kolibrios/drivers/video/Gallium/auxiliary/util/u_gen_mipmap.c

1704 lines
60 KiB
C
Raw Normal View History

/**************************************************************************
*
* Copyright 2008 Tungsten Graphics, Inc., Cedar Park, Texas.
* All Rights Reserved.
* Copyright 2008 VMware, Inc. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sub license, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice (including the
* next paragraph) shall be included in all copies or substantial portions
* of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
* IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
* ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*
**************************************************************************/
/**
* @file
* Mipmap generation utility
*
* @author Brian Paul
*/
#include "pipe/p_context.h"
#include "util/u_debug.h"
#include "pipe/p_defines.h"
#include "util/u_inlines.h"
#include "pipe/p_shader_tokens.h"
#include "pipe/p_state.h"
#include "util/u_format.h"
#include "util/u_memory.h"
#include "util/u_draw_quad.h"
#include "util/u_gen_mipmap.h"
#include "util/u_simple_shaders.h"
#include "util/u_math.h"
#include "util/u_texture.h"
#include "util/u_half.h"
#include "util/u_surface.h"
#include "cso_cache/cso_context.h"
struct gen_mipmap_state
{
struct pipe_context *pipe;
struct cso_context *cso;
struct pipe_blend_state blend_keep_color, blend_write_color;
struct pipe_depth_stencil_alpha_state dsa_keep_depth, dsa_write_depth;
struct pipe_rasterizer_state rasterizer;
struct pipe_sampler_state sampler;
struct pipe_vertex_element velem[2];
void *vs;
/** Not all are used, but simplifies code */
void *fs_color[TGSI_TEXTURE_COUNT];
void *fs_depth[TGSI_TEXTURE_COUNT];
struct pipe_resource *vbuf; /**< quad vertices */
unsigned vbuf_slot;
float vertices[4][2][4]; /**< vertex/texcoords for quad */
};
enum dtype
{
DTYPE_UBYTE,
DTYPE_UBYTE_3_3_2,
DTYPE_USHORT,
DTYPE_USHORT_4_4_4_4,
DTYPE_USHORT_5_6_5,
DTYPE_USHORT_1_5_5_5_REV,
DTYPE_UINT,
DTYPE_FLOAT,
DTYPE_HALF_FLOAT
};
typedef uint16_t half_float;
/**
* \name Support macros for do_row and do_row_3d
*
* The macro madness is here for two reasons. First, it compacts the code
* slightly. Second, it makes it much easier to adjust the specifics of the
* filter to tune the rounding characteristics.
*/
/*@{*/
#define DECLARE_ROW_POINTERS(t, e) \
const t(*rowA)[e] = (const t(*)[e]) srcRowA; \
const t(*rowB)[e] = (const t(*)[e]) srcRowB; \
const t(*rowC)[e] = (const t(*)[e]) srcRowC; \
const t(*rowD)[e] = (const t(*)[e]) srcRowD; \
t(*dst)[e] = (t(*)[e]) dstRow
#define DECLARE_ROW_POINTERS0(t) \
const t *rowA = (const t *) srcRowA; \
const t *rowB = (const t *) srcRowB; \
const t *rowC = (const t *) srcRowC; \
const t *rowD = (const t *) srcRowD; \
t *dst = (t *) dstRow
#define FILTER_SUM_3D(Aj, Ak, Bj, Bk, Cj, Ck, Dj, Dk) \
((unsigned) Aj + (unsigned) Ak \
+ (unsigned) Bj + (unsigned) Bk \
+ (unsigned) Cj + (unsigned) Ck \
+ (unsigned) Dj + (unsigned) Dk \
+ 4) >> 3
#define FILTER_3D(e) \
do { \
dst[i][e] = FILTER_SUM_3D(rowA[j][e], rowA[k][e], \
rowB[j][e], rowB[k][e], \
rowC[j][e], rowC[k][e], \
rowD[j][e], rowD[k][e]); \
} while(0)
#define FILTER_F_3D(e) \
do { \
dst[i][e] = (rowA[j][e] + rowA[k][e] \
+ rowB[j][e] + rowB[k][e] \
+ rowC[j][e] + rowC[k][e] \
+ rowD[j][e] + rowD[k][e]) * 0.125F; \
} while(0)
#define FILTER_HF_3D(e) \
do { \
const float aj = util_half_to_float(rowA[j][e]); \
const float ak = util_half_to_float(rowA[k][e]); \
const float bj = util_half_to_float(rowB[j][e]); \
const float bk = util_half_to_float(rowB[k][e]); \
const float cj = util_half_to_float(rowC[j][e]); \
const float ck = util_half_to_float(rowC[k][e]); \
const float dj = util_half_to_float(rowD[j][e]); \
const float dk = util_half_to_float(rowD[k][e]); \
dst[i][e] = util_float_to_half((aj + ak + bj + bk + cj + ck + dj + dk) \
* 0.125F); \
} while(0)
/*@}*/
/**
* Average together two rows of a source image to produce a single new
* row in the dest image. It's legal for the two source rows to point
* to the same data. The source width must be equal to either the
* dest width or two times the dest width.
* \param datatype GL_UNSIGNED_BYTE, GL_UNSIGNED_SHORT, GL_FLOAT, etc.
* \param comps number of components per pixel (1..4)
*/
static void
do_row(enum dtype datatype, uint comps, int srcWidth,
const void *srcRowA, const void *srcRowB,
int dstWidth, void *dstRow)
{
const uint k0 = (srcWidth == dstWidth) ? 0 : 1;
const uint colStride = (srcWidth == dstWidth) ? 1 : 2;
assert(comps >= 1);
assert(comps <= 4);
/* This assertion is no longer valid with non-power-of-2 textures
assert(srcWidth == dstWidth || srcWidth == 2 * dstWidth);
*/
if (datatype == DTYPE_UBYTE && comps == 4) {
uint i, j, k;
const ubyte(*rowA)[4] = (const ubyte(*)[4]) srcRowA;
const ubyte(*rowB)[4] = (const ubyte(*)[4]) srcRowB;
ubyte(*dst)[4] = (ubyte(*)[4]) dstRow;
for (i = j = 0, k = k0; i < (uint) dstWidth;
i++, j += colStride, k += colStride) {
dst[i][0] = (rowA[j][0] + rowA[k][0] + rowB[j][0] + rowB[k][0]) / 4;
dst[i][1] = (rowA[j][1] + rowA[k][1] + rowB[j][1] + rowB[k][1]) / 4;
dst[i][2] = (rowA[j][2] + rowA[k][2] + rowB[j][2] + rowB[k][2]) / 4;
dst[i][3] = (rowA[j][3] + rowA[k][3] + rowB[j][3] + rowB[k][3]) / 4;
}
}
else if (datatype == DTYPE_UBYTE && comps == 3) {
uint i, j, k;
const ubyte(*rowA)[3] = (const ubyte(*)[3]) srcRowA;
const ubyte(*rowB)[3] = (const ubyte(*)[3]) srcRowB;
ubyte(*dst)[3] = (ubyte(*)[3]) dstRow;
for (i = j = 0, k = k0; i < (uint) dstWidth;
i++, j += colStride, k += colStride) {
dst[i][0] = (rowA[j][0] + rowA[k][0] + rowB[j][0] + rowB[k][0]) / 4;
dst[i][1] = (rowA[j][1] + rowA[k][1] + rowB[j][1] + rowB[k][1]) / 4;
dst[i][2] = (rowA[j][2] + rowA[k][2] + rowB[j][2] + rowB[k][2]) / 4;
}
}
else if (datatype == DTYPE_UBYTE && comps == 2) {
uint i, j, k;
const ubyte(*rowA)[2] = (const ubyte(*)[2]) srcRowA;
const ubyte(*rowB)[2] = (const ubyte(*)[2]) srcRowB;
