ALPHA_8 (~d);
UN8x4_MUL_UN8_ADD_UN8x4_MUL_UN8 (s, dest_ia, d, src_a);
*(dest + i) = s;
}
}
static void
combine_xor_u (pixman_implementation_t *imp,
pixman_op_t op,
uint32_t * dest,
const uint32_t * src,
const uint32_t * mask,
int width)
{
int i;
for (i = 0; i < width; ++i)
{
uint32_t s = combine_mask (src, mask, i);
uint32_t d = *(dest + i);
uint32_t src_ia = ALPHA_8 (~s);
uint32_t dest_ia = ALPHA_8 (~d);
UN8x4_MUL_UN8_ADD_UN8x4_MUL_UN8 (s, dest_ia, d, src_ia);
*(dest + i) = s;
}
}
static void
combine_add_u (pixman_implementation_t *imp,
pixman_op_t op,
uint32_t * dest,
const uint32_t * src,
const uint32_t * mask,
int width)
{
int i;
for (i = 0; i < width; ++i)
{
uint32_t s = combine_mask (src, mask, i);
uint32_t d = *(dest + i);
UN8x4_ADD_UN8x4 (d, s);
*(dest + i) = d;
}
}
static void
combine_saturate_u (pixman_implementation_t *imp,
pixman_op_t op,
uint32_t * dest,
const uint32_t * src,
const uint32_t * mask,
int width)
{
int i;
for (i = 0; i < width; ++i)
{
uint32_t s = combine_mask (src, mask, i);
uint32_t d = *(dest + i);
uint16_t sa, da;
sa = s >> A_SHIFT;
da = ~d >> A_SHIFT;
if (sa > da)
{
sa = DIV_UN8 (da, sa);
UN8x4_MUL_UN8 (s, sa);
}
;
UN8x4_ADD_UN8x4 (d, s);
*(dest + i) = d;
}
}
/*
* PDF blend modes:
* The following blend modes have been taken from the PDF ISO 32000
* specification, which at this point in time is available from
* http://www.adobe.com/devnet/acrobat/pdfs/PDF32000_2008.pdf
* The relevant chapters are 11.3.5 and 11.3.6.
* The formula for computing the final pixel color given in 11.3.6 is:
* αr × Cr = (1 αs) × αb × Cb + (1 αb) × αs × Cs + αb × αs × B(Cb, Cs)
* with B() being the blend function.
* Note that OVER is a special case of this operation, using B(Cb, Cs) = Cs
*
* These blend modes should match the SVG filter draft specification, as
* it has been designed to mirror ISO 32000. Note that at the current point
* no released draft exists that shows this, as the formulas have not been
* updated yet after the release of ISO 32000.
*
* The default implementation here uses the PDF_SEPARABLE_BLEND_MODE and
* PDF_NON_SEPARABLE_BLEND_MODE macros, which take the blend function as an
* argument. Note that this implementation operates on premultiplied colors,
* while the PDF specification does not. Therefore the code uses the formula
* Cra = (1 as) . Dca + (1 ad) . Sca + B(Dca, ad, Sca, as)
*/
/*
* Multiply
* B(Dca, ad, Sca, as) = Dca.Sca
*/
static void
combine_multiply_u (pixman_implementation_t *imp,
pixman_op_t op,
uint32_t * dest,
const uint32_t * src,
const uint32_t * mask,
int width)
{
int i;
for (i = 0; i < width; ++i)
{
uint32_t s = combine_mask (src, mask, i);
uint32_t d = *(dest + i);
uint32_t ss = s;
uint32_t src_ia = ALPHA_8 (~s);
uint32_t dest_ia = ALPHA_8 (~d);
UN8x4_MUL_UN8_ADD_UN8x4_MUL_UN8 (ss, dest_ia, d, src_ia);
UN8x4_MUL_UN8x4 (d, s);
UN8x4_ADD_UN8x4 (d, ss);
*(dest + i) = d;
}
}
static void
combine_multiply_ca (pixman_implementation_t *imp,
pixman_op_t op,
uint32_t * dest,
const uint32_t * src,
const uint32_t * mask,
int width)
{
int i;
for (i = 0; i < width; ++i)
{
uint32_t m = *(mask + i);
uint32_t s = *(src + i);
uint32_t d = *(dest + i);
uint32_t r = d;
uint32_t dest_ia = ALPHA_8 (~d);
combine_mask_ca (&s, &m);
UN8x4_MUL_UN8x4_ADD_UN8x4_MUL_UN8 (r, ~m, s, dest_ia);
UN8x4_MUL_UN8x4 (d, s);
UN8x4_ADD_UN8x4 (r, d);
*(dest + i) = r;
}
}
#define PDF_SEPARABLE_BLEND_MODE(name) \
static void \
combine_ ## name ## _u (pixman_implementation_t *imp, \
pixman_op_t op, \
uint32_t * dest, \
const uint32_t * src, \
const uint32_t * mask, \
int width) \
{ \
int i; \
for (i = 0; i < width; ++i) { \
uint32_t s = combine_mask (src, mask, i); \
uint32_t d = *(dest + i); \
uint8_t sa = ALPHA_8 (s); \
uint8_t isa = ~sa; \
uint8_t da = ALPHA_8 (d); \
uint8_t ida = ~da; \
uint32_t result; \
\
result = d; \
UN8x4_MUL_UN8_ADD_UN8x4_MUL_UN8 (result, isa, s, ida); \
\
*(dest + i) = result + \
(DIV_ONE_UN8 (sa * (uint32_t)da) << A_SHIFT) + \
(blend_ ## name (RED_8 (d), da, RED_8 (s), sa) << R_SHIFT) + \
(blend_ ## name (GREEN_8 (d), da, GREEN_8 (s), sa) << G_SHIFT) + \
(blend_ ## name (BLUE_8 (d), da, BLUE_8 (s), sa)); \
} \
} \
\
static void \
combine_ ## name ## _ca (pixman_implementation_t *imp, \
pixman_op_t op, \
uint32_t * dest, \
const uint32_t * src, \
const uint32_t * mask, \
int width) \
{ \
int i; \
for (i = 0; i < width; ++i) { \
uint32_t m = *(mask + i); \
uint32_t s = *(src + i); \
uint32_t d = *(dest + i); \
uint8_t da = ALPHA_8 (d); \
uint8_t ida = ~da; \
uint32_t result; \
\
combine_mask_ca (&s, &m); \
\
result = d; \
UN8x4_MUL_UN8x4_ADD_UN8x4_MUL_UN8 (result, ~m, s, ida); \
\
result += \
(DIV_ONE_UN8 (ALPHA_8 (m) * (uint32_t)da) << A_SHIFT) + \
(blend_ ## name (RED_8 (d), da, RED_8 (s), RED_8 (m)) << R_SHIFT) + \
(blend_ ## name (GREEN_8 (d), da, GREEN_8 (s), GREEN_8 (m)) << G_SHIFT) + \
(blend_ ## name (BLUE_8 (d), da, BLUE_8 (s), BLUE_8 (m))); \
\
*(dest + i) = result; \
} \
}
/*
* Screen
* B(Dca, ad, Sca, as) = Dca.sa + Sca.da - Dca.Sca
*/
static inline uint32_t
blend_screen (uint32_t dca, uint32_t da, uint32_t sca, uint32_t sa)
