From ba2b0659ace39328fb6c82e571fd686d044f39ee Mon Sep 17 00:00:00 2001 From: CleverMouse Date: Mon, 1 Dec 2014 11:16:20 +0000 Subject: [PATCH] add 8086tiny to autobuild git-svn-id: svn://kolibrios.org@5203 a494cfbc-eb01-0410-851d-a64ba20cac60 --- contrib/other/8086tiny/8086tiny.c | 790 +++++++++++++++++++++++++++++ contrib/other/8086tiny/Makefile | 6 + contrib/other/8086tiny/Tupfile.lua | 12 + contrib/other/8086tiny/console.c | 150 ++++++ 4 files changed, 958 insertions(+) create mode 100644 contrib/other/8086tiny/8086tiny.c create mode 100644 contrib/other/8086tiny/Makefile create mode 100644 contrib/other/8086tiny/Tupfile.lua create mode 100644 contrib/other/8086tiny/console.c diff --git a/contrib/other/8086tiny/8086tiny.c b/contrib/other/8086tiny/8086tiny.c new file mode 100644 index 0000000000..1e709e8525 --- /dev/null +++ b/contrib/other/8086tiny/8086tiny.c @@ -0,0 +1,790 @@ +// 8086tiny: a tiny, highly functional, highly portable PC emulator/VM +// Copyright 2013-14, Adrian Cable (adrian.cable@gmail.com) - http://www.megalith.co.uk/8086tiny +// +// Revision 1.25 +// +// This work is licensed under the MIT License. See included LICENSE.TXT. + +#include +//#include + +struct timeb +{ + time_t time; /* Seconds since the epoch */ + unsigned short millitm; + short timezone; + short dstflag; +}; + +static int ftime(struct timeb* tp) +{ + unsigned counter = 0; + __asm__ volatile("int $0x40" : "=a"(counter) : "a"(26), "b"(9)); + tp->millitm = (counter % 100) * 10; + return 0; +} + + +#include + +#ifndef _WIN32 +#include +#include +#endif + +#ifndef NO_GRAPHICS +#include +#endif + +// Emulator system constants +#define IO_PORT_COUNT 0x10000 +#define RAM_SIZE 0x10FFF0 +#define REGS_BASE 0xF0000 +#define VIDEO_RAM_SIZE 0x10000 + +// Graphics/timer/keyboard update delays (explained later) +#ifndef GRAPHICS_UPDATE_DELAY +#define GRAPHICS_UPDATE_DELAY 36000 //1000 times +#endif +#define KEYBOARD_TIMER_UPDATE_DELAY 2000 //1000 times + +// 16-bit register decodes +#define REG_AX 0 +#define REG_CX 1 +#define REG_DX 2 +#define REG_BX 3 +#define REG_SP 4 +#define REG_BP 5 +#define REG_SI 6 +#define REG_DI 7 + +#define REG_ES 8 +#define REG_CS 9 +#define REG_SS 10 +#define REG_DS 11 + +#define REG_ZERO 12 +#define REG_SCRATCH 13 + +// 8-bit register decodes +#define REG_AL 0 +#define REG_AH 1 +#define REG_CL 2 +#define REG_CH 3 +#define REG_DL 4 +#define REG_DH 5 +#define REG_BL 6 +#define REG_BH 7 + +// FLAGS register decodes +#define FLAG_CF 40 +#define FLAG_PF 41 +#define FLAG_AF 42 +#define FLAG_ZF 43 +#define FLAG_SF 44 +#define FLAG_TF 45 +#define FLAG_IF 46 +#define FLAG_DF 47 +#define FLAG_OF 48 + +// Lookup tables in the BIOS binary +#define TABLE_XLAT_OPCODE 8 +#define TABLE_XLAT_SUBFUNCTION 9 +#define TABLE_STD_FLAGS 10 +#define TABLE_PARITY_FLAG 11 +#define TABLE_BASE_INST_SIZE 12 +#define TABLE_I_W_SIZE 13 +#define TABLE_I_MOD_SIZE 14 +#define TABLE_COND_JUMP_DECODE_A 15 +#define TABLE_COND_JUMP_DECODE_B 16 +#define TABLE_COND_JUMP_DECODE_C 17 +#define