ubyte(*dst)[2] = (ubyte(*)[2]) dstRow;
for (i = j = 0, k = k0; i < (uint) dstWidth;
i++, j += colStride, k += colStride) {
dst[i][0] = (rowA[j][0] + rowA[k][0] + rowB[j][0] + rowB[k][0]) >> 2;
dst[i][1] = (rowA[j][1] + rowA[k][1] + rowB[j][1] + rowB[k][1]) >> 2;
}
}
else if (datatype == DTYPE_UBYTE && comps == 1) {
uint i, j, k;
const ubyte *rowA = (const ubyte *) srcRowA;
const ubyte *rowB = (const ubyte *) srcRowB;
ubyte *dst = (ubyte *) dstRow;
for (i = j = 0, k = k0; i < (uint) dstWidth;
i++, j += colStride, k += colStride) {
dst[i] = (rowA[j] + rowA[k] + rowB[j] + rowB[k]) >> 2;
}
}
else if (datatype == DTYPE_USHORT && comps == 4) {
uint i, j, k;
const ushort(*rowA)[4] = (const ushort(*)[4]) srcRowA;
const ushort(*rowB)[4] = (const ushort(*)[4]) srcRowB;
ushort(*dst)[4] = (ushort(*)[4]) dstRow;
for (i = j = 0, k = k0; i < (uint) dstWidth;
i++, j += colStride, k += colStride) {
dst[i][0] = (rowA[j][0] + rowA[k][0] + rowB[j][0] + rowB[k][0]) / 4;
dst[i][1] = (rowA[j][1] + rowA[k][1] + rowB[j][1] + rowB[k][1]) / 4;
dst[i][2] = (rowA[j][2] + rowA[k][2] + rowB[j][2] + rowB[k][2]) / 4;
dst[i][3] = (rowA[j][3] + rowA[k][3] + rowB[j][3] + rowB[k][3]) / 4;
}
}
else if (datatype == DTYPE_USHORT && comps == 3) {
uint i, j, k;
const ushort(*rowA)[3] = (const ushort(*)[3]) srcRowA;
const ushort(*rowB)[3] = (const ushort(*)[3]) srcRowB;
ushort(*dst)[3] = (ushort(*)[3]) dstRow;
for (i = j = 0, k = k0; i < (uint) dstWidth;
i++, j += colStride, k += colStride) {
dst[i][0] = (rowA[j][0] + rowA[k][0] + rowB[j][0] + rowB[k][0]) / 4;
dst[i][1] = (rowA[j][1] + rowA[k][1] + rowB[j][1] + rowB[k][1]) / 4;
dst[i][2] = (rowA[j][2] + rowA[k][2] + rowB[j][2] + rowB[k][2]) / 4;
}
}
else if (datatype == DTYPE_USHORT && comps == 2) {
uint i, j, k;
const ushort(*rowA)[2] = (const ushort(*)[2]) srcRowA;
const ushort(*rowB)[2] = (const ushort(*)[2]) srcRowB;
ushort(*dst)[2] = (ushort(*)[2]) dstRow;
for (i = j = 0, k = k0; i < (uint) dstWidth;
i++, j += colStride, k += colStride) {
dst[i][0] = (rowA[j][0] + rowA[k][0] + rowB[j][0] + rowB[k][0]) / 4;
dst[i][1] = (rowA[j][1] + rowA[k][1] + rowB[j][1] + rowB[k][1]) / 4;
}
}
else if (datatype == DTYPE_USHORT && comps == 1) {
uint i, j, k;
const ushort *rowA = (const ushort *) srcRowA;
const ushort *rowB = (const ushort *) srcRowB;
ushort *dst = (ushort *) dstRow;
for (i = j = 0, k = k0; i < (uint) dstWidth;
i++, j += colStride, k += colStride) {
dst[i] = (rowA[j] + rowA[k] + rowB[j] + rowB[k]) / 4;
}
}
else if (datatype == DTYPE_FLOAT && comps == 4) {
uint i, j, k;
const float(*rowA)[4] = (const float(*)[4]) srcRowA;
const float(*rowB)[4] = (const float(*)[4]) srcRowB;
float(*dst)[4] = (float(*)[4]) dstRow;
for (i = j = 0, k = k0; i < (uint) dstWidth;
i++, j += colStride, k += colStride) {
dst[i][0] = (rowA[j][0] + rowA[k][0] +
rowB[j][0] + rowB[k][0]) * 0.25F;
dst[i][1] = (rowA[j][1] + rowA[k][1] +
rowB[j][1] + rowB[k][1]) * 0.25F;
dst[i][2] = (rowA[j][2] + rowA[k][2] +
rowB[j][2] + rowB[k][2]) * 0.25F;
dst[i][3] = (rowA[j][3] + rowA[k][3] +
rowB[j][3] + rowB[k][3]) * 0.25F;
}
}
else if (datatype == DTYPE_FLOAT && comps == 3) {
uint i, j, k;
const float(*rowA)[3] = (const float(*)[3]) srcRowA;
const float(*rowB)[3] = (const float(*)[3]) srcRowB;
float(*dst)[3] = (float(*)[3]) dstRow;
for (i = j = 0, k = k0; i < (uint) dstWidth;
i++, j += colStride, k += colStride) {
dst[i][0] = (rowA[j][0] + rowA[k][0] +
rowB[j][0] + rowB[k][0]) * 0.25F;
dst[i][1] = (rowA[j][1] + rowA[k][1] +
rowB[j][1] + rowB[k][1]) * 0.25F;
dst[i][2] = (rowA[j][2] + rowA[k][2] +
rowB[j][2] + rowB[k][2]) * 0.25F;
}
}
else if (datatype == DTYPE_FLOAT && comps == 2) {
uint i, j, k;
const float(*rowA)[2] = (const float(*)[2]) srcRowA;
const float(*rowB)[2] = (const float(*)[2]) srcRowB;
float(*dst)[2] = (float(*)[2]) dstRow;
for (i = j = 0, k = k0; i < (uint) dstWidth;
i++, j += colStride, k += colStride) {
dst[i][0] = (rowA[j][0] + rowA[k][0] +
rowB[j][0] + rowB[k][0]) * 0.25F;
dst[i][1] = (rowA[j][1] + rowA[k][1] +
rowB[j][1] + rowB[k][1]) * 0.25F;
}
}
else if (datatype == DTYPE_FLOAT && comps == 1) {
uint i, j, k;
const float *rowA = (const float *) srcRowA;
const float *rowB = (const float *) srcRowB;
float *dst = (float *) dstRow;
for (i = j = 0, k = k0; i < (uint) dstWidth;
i++, j += colStride, k += colStride) {
dst[i] = (rowA[j] + rowA[k] + rowB[j] + rowB[k]) * 0.25F;
}
}
else if (datatype == DTYPE_HALF_FLOAT && comps == 4) {
uint i, j, k, comp;
const half_float(*rowA)[4] = (const half_float(*)[4]) srcRowA;
const half_float(*rowB)[4] = (const half_float(*)[4]) srcRowB;
half_float(*dst)[4] = (half_float(*)[4]) dstRow;
for (i = j = 0, k = k0; i < (uint) dstWidth;
i++, j += colStride, k += colStride) {
for (comp = 0; comp < 4; comp++) {
float aj, ak, bj, bk;
aj = util_half_to_float(rowA[j][comp]);
ak = util_half_to_float(rowA[k][comp]);
bj = util_half_to_float(rowB[j][comp]);
bk = util_half_to_float(rowB[k][comp]);
dst[i][comp] = util_float_to_half((aj + ak + bj + bk) * 0.25F);
}
}
}
else if (datatype == DTYPE_HALF_FLOAT && comps == 3) {
uint i, j, k, comp;
const half_float(*rowA)[3] = (const half_float(*)[3]) srcRowA;
const half_float(*rowB)[3] = (const half_float(*)[3]) srcRowB;
half_float(*dst)[3] = (half_float(*)[3]) dstRow;
for (i = j = 0, k = k0; i < (uint) dstWidth;
i++, j += colStride, k += colStride) {
for (comp = 0; comp < 3; comp++) {
float aj, ak, bj, bk;
aj = util_half_to_float(rowA[j][comp]);
ak = util_half_to_float(rowA[k][comp]);
bj = util_half_to_float(rowB[j][comp]);
bk = util_half_to_float(rowB[k][comp]);
dst[i][comp] = util_float_to_half((aj + ak + bj + bk) * 0.25F);
}
}
}
else if (datatype == DTYPE_HALF_FLOAT && comps == 2) {
uint i, j, k, comp;
const half_float(*rowA)[2] = (const half_float(*)[2]) srcRowA;
const half_float(*rowB)[2] = (const half_float(*)[2]) srcRowB;
half_float(*dst)[2] = (half_float(*)[2]) dstRow;
for (i = j = 0, k = k0; i < (uint) dstWidth;
i++, j += colStride, k += colStride) {
for (comp = 0; comp < 2; comp++) {