{
return DIV_ONE_UN8 (sca * da + dca * sa - sca * dca);
}
PDF_SEPARABLE_BLEND_MODE (screen)
/*
* Overlay
* B(Dca, Da, Sca, Sa) =
* if 2.Dca < Da
* 2.Sca.Dca
* otherwise
* Sa.Da - 2.(Da - Dca).(Sa - Sca)
*/
static inline uint32_t
blend_overlay (uint32_t dca, uint32_t da, uint32_t sca, uint32_t sa)
{
uint32_t rca;
if (2 * dca < da)
rca = 2 * sca * dca;
else
rca = sa * da - 2 * (da - dca) * (sa - sca);
return DIV_ONE_UN8 (rca);
}
PDF_SEPARABLE_BLEND_MODE (overlay)
/*
* Darken
* B(Dca, Da, Sca, Sa) = min (Sca.Da, Dca.Sa)
*/
static inline uint32_t
blend_darken (uint32_t dca, uint32_t da, uint32_t sca, uint32_t sa)
{
uint32_t s, d;
s = sca * da;
d = dca * sa;
return DIV_ONE_UN8 (s > d ? d : s);
}
PDF_SEPARABLE_BLEND_MODE (darken)
/*
* Lighten
* B(Dca, Da, Sca, Sa) = max (Sca.Da, Dca.Sa)
*/
static inline uint32_t
blend_lighten (uint32_t dca, uint32_t da, uint32_t sca, uint32_t sa)
{
uint32_t s, d;
s = sca * da;
d = dca * sa;
return DIV_ONE_UN8 (s > d ? s : d);
}
PDF_SEPARABLE_BLEND_MODE (lighten)
/*
* Color dodge
* B(Dca, Da, Sca, Sa) =
* if Dca == 0
* 0
* if Sca == Sa
* Sa.Da
* otherwise
* Sa.Da. min (1, Dca / Da / (1 - Sca/Sa))
*/
static inline uint32_t
blend_color_dodge (uint32_t dca, uint32_t da, uint32_t sca, uint32_t sa)
{
if (sca >= sa)
{
return dca == 0 ? 0 : DIV_ONE_UN8 (sa * da);
}
else
{
uint32_t rca = dca * sa / (sa - sca);
return DIV_ONE_UN8 (sa * MIN (rca, da));
}
}
PDF_SEPARABLE_BLEND_MODE (color_dodge)
/*
* Color burn
* B(Dca, Da, Sca, Sa) =
* if Dca == Da
* Sa.Da
* if Sca == 0
* 0
* otherwise
* Sa.Da.(1 - min (1, (1 - Dca/Da).Sa / Sca))
*/
static inline uint32_t
blend_color_burn (uint32_t dca, uint32_t da, uint32_t sca, uint32_t sa)
{
if (sca == 0)
{
return dca < da ? 0 : DIV_ONE_UN8 (sa * da);
}
else
{
uint32_t rca = (da - dca) * sa / sca;
return DIV_ONE_UN8 (sa * (MAX (rca, da) - rca));
}
}
PDF_SEPARABLE_BLEND_MODE (color_burn)
/*
* Hard light
* B(Dca, Da, Sca, Sa) =
* if 2.Sca < Sa
* 2.Sca.Dca
* otherwise
* Sa.Da - 2.(Da - Dca).(Sa - Sca)
*/
static inline uint32_t
blend_hard_light (uint32_t dca, uint32_t da, uint32_t sca, uint32_t sa)
{
if (2 * sca < sa)
return DIV_ONE_UN8 (2 * sca * dca);
else
return DIV_ONE_UN8 (sa * da - 2 * (da - dca) * (sa - sca));
}
PDF_SEPARABLE_BLEND_MODE (hard_light)
/*
* Soft light
* B(Dca, Da, Sca, Sa) =
* if (2.Sca <= Sa)
* Dca.(Sa - (1 - Dca/Da).(2.Sca - Sa))
* otherwise if Dca.4 <= Da
* Dca.(Sa + (2.Sca - Sa).((16.Dca/Da - 12).Dca/Da + 3)
* otherwise
* (Dca.Sa + (SQRT (Dca/Da).Da - Dca).(2.Sca - Sa))
*/
static inline uint32_t
blend_soft_light (uint32_t dca_org,
uint32_t da_org,
uint32_t sca_org,
uint32_t sa_org)
{
double dca = dca_org * (1.0 / MASK);
double da = da_org * (1.0 / MASK);
double sca = sca_org * (1.0 / MASK);
double sa = sa_org * (1.0 / MASK);
double rca;
if (2 * sca < sa)
{
if (da == 0)
rca = dca * sa;
else
rca = dca * sa - dca * (da - dca) * (sa - 2 * sca) / da;
}
else if (da == 0)
{
rca = 0;
}
else if (4 * dca <= da)
{
rca = dca * sa +
(2 * sca - sa) * dca * ((16 * dca / da - 12) * dca / da + 3);
}
else
{
rca = dca * sa + (sqrt (dca * da) - dca) * (2 * sca - sa);
}
return rca * MASK + 0.5;
}
PDF_SEPARABLE_BLEND_MODE (soft_light)
/*
* Difference
* B(Dca, Da, Sca, Sa) = abs (Dca.Sa - Sca.Da)
*/
static inline uint32_t
blend_difference (uint32_t dca, uint32_t da, uint32_t sca, uint32_t sa)
{
uint32_t dcasa = dca * sa;
uint32_t scada = sca * da;
if (scada < dcasa)
return DIV_ONE_UN8 (dcasa - scada);
else
return DIV_ONE_UN8 (scada - dcasa);
}
PDF_SEPARABLE_BLEND_MODE (difference)
/*
* Exclusion
* B(Dca, Da, Sca, Sa) = (Sca.Da + Dca.Sa - 2.Sca.Dca)
*/
/* This can be made faster by writing it directly and not using
* PDF_SEPARABLE_BLEND_MODE, but that's a performance optimization */
static inline uint32_t
blend_exclusion (uint32_t dca, uint32_t da, uint32_t sca, uint32_t sa)
{
return DIV_ONE_UN8 (sca * da + dca * sa - 2 * dca * sca);
}
PDF_SEPARABLE_BLEND_MODE (exclusion)
#undef PDF_SEPARABLE_BLEND_MODE
/*
* PDF nonseperable blend modes are implemented using the following functions
* to operate in Hsl space, with Cmax, Cmid, Cmin referring to the max, mid
* and min value of the red, green and blue components.
*
* LUM (C) = 0.3 × Cred + 0.59 × Cgreen + 0.11 × Cblue
*
* clip_color (C):
* l = LUM (C)
* min = Cmin
* max = Cmax
* if n < 0.0
* C = l + ( ( ( C l ) × l ) ( l min ) )
* if x > 1.0
* C = l + ( ( ( C l ) × ( 1 l ) ) ( max l ) )
* return C
*
* set_lum (C, l):
* d = l LUM (C)
* C += d
* return clip_color (C)
*
* SAT (C) = CH_MAX (C) - CH_MIN (C)
*
* set_sat (C, s):
* if Cmax > Cmin
* Cmid = ( ( ( Cmid Cmin ) × s ) ( Cmax Cmin ) )
* Cmax = s
* else
* Cmid = Cmax = 0.0
* Cmin = 0.0
* return C
*/
/* For premultiplied colors, we need to know what happens when C is
* multiplied by a real number. LUM and SAT are linear:
*
* LUM (r × C) = r × LUM (C) SAT (r * C) = r * SAT (C)
*
* If we extend clip_color with an extra argument a and change
*
* if x >= 1.0
*
* into
*
* if x >= a
*
* then clip_color is also linear:
*
* r * clip_color (C, a) = clip_color (r_c, ra);
*
* for positive r.