TABLE_COND_JUMP_DECODE_D 18 +#define TABLE_FLAGS_BITFIELDS 19 + +// Bitfields for TABLE_STD_FLAGS values +#define FLAGS_UPDATE_SZP 1 +#define FLAGS_UPDATE_AO_ARITH 2 +#define FLAGS_UPDATE_OC_LOGIC 4 + +// Helper macros + +// Decode mod, r_m and reg fields in instruction +#define DECODE_RM_REG scratch2_uint = 4 * !i_mod, \ + op_to_addr = rm_addr = i_mod < 3 ? SEGREG(seg_override_en ? seg_override : bios_table_lookup[scratch2_uint + 3][i_rm], bios_table_lookup[scratch2_uint][i_rm], regs16[bios_table_lookup[scratch2_uint + 1][i_rm]] + bios_table_lookup[scratch2_uint + 2][i_rm] * i_data1+) : GET_REG_ADDR(i_rm), \ + op_from_addr = GET_REG_ADDR(i_reg), \ + i_d && (scratch_uint = op_from_addr, op_from_addr = rm_addr, op_to_addr = scratch_uint) + +// Return memory-mapped register location (offset into mem array) for register #reg_id +#define GET_REG_ADDR(reg_id) (REGS_BASE + (i_w ? 2 * reg_id : 2 * reg_id + reg_id / 4 & 7)) + +// Returns number of top bit in operand (i.e. 8 for 8-bit operands, 16 for 16-bit operands) +#define TOP_BIT 8*(i_w + 1) + +// Opcode execution unit helpers +#define OPCODE ;break; case +#define OPCODE_CHAIN ; case + +// [I]MUL/[I]DIV/DAA/DAS/ADC/SBB helpers +#define MUL_MACRO(op_data_type,out_regs) (set_opcode(0x10), \ + out_regs[i_w + 1] = (op_result = CAST(op_data_type)mem[rm_addr] * (op_data_type)*out_regs) >> 16, \ + regs16[REG_AX] = op_result, \ + set_OF(set_CF(op_result - (op_data_type)op_result))) +#define DIV_MACRO(out_data_type,in_data_type,out_regs) (scratch_int = CAST(out_data_type)mem[rm_addr]) && !(scratch2_uint = (in_data_type)(scratch_uint = (out_regs[i_w+1] << 16) + regs16[REG_AX]) / scratch_int, scratch2_uint - (out_data_type)scratch2_uint) ? out_regs[i_w+1] = scratch_uint - scratch_int * (*out_regs = scratch2_uint) : pc_interrupt(0) +#define DAA_DAS(op1,op2,mask,min) set_AF((((scratch2_uint = regs8[REG_AL]) & 0x0F) > 9) || regs8[FLAG_AF]) && (op_result = regs8[REG_AL] op1 6, set_CF(regs8[FLAG_CF] || (regs8[REG_AL] op2 scratch2_uint))), \ + set_CF((((mask & 1 ? scratch2_uint : regs8[REG_AL]) & mask) > min) || regs8[FLAG_CF]) && (op_result = regs8[REG_AL] op1 0x60) +#define ADC_SBB_MACRO(a) OP(a##= regs8[FLAG_CF] +), \ + set_CF(regs8[FLAG_CF] && (op_result == op_dest) || (a op_result < a(int)op_dest)), \ + set_AF_OF_arith() + +// Execute arithmetic/logic operations in emulator memory/registers +#define R_M_OP(dest,op,src) (i_w ? op_dest = CAST(unsigned short)dest, op_result = CAST(unsigned short)dest op (op_source = CAST(unsigned short)src) \ + : (op_dest = dest, op_result = dest op (op_source = CAST(unsigned char)src))) +#define MEM_OP(dest,op,src) R_M_OP(mem[dest],op,mem[src]) +#define OP(op) MEM_OP(op_to_addr,op,op_from_addr) + +// Increment or decrement a register #reg_id (usually SI or DI), depending on direction flag and operand size (given by i_w) +#define INDEX_INC(reg_id) (regs16[reg_id] -= (2 * regs8[FLAG_DF] - 1)*(i_w + 1)) + +// Helpers for stack operations +#define R_M_PUSH(a) (i_w = 1, R_M_OP(mem[SEGREG(REG_SS, REG_SP, --)], =, a)) +#define