float aj, ak, bj, bk;
aj = util_half_to_float(rowA[j][comp]);
ak = util_half_to_float(rowA[k][comp]);
bj = util_half_to_float(rowB[j][comp]);
bk = util_half_to_float(rowB[k][comp]);
dst[i][comp] = util_float_to_half((aj + ak + bj + bk) * 0.25F);
}
}
}
else if (datatype == DTYPE_HALF_FLOAT && comps == 1) {
uint i, j, k;
const half_float *rowA = (const half_float *) srcRowA;
const half_float *rowB = (const half_float *) srcRowB;
half_float *dst = (half_float *) dstRow;
for (i = j = 0, k = k0; i < (uint) dstWidth;
i++, j += colStride, k += colStride) {
float aj, ak, bj, bk;
aj = util_half_to_float(rowA[j]);
ak = util_half_to_float(rowA[k]);
bj = util_half_to_float(rowB[j]);
bk = util_half_to_float(rowB[k]);
dst[i] = util_float_to_half((aj + ak + bj + bk) * 0.25F);
}
}
else if (datatype == DTYPE_UINT && comps == 1) {
uint i, j, k;
const uint *rowA = (const uint *) srcRowA;
const uint *rowB = (const uint *) srcRowB;
uint *dst = (uint *) dstRow;
for (i = j = 0, k = k0; i < (uint) dstWidth;
i++, j += colStride, k += colStride) {
dst[i] = rowA[j] / 4 + rowA[k] / 4 + rowB[j] / 4 + rowB[k] / 4;
}
}
else if (datatype == DTYPE_USHORT_5_6_5 && comps == 3) {
uint i, j, k;
const ushort *rowA = (const ushort *) srcRowA;
const ushort *rowB = (const ushort *) srcRowB;
ushort *dst = (ushort *) dstRow;
for (i = j = 0, k = k0; i < (uint) dstWidth;
i++, j += colStride, k += colStride) {
const int rowAr0 = rowA[j] & 0x1f;
const int rowAr1 = rowA[k] & 0x1f;
const int rowBr0 = rowB[j] & 0x1f;
const int rowBr1 = rowB[k] & 0x1f;
const int rowAg0 = (rowA[j] >> 5) & 0x3f;
const int rowAg1 = (rowA[k] >> 5) & 0x3f;
const int rowBg0 = (rowB[j] >> 5) & 0x3f;
const int rowBg1 = (rowB[k] >> 5) & 0x3f;
const int rowAb0 = (rowA[j] >> 11) & 0x1f;
const int rowAb1 = (rowA[k] >> 11) & 0x1f;
const int rowBb0 = (rowB[j] >> 11) & 0x1f;
const int rowBb1 = (rowB[k] >> 11) & 0x1f;
const int red = (rowAr0 + rowAr1 + rowBr0 + rowBr1) >> 2;
const int green = (rowAg0 + rowAg1 + rowBg0 + rowBg1) >> 2;
const int blue = (rowAb0 + rowAb1 + rowBb0 + rowBb1) >> 2;
dst[i] = (blue << 11) | (green << 5) | red;
}
}
else if (datatype == DTYPE_USHORT_4_4_4_4 && comps == 4) {
uint i, j, k;
const ushort *rowA = (const ushort *) srcRowA;
const ushort *rowB = (const ushort *) srcRowB;
ushort *dst = (ushort *) dstRow;
for (i = j = 0, k = k0; i < (uint) dstWidth;
i++, j += colStride, k += colStride) {
const int rowAr0 = rowA[j] & 0xf;
const int rowAr1 = rowA[k] & 0xf;
const int rowBr0 = rowB[j] & 0xf;
const int rowBr1 = rowB[k] & 0xf;
const int rowAg0 = (rowA[j] >> 4) & 0xf;
const int rowAg1 = (rowA[k] >> 4) & 0xf;
const int rowBg0 = (rowB[j] >> 4) & 0xf;
const int rowBg1 = (rowB[k] >> 4) & 0xf;
const int rowAb0 = (rowA[j] >> 8) & 0xf;
const int rowAb1 = (rowA[k] >> 8) & 0xf;
const int rowBb0 = (rowB[j] >> 8) & 0xf;
const int rowBb1 = (rowB[k] >> 8) & 0xf;
const int rowAa0 = (rowA[j] >> 12) & 0xf;
const int rowAa1 = (rowA[k] >> 12) & 0xf;
const int rowBa0 = (rowB[j] >> 12) & 0xf;
const int rowBa1 = (rowB[k] >> 12) & 0xf;
const int red = (rowAr0 + rowAr1 + rowBr0 + rowBr1) >> 2;
const int green = (rowAg0 + rowAg1 + rowBg0 + rowBg1) >> 2;
const int blue = (rowAb0 + rowAb1 + rowBb0 + rowBb1) >> 2;
const int alpha = (rowAa0 + rowAa1 + rowBa0 + rowBa1) >> 2;
dst[i] = (alpha << 12) | (blue << 8) | (green << 4) | red;
}
}
else if (datatype == DTYPE_USHORT_1_5_5_5_REV && comps == 4) {
uint i, j, k;
const ushort *rowA = (const ushort *) srcRowA;
const ushort *rowB = (const ushort *) srcRowB;
ushort *dst = (ushort *) dstRow;
for (i = j = 0, k = k0; i < (uint) dstWidth;
i++, j += colStride, k += colStride) {
const int rowAr0 = rowA[j] & 0x1f;
const int rowAr1 = rowA[k] & 0x1f;
const int rowBr0 = rowB[j] & 0x1f;
const int rowBr1 = rowB[k] & 0x1f;
const int rowAg0 = (rowA[j] >> 5) & 0x1f;
const int rowAg1 = (rowA[k] >> 5) & 0x1f;
const int rowBg0 = (rowB[j] >> 5) & 0x1f;
const int rowBg1 = (rowB[k] >> 5) & 0x1f;
const int rowAb0 = (rowA[j] >> 10) & 0x1f;
const int rowAb1 = (rowA[k] >> 10) & 0x1f;
const int rowBb0 = (rowB[j] >> 10) & 0x1f;
const int rowBb1 = (rowB[k] >> 10) & 0x1f;
const int rowAa0 = (rowA[j] >> 15) & 0x1;
const int rowAa1 = (rowA[k] >> 15) & 0x1;
const int rowBa0 = (rowB[j] >> 15) & 0x1;
const int rowBa1 = (rowB[k] >> 15) & 0x1;
const int red = (rowAr0 + rowAr1 + rowBr0 + rowBr1) >> 2;
const int green = (rowAg0 + rowAg1 + rowBg0 + rowBg1) >> 2;
const int blue = (rowAb0 + rowAb1 + rowBb0 + rowBb1) >> 2;
const int alpha = (rowAa0 + rowAa1 + rowBa0 + rowBa1) >> 2;
dst[i] = (alpha << 15) | (blue << 10) | (green << 5) | red;
}
}
else if (datatype == DTYPE_UBYTE_3_3_2 && comps == 3) {
uint i, j, k;
const ubyte *rowA = (const ubyte *) srcRowA;
const ubyte *rowB = (const ubyte *) srcRowB;
ubyte *dst = (ubyte *) dstRow;
for (i = j = 0, k = k0; i < (uint) dstWidth;
i++, j += colStride, k += colStride) {
const int rowAr0 = rowA[j] & 0x3;
const int rowAr1 = rowA[k] & 0x3;
const int rowBr0 = rowB[j] & 0x3;
const int rowBr1 = rowB[k] & 0x3;
const int rowAg0 = (rowA[j] >> 2) & 0x7;
const int rowAg1 = (rowA[k] >> 2) & 0x7;
const int rowBg0 = (rowB[j] >> 2) & 0x7;
const int rowBg1 = (rowB[k] >> 2) & 0x7;
const int rowAb0 = (rowA[j] >> 5) & 0x7;
const int rowAb1 = (rowA[k] >> 5) & 0x7;
const int rowBb0 = (rowB[j] >> 5) & 0x7;
const int rowBb1 = (rowB[k] >> 5) & 0x7;
const int red = (rowAr0 + rowAr1 + rowBr0 + rowBr1) >> 2;
const int green = (rowAg0 + rowAg1 + rowBg0 + rowBg1) >> 2;
const int blue = (rowAb0 + rowAb1 + rowBb0 + rowBb1) >> 2;
dst[i] = (blue << 5) | (green << 2) | red;
}
}
else {
debug_printf("bad format in do_row()");
}
}
/**
* Average together four rows of a source image to produce a single new
* row in the dest image. It's legal for the two source rows to point
* to the same data. The source width must be equal to either the
* dest width or two times the dest width.
*
* \param datatype GL pixel type \c GL_UNSIGNED_BYTE, \c GL_UNSIGNED_SHORT,
* \c GL_FLOAT, etc.