*
* Similarly, we can extend set_lum with an extra argument that is just passed
* on to clip_color:
*
* r * set_lum ( C, l, a)
*
* = r × clip_color ( C + l - LUM (C), a)
*
* = clip_color ( r * C + r × l - r * LUM (C), r * a)
*
* = set_lum ( r * C, r * l, r * a)
*
* Finally, set_sat:
*
* r * set_sat (C, s) = set_sat (x * C, r * s)
*
* The above holds for all non-zero x, because the x'es in the fraction for
* C_mid cancel out. Specifically, it holds for x = r:
*
* r * set_sat (C, s) = set_sat (r_c, rs)
*
*/
/* So, for the non-separable PDF blend modes, we have (using s, d for
* non-premultiplied colors, and S, D for premultiplied:
*
* Color:
*
* a_s * a_d * B(s, d)
* = a_s * a_d * set_lum (S/a_s, LUM (D/a_d), 1)
* = set_lum (S * a_d, a_s * LUM (D), a_s * a_d)
*
*
* Luminosity:
*
* a_s * a_d * B(s, d)
* = a_s * a_d * set_lum (D/a_d, LUM(S/a_s), 1)
* = set_lum (a_s * D, a_d * LUM(S), a_s * a_d)
*
*
* Saturation:
*
* a_s * a_d * B(s, d)
* = a_s * a_d * set_lum (set_sat (D/a_d, SAT (S/a_s)), LUM (D/a_d), 1)
* = set_lum (a_s * a_d * set_sat (D/a_d, SAT (S/a_s)),
* a_s * LUM (D), a_s * a_d)
* = set_lum (set_sat (a_s * D, a_d * SAT (S), a_s * LUM (D), a_s * a_d))
*
* Hue:
*
* a_s * a_d * B(s, d)
* = a_s * a_d * set_lum (set_sat (S/a_s, SAT (D/a_d)), LUM (D/a_d), 1)
* = set_lum (set_sat (a_d * S, a_s * SAT (D)), a_s * LUM (D), a_s * a_d)
*
*/
#define CH_MIN(c) (c[0] < c[1] ? (c[0] < c[2] ? c[0] : c[2]) : (c[1] < c[2] ? c[1] : c[2]))
#define CH_MAX(c) (c[0] > c[1] ? (c[0] > c[2] ? c[0] : c[2]) : (c[1] > c[2] ? c[1] : c[2]))
#define LUM(c) ((c[0] * 30 + c[1] * 59 + c[2] * 11) / 100)
#define SAT(c) (CH_MAX (c) - CH_MIN (c))
#define PDF_NON_SEPARABLE_BLEND_MODE(name) \
static void \
combine_ ## name ## _u (pixman_implementation_t *imp, \
pixman_op_t op, \
uint32_t *dest, \
const uint32_t *src, \
const uint32_t *mask, \
int width) \
{ \
int i; \
for (i = 0; i < width; ++i) \
{ \
uint32_t s = combine_mask (src, mask, i); \
uint32_t d = *(dest + i); \
uint8_t sa = ALPHA_8 (s); \
uint8_t isa = ~sa; \
uint8_t da = ALPHA_8 (d); \
uint8_t ida = ~da; \
uint32_t result; \
uint32_t sc[3], dc[3], c[3]; \
\
result = d; \
UN8x4_MUL_UN8_ADD_UN8x4_MUL_UN8 (result, isa, s, ida); \
dc[0] = RED_8 (d); \
sc[0] = RED_8 (s); \
dc[1] = GREEN_8 (d); \
sc[1] = GREEN_8 (s); \
dc[2] = BLUE_8 (d); \
sc[2] = BLUE_8 (s); \
blend_ ## name (c, dc, da, sc, sa); \
\
*(dest + i) = result + \
(DIV_ONE_UN8 (sa * (uint32_t)da) << A_SHIFT) + \
(DIV_ONE_UN8 (c[0]) << R_SHIFT) + \
(DIV_ONE_UN8 (c[1]) << G_SHIFT) + \
(DIV_ONE_UN8 (c[2])); \
} \
}
static void
set_lum (uint32_t dest[3], uint32_t src[3], uint32_t sa, uint32_t lum)
{
double a, l, min, max;
double tmp[3];
a = sa * (1.0 / MASK);
l = lum * (1.0 / MASK);
tmp[0] = src[0] * (1.0 / MASK);
tmp[1] = src[1] * (1.0 / MASK);
tmp[2] = src[2] * (1.0 / MASK);
l = l - LUM (tmp);
tmp[0] += l;
tmp[1] += l;
tmp[2] += l;
/* clip_color */
l = LUM (tmp);
min = CH_MIN (tmp);
max = CH_MAX (tmp);
if (min < 0)
{
if (l - min == 0.0)
{
tmp[0] = 0;
tmp[1] = 0;
tmp[2] = 0;
}
else
{
tmp[0] = l + (tmp[0] - l) * l / (l - min);
tmp[1] = l + (tmp[1] - l) * l / (l - min);
tmp[2] = l + (tmp[2] - l) * l / (l - min);
}
}
if (max > a)
{
if (max - l == 0.0)
{
tmp[0] = a;
tmp[1] = a;
tmp[2] = a;
}
else
{
tmp[0] = l + (tmp[0] - l) * (a - l) / (max - l);
tmp[1] = l + (tmp[1] - l) * (a - l) / (max - l);
tmp[2] = l + (tmp[2] - l) * (a - l) / (max - l);
}
}
dest[0] = tmp[0] * MASK + 0.5;
dest[1] = tmp[1] * MASK + 0.5;
dest[2] = tmp[2] * MASK + 0.5;
}
static void
set_sat (uint32_t dest[3], uint32_t src[3], uint32_t sat)
{
int id[3];
uint32_t min, max;
if (src[0] > src[1])
{
if (src[0] > src[2])
{
id[0] = 0;
if (src[1] > src[2])
{
id[1] = 1;
id[2] = 2;
}
else
{
id[1] = 2;
id[2] = 1;
}
}
else
{
id[0] = 2;
id[1] = 0;
id[2] = 1;
}
}
else
{
if (src[0] > src[2])
{
id[0] = 1;
id[1] = 0;
id[2] = 2;
}
else
{
id[2] = 0;
if (src[1] > src[2])
{
id[0] = 1;
id[1] = 2;
}
else
{
id[0] = 2;
id[1] = 1;
}
}
}
max = dest[id[0]];
min = dest[id[2]];
if (max > min)
{
dest[id[1]] = (dest[id[1]] - min) * sat / (max - min);
dest[id[0]] = sat;
dest[id[2]] = 0;
}
else
{
dest[0] = dest[1] = dest[2] = 0;
}
}
/*
* Hue:
* B(Cb, Cs) = set_lum (set_sat (Cs, SAT (Cb)), LUM (Cb))
*/
static inline void
blend_hsl_hue (uint32_t c[3],
uint32_t dc[3],
uint32_t da,
uint32_t sc[3],
uint32_t sa)
{
c[0] = sc[0] * da;
c[1] = sc[1] * da;
c[2] = sc[2] * da;
set_sat (c, c, SAT (dc) * sa);
set_lum (c, c, sa * da, LUM (dc) * sa);
}
PDF_NON_SEPARABLE_BLEND_MODE (hsl_hue)
/*
* Saturation:
* B(Cb, Cs) = set_lum (set_sat (Cb, SAT (Cs)), LUM (Cb))
*/
static inline void
blend_hsl_saturation (uint32_t c[3],
uint32_t dc[3],
uint32_t da,
uint32_t sc[3],
uint32_t sa)
{
c[0] = dc[0] * sa;
c[1] = dc[1] * sa;
c[2] = dc[2] * sa;
set_sat (c, c, SAT (sc) * da);
set_lum (c, c, sa * da, LUM (dc) * sa);
}
PDF_NON_SEPARABLE_BLEND_MODE (hsl_saturation)
/*
* Color:
* B(Cb, Cs) = set_lum (Cs, LUM (Cb))
*/
static inline void
blend_hsl_color (uint32_t c[3],
uint32_t dc[3],
uint32_t da,
uint32_t sc[3],
uint32_t sa)
{
c[0] = sc[0] * da;
c[1] = sc[1] * da;
c[2] = sc[2] * da;
set_lum (c, c, sa * da, LUM (dc) * sa);
}
PDF_NON_SEPARABLE_BLEND_MODE (hsl_color)
/*
* Luminosity:
* B(Cb, Cs) = set_lum (Cb, LUM (Cs))
*/
static inline void
blend_hsl_luminosity (uint32_t c[3],
uint32_t dc[3],
uint32_t da,
uint32_t sc[3],
uint32_t sa)
{
c[0] = dc[0] * sa;
c[1] = dc[1] * sa;
c[2] = dc[2] * sa;
set_lum (c, c, sa * da, LUM (sc) * da);
}
PDF_NON_SEPARABLE_BLEND_MODE (hsl_luminosity)
#undef SAT
#undef LUM
#undef CH_MAX
#undef CH_MIN
#undef PDF_NON_SEPARABLE_BLEND_MODE
/* All of the disjoint/conjoint composing functions
*
* The four entries in the first column indicate what source contributions
* come from each of the four areas of the picture -- areas covered by neither
* A nor B, areas covered only by A, areas covered only by B and finally
* areas covered by both A and B.
*
* Disjoint Conjoint
* Fa Fb Fa Fb
* (0,0,0,0) 0 0 0 0
* (0,A,0,A) 1 0 1 0
* (0,0,B,B) 0 1 0 1
* (0,A,B,A) 1 min((1-a)/b,1) 1 max(1-a/b,0)
* (0,A,B,B) min((1-b)/a,1) 1 max(1-b/a,0) 1
* (0,0,0,A) max(1-(1-b)/a,0) 0 min(1,b/a) 0
* (0,0,0,B) 0 max(1-(1-a)/b,0) 0 min(a/b,1)
* (0,A,0,0) min(1,(1-b)/a) 0 max(1-b/a,0) 0
* (0,0,B,0) 0 min(1,(1-a)/b) 0 max(1-a/b,0)
* (0,0,B,A) max(1-(1-b)/a,0) min(1,(1-a)/b) min(1,b/a) max(1-a/b,0)
* (0,A,0,B) min(1,(1-b)/a) max(1-(1-a)/b,0) max(1-b/a,0) min(1,a/b)
* (0,A,B,0) min(1,(1-b)/a) min(1,(1-a)/b) max(1-b/a,0) max(1-a/b,0)
*
* See http://marc.info/?l=xfree-render&m=99792000027857&w=2 for more
* information about these operators.