R_M_POP(a) (i_w = 1, regs16[REG_SP] += 2, R_M_OP(a, =, mem[SEGREG(REG_SS, REG_SP, -2+)])) + +// Convert segment:offset to linear address in emulator memory space +#define SEGREG(reg_seg,reg_ofs,op) 16 * regs16[reg_seg] + (unsigned short)(op regs16[reg_ofs]) + +// Returns sign bit of an 8-bit or 16-bit operand +#define SIGN_OF(a) (1 & (i_w ? CAST(short)a : a) >> (TOP_BIT - 1)) + +// Reinterpretation cast +#define CAST(a) *(a*)& + +// Keyboard driver for console. This may need changing for UNIX/non-UNIX platforms +#ifdef _WIN32 +#define KEYBOARD_DRIVER kbhit() && (mem[0x4A6] = getch(), pc_interrupt(7)) +#else +//#define KEYBOARD_DRIVER read(0, mem + 0x4A6, 1) && (int8_asap = (mem[0x4A6] == 0x1B), pc_interrupt(7)) + +#define KEYBOARD_DRIVER kbhit() && (mem[0x4A6] = getch(), pc_interrupt(7)) +#endif + +// Keyboard driver for SDL +#ifdef NO_GRAPHICS +#define SDL_KEYBOARD_DRIVER KEYBOARD_DRIVER +#else +#define SDL_KEYBOARD_DRIVER sdl_screen ? SDL_PollEvent(&sdl_event) && (sdl_event.type == SDL_KEYDOWN || sdl_event.type == SDL_KEYUP) && (scratch_uint = sdl_event.key.keysym.unicode, scratch2_uint = sdl_event.key.keysym.mod, CAST(short)mem[0x4A6] = 0x400 + 0x800*!!(scratch2_uint & KMOD_ALT) + 0x1000*!!(scratch2_uint & KMOD_SHIFT) + 0x2000*!!(scratch2_uint & KMOD_CTRL) + 0x4000*(sdl_event.type == SDL_KEYUP) + ((!scratch_uint || scratch_uint > 0x7F) ? sdl_event.key.keysym.sym : scratch_uint), pc_interrupt(7)) : (KEYBOARD_DRIVER) +#endif + +// Global variable definitions +unsigned char mem[RAM_SIZE], io_ports[IO_PORT_COUNT], *opcode_stream, *regs8, i_rm, i_w, i_reg, i_mod, i_mod_size, i_d, i_reg4bit, raw_opcode_id, xlat_opcode_id, extra, rep_mode, seg_override_en, rep_override_en, trap_flag, int8_asap, scratch_uchar, io_hi_lo, *vid_mem_base, spkr_en, bios_table_lookup[20][256]; +unsigned short *regs16, reg_ip, seg_override, file_index, wave_counter; +unsigned int op_source, op_dest, rm_addr, op_to_addr, op_from_addr, i_data0, i_data1, i_data2, scratch_uint, scratch2_uint, inst_counter, set_flags_type, GRAPHICS_X, GRAPHICS_Y, pixel_colors[16], vmem_ctr; +int op_result, disk[3], scratch_int; +time_t clock_buf; +struct timeb ms_clock; + +#ifndef NO_GRAPHICS +SDL_AudioSpec sdl_audio = {44100, AUDIO_U8, 1, 0, 128}; +SDL_AudioSpec sdl_audio_obt = {44100, AUDIO_U8, 1, 0, 128}; +SDL_Surface *sdl_screen; +SDL_Event sdl_event; +unsigned short vid_addr_lookup[VIDEO_RAM_SIZE], cga_colors[4] = {0 /* Black */, 0x1F1F /* Cyan */, 0xE3E3 /* Magenta */, 0xFFFF /* White */}; +#endif + +// Helper functions + +// Set carry flag +char set_CF(int new_CF) +{ + return regs8[FLAG_CF] = !!new_CF; +} + +// Set auxiliary flag +char set_AF(int new_AF) +{ + return regs8[FLAG_AF] = !!new_AF; +} + +// Set overflow flag +char set_OF(int new_OF) +{ + return regs8[FLAG_OF] = !!new_OF; +} + +// Set auxiliary and overflow flag after arithmetic operations +char set_AF_OF_arith() +{ + set_AF((op_source ^= op_dest ^ op_result) & 0x10); + if (op_result == op_dest) + return set_OF(0); + else + return set_OF(1 & (regs8[FLAG_CF] ^ op_source >> (TOP_BIT - 1))); +} + +// Assemble and return emulated CPU FLAGS register in scratch_uint +void make_flags() +{ + scratch_uint = 0xF002; // 8086 has reserved and unused flags set to 1 + for (int i = 9; i--;) + scratch_uint += regs8[FLAG_CF + i] << bios_table_lookup[TABLE_FLAGS_BITFIELDS][i]; +} + +// Set emulated CPU FLAGS register from regs8[FLAG_xx] values +void set_flags(int new_flags) +{ + for (int i = 9; i--;) + regs8[FLAG_CF + i] = !!(1 << bios_table_lookup[TABLE_FLAGS_BITFIELDS][i] & new_flags); +} + +// Convert raw opcode to translated opcode index. This condenses a large number of different encodings of similar +// instructions into a much smaller number of distinct functions, which we then execute +void set_opcode(unsigned char opcode) +{ + xlat_opcode_id = bios_table_lookup[TABLE_XLAT_OPCODE][raw_opcode_id = opcode]; + extra = bios_table_lookup[TABLE_XLAT_SUBFUNCTION][opcode]; + i_mod_size = bios_table_lookup[TABLE_I_MOD_SIZE][opcode]; + set_flags_type = bios_table_lookup[TABLE_STD_FLAGS][opcode]; +} + +// Execute INT #interrupt_num on the emulated machine +char pc_interrupt(unsigned char interrupt_num) +{ + set_opcode(0xCD); // Decode like INT + + make_flags(); + R_M_PUSH(scratch_uint); + R_M_PUSH(regs16[REG_CS]); + R_M_PUSH(reg_ip); + MEM_OP(REGS_BASE + 2 * REG_CS, =, 4 * interrupt_num + 2); + R_M_OP(reg_ip, =, mem[4 * interrupt_num]); + + return regs8[FLAG_TF] = regs8[FLAG_IF] = 0; +} + +// AAA and AAS instructions - which_operation is +1 for AAA, and -1 for AAS +int AAA_AAS(char which_operation) +{ + return (regs16[REG_AX] += 262 * which_operation*set_AF(set_CF(((regs8[REG_AL] & 0x0F) > 9) || regs8[FLAG_AF])), regs8[REG_AL] &= 0x0F); +} + +#ifndef NO_GRAPHICS +void audio_callback(void *data, unsigned char *stream, int len) +{ + for (int i = 0; i < len; i++) + stream[i] = (spkr_en == 3) && CAST(unsigned short)mem[0x4AA] ? -((54 * wave_counter++ / CAST(unsigned short)mem[0x4AA]) & 1) : sdl_audio.silence; + + spkr_en = io_ports[0x61] & 3; +} +#endif + +#define printf con_printf +#define gets con_gets +#undef main +#include "console.c" + +// Emulator entry point +int main(int argc, char **argv) +{ + CONSOLE_INIT("8086"); + + //freopen("OUT", "w" ,stdout); +#ifndef NO_GRAPHICS + // Initialise SDL + SDL_Init(SDL_INIT_AUDIO); + sdl_audio.callback = audio_callback; +#ifdef _WIN32 + sdl_audio.samples = 512; +#endif + SDL_OpenAudio(&sdl_audio, &sdl_audio_obt); +#endif + + // regs16 and reg8 point to F000:0, the start of memory-mapped registers. CS is initialised to F000 + regs16 = (unsigned short *)(regs8 = mem + REGS_BASE); + regs16[REG_CS] = 0xF000; + + // Trap flag off + regs8[FLAG_TF] = 0; + + // Set DL equal to the boot device: 0 for the FD, or 0x80 for the HD. Normally, boot from the FD. + // But, if the HD image file is prefixed with @, then boot from the HD + regs8[REG_DL] = ((argc > 3) && (*argv[3] == '@')) ? argv[3]++, 0x80 : 0; + + // Open BIOS (file id disk[2]), floppy disk image (disk[1]), and