* \param comps number of components per pixel (1..4)
* \param srcWidth Width of a row in the source data
* \param srcRowA Pointer to one of the rows of source data
* \param srcRowB Pointer to one of the rows of source data
* \param srcRowC Pointer to one of the rows of source data
* \param srcRowD Pointer to one of the rows of source data
* \param dstWidth Width of a row in the destination data
* \param srcRowA Pointer to the row of destination data
*/
static void
do_row_3D(enum dtype datatype, uint comps, int srcWidth,
const void *srcRowA, const void *srcRowB,
const void *srcRowC, const void *srcRowD,
int dstWidth, void *dstRow)
{
const uint k0 = (srcWidth == dstWidth) ? 0 : 1;
const uint colStride = (srcWidth == dstWidth) ? 1 : 2;
uint i, j, k;
assert(comps >= 1);
assert(comps <= 4);
if ((datatype == DTYPE_UBYTE) && (comps == 4)) {
DECLARE_ROW_POINTERS(ubyte, 4);
for (i = j = 0, k = k0; i < (uint) dstWidth;
i++, j += colStride, k += colStride) {
FILTER_3D(0);
FILTER_3D(1);
FILTER_3D(2);
FILTER_3D(3);
}
}
else if ((datatype == DTYPE_UBYTE) && (comps == 3)) {
DECLARE_ROW_POINTERS(ubyte, 3);
for (i = j = 0, k = k0; i < (uint) dstWidth;
i++, j += colStride, k += colStride) {
FILTER_3D(0);
FILTER_3D(1);
FILTER_3D(2);
}
}
else if ((datatype == DTYPE_UBYTE) && (comps == 2)) {
DECLARE_ROW_POINTERS(ubyte, 2);
for (i = j = 0, k = k0; i < (uint) dstWidth;
i++, j += colStride, k += colStride) {
FILTER_3D(0);
FILTER_3D(1);
}
}
else if ((datatype == DTYPE_UBYTE) && (comps == 1)) {
DECLARE_ROW_POINTERS(ubyte, 1);
for (i = j = 0, k = k0; i < (uint) dstWidth;
i++, j += colStride, k += colStride) {
FILTER_3D(0);
}
}
else if ((datatype == DTYPE_USHORT) && (comps == 4)) {
DECLARE_ROW_POINTERS(ushort, 4);
for (i = j = 0, k = k0; i < (uint) dstWidth;
i++, j += colStride, k += colStride) {
FILTER_3D(0);
FILTER_3D(1);
FILTER_3D(2);
FILTER_3D(3);
}
}
else if ((datatype == DTYPE_USHORT) && (comps == 3)) {
DECLARE_ROW_POINTERS(ushort, 3);
for (i = j = 0, k = k0; i < (uint) dstWidth;
i++, j += colStride, k += colStride) {
FILTER_3D(0);
FILTER_3D(1);
FILTER_3D(2);
}
}
else if ((datatype == DTYPE_USHORT) && (comps == 2)) {
DECLARE_ROW_POINTERS(ushort, 2);
for (i = j = 0, k = k0; i < (uint) dstWidth;
i++, j += colStride, k += colStride) {
FILTER_3D(0);
FILTER_3D(1);
}
}
else if ((datatype == DTYPE_USHORT) && (comps == 1)) {
DECLARE_ROW_POINTERS(ushort, 1);
for (i = j = 0, k = k0; i < (uint) dstWidth;
i++, j += colStride, k += colStride) {
FILTER_3D(0);
}
}
else if ((datatype == DTYPE_FLOAT) && (comps == 4)) {
DECLARE_ROW_POINTERS(float, 4);
for (i = j = 0, k = k0; i < (uint) dstWidth;
i++, j += colStride, k += colStride) {
FILTER_F_3D(0);
FILTER_F_3D(1);
FILTER_F_3D(2);
FILTER_F_3D(3);
}
}
else if ((datatype == DTYPE_FLOAT) && (comps == 3)) {
DECLARE_ROW_POINTERS(float, 3);
for (i = j = 0, k = k0; i < (uint) dstWidth;
i++, j += colStride, k += colStride) {
FILTER_F_3D(0);
FILTER_F_3D(1);
FILTER_F_3D(2);
}
}
else if ((datatype == DTYPE_FLOAT) && (comps == 2)) {
DECLARE_ROW_POINTERS(float, 2);
for (i = j = 0, k = k0; i < (uint) dstWidth;
i++, j += colStride, k += colStride) {
FILTER_F_3D(0);
FILTER_F_3D(1);
}
}
else if ((datatype == DTYPE_FLOAT) && (comps == 1)) {
DECLARE_ROW_POINTERS(float, 1);
for (i = j = 0, k = k0; i < (uint) dstWidth;
i++, j += colStride, k += colStride) {
FILTER_F_3D(0);
}
}
else if ((datatype == DTYPE_HALF_FLOAT) && (comps == 4)) {
DECLARE_ROW_POINTERS(half_float, 4);
for (i = j = 0, k = k0; i < (uint) dstWidth;
i++, j += colStride, k += colStride) {
FILTER_HF_3D(0);
FILTER_HF_3D(1);
FILTER_HF_3D(2);
FILTER_HF_3D(3);
}
}
else if ((datatype == DTYPE_HALF_FLOAT) && (comps == 3)) {
DECLARE_ROW_POINTERS(half_float, 4);
for (i = j = 0, k = k0; i < (uint) dstWidth;
i++, j += colStride, k += colStride) {
FILTER_HF_3D(0);
FILTER_HF_3D(1);
FILTER_HF_3D(2);
}
}
else if ((datatype == DTYPE_HALF_FLOAT) && (comps == 2)) {
DECLARE_ROW_POINTERS(half_float, 4);
for (i = j = 0, k = k0; i < (uint) dstWidth;
i++, j += colStride, k += colStride) {
FILTER_HF_3D(0);
FILTER_HF_3D(1);
}
}
else if ((datatype == DTYPE_HALF_FLOAT) && (comps == 1)) {
DECLARE_ROW_POINTERS(half_float, 4);
for (i = j = 0, k = k0; i < (uint) dstWidth;
i++, j += colStride, k += colStride) {
FILTER_HF_3D(0);
}
}
else if ((datatype == DTYPE_UINT) && (comps == 1)) {
const uint *rowA = (const uint *) srcRowA;
const uint *rowB = (const uint *) srcRowB;
const uint *rowC = (const uint *) srcRowC;
const uint *rowD = (const uint *) srcRowD;
float *dst = (float *) dstRow;
for (i = j = 0, k = k0; i < (uint) dstWidth;
i++, j += colStride, k += colStride) {
const uint64_t tmp = (((uint64_t) rowA[j] + (uint64_t) rowA[k])
+ ((uint64_t) rowB[j] + (uint64_t) rowB[k])
+ ((uint64_t) rowC[j] + (uint64_t) rowC[k])
+ ((uint64_t) rowD[j] + (uint64_t) rowD[k]));
dst[i] = (float)((double) tmp * 0.125);
}
}
else if ((datatype == DTYPE_USHORT_5_6_5) && (comps == 3)) {
DECLARE_ROW_POINTERS0(ushort);
for (i = j = 0, k = k0; i < (uint) dstWidth;
i++, j += colStride, k += colStride) {
const int rowAr0 = rowA[j] & 0x1f;
const int rowAr1 = rowA[k] & 0x1f;
const int rowBr0 = rowB[j] & 0x1f;
const int rowBr1 = rowB[k] & 0x1f;
const int rowCr0 = rowC[j] & 0x1f;
const int rowCr1 = rowC[k] & 0x1f;
const int rowDr0 = rowD[j] & 0x1f;
const int rowDr1 = rowD[k] & 0x1f;
const int rowAg0 = (rowA[j] >> 5) & 0x3f;
const int rowAg1 = (rowA[k] >> 5) & 0x3f;
const int rowBg0 = (rowB[j] >> 5) & 0x3f;
const int rowBg1 = (rowB[k] >> 5) & 0x3f;
const int rowCg0 = (rowC[j] >> 5) & 0x3f;
const int rowCg1 = (rowC[k] >> 5) & 0x3f;
const int rowDg0 = (rowD[j] >> 5) & 0x3f;
const int rowDg1 = (rowD[k] >> 5) & 0x3f;
const int rowAb0 = (rowA[j] >> 11) & 0x1f;
const int rowAb1 = (rowA[k] >> 11) & 0x1f;
const int rowBb0 = (rowB[j] >> 11) & 0x1f;
const int rowBb1 = (rowB[k] >> 11) & 0x1f;
const int rowCb0 = (rowC[j] >> 11) & 0x1f;
const int rowCb1 = (rowC[k] >> 11) & 0x1f;
const int rowDb0 = (rowD[j] >> 11) & 0x1f;
const int rowDb1 = (rowD[k] >> 11) & 0x1f;
const int r = FILTER_SUM_3D(rowAr0, rowAr1, rowBr0, rowBr1,
rowCr0, rowCr1, rowDr0, rowDr1);
const int g = FILTER_SUM_3D(rowAg0, rowAg1, rowBg0, rowBg1,
rowCg0, rowCg1, rowDg0, rowDg1);
const int b = FILTER_SUM_3D(rowAb0, rowAb1, rowBb0, rowBb1,
rowCb0, rowCb1, rowDb0, rowDb1);
dst[i] = (b << 11) | (g << 5) | r;
}
}
else if ((datatype == DTYPE_USHORT_4_4_4_4) && (comps == 4)) {
DECLARE_ROW_POINTERS0(ushort);
for (i = j = 0, k = k0; i < (uint) dstWidth;
i++, j += colStride, k += colStride) {
const int rowAr0 = rowA[j] & 0xf;
const int rowAr1 = rowA[k] & 0xf;
const int rowBr0 = rowB[j] & 0xf;