*/
#define COMBINE_A_OUT 1
#define COMBINE_A_IN 2
#define COMBINE_B_OUT 4
#define COMBINE_B_IN 8
#define COMBINE_CLEAR 0
#define COMBINE_A (COMBINE_A_OUT | COMBINE_A_IN)
#define COMBINE_B (COMBINE_B_OUT | COMBINE_B_IN)
#define COMBINE_A_OVER (COMBINE_A_OUT | COMBINE_B_OUT | COMBINE_A_IN)
#define COMBINE_B_OVER (COMBINE_A_OUT | COMBINE_B_OUT | COMBINE_B_IN)
#define COMBINE_A_ATOP (COMBINE_B_OUT | COMBINE_A_IN)
#define COMBINE_B_ATOP (COMBINE_A_OUT | COMBINE_B_IN)
#define COMBINE_XOR (COMBINE_A_OUT | COMBINE_B_OUT)
/* portion covered by a but not b */
static uint8_t
combine_disjoint_out_part (uint8_t a, uint8_t b)
{
/* min (1, (1-b) / a) */
b = ~b; /* 1 - b */
if (b >= a) /* 1 - b >= a -> (1-b)/a >= 1 */
return MASK; /* 1 */
return DIV_UN8 (b, a); /* (1-b) / a */
}
/* portion covered by both a and b */
static uint8_t
combine_disjoint_in_part (uint8_t a, uint8_t b)
{
/* max (1-(1-b)/a,0) */
/* = - min ((1-b)/a - 1, 0) */
/* = 1 - min (1, (1-b)/a) */
b = ~b; /* 1 - b */
if (b >= a) /* 1 - b >= a -> (1-b)/a >= 1 */
return 0; /* 1 - 1 */
return ~DIV_UN8(b, a); /* 1 - (1-b) / a */
}
/* portion covered by a but not b */
static uint8_t
combine_conjoint_out_part (uint8_t a, uint8_t b)
{
/* max (1-b/a,0) */
/* = 1-min(b/a,1) */
/* min (1, (1-b) / a) */
if (b >= a) /* b >= a -> b/a >= 1 */
return 0x00; /* 0 */
return ~DIV_UN8(b, a); /* 1 - b/a */
}
/* portion covered by both a and b */
static uint8_t
combine_conjoint_in_part (uint8_t a, uint8_t b)
{
/* min (1,b/a) */
if (b >= a) /* b >= a -> b/a >= 1 */
return MASK; /* 1 */
return DIV_UN8 (b, a); /* b/a */
}
#define GET_COMP(v, i) ((uint16_t) (uint8_t) ((v) >> i))
#define ADD(x, y, i, t) \
((t) = GET_COMP (x, i) + GET_COMP (y, i), \
(uint32_t) ((uint8_t) ((t) | (0 - ((t) >> G_SHIFT)))) << (i))
#define GENERIC(x, y, i, ax, ay, t, u, v) \
((t) = (MUL_UN8 (GET_COMP (y, i), ay, (u)) + \
MUL_UN8 (GET_COMP (x, i), ax, (v))), \
(uint32_t) ((uint8_t) ((t) | \
(0 - ((t) >> G_SHIFT)))) << (i))
static void
combine_disjoint_general_u (uint32_t * dest,
const uint32_t *src,
const uint32_t *mask,
int width,
uint8_t combine)
{
int i;
for (i = 0; i < width; ++i)
{
uint32_t s = combine_mask (src, mask, i);
uint32_t d = *(dest + i);
uint32_t m, n, o, p;
uint16_t Fa, Fb, t, u, v;
uint8_t sa = s >> A_SHIFT;
uint8_t da = d >> A_SHIFT;
switch (combine & COMBINE_A)
{
default:
Fa = 0;
break;
case COMBINE_A_OUT:
Fa = combine_disjoint_out_part (sa, da);
break;
case COMBINE_A_IN:
Fa = combine_disjoint_in_part (sa, da);
break;
case COMBINE_A:
Fa = MASK;
break;
}
switch (combine & COMBINE_B)
{
default:
Fb = 0;
break;
case COMBINE_B_OUT:
Fb = combine_disjoint_out_part (da, sa);
break;
case COMBINE_B_IN:
Fb = combine_disjoint_in_part (da, sa);
break;
case COMBINE_B:
Fb = MASK;
break;
}
m = GENERIC (s, d, 0, Fa, Fb, t, u, v);
n = GENERIC (s, d, G_SHIFT, Fa, Fb, t, u, v);
o = GENERIC (s, d, R_SHIFT, Fa, Fb, t, u, v);
p = GENERIC (s, d, A_SHIFT, Fa, Fb, t, u, v);
s = m | n | o | p;
*(dest + i) = s;
}
}
static void
combine_disjoint_over_u (pixman_implementation_t *imp,
pixman_op_t op,
uint32_t * dest,
const uint32_t * src,
const uint32_t * mask,
int width)
{
int i;
for (i = 0; i < width; ++i)
{
uint32_t s = combine_mask (src, mask, i);
uint16_t a = s >> A_SHIFT;
if (s != 0x00)
{
uint32_t d = *(dest + i);
a = combine_disjoint_out_part (d >> A_SHIFT, a);
UN8x4_MUL_UN8_ADD_UN8x4 (d, a, s);
*(dest + i) = d;
}
}
}
static void
combine_disjoint_in_u (pixman_implementation_t *imp,
pixman_op_t op,
uint32_t * dest,
const uint32_t * src,
const uint32_t * mask,
int width)
{
combine_disjoint_general_u (dest, src, mask, width, COMBINE_A_IN);
}
static void
combine_disjoint_in_reverse_u (pixman_implementation_t *imp,
pixman_op_t op,
uint32_t * dest,
const uint32_t * src,
const uint32_t * mask,
int width)
{
combine_disjoint_general_u (dest, src, mask, width, COMBINE_B_IN);
}
static void
combine_disjoint_out_u (pixman_implementation_t *imp,
pixman_op_t op,
uint32_t * dest,
const uint32_t * src,
const uint32_t * mask,
int width)
{
combine_disjoint_general_u (dest, src, mask, width, COMBINE_A_OUT);
}
static void
combine_disjoint_out_reverse_u (pixman_implementation_t *imp,
pixman_op_t op,
uint32_t * dest,
const uint32_t * src,
const uint32_t * mask,
int width)
{
combine_disjoint_general_u (dest, src, mask, width, COMBINE_B_OUT);
}
static void
combine_disjoint_atop_u (pixman_implementation_t *imp,
pixman_op_t op,
uint32_t * dest,
const uint32_t * src,
const uint32_t * mask,
int width)
{
combine_disjoint_general_u (dest, src, mask, width, COMBINE_A_ATOP);
}
static void
combine_disjoint_atop_reverse_u (pixman_implementation_t *imp,
pixman_op_t op,
uint32_t * dest,
const uint32_t * src,
const uint32_t * mask,
int width)
{
combine_disjoint_general_u (dest, src, mask, width, COMBINE_B_ATOP);
}
static void
combine_disjoint_xor_u (pixman_implementation_t *imp,
pixman_op_t op,
uint32_t * dest,
const uint32_t * src,
const uint32_t * mask,
int width)
{
combine_disjoint_general_u (dest, src, mask, width, COMBINE_XOR);
}
static void
combine_conjoint_general_u (uint32_t * dest,
const uint32_t *src,
const uint32_t *mask,
int width,
uint8_t combine)
{
int i;
for (i = 0; i < width; ++i)
{
uint32_t s = combine_mask (src, mask, i);
uint32_t d = *(dest + i);
uint32_t m, n, o, p;
uint16_t Fa, Fb, t, u, v;
uint8_t sa = s >> A_SHIFT;
uint8_t da = d >> A_SHIFT;
switch (combine & COMBINE_A)
{
default:
Fa = 0;
break;
case COMBINE_A_OUT:
Fa = combine_conjoint_out_part (sa, da);
break;
case COMBINE_A_IN:
Fa = combine_conjoint_in_part (sa, da);
break;
case COMBINE_A:
Fa = MASK;
break;
}
switch (combine & COMBINE_B)
{
default:
Fb = 0;
break;
case COMBINE_B_OUT:
Fb = combine_conjoint_out_part (da, sa);
break;
case COMBINE_B_IN:
Fb = combine_conjoint_in_part (da, sa);
break;
case COMBINE_B:
Fb = MASK;
break;
}
m = GENERIC (s, d, 0, Fa, Fb, t, u, v);
n = GENERIC (s, d, G_SHIFT, Fa, Fb, t, u, v);