const int rowBr1 = rowB[k] & 0xf;
const int rowCr0 = rowC[j] & 0xf;
const int rowCr1 = rowC[k] & 0xf;
const int rowDr0 = rowD[j] & 0xf;
const int rowDr1 = rowD[k] & 0xf;
const int rowAg0 = (rowA[j] >> 4) & 0xf;
const int rowAg1 = (rowA[k] >> 4) & 0xf;
const int rowBg0 = (rowB[j] >> 4) & 0xf;
const int rowBg1 = (rowB[k] >> 4) & 0xf;
const int rowCg0 = (rowC[j] >> 4) & 0xf;
const int rowCg1 = (rowC[k] >> 4) & 0xf;
const int rowDg0 = (rowD[j] >> 4) & 0xf;
const int rowDg1 = (rowD[k] >> 4) & 0xf;
const int rowAb0 = (rowA[j] >> 8) & 0xf;
const int rowAb1 = (rowA[k] >> 8) & 0xf;
const int rowBb0 = (rowB[j] >> 8) & 0xf;
const int rowBb1 = (rowB[k] >> 8) & 0xf;
const int rowCb0 = (rowC[j] >> 8) & 0xf;
const int rowCb1 = (rowC[k] >> 8) & 0xf;
const int rowDb0 = (rowD[j] >> 8) & 0xf;
const int rowDb1 = (rowD[k] >> 8) & 0xf;
const int rowAa0 = (rowA[j] >> 12) & 0xf;
const int rowAa1 = (rowA[k] >> 12) & 0xf;
const int rowBa0 = (rowB[j] >> 12) & 0xf;
const int rowBa1 = (rowB[k] >> 12) & 0xf;
const int rowCa0 = (rowC[j] >> 12) & 0xf;
const int rowCa1 = (rowC[k] >> 12) & 0xf;
const int rowDa0 = (rowD[j] >> 12) & 0xf;
const int rowDa1 = (rowD[k] >> 12) & 0xf;
const int r = FILTER_SUM_3D(rowAr0, rowAr1, rowBr0, rowBr1,
rowCr0, rowCr1, rowDr0, rowDr1);
const int g = FILTER_SUM_3D(rowAg0, rowAg1, rowBg0, rowBg1,
rowCg0, rowCg1, rowDg0, rowDg1);
const int b = FILTER_SUM_3D(rowAb0, rowAb1, rowBb0, rowBb1,
rowCb0, rowCb1, rowDb0, rowDb1);
const int a = FILTER_SUM_3D(rowAa0, rowAa1, rowBa0, rowBa1,
rowCa0, rowCa1, rowDa0, rowDa1);
dst[i] = (a << 12) | (b << 8) | (g << 4) | r;
}
}
else if ((datatype == DTYPE_USHORT_1_5_5_5_REV) && (comps == 4)) {
DECLARE_ROW_POINTERS0(ushort);
for (i = j = 0, k = k0; i < (uint) dstWidth;
i++, j += colStride, k += colStride) {
const int rowAr0 = rowA[j] & 0x1f;
const int rowAr1 = rowA[k] & 0x1f;
const int rowBr0 = rowB[j] & 0x1f;
const int rowBr1 = rowB[k] & 0x1f;
const int rowCr0 = rowC[j] & 0x1f;
const int rowCr1 = rowC[k] & 0x1f;
const int rowDr0 = rowD[j] & 0x1f;
const int rowDr1 = rowD[k] & 0x1f;
const int rowAg0 = (rowA[j] >> 5) & 0x1f;
const int rowAg1 = (rowA[k] >> 5) & 0x1f;
const int rowBg0 = (rowB[j] >> 5) & 0x1f;
const int rowBg1 = (rowB[k] >> 5) & 0x1f;
const int rowCg0 = (rowC[j] >> 5) & 0x1f;
const int rowCg1 = (rowC[k] >> 5) & 0x1f;
const int rowDg0 = (rowD[j] >> 5) & 0x1f;
const int rowDg1 = (rowD[k] >> 5) & 0x1f;
const int rowAb0 = (rowA[j] >> 10) & 0x1f;
const int rowAb1 = (rowA[k] >> 10) & 0x1f;
const int rowBb0 = (rowB[j] >> 10) & 0x1f;
const int rowBb1 = (rowB[k] >> 10) & 0x1f;
const int rowCb0 = (rowC[j] >> 10) & 0x1f;
const int rowCb1 = (rowC[k] >> 10) & 0x1f;
const int rowDb0 = (rowD[j] >> 10) & 0x1f;
const int rowDb1 = (rowD[k] >> 10) & 0x1f;
const int rowAa0 = (rowA[j] >> 15) & 0x1;
const int rowAa1 = (rowA[k] >> 15) & 0x1;
const int rowBa0 = (rowB[j] >> 15) & 0x1;
const int rowBa1 = (rowB[k] >> 15) & 0x1;
const int rowCa0 = (rowC[j] >> 15) & 0x1;
const int rowCa1 = (rowC[k] >> 15) & 0x1;
const int rowDa0 = (rowD[j] >> 15) & 0x1;
const int rowDa1 = (rowD[k] >> 15) & 0x1;
const int r = FILTER_SUM_3D(rowAr0, rowAr1, rowBr0, rowBr1,
rowCr0, rowCr1, rowDr0, rowDr1);
const int g = FILTER_SUM_3D(rowAg0, rowAg1, rowBg0, rowBg1,
rowCg0, rowCg1, rowDg0, rowDg1);
const int b = FILTER_SUM_3D(rowAb0, rowAb1, rowBb0, rowBb1,
rowCb0, rowCb1, rowDb0, rowDb1);
const int a = FILTER_SUM_3D(rowAa0, rowAa1, rowBa0, rowBa1,
rowCa0, rowCa1, rowDa0, rowDa1);
dst[i] = (a << 15) | (b << 10) | (g << 5) | r;
}
}
else if ((datatype == DTYPE_UBYTE_3_3_2) && (comps == 3)) {
DECLARE_ROW_POINTERS0(ushort);
for (i = j = 0, k = k0; i < (uint) dstWidth;
i++, j += colStride, k += colStride) {
const int rowAr0 = rowA[j] & 0x3;
const int rowAr1 = rowA[k] & 0x3;
const int rowBr0 = rowB[j] & 0x3;
const int rowBr1 = rowB[k] & 0x3;
const int rowCr0 = rowC[j] & 0x3;
const int rowCr1 = rowC[k] & 0x3;
const int rowDr0 = rowD[j] & 0x3;
const int rowDr1 = rowD[k] & 0x3;
const int rowAg0 = (rowA[j] >> 2) & 0x7;
const int rowAg1 = (rowA[k] >> 2) & 0x7;
const int rowBg0 = (rowB[j] >> 2) & 0x7;
const int rowBg1 = (rowB[k] >> 2) & 0x7;
const int rowCg0 = (rowC[j] >> 2) & 0x7;
const int rowCg1 = (rowC[k] >> 2) & 0x7;
const int rowDg0 = (rowD[j] >> 2) & 0x7;
const int rowDg1 = (rowD[k] >> 2) & 0x7;
const int rowAb0 = (rowA[j] >> 5) & 0x7;
const int rowAb1 = (rowA[k] >> 5) & 0x7;
const int rowBb0 = (rowB[j] >> 5) & 0x7;
const int rowBb1 = (rowB[k] >> 5) & 0x7;
const int rowCb0 = (rowC[j] >> 5) & 0x7;
const int rowCb1 = (rowC[k] >> 5) & 0x7;
const int rowDb0 = (rowD[j] >> 5) & 0x7;
const int rowDb1 = (rowD[k] >> 5) & 0x7;
const int r = FILTER_SUM_3D(rowAr0, rowAr1, rowBr0, rowBr1,
rowCr0, rowCr1, rowDr0, rowDr1);
const int g = FILTER_SUM_3D(rowAg0, rowAg1, rowBg0, rowBg1,
rowCg0, rowCg1, rowDg0, rowDg1);
const int b = FILTER_SUM_3D(rowAb0, rowAb1, rowBb0, rowBb1,
rowCb0, rowCb1, rowDb0, rowDb1);
dst[i] = (b << 5) | (g << 2) | r;
}
}
else {
debug_printf("bad format in do_row_3D()");
}
}
static void
format_to_type_comps(enum pipe_format pformat,
enum dtype *datatype, uint *comps)
{
/* XXX I think this could be implemented in terms of the pf_*() functions */
switch (pformat) {
case PIPE_FORMAT_B8G8R8A8_UNORM:
case PIPE_FORMAT_B8G8R8X8_UNORM:
case PIPE_FORMAT_A8R8G8B8_UNORM:
case PIPE_FORMAT_X8R8G8B8_UNORM:
case PIPE_FORMAT_A8B8G8R8_SRGB:
case PIPE_FORMAT_X8B8G8R8_SRGB:
case PIPE_FORMAT_B8G8R8A8_SRGB:
case PIPE_FORMAT_B8G8R8X8_SRGB:
case PIPE_FORMAT_A8R8G8B8_SRGB:
case PIPE_FORMAT_X8R8G8B8_SRGB:
case PIPE_FORMAT_R8G8B8_SRGB:
*datatype = DTYPE_UBYTE;
*comps = 4;
return;
case PIPE_FORMAT_B5G5R5X1_UNORM:
case PIPE_FORMAT_B5G5R5A1_UNORM:
*datatype = DTYPE_USHORT_1_5_5_5_REV;
*comps = 4;
return;
case PIPE_FORMAT_B4G4R4A4_UNORM:
*datatype = DTYPE_USHORT_4_4_4_4;
*comps = 4;
return;
case PIPE_FORMAT_B5G6R5_UNORM:
*datatype = DTYPE_USHORT_5_6_5;
*comps = 3;
return;
case PIPE_FORMAT_L8_UNORM:
case PIPE_FORMAT_L8_SRGB:
case PIPE_FORMAT_A8_UNORM:
case PIPE_FORMAT_I8_UNORM:
*datatype = DTYPE_UBYTE;
*comps = 1;
return;
case PIPE_FORMAT_L8A8_UNORM:
case PIPE_FORMAT_L8A8_SRGB:
*datatype = DTYPE_UBYTE;
*comps = 2;
return;
default:
assert(0);
*datatype = DTYPE_UBYTE;
*comps = 0;
break;
}
}
static void
reduce_1d(enum pipe_format pformat,
int srcWidth, const ubyte *srcPtr,
int dstWidth, ubyte *dstPtr)
{
enum dtype datatype;
uint comps;
format_to_type_comps(pformat, &datatype, &comps);
/* we just duplicate the input row, kind of hack, saves code */
do_row(datatype, comps,
srcWidth, srcPtr, srcPtr,
dstWidth, dstPtr);
}
/**
* Strides are in bytes. If zero, it'll be computed as width * bpp.