o = GENERIC (s, d, R_SHIFT, Fa, Fb, t, u, v);
p = GENERIC (s, d, A_SHIFT, Fa, Fb, t, u, v);
s = m | n | o | p;
*(dest + i) = s;
}
}
static void
combine_conjoint_over_u (pixman_implementation_t *imp,
pixman_op_t op,
uint32_t * dest,
const uint32_t * src,
const uint32_t * mask,
int width)
{
combine_conjoint_general_u (dest, src, mask, width, COMBINE_A_OVER);
}
static void
combine_conjoint_over_reverse_u (pixman_implementation_t *imp,
pixman_op_t op,
uint32_t * dest,
const uint32_t * src,
const uint32_t * mask,
int width)
{
combine_conjoint_general_u (dest, src, mask, width, COMBINE_B_OVER);
}
static void
combine_conjoint_in_u (pixman_implementation_t *imp,
pixman_op_t op,
uint32_t * dest,
const uint32_t * src,
const uint32_t * mask,
int width)
{
combine_conjoint_general_u (dest, src, mask, width, COMBINE_A_IN);
}
static void
combine_conjoint_in_reverse_u (pixman_implementation_t *imp,
pixman_op_t op,
uint32_t * dest,
const uint32_t * src,
const uint32_t * mask,
int width)
{
combine_conjoint_general_u (dest, src, mask, width, COMBINE_B_IN);
}
static void
combine_conjoint_out_u (pixman_implementation_t *imp,
pixman_op_t op,
uint32_t * dest,
const uint32_t * src,
const uint32_t * mask,
int width)
{
combine_conjoint_general_u (dest, src, mask, width, COMBINE_A_OUT);
}
static void
combine_conjoint_out_reverse_u (pixman_implementation_t *imp,
pixman_op_t op,
uint32_t * dest,
const uint32_t * src,
const uint32_t * mask,
int width)
{
combine_conjoint_general_u (dest, src, mask, width, COMBINE_B_OUT);
}
static void
combine_conjoint_atop_u (pixman_implementation_t *imp,
pixman_op_t op,
uint32_t * dest,
const uint32_t * src,
const uint32_t * mask,
int width)
{
combine_conjoint_general_u (dest, src, mask, width, COMBINE_A_ATOP);
}
static void
combine_conjoint_atop_reverse_u (pixman_implementation_t *imp,
pixman_op_t op,
uint32_t * dest,
const uint32_t * src,
const uint32_t * mask,
int width)
{
combine_conjoint_general_u (dest, src, mask, width, COMBINE_B_ATOP);
}
static void
combine_conjoint_xor_u (pixman_implementation_t *imp,
pixman_op_t op,
uint32_t * dest,
const uint32_t * src,
const uint32_t * mask,
int width)
{
combine_conjoint_general_u (dest, src, mask, width, COMBINE_XOR);
}
/* Component alpha combiners */
static void
combine_clear_ca (pixman_implementation_t *imp,
pixman_op_t op,
uint32_t * dest,
const uint32_t * src,
const uint32_t * mask,
int width)
{
memset (dest, 0, width * sizeof(uint32_t));
}
static void
combine_src_ca (pixman_implementation_t *imp,
pixman_op_t op,
uint32_t * dest,
const uint32_t * src,
const uint32_t * mask,
int width)
{
int i;
for (i = 0; i < width; ++i)
{
uint32_t s = *(src + i);
uint32_t m = *(mask + i);
combine_mask_value_ca (&s, &m);
*(dest + i) = s;
}
}
static void
combine_over_ca (pixman_implementation_t *imp,
pixman_op_t op,
uint32_t * dest,
const uint32_t * src,
const uint32_t * mask,
int width)
{
int i;
for (i = 0; i < width; ++i)
{
uint32_t s = *(src + i);
uint32_t m = *(mask + i);
uint32_t a;
combine_mask_ca (&s, &m);
a = ~m;
if (a)
{
uint32_t d = *(dest + i);
UN8x4_MUL_UN8x4_ADD_UN8x4 (d, a, s);
s = d;
}
*(dest + i) = s;
}
}
static void
combine_over_reverse_ca (pixman_implementation_t *imp,
pixman_op_t op,
uint32_t * dest,
const uint32_t * src,
const uint32_t * mask,
int width)
{
int i;
for (i = 0; i < width; ++i)
{
uint32_t d = *(dest + i);
uint32_t a = ~d >> A_SHIFT;
if (a)
{
uint32_t s = *(src + i);
uint32_t m = *(mask + i);
UN8x4_MUL_UN8x4 (s, m);
UN8x4_MUL_UN8_ADD_UN8x4 (s, a, d);
*(dest + i) = s;
}
}
}
static void
combine_in_ca (pixman_implementation_t *imp,
pixman_op_t op,
uint32_t * dest,
const uint32_t * src,
const uint32_t * mask,
int width)
{
int i;
for (i = 0; i < width; ++i)
{
uint32_t d = *(dest + i);
uint16_t a = d >> A_SHIFT;
uint32_t s = 0;
if (a)
{
uint32_t m = *(mask + i);
s = *(src + i);
combine_mask_value_ca (&s, &m);
if (a != MASK)
UN8x4_MUL_UN8 (s, a);
}
*(dest + i) = s;
}
}
static void
combine_in_reverse_ca (pixman_implementation_t *imp,
pixman_op_t op,
uint32_t * dest,
const uint32_t * src,
const uint32_t * mask,
int width)
{
int i;
for (i = 0; i < width; ++i)
{
uint32_t s = *(src + i);
uint32_t m = *(mask + i);
uint32_t a;
combine_mask_alpha_ca (&s, &m);
a = m;
if (a != ~0)
{
uint32_t d = 0;
if (a)
{
d = *(dest + i);
UN8x4_MUL_UN8x4 (d, a);
}
*(dest + i) = d;
}
}
}
static void
combine_out_ca (pixman_implementation_t *imp,
pixman_op_t op,
uint32_t * dest,
const uint32_t * src,
const uint32_t * mask,
int width)
{
int i;
for (i = 0; i < width; ++i)
{
uint32_t d = *(dest + i);
uint16_t a = ~d >> A_SHIFT;
uint32_t s = 0;
if (a)
{
uint32_t m = *(mask + i);
s = *(src + i);
combine_mask_value_ca (&s, &m);
if (a != MASK)
UN8x4_MUL_UN8 (s, a);
}
*(dest + i) = s;
}
}
static void
combine_out_reverse_ca (pixman_implementation_t *imp,
pixman_op_t op,
uint32_t * dest,
const uint32_t * src,
const uint32_t * mask,
int width)
{
int i;
for (i = 0; i < width; ++i)
{
uint32_t s = *(src + i);
uint32_t m = *(mask + i);
uint32_t a;
combine_mask_alpha_ca (&s, &m);
a = ~m;
if (a != ~0)
{
uint32_t d = 0;
if (a)
{
d = *(dest + i);
UN8x4_MUL_UN8x4 (d, a);
}
*(dest + i) = d;
}
}
}
static void
combine_atop_ca (pixman_implementation_t *imp,
pixman_op_t op,
uint32_t * dest,
const uint32_t * src,
const uint32_t * mask,
int width)
{
int i;
for (i = 0; i < width; ++i)
{
uint32_t d = *(dest + i);
uint32_t s = *(src + i);
uint32_t m = *(mask + i);
uint32_t ad;
uint16_t as = d >> A_SHIFT;
combine_mask_ca (&s, &m);
ad = ~m;
UN8x4_MUL_UN8x4_ADD_UN8x4_MUL_UN8 (d, ad, s, as);
*(dest + i) = d;
}
}
static void
combine_atop_reverse_ca (pixman_implementation_t *imp,
pixman_op_t op,
uint32_t * dest,
const uint32_t * src,
const uint32_t * mask,
int width)
{
int i;
for (i = 0; i < width; ++i)
{
uint32_t d = *(dest + i);
uint32_t s = *(src + i);
uint32_t m = *(mask + i);
uint32_t ad;
uint16_t as = ~d >> A_SHIFT;
combine_mask_ca (&s, &m);
ad = m;
UN8x4_MUL_UN8x4_ADD_UN8x4_MUL_UN8 (d, ad, s, as);
*(dest + i) = d;
}
}
static void
combine_xor_ca (pixman_implementation_t *imp,
pixman_op_t op,
uint32_t * dest,
const uint32_t * src,
const uint32_t * mask,
int width)
{
int i;
for (i = 0; i < width; ++i)
{
uint32_t d = *(dest + i);
uint32_t s = *(src + i);
uint32_t m = *(mask + i);
uint32_t ad;
uint16_t as = ~d >> A_SHIFT;
combine_mask_ca (&s, &m);
ad = ~m;
UN8x4_MUL_UN8x4_ADD_UN8x4_MUL_UN8 (d, ad, s, as);
*(dest + i) = d;
}
}
static void
combine_add_ca (pixman_implementation_t *imp,
pixman_op_t op,
uint32_t * dest,
const uint32_t * src,
const uint32_t * mask,
int width)
{
int i;
for (i = 0; i < width; ++i)
{
uint32_t s = *(src + i);
uint32_t m = *(mask + i);
uint32_t d = *(dest + i);
combine_mask_value_ca (&s, &m);
UN8x4_ADD_UN8x4 (d, s);
*(dest + i) = d;
}
}
static void
combine_saturate_ca (pixman_implementation_t *imp,
pixman_op_t op,
uint32_t * dest,
const uint32_t * src,
const uint32_t * mask,
int width)
{
int i;
for (i = 0; i < width; ++i)
{
uint32_t s, d;
uint16_t sa, sr, sg, sb, da;
uint16_t t, u, v;
uint32_t m, n, o, p;
d = *(dest + i);
s = *(src + i);
m = *(mask + i);
combine_mask_ca (&s, &m);
sa = (m >> A_SHIFT);
sr = (m >> R_SHIFT) & MASK;
sg = (m >> G_SHIFT) & MASK;
sb = m & MASK;
da = ~d >> A_SHIFT;
if (sb <= da)
m = ADD (s, d, 0, t);
else
m = GENERIC (s, d, 0, (da << G_SHIFT) / sb, MASK, t, u, v);
if (sg <= da)
n = ADD (s, d, G_SHIFT, t);
else
n = GENERIC (s, d, G_SHIFT, (da << G_SHIFT) / sg, MASK, t, u, v);
if (sr <= da)
o = ADD (s, d, R_SHIFT, t);
else
o = GENERIC (s, d, R_SHIFT, (da << G_SHIFT) / sr, MASK, t, u, v);
if (sa <= da)
p = ADD (s, d, A_SHIFT, t);
else
p = GENERIC (s, d, A_SHIFT, (da << G_SHIFT) / sa, MASK, t, u, v);
*(dest + i) = m | n | o | p;
}
}
static void
combine_disjoint_general_ca (uint32_t * dest,
const uint32_t *src,
const uint32_t *mask,
int width,
uint8_t combine)
{
int i;
for (i = 0; i < width; ++i)
{
uint32_t s, d;
uint32_t m, n, o, p;
uint32_t Fa, Fb;
uint16_t t, u, v;
uint32_t sa;
uint8_t da;
s = *(src + i);
m = *(mask + i);
d = *(dest + i);
da = d >> A_SHIFT;
combine_mask_ca (&s, &m);
sa = m;
switch (combine & COMBINE_A)
{
default:
Fa = 0;
break;
case COMBINE_A_OUT:
m = (uint32_t)combine_disjoint_out_part ((uint8_t) (sa >> 0), da);
n = (uint32_t)combine_disjoint_out_part ((uint8_t) (sa >> G_SHIFT), da) << G_SHIFT;
o = (uint32_t)combine_disjoint_out_part ((uint8_t) (sa >> R_SHIFT), da) << R_SHIFT;
p = (uint32_t)combine_disjoint_out_part ((uint8_t) (sa >> A_SHIFT), da) << A_SHIFT;
Fa = m | n | o | p;
break;
case COMBINE_A_IN:
m = (uint32_t)combine_disjoint_in_part ((uint8_t) (sa >> 0), da);
n = (uint32_t)combine_disjoint_in_part ((uint8_t) (sa >> G_SHIFT), da) << G_SHIFT;
o = (uint32_t)combine_disjoint_in_part ((uint8_t) (sa >> R_SHIFT), da) << R_SHIFT;
p = (uint32_t)combine_disjoint_in_part ((uint8_t) (sa >> A_SHIFT), da) << A_SHIFT;
Fa = m | n | o | p;
break;
case COMBINE_A:
Fa = ~0;
break;
}
switch (combine & COMBINE_B)
{
default:
Fb = 0;
break;
case COMBINE_B_OUT:
m = (uint32_t)combine_disjoint_out_part (da, (uint8_t) (sa >> 0));
n = (uint32_t)combine_disjoint_out_part (da, (uint8_t) (sa >> G_SHIFT)) << G_SHIFT;
o = (uint32_t)combine_disjoint_out_part (da, (uint8_t) (sa >> R_SHIFT)) << R_SHIFT;
p = (uint32_t)combine_disjoint_out_part (da, (uint8_t) (sa >> A_SHIFT)) << A_SHIFT;
Fb = m | n | o | p;
break;
case COMBINE_B_IN:
m = (uint32_t)combine_disjoint_in_part (da, (uint8_t) (sa >> 0));
n = (uint32_t)combine_disjoint_in_part (da, (uint8_t) (sa >> G_SHIFT)) << G_SHIFT;
o = (uint32_t)combine_disjoint_in_part (da, (uint8_t) (sa >> R_SHIFT)) << R_SHIFT;
p = (uint32_t)combine_disjoint_in_part (da, (uint8_t) (sa >> A_SHIFT)) << A_SHIFT;
Fb = m | n | o | p;
break;
case COMBINE_B:
Fb = ~0;
break;
}
m = GENERIC (s, d, 0, GET_COMP (Fa, 0), GET_COMP (Fb, 0), t, u, v);
n = GENERIC (s, d, G_SHIFT, GET_COMP (Fa, G_SHIFT), GET_COMP (Fb, G_SHIFT), t, u, v);
o = GENERIC (s, d, R_SHIFT, GET_COMP (Fa, R_SHIFT), GET_COMP (Fb, R_SHIFT), t, u, v);
p = GENERIC (s, d, A_SHIFT, GET_COMP (Fa, A_SHIFT), GET_COMP (Fb, A_SHIFT), t, u, v);
s = m | n | o | p;
*(dest + i) = s;
}
}
static void
combine_disjoint_over_ca (pixman_implementation_t *imp,
pixman_op_t op,
uint32_t * dest,
const uint32_t * src,
const uint32_t * mask,
int width)
{
combine_disjoint_general_ca (dest, src, mask, width, COMBINE_A_OVER);
}
static void
combine_disjoint_in_ca (pixman_implementation_t *imp,
pixman_op_t op,
uint32_t * dest,
const uint32_t * src,
const uint32_t * mask,
int width)
{
combine_disjoint_general_ca (dest, src, mask, width, COMBINE_A_IN);
}
static void
combine_disjoint_in_reverse_ca (pixman_implementation_t *imp,
pixman_op_t op,
uint32_t * dest,
const uint32_t * src,
const uint32_t * mask,
int width)
{
combine_disjoint_general_ca (dest, src, mask, width, COMBINE_B_IN);
}
static void
combine_disjoint_out_ca (pixman_implementation_t *imp,
pixman_op_t op,
uint32_t * dest,
const uint32_t * src,
const uint32_t * mask,
int width)
{
combine_disjoint_general_ca (dest, src, mask, width, COMBINE_A_OUT);
}
static void
combine_disjoint_out_reverse_ca (pixman_implementation_t *imp,
pixman_op_t op,
uint32_t * dest,
const uint32_t * src,
const uint32_t * mask,
int width)
{
combine_disjoint_general_ca (dest, src, mask, width, COMBINE_B_OUT);
}
static void
combine_disjoint_atop_ca (pixman_implementation_t *imp,
pixman_op_t op,
uint32_t * dest,
const uint32_t * src,
const uint32_t * mask,
int width)
{
combine_disjoint_general_ca (dest, src, mask, width, COMBINE_A_ATOP);
}
static void
combine_disjoint_atop_reverse_ca (pixman_implementation_t *imp,
pixman_op_t op,
uint32_t * dest,
const uint32_t * src,
const uint32_t * mask,
int width)
{
combine_disjoint_general_ca (dest, src, mask, width, COMBINE_B_ATOP);
}
static void
combine_disjoint_xor_ca (pixman_implementation_t *imp,