*/
static void
reduce_2d(enum pipe_format pformat,
int srcWidth, int srcHeight,
int srcRowStride, const ubyte *srcPtr,
int dstWidth, int dstHeight,
int dstRowStride, ubyte *dstPtr)
{
enum dtype datatype;
uint comps;
const int bpt = util_format_get_blocksize(pformat);
const ubyte *srcA, *srcB;
ubyte *dst;
int row;
format_to_type_comps(pformat, &datatype, &comps);
if (!srcRowStride)
srcRowStride = bpt * srcWidth;
if (!dstRowStride)
dstRowStride = bpt * dstWidth;
/* Compute src and dst pointers */
srcA = srcPtr;
if (srcHeight > 1)
srcB = srcA + srcRowStride;
else
srcB = srcA;
dst = dstPtr;
for (row = 0; row < dstHeight; row++) {
do_row(datatype, comps,
srcWidth, srcA, srcB,
dstWidth, dst);
srcA += 2 * srcRowStride;
srcB += 2 * srcRowStride;
dst += dstRowStride;
}
}
static void
reduce_3d(enum pipe_format pformat,
int srcWidth, int srcHeight, int srcDepth,
int srcRowStride, int srcImageStride, const ubyte *srcPtr,
int dstWidth, int dstHeight, int dstDepth,
int dstRowStride, int dstImageStride, ubyte *dstPtr)
{
const int bpt = util_format_get_blocksize(pformat);
int img, row;
int srcImageOffset, srcRowOffset;
enum dtype datatype;
uint comps;
format_to_type_comps(pformat, &datatype, &comps);
/* XXX I think we should rather assert those strides */
if (!srcImageStride)
srcImageStride = srcWidth * srcHeight * bpt;
if (!dstImageStride)
dstImageStride = dstWidth * dstHeight * bpt;
if (!srcRowStride)
srcRowStride = srcWidth * bpt;
if (!dstRowStride)
dstRowStride = dstWidth * bpt;
/* Offset between adjacent src images to be averaged together */
srcImageOffset = (srcDepth == dstDepth) ? 0 : srcImageStride;
/* Offset between adjacent src rows to be averaged together */
srcRowOffset = (srcHeight == dstHeight) ? 0 : srcRowStride;
/*
* Need to average together up to 8 src pixels for each dest pixel.
* Break that down into 3 operations:
* 1. take two rows from source image and average them together.
* 2. take two rows from next source image and average them together.
* 3. take the two averaged rows and average them for the final dst row.
*/
/*
printf("mip3d %d x %d x %d -> %d x %d x %d\n",
srcWidth, srcHeight, srcDepth, dstWidth, dstHeight, dstDepth);
*/
for (img = 0; img < dstDepth; img++) {
/* first source image pointer */
const ubyte *imgSrcA = srcPtr
+ img * (srcImageStride + srcImageOffset);
/* second source image pointer */
const ubyte *imgSrcB = imgSrcA + srcImageOffset;
/* address of the dest image */
ubyte *imgDst = dstPtr + img * dstImageStride;
/* setup the four source row pointers and the dest row pointer */
const ubyte *srcImgARowA = imgSrcA;
const ubyte *srcImgARowB = imgSrcA + srcRowOffset;
const ubyte *srcImgBRowA = imgSrcB;
const ubyte *srcImgBRowB = imgSrcB + srcRowOffset;
ubyte *dstImgRow = imgDst;
for (row = 0; row < dstHeight; row++) {
do_row_3D(datatype, comps, srcWidth,
srcImgARowA, srcImgARowB,
srcImgBRowA, srcImgBRowB,
dstWidth, dstImgRow);
/* advance to next rows */
srcImgARowA += srcRowStride + srcRowOffset;
srcImgARowB += srcRowStride + srcRowOffset;
srcImgBRowA += srcRowStride + srcRowOffset;
srcImgBRowB += srcRowStride + srcRowOffset;
dstImgRow += dstImageStride;
}
}
}
static void
make_1d_mipmap(struct gen_mipmap_state *ctx,
struct pipe_resource *pt,
uint layer, uint baseLevel, uint lastLevel)
{
struct pipe_context *pipe = ctx->pipe;
uint dstLevel;
for (dstLevel = baseLevel + 1; dstLevel <= lastLevel; dstLevel++) {
const uint srcLevel = dstLevel - 1;
struct pipe_transfer *srcTrans, *dstTrans;
void *srcMap, *dstMap;
srcMap = pipe_transfer_map(pipe, pt, srcLevel, layer,
PIPE_TRANSFER_READ, 0, 0,
u_minify(pt->width0, srcLevel),
u_minify(pt->height0, srcLevel), &srcTrans);
dstMap = pipe_transfer_map(pipe, pt, dstLevel, layer,
PIPE_TRANSFER_WRITE, 0, 0,
u_minify(pt->width0, dstLevel),
u_minify(pt->height0, dstLevel), &dstTrans);
reduce_1d(pt->format,
srcTrans->box.width, srcMap,
dstTrans->box.width, dstMap);
pipe->transfer_unmap(pipe, srcTrans);
pipe->transfer_unmap(pipe, dstTrans);
}
}
static void
make_2d_mipmap(struct gen_mipmap_state *ctx,
struct pipe_resource *pt,
uint layer, uint baseLevel, uint lastLevel)
{
struct pipe_context *pipe = ctx->pipe;
uint dstLevel;
assert(util_format_get_blockwidth(pt->format) == 1);
assert(util_format_get_blockheight(pt->format) == 1);
for (dstLevel = baseLevel + 1; dstLevel <= lastLevel; dstLevel++) {
const uint srcLevel = dstLevel - 1;
struct pipe_transfer *srcTrans, *dstTrans;
ubyte *srcMap, *dstMap;
srcMap = pipe_transfer_map(pipe, pt, srcLevel, layer,
PIPE_TRANSFER_READ, 0, 0,
u_minify(pt->width0, srcLevel),
u_minify(pt->height0, srcLevel), &srcTrans);
dstMap = pipe_transfer_map(pipe, pt, dstLevel, layer,
PIPE_TRANSFER_WRITE, 0, 0,
u_minify(pt->width0, dstLevel),
u_minify(pt->height0, dstLevel), &dstTrans);
reduce_2d(pt->format,
srcTrans->box.width, srcTrans->box.height,
srcTrans->stride, srcMap,
dstTrans->box.width, dstTrans->box.height,
dstTrans->stride, dstMap);
pipe->transfer_unmap(pipe, srcTrans);
pipe->transfer_unmap(pipe, dstTrans);
}
}
/* XXX looks a bit more like it could work now but need to test */
static void
make_3d_mipmap(struct gen_mipmap_state *ctx,
struct pipe_resource *pt,
uint face, uint baseLevel, uint lastLevel)
{
struct pipe_context *pipe = ctx->pipe;
uint dstLevel;
struct pipe_box src_box, dst_box;
assert(util_format_get_blockwidth(pt->format) == 1);
assert(util_format_get_blockheight(pt->format) == 1);
src_box.x = src_box.y = src_box.z = 0;
dst_box.x = dst_box.y = dst_box.z = 0;
for (dstLevel = baseLevel + 1; dstLevel <= lastLevel; dstLevel++) {
const uint srcLevel = dstLevel - 1;
struct pipe_transfer *srcTrans, *dstTrans;
ubyte *srcMap, *dstMap;
struct pipe_box src_box, dst_box;
src_box.width = u_minify(pt->width0, srcLevel);
src_box.height = u_minify(pt->height0, srcLevel);
src_box.depth = u_minify(pt->depth0, srcLevel);
dst_box.width = u_minify(pt->width0, dstLevel);
dst_box.height = u_minify(pt->height0, dstLevel);
dst_box.depth = u_minify(pt->depth0, dstLevel);
srcMap = pipe->transfer_map(pipe, pt, srcLevel,
PIPE_TRANSFER_READ,
&src_box, &srcTrans);
dstMap = pipe->transfer_map(pipe, pt, dstLevel,
PIPE_TRANSFER_WRITE,
&dst_box, &dstTrans);
reduce_3d(pt->format,
srcTrans->box.width, srcTrans->box.height, srcTrans->box.depth,
srcTrans->stride, srcTrans->layer_stride, srcMap,
dstTrans->box.width, dstTrans->box.height, dstTrans->box.depth,
dstTrans->stride, dstTrans->layer_stride, dstMap);
pipe->transfer_unmap(pipe, srcTrans);
pipe->transfer_unmap(pipe, dstTrans);
}
}
static void
fallback_gen_mipmap(struct gen_mipmap_state *ctx,
struct pipe_resource *pt,
uint layer, uint baseLevel, uint lastLevel)
{
switch (pt->target) {
case PIPE_TEXTURE_1D:
make_1d_mipmap(ctx, pt, layer, baseLevel, lastLevel);
break;
case PIPE_TEXTURE_2D:
case PIPE_TEXTURE_RECT:
case PIPE_TEXTURE_CUBE:
make_2d_mipmap(ctx, pt, layer, baseLevel, lastLevel);
break;
case PIPE_TEXTURE_3D:
make_3d_mipmap(ctx, pt, layer, baseLevel, lastLevel);
break;
default:
assert(0);
}
}
/**
* Create a mipmap generation context.
* The idea is to create one of these and re-use it each time we need to
* generate a mipmap.
*/
struct gen_mipmap_state *
util_create_gen_mipmap(struct pipe_context *pipe,
struct cso_context *cso)
{
struct gen_mipmap_state *ctx;
uint i;
ctx = CALLOC_STRUCT(gen_mipmap_state);
if (!ctx)
return NULL;
ctx->pipe = pipe;
ctx->cso = cso;
/* disabled blending/masking */
memset(&ctx->blend_keep_color, 0, sizeof(ctx->blend_keep_color));
memset(&ctx->blend_write_color, 0, sizeof(ctx->blend_write_color));
ctx->blend_write_color.rt[0].colormask = PIPE_MASK_RGBA;
/* no-op depth/stencil/alpha */
memset(&ctx->dsa_keep_depth, 0, sizeof(ctx->dsa_keep_depth));
memset(&ctx->dsa_write_depth, 0, sizeof(ctx->dsa_write_depth));
ctx->dsa_write_depth.depth.enabled = 1;
ctx->dsa_write_depth.depth.func = PIPE_FUNC_ALWAYS;
ctx->dsa_write_depth.depth.writemask = 1;
/* rasterizer */
memset(&ctx->rasterizer, 0, sizeof(ctx->rasterizer));
ctx->rasterizer.cull_face = PIPE_FACE_NONE;
ctx->rasterizer.half_pixel_center = 1;
ctx->rasterizer.bottom_edge_rule = 1;
ctx->rasterizer.depth_clip = 1;
/* sampler state */
memset(&ctx->sampler, 0, sizeof(ctx->sampler));
ctx->sampler.wrap_s = PIPE_TEX_WRAP_CLAMP_TO_EDGE;
ctx->sampler.wrap_t = PIPE_TEX_WRAP_CLAMP_TO_EDGE;
ctx->sampler.wrap_r = PIPE_TEX_WRAP_CLAMP_TO_EDGE;
ctx->sampler.min_mip_filter = PIPE_TEX_MIPFILTER_NEAREST;
ctx->sampler.normalized_coords = 1;
/* vertex elements state */
memset(&ctx->velem[0], 0, sizeof(ctx->velem[0]) * 2);
for (i = 0; i < 2; i++) {
ctx->velem[i].src_offset = i * 4 * sizeof(float);
ctx->velem[i].instance_divisor = 0;
ctx->velem[i].vertex_buffer_index = cso_get_aux_vertex_buffer_slot(cso);
ctx->velem[i].src_format = PIPE_FORMAT_R32G32B32A32_FLOAT;
}
/* vertex data that doesn't change */
for (i = 0; i < 4; i++) {
ctx->vertices[i][0][2] = 0.0f; /* z */
ctx->vertices[i][0][3] = 1.0f; /* w */
ctx->vertices[i][1][3] = 1.0f; /* q */
}
/* Note: the actual vertex buffer is allocated as needed below */
return ctx;
}
/**
* Helper function to set the fragment shaders.
*/
static INLINE void
set_fragment_shader(struct gen_mipmap_state *ctx, uint type,
boolean output_depth)
{
if (output_depth) {
if (!ctx->fs_depth[type])
ctx->fs_depth[type] =
util_make_fragment_tex_shader_writedepth(ctx->pipe, type,
TGSI_INTERPOLATE_LINEAR);
cso_set_fragment_shader_handle(ctx->cso, ctx->fs_depth[type]);
}
else {
if (!ctx->fs_color[type])
ctx->fs_color[type] =
util_make_fragment_tex_shader(ctx->pipe, type,
TGSI_INTERPOLATE_LINEAR);
cso_set_fragment_shader_handle(ctx->cso, ctx->fs_color[type]);
}
}
/**
* Helper function to set the vertex shader.
*/
static INLINE void
set_vertex_shader(struct gen_mipmap_state *ctx)
{
/* vertex shader - still required to provide the linkage between
* fragment shader input semantics and vertex_element/buffers.
*/
if (!ctx->vs)
{
const uint semantic_names[] = { TGSI_SEMANTIC_POSITION,
TGSI_SEMANTIC_GENERIC };
const uint semantic_indexes[] = { 0, 0 };
ctx->vs = util_make_vertex_passthrough_shader(ctx->pipe, 2,
semantic_names,
semantic_indexes);
}
cso_set_vertex_shader_handle(ctx->cso, ctx->vs);
}
/**
* Get next "slot" of vertex space in the vertex buffer.
* We're allocating one large vertex buffer and using it piece by piece.
*/
static unsigned
get_next_slot(struct gen_mipmap_state *ctx)
{
const unsigned max_slots = 4096 / sizeof ctx->vertices;
if (ctx->vbuf_slot >= max_slots) {
pipe_resource_reference(&ctx->vbuf, NULL);
ctx->vbuf_slot = 0;
}
if (!ctx->vbuf) {
ctx->vbuf = pipe_buffer_create(ctx->pipe->screen,
PIPE_BIND_VERTEX_BUFFER,
PIPE_USAGE_STREAM,
max_slots * sizeof ctx->vertices);
}
return ctx->vbuf_slot++ * sizeof ctx->vertices;
}
static unsigned
set_vertex_data(struct gen_mipmap_state *ctx,
enum pipe_texture_target tex_target,
uint layer, float r)
{
unsigned offset;
/* vert[0].position */
ctx->vertices[0][0][0] = -1.0f; /*x*/
ctx->vertices[0][0][1] = -1.0f; /*y*/
/* vert[1].position */
ctx->vertices[1][0][0] = 1.0f;
ctx->vertices[1][0][1] = -1.0f;
/* vert[2].position */
ctx->vertices[2][0][0] = 1.0f;
ctx->vertices[2][0][1] = 1.0f;
/* vert[3].position */
ctx->vertices[3][0][0] = -1.0f;
ctx->vertices[3][0][1] = 1.0f;
/* Setup vertex texcoords. This is a little tricky for cube maps. */
if (tex_target == PIPE_TEXTURE_CUBE) {
static const float st[4][2] = {
{0.0f, 0.0f}, {1.0f, 0.0f}, {1.0f, 1.0f}, {0.0f, 1.0f}
};
util_map_texcoords2d_onto_cubemap(layer, &st[0][0], 2,
&ctx->vertices[0][1][0], 8);
}
else if (tex_target == PIPE_TEXTURE_1D_ARRAY) {
/* 1D texture array */
ctx->vertices[0][1][0] = 0.0f; /*s*/
ctx->vertices[0][1][1] = r; /*t*/
ctx->vertices[0][1][2] = 0.0f; /*r*/
ctx->vertices[1][1][0] = 1.0f;
ctx->vertices[1][1][1] = r;
ctx->vertices[1][1][2] = 0.0f;
ctx->vertices[2][1][0] = 1.0f;
ctx->vertices[2][1][1] = r;
ctx->vertices[2][1][2] = 0.0f;
ctx->vertices[3][1][0] = 0.0f;
ctx->vertices[3][1][1] = r;
ctx->vertices[3][1][2] = 0.0f;
} else {
/* 1D/2D/3D/2D array */
ctx->vertices[0][1][0] = 0.0f; /*s*/
ctx->vertices[0][1][1] = 0.0f; /*t*/
ctx->vertices[0][1][2] = r; /*r*/
ctx->vertices[1][1][0] = 1.0f;
ctx->vertices[1][1][1] = 0.0f;
ctx->vertices[1][1][2] = r;
ctx->vertices[2][1][0] = 1.0f;
ctx->vertices[2][1][1] = 1.0f;
ctx->vertices[2][1][2] = r;
ctx->vertices[3][1][0] = 0.0f;
ctx->vertices[3][1][1] = 1.0f;
ctx->vertices[3][1][2] = r;
}
offset = get_next_slot( ctx );
pipe_buffer_write_nooverlap(ctx->pipe, ctx->vbuf,
offset, sizeof(ctx->vertices), ctx->vertices);
return offset;
}
/**
* Destroy a mipmap generation context
*/
void
util_destroy_gen_mipmap(struct gen_mipmap_state *ctx)
{
struct pipe_context *pipe = ctx->pipe;
unsigned i;
for (i = 0; i < Elements(ctx->fs_color); i++)
if (ctx->fs_color[i])
pipe->delete_fs_state(pipe, ctx->fs_color[i]);
for (i = 0; i < Elements(ctx->fs_depth); i++)
if (ctx->fs_depth[i])
pipe->delete_fs_state(pipe, ctx->fs_depth[i]);
if (ctx->vs)
pipe->delete_vs_state(pipe, ctx->vs);
pipe_resource_reference(&ctx->vbuf, NULL);
FREE(ctx);
}
/**
* Generate mipmap images. It's assumed all needed texture memory is
* already allocated.