pixman_op_t op,
uint32_t * dest,
const uint32_t * src,
const uint32_t * mask,
int width)
{
combine_disjoint_general_ca (dest, src, mask, width, COMBINE_XOR);
}
static void
combine_conjoint_general_ca (uint32_t * dest,
const uint32_t *src,
const uint32_t *mask,
int width,
uint8_t combine)
{
int i;
for (i = 0; i < width; ++i)
{
uint32_t s, d;
uint32_t m, n, o, p;
uint32_t Fa, Fb;
uint16_t t, u, v;
uint32_t sa;
uint8_t da;
s = *(src + i);
m = *(mask + i);
d = *(dest + i);
da = d >> A_SHIFT;
combine_mask_ca (&s, &m);
sa = m;
switch (combine & COMBINE_A)
{
default:
Fa = 0;
break;
case COMBINE_A_OUT:
m = (uint32_t)combine_conjoint_out_part ((uint8_t) (sa >> 0), da);
n = (uint32_t)combine_conjoint_out_part ((uint8_t) (sa >> G_SHIFT), da) << G_SHIFT;
o = (uint32_t)combine_conjoint_out_part ((uint8_t) (sa >> R_SHIFT), da) << R_SHIFT;
p = (uint32_t)combine_conjoint_out_part ((uint8_t) (sa >> A_SHIFT), da) << A_SHIFT;
Fa = m | n | o | p;
break;
case COMBINE_A_IN:
m = (uint32_t)combine_conjoint_in_part ((uint8_t) (sa >> 0), da);
n = (uint32_t)combine_conjoint_in_part ((uint8_t) (sa >> G_SHIFT), da) << G_SHIFT;
o = (uint32_t)combine_conjoint_in_part ((uint8_t) (sa >> R_SHIFT), da) << R_SHIFT;
p = (uint32_t)combine_conjoint_in_part ((uint8_t) (sa >> A_SHIFT), da) << A_SHIFT;
Fa = m | n | o | p;
break;
case COMBINE_A:
Fa = ~0;
break;
}
switch (combine & COMBINE_B)
{
default:
Fb = 0;
break;
case COMBINE_B_OUT:
m = (uint32_t)combine_conjoint_out_part (da, (uint8_t) (sa >> 0));
n = (uint32_t)combine_conjoint_out_part (da, (uint8_t) (sa >> G_SHIFT)) << G_SHIFT;
o = (uint32_t)combine_conjoint_out_part (da, (uint8_t) (sa >> R_SHIFT)) << R_SHIFT;
p = (uint32_t)combine_conjoint_out_part (da, (uint8_t) (sa >> A_SHIFT)) << A_SHIFT;
Fb = m | n | o | p;
break;
case COMBINE_B_IN:
m = (uint32_t)combine_conjoint_in_part (da, (uint8_t) (sa >> 0));
n = (uint32_t)combine_conjoint_in_part (da, (uint8_t) (sa >> G_SHIFT)) << G_SHIFT;
o = (uint32_t)combine_conjoint_in_part (da, (uint8_t) (sa >> R_SHIFT)) << R_SHIFT;
p = (uint32_t)combine_conjoint_in_part (da, (uint8_t) (sa >> A_SHIFT)) << A_SHIFT;
Fb = m | n | o | p;
break;
case COMBINE_B:
Fb = ~0;
break;
}
m = GENERIC (s, d, 0, GET_COMP (Fa, 0), GET_COMP (Fb, 0), t, u, v);
n = GENERIC (s, d, G_SHIFT, GET_COMP (Fa, G_SHIFT), GET_COMP (Fb, G_SHIFT), t, u, v);
o = GENERIC (s, d, R_SHIFT, GET_COMP (Fa, R_SHIFT), GET_COMP (Fb, R_SHIFT), t, u, v);
p = GENERIC (s, d, A_SHIFT, GET_COMP (Fa, A_SHIFT), GET_COMP (Fb, A_SHIFT), t, u, v);
s = m | n | o | p;
*(dest + i) = s;
}
}
static void
combine_conjoint_over_ca (pixman_implementation_t *imp,
pixman_op_t op,
uint32_t * dest,
const uint32_t * src,
const uint32_t * mask,
int width)
{
combine_conjoint_general_ca (dest, src, mask, width, COMBINE_A_OVER);
}
static void
combine_conjoint_over_reverse_ca (pixman_implementation_t *imp,
pixman_op_t op,
uint32_t * dest,
const uint32_t * src,
const uint32_t * mask,
int width)
{
combine_conjoint_general_ca (dest, src, mask, width, COMBINE_B_OVER);
}
static void
combine_conjoint_in_ca (pixman_implementation_t *imp,
pixman_op_t op,
uint32_t * dest,
const uint32_t * src,
const uint32_t * mask,
int width)
{
combine_conjoint_general_ca (dest, src, mask, width, COMBINE_A_IN);
}
static void
combine_conjoint_in_reverse_ca (pixman_implementation_t *imp,
pixman_op_t op,
uint32_t * dest,
const uint32_t * src,
const uint32_t * mask,
int width)
{
combine_conjoint_general_ca (dest, src, mask, width, COMBINE_B_IN);
}
static void
combine_conjoint_out_ca (pixman_implementation_t *imp,
pixman_op_t op,
uint32_t * dest,
const uint32_t * src,
const uint32_t * mask,
int width)
{
combine_conjoint_general_ca (dest, src, mask, width, COMBINE_A_OUT);
}
static void
combine_conjoint_out_reverse_ca (pixman_implementation_t *imp,
pixman_op_t op,
uint32_t * dest,
const uint32_t * src,
const uint32_t * mask,
int width)
{
combine_conjoint_general_ca (dest, src, mask, width, COMBINE_B_OUT);
}
static void
combine_conjoint_atop_ca (pixman_implementation_t *imp,
pixman_op_t op,
uint32_t * dest,
const uint32_t * src,
const uint32_t * mask,
int width)
{
combine_conjoint_general_ca (dest, src, mask, width, COMBINE_A_ATOP);
}
static void
combine_conjoint_atop_reverse_ca (pixman_implementation_t *imp,
pixman_op_t op,
uint32_t * dest,
const uint32_t * src,
const uint32_t * mask,
int width)
{
combine_conjoint_general_ca (dest, src, mask, width, COMBINE_B_ATOP);
}
static void
combine_conjoint_xor_ca (pixman_implementation_t *imp,
pixman_op_t op,
uint32_t * dest,
const uint32_t * src,
const uint32_t * mask,
int width)
{
combine_conjoint_general_ca (dest, src, mask, width, COMBINE_XOR);
}
void
_pixman_setup_combiner_functions_32 (pixman_implementation_t *imp)
{
/* Unified alpha */
imp->combine_32[PIXMAN_OP_CLEAR] = combine_clear;
imp->combine_32[PIXMAN_OP_SRC] = combine_src_u;
imp->combine_32[PIXMAN_OP_DST] = combine_dst;
imp->combine_32[PIXMAN_OP_OVER] = combine_over_u;
imp->combine_32[PIXMAN_OP_OVER_REVERSE] = combine_over_reverse_u;
imp->combine_32[PIXMAN_OP_IN] = combine_in_u;
imp->combine_32[PIXMAN_OP_IN_REVERSE] = combine_in_reverse_u;
imp->combine_32[PIXMAN_OP_OUT] = combine_out_u;
imp->combine_32[PIXMAN_OP_OUT_REVERSE] = combine_out_reverse_u;
imp->combine_32[PIXMAN_OP_ATOP] = combine_atop_u;
imp->combine_32[PIXMAN_OP_ATOP_REVERSE] = combine_atop_reverse_u;
imp->combine_32[PIXMAN_OP_XOR] = combine_xor_u;
imp->combine_32[PIXMAN_OP_ADD] = combine_add_u;
imp->combine_32[PIXMAN_OP_SATURATE] = combine_saturate_u;
/* Disjoint, unified */
imp->combine_32[PIXMAN_OP_DISJOINT_CLEAR] = combine_clear;
imp->combine_32[PIXMAN_OP_DISJOINT_SRC] = combine_src_u;
imp->combine_32[PIXMAN_OP_DISJOINT_DST] = combine_dst;
imp->combine_32[PIXMAN_OP_DISJOINT_OVER] = combine_disjoint_over_u;
imp->combine_32[PIXMAN_OP_DISJOINT_OVER_REVERSE] = combine_saturate_u;
imp->combine_32[PIXMAN_OP_DISJOINT_IN] = combine_disjoint_in_u;
imp->combine_32[PIXMAN_OP_DISJOINT_IN_REVERSE] = combine_disjoint_in_reverse_u;
imp->combine_32[PIXMAN_OP_DISJOINT_OUT] = combine_disjoint_out_u;
imp->combine_32[PIXMAN_OP_DISJOINT_OUT_REVERSE] = combine_disjoint_out_reverse_u;
imp->combine_32[PIXMAN_OP_DISJOINT_ATOP] = combine_disjoint_atop_u;
imp->combine_32[PIXMAN_OP_DISJOINT_ATOP_REVERSE] = combine_disjoint_atop_reverse_u;
imp->combine_32[PIXMAN_OP_DISJOINT_XOR] = combine_disjoint_xor_u;
/* Conjoint, unified */
imp->combine_32[PIXMAN_OP_CONJOINT_CLEAR] = combine_clear;
imp->combine_32[PIXMAN_OP_CONJOINT_SRC] = combine_src_u;
imp->combine_32[PIXMAN_OP_CONJOINT_DST] = combine_dst;
imp->combine_32[PIXMAN_OP_CONJOINT_OVER] = combine_conjoint_over_u;
imp->combine_32[PIXMAN_OP_CONJOINT_OVER_REVERSE] = combine_conjoint_over_reverse_u;
imp->combine_32[PIXMAN_OP_CONJOINT_IN] = combine_conjoint_in_u;
imp->combine_32[PIXMAN_OP_CONJOINT_IN_REVERSE] = combine_conjoint_in_reverse_u;
imp->combine_32[PIXMAN_OP_CONJOINT_OUT] = combine_conjoint_out_u;
imp->combine_32[PIXMAN_OP_CONJOINT_OUT_REVERSE] = combine_conjoint_out_reverse_u;
imp->combine_32[PIXMAN_OP_CONJOINT_ATOP] = combine_conjoint_atop_u;
imp->combine_32[PIXMAN_OP_CONJOINT_ATOP_REVERSE] = combine_conjoint_atop_reverse_u;
imp->combine_32[PIXMAN_OP_CONJOINT_XOR] = combine_conjoint_xor_u;
imp->combine_32[PIXMAN_OP_MULTIPLY] = combine_multiply_u;
imp->combine_32[PIXMAN_OP_SCREEN] = combine_screen_u;
imp->combine_32[PIXMAN_OP_OVERLAY] = combine_overlay_u;
imp->combine_32[PIXMAN_OP_DARKEN] = combine_darken_u;
imp->combine_32[PIXMAN_OP_LIGHTEN] = combine_lighten_u;
imp->combine_32[PIXMAN_OP_COLOR_DODGE] = combine_color_dodge_u;
imp->combine_32[PIXMAN_OP_COLOR_BURN] = combine_color_burn_u;
imp->combine_32[PIXMAN_OP_HARD_LIGHT] = combine_hard_light_u;
imp->combine_32[PIXMAN_OP_SOFT_LIGHT] = combine_soft_light_u;
imp->combine_32[PIXMAN_OP_DIFFERENCE] = combine_difference_u;
imp->combine_32[PIXMAN_OP_EXCLUSION] = combine_exclusion_u;
imp->combine_32[PIXMAN_OP_HSL_HUE] = combine_hsl_hue_u;
imp->combine_32[PIXMAN_OP_HSL_SATURATION] = combine_hsl_saturation_u;
imp->combine_32[PIXMAN_OP_HSL_COLOR] = combine_hsl_color_u;
imp->combine_32[PIXMAN_OP_HSL_LUMINOSITY] = combine_hsl_luminosity_u;
/* Component alpha combiners */
imp->combine_32_ca[PIXMAN_OP_CLEAR] = combine_clear_ca;
imp->combine_32_ca[PIXMAN_OP_SRC] = combine_src_ca;
/* dest */
imp->combine_32_ca[PIXMAN_OP_OVER] = combine_over_ca;
imp->combine_32_ca[PIXMAN_OP_OVER_REVERSE] = combine_over_reverse_ca;
imp->combine_32_ca[PIXMAN_OP_IN] = combine_in_ca;
imp->combine_32_ca[PIXMAN_OP_IN_REVERSE] = combine_in_reverse_ca;
imp->combine_32_ca[PIXMAN_OP_OUT] = combine_out_ca;
imp->combine_32_ca[PIXMAN_OP_OUT_REVERSE] = combine_out_reverse_ca;
imp->combine_32_ca[PIXMAN_OP_ATOP] = combine_atop_ca;
imp->combine_32_ca[PIXMAN_OP_ATOP_REVERSE] = combine_atop_reverse_ca;
imp->combine_32_ca[PIXMAN_OP_XOR] = combine_xor_ca;
imp->combine_32_ca[PIXMAN_OP_ADD] = combine_add_ca;
imp->combine_32_ca[PIXMAN_OP_SATURATE] = combine_saturate_ca;
/* Disjoint CA */
imp->combine_32_ca[PIXMAN_OP_DISJOINT_CLEAR] = combine_clear_ca;
imp->combine_32_ca[PIXMAN_OP_DISJOINT_SRC] = combine_src_ca;
imp->combine_32_ca[PIXMAN_OP_DISJOINT_DST] = combine_dst;
imp->combine_32_ca[PIXMAN_OP_DISJOINT_OVER] = combine_disjoint_over_ca;
imp->combine_32_ca[PIXMAN_OP_DISJOINT_OVER_REVERSE] = combine_saturate_ca;
imp->combine_32_ca[PIXMAN_OP_DISJOINT_IN] = combine_disjoint_in_ca;
imp->combine_32_ca[PIXMAN_OP_DISJOINT_IN_REVERSE] = combine_disjoint_in_reverse_ca;
imp->combine_32_ca[PIXMAN_OP_DISJOINT_OUT] = combine_disjoint_out_ca;
imp->combine_32_ca[PIXMAN_OP_DISJOINT_OUT_REVERSE] = combine_disjoint_out_reverse_ca;
imp->combine_32_ca[PIXMAN_OP_DISJOINT_ATOP] = combine_disjoint_atop_ca;
imp->combine_32_ca[PIXMAN_OP_DISJOINT_ATOP_REVERSE] = combine_disjoint_atop_reverse_ca;
imp->combine_32_ca[PIXMAN_OP_DISJOINT_XOR] = combine_disjoint_xor_ca;
/* Conjoint CA */
imp->combine_32_ca[PIXMAN_OP_CONJOINT_CLEAR] = combine_clear_ca;
imp->combine_32_ca[PIXMAN_OP_CONJOINT_SRC] = combine_src_ca;
imp->combine_32_ca[PIXMAN_OP_CONJOINT_DST] = combine_dst;
imp->combine_32_ca[PIXMAN_OP_CONJOINT_OVER] = combine_conjoint_over_ca;
imp->combine_32_ca[PIXMAN_OP_CONJOINT_OVER_REVERSE] = combine_conjoint_over_reverse_ca;
imp->combine_32_ca[PIXMAN_OP_CONJOINT_IN] = combine_conjoint_in_ca;
imp->combine_32_ca[PIXMAN_OP_CONJOINT_IN_REVERSE] = combine_conjoint_in_reverse_ca;
imp->combine_32_ca[PIXMAN_OP_CONJOINT_OUT] = combine_conjoint_out_ca;
imp->combine_32_ca[PIXMAN_OP_CONJOINT_OUT_REVERSE] = combine_conjoint_out_reverse_ca;
imp->combine_32_ca[PIXMAN_OP_CONJOINT_ATOP] = combine_conjoint_atop_ca;
imp->combine_32_ca[PIXMAN_OP_CONJOINT_ATOP_REVERSE] = combine_conjoint_atop_reverse_ca;
imp->combine_32_ca[PIXMAN_OP_CONJOINT_XOR] = combine_conjoint_xor_ca;
imp->combine_32_ca[PIXMAN_OP_MULTIPLY] = combine_multiply_ca;
imp->combine_32_ca[PIXMAN_OP_SCREEN] = combine_screen_ca;
imp->combine_32_ca[PIXMAN_OP_OVERLAY] = combine_overlay_ca;
imp->combine_32_ca[PIXMAN_OP_DARKEN] = combine_darken_ca;
imp->combine_32_ca[PIXMAN_OP_LIGHTEN] = combine_lighten_ca;
imp->combine_32_ca[PIXMAN_OP_COLOR_DODGE] = combine_color_dodge_ca;
imp->combine_32_ca[PIXMAN_OP_COLOR_BURN] = combine_color_burn_ca;
imp->combine_32_ca[PIXMAN_OP_HARD_LIGHT] = combine_hard_light_ca;
imp->combine_32_ca[PIXMAN_OP_SOFT_LIGHT] = combine_soft_light_ca;
imp->combine_32_ca[PIXMAN_OP_DIFFERENCE] = combine_difference_ca;
imp->combine_32_ca[PIXMAN_OP_EXCLUSION] = combine_exclusion_ca;
/* It is not clear that these make sense, so make them noops for now */
imp->combine_32_ca[PIXMAN_OP_HSL_HUE] = combine_dst;
imp->combine_32_ca[PIXMAN_OP_HSL_SATURATION] = combine_dst;
imp->combine_32_ca[PIXMAN_OP_HSL_COLOR] = combine_dst;
imp->combine_32_ca[PIXMAN_OP_HSL_LUMINOSITY] = combine_dst;
}