*
* \param psv the sampler view to the texture to generate mipmap levels for
* \param face which cube face to generate mipmaps for (0 for non-cube maps)
* \param baseLevel the first mipmap level to use as a src
* \param lastLevel the last mipmap level to generate
* \param filter the minification filter used to generate mipmap levels with
* \param filter one of PIPE_TEX_FILTER_LINEAR, PIPE_TEX_FILTER_NEAREST
*/
void
util_gen_mipmap(struct gen_mipmap_state *ctx,
struct pipe_sampler_view *psv,
uint face, uint baseLevel, uint lastLevel, uint filter)
{
struct pipe_context *pipe = ctx->pipe;
struct pipe_screen *screen = pipe->screen;
struct pipe_framebuffer_state fb;
struct pipe_resource *pt = psv->texture;
uint dstLevel;
uint offset;
uint type;
boolean is_depth = util_format_is_depth_or_stencil(psv->format);
/* The texture object should have room for the levels which we're
* about to generate.
*/
assert(lastLevel <= pt->last_level);
/* If this fails, why are we here? */
assert(lastLevel > baseLevel);
assert(filter == PIPE_TEX_FILTER_LINEAR ||
filter == PIPE_TEX_FILTER_NEAREST);
switch (pt->target) {
case PIPE_TEXTURE_1D:
type = TGSI_TEXTURE_1D;
break;
case PIPE_TEXTURE_2D:
type = TGSI_TEXTURE_2D;
break;
case PIPE_TEXTURE_3D:
type = TGSI_TEXTURE_3D;
break;
case PIPE_TEXTURE_CUBE:
type = TGSI_TEXTURE_CUBE;
break;
case PIPE_TEXTURE_1D_ARRAY:
type = TGSI_TEXTURE_1D_ARRAY;
break;
case PIPE_TEXTURE_2D_ARRAY:
type = TGSI_TEXTURE_2D_ARRAY;
break;
default:
assert(0);
type = TGSI_TEXTURE_2D;
}
/* check if we can render in the texture's format */
if (!screen->is_format_supported(screen, psv->format, pt->target,
pt->nr_samples,
is_depth ? PIPE_BIND_DEPTH_STENCIL :
PIPE_BIND_RENDER_TARGET)) {
fallback_gen_mipmap(ctx, pt, face, baseLevel, lastLevel);
return;
}
/* save state (restored below) */
cso_save_blend(ctx->cso);
cso_save_depth_stencil_alpha(ctx->cso);
cso_save_rasterizer(ctx->cso);
cso_save_sample_mask(ctx->cso);
cso_save_samplers(ctx->cso, PIPE_SHADER_FRAGMENT);
cso_save_sampler_views(ctx->cso, PIPE_SHADER_FRAGMENT);
cso_save_stream_outputs(ctx->cso);
cso_save_framebuffer(ctx->cso);
cso_save_fragment_shader(ctx->cso);
cso_save_vertex_shader(ctx->cso);
cso_save_geometry_shader(ctx->cso);
cso_save_viewport(ctx->cso);
cso_save_vertex_elements(ctx->cso);
cso_save_aux_vertex_buffer_slot(ctx->cso);
cso_save_render_condition(ctx->cso);
/* bind our state */
cso_set_blend(ctx->cso, is_depth ? &ctx->blend_keep_color :
&ctx->blend_write_color);
cso_set_depth_stencil_alpha(ctx->cso, is_depth ? &ctx->dsa_write_depth :
&ctx->dsa_keep_depth);
cso_set_rasterizer(ctx->cso, &ctx->rasterizer);
cso_set_sample_mask(ctx->cso, ~0);
cso_set_vertex_elements(ctx->cso, 2, ctx->velem);
cso_set_stream_outputs(ctx->cso, 0, NULL, 0);
cso_set_render_condition(ctx->cso, NULL, FALSE, 0);
set_fragment_shader(ctx, type, is_depth);
set_vertex_shader(ctx);
cso_set_geometry_shader_handle(ctx->cso, NULL);
/* init framebuffer state */
memset(&fb, 0, sizeof(fb));
/* set min/mag to same filter for faster sw speed */
ctx->sampler.mag_img_filter = filter;
ctx->sampler.min_img_filter = filter;
for (dstLevel = baseLevel + 1; dstLevel <= lastLevel; dstLevel++) {
const uint srcLevel = dstLevel - 1;
struct pipe_viewport_state vp;
unsigned nr_layers, layer, i;
float rcoord = 0.0f;
if (pt->target == PIPE_TEXTURE_3D)
nr_layers = u_minify(pt->depth0, dstLevel);
else if (pt->target == PIPE_TEXTURE_2D_ARRAY || pt->target == PIPE_TEXTURE_1D_ARRAY)
nr_layers = pt->array_size;
else
nr_layers = 1;
for (i = 0; i < nr_layers; i++) {
struct pipe_surface *surf, surf_templ;
if (pt->target == PIPE_TEXTURE_3D) {
/* in theory with geom shaders and driver with full layer support
could do that in one go. */
layer = i;
/* XXX hmm really? */
rcoord = (float)layer / (float)nr_layers + 1.0f / (float)(nr_layers * 2);
} else if (pt->target == PIPE_TEXTURE_2D_ARRAY || pt->target == PIPE_TEXTURE_1D_ARRAY) {
layer = i;
rcoord = (float)layer;
} else
layer = face;
u_surface_default_template(&surf_templ, pt);
surf_templ.u.tex.level = dstLevel;
surf_templ.u.tex.first_layer = layer;
surf_templ.u.tex.last_layer = layer;
surf = pipe->create_surface(pipe, pt, &surf_templ);
/*
* Setup framebuffer / dest surface
*/
if (is_depth) {
fb.nr_cbufs = 0;
fb.zsbuf = surf;
}
else {
fb.nr_cbufs = 1;
fb.cbufs[0] = surf;
}
fb.width = u_minify(pt->width0, dstLevel);
fb.height = u_minify(pt->height0, dstLevel);
cso_set_framebuffer(ctx->cso, &fb);
/* viewport */
vp.scale[0] = 0.5f * fb.width;
vp.scale[1] = 0.5f * fb.height;
vp.scale[2] = 1.0f;
vp.scale[3] = 1.0f;
vp.translate[0] = 0.5f * fb.width;
vp.translate[1] = 0.5f * fb.height;
vp.translate[2] = 0.0f;
vp.translate[3] = 0.0f;
cso_set_viewport(ctx->cso, &vp);
/*
* Setup sampler state
* Note: we should only have to set the min/max LOD clamps to ensure
* we grab texels from the right mipmap level. But some hardware
* has trouble with min clamping so we also set the lod_bias to
* try to work around that.
*/
ctx->sampler.min_lod = ctx->sampler.max_lod = (float) srcLevel;
ctx->sampler.lod_bias = (float) srcLevel;
cso_single_sampler(ctx->cso, PIPE_SHADER_FRAGMENT, 0, &ctx->sampler);
cso_single_sampler_done(ctx->cso, PIPE_SHADER_FRAGMENT);
cso_set_sampler_views(ctx->cso, PIPE_SHADER_FRAGMENT, 1, &psv);
/* quad coords in clip coords */
offset = set_vertex_data(ctx,
pt->target,
face,
rcoord);
util_draw_vertex_buffer(ctx->pipe,
ctx->cso,
ctx->vbuf,
cso_get_aux_vertex_buffer_slot(ctx->cso),
offset,
PIPE_PRIM_TRIANGLE_FAN,
4, /* verts */
2); /* attribs/vert */
/* need to signal that the texture has changed _after_ rendering to it */
pipe_surface_reference( &surf, NULL );
}
}
/* restore state we changed */
cso_restore_blend(ctx->cso);
cso_restore_depth_stencil_alpha(ctx->cso);
cso_restore_rasterizer(ctx->cso);
cso_restore_sample_mask(ctx->cso);
cso_restore_samplers(ctx->cso, PIPE_SHADER_FRAGMENT);
cso_restore_sampler_views(ctx->cso, PIPE_SHADER_FRAGMENT);
cso_restore_framebuffer(ctx->cso);
cso_restore_fragment_shader(ctx->cso);
cso_restore_vertex_shader(ctx->cso);
cso_restore_geometry_shader(ctx->cso);
cso_restore_viewport(ctx->cso);
cso_restore_vertex_elements(ctx->cso);
cso_restore_stream_outputs(ctx->cso);
cso_restore_aux_vertex_buffer_slot(ctx->cso);
cso_restore_render_condition(ctx->cso);
}