hard disk image (disk[0]) if specified + for (file_index = 3; file_index;) + disk[--file_index] = *++argv ? open(*argv, 32898) : 0; + + // Set CX:AX equal to the hard disk image size, if present + CAST(unsigned)regs16[REG_AX] = *disk ? lseek(*disk, 0, 2) >> 9 : 0; + + // Load BIOS image into F000:0100, and set IP to 0100 + read(disk[2], regs8 + (reg_ip = 0x100), 0xFF00); + + // Load instruction decoding helper table + for (int i = 0; i < 20; i++) + for (int j = 0; j < 256; j++) + bios_table_lookup[i][j] = regs8[regs16[0x81 + i] + j]; + + // Instruction execution loop. Terminates if CS:IP = 0:0 + for (; opcode_stream = mem + 16 * regs16[REG_CS] + reg_ip, opcode_stream != mem;) + { + // Set up variables to prepare for decoding an opcode + set_opcode(*opcode_stream); + + // Extract i_w and i_d fields from instruction + i_w = (i_reg4bit = raw_opcode_id & 7) & 1; + i_d = i_reg4bit / 2 & 1; + + // Extract instruction data fields + i_data0 = CAST(short)opcode_stream[1]; + i_data1 = CAST(short)opcode_stream[2]; + i_data2 = CAST(short)opcode_stream[3]; + + // seg_override_en and rep_override_en contain number of instructions to hold segment override and REP prefix respectively + if (seg_override_en) + seg_override_en--; + if (rep_override_en) + rep_override_en--; + + // i_mod_size > 0 indicates that opcode uses i_mod/i_rm/i_reg, so decode them + if (i_mod_size) + { + i_mod = (i_data0 & 0xFF) >> 6; + i_rm = i_data0 & 7; + i_reg = i_data0 / 8 & 7; + + if ((!i_mod && i_rm == 6) || (i_mod == 2)) + i_data2 = CAST(short)opcode_stream[4]; + else if (i_mod != 1) + i_data2 = i_data1; + else // If i_mod is 1, operand is (usually) 8 bits rather than 16 bits + i_data1 = (char)i_data1; + + DECODE_RM_REG; + } + + // Instruction execution unit + switch (xlat_opcode_id) + { + OPCODE_CHAIN 0: // Conditional jump (JAE, JNAE, etc.) + // i_w is the invert flag, e.g. i_w == 1 means JNAE, whereas i_w == 0 means JAE + scratch_uchar = raw_opcode_id / 2 & 7; + reg_ip += (char)i_data0 * (i_w ^ (regs8[bios_table_lookup[TABLE_COND_JUMP_DECODE_A][scratch_uchar]] || regs8[bios_table_lookup[TABLE_COND_JUMP_DECODE_B][scratch_uchar]] || regs8[bios_table_lookup[TABLE_COND_JUMP_DECODE_C][scratch_uchar]] ^ regs8[bios_table_lookup[TABLE_COND_JUMP_DECODE_D][scratch_uchar]])) + OPCODE 1: // MOV reg, imm + i_w = !!(raw_opcode_id & 8); + R_M_OP(mem[GET_REG_ADDR(i_reg4bit)], =, i_data0) + OPCODE 3: // PUSH regs16 + R_M_PUSH(regs16[i_reg4bit]) + OPCODE 4: // POP regs16 + R_M_POP(regs16[i_reg4bit]) + OPCODE 2: // INC|DEC regs16 + i_w = 1; + i_d = 0; + i_reg = i_reg4bit; + DECODE_RM_REG; + i_reg = extra + OPCODE_CHAIN 5: // INC|DEC|JMP|CALL|PUSH + if (i_reg < 2) // INC|DEC + MEM_OP(op_from_addr, += 1 - 2 * i_reg +, REGS_BASE + 2 * REG_ZERO), + op_source = 1, + set_AF_OF_arith(), + set_OF(op_dest + 1 - i_reg == 1 << (TOP_BIT - 1)), + (xlat_opcode_id == 5) && (set_opcode(0x10), 0); // Decode like ADC + else if (i_reg != 6) // JMP|CALL + i_reg - 3 || R_M_PUSH(regs16[REG_CS]), // CALL (far) + i_reg & 2 && R_M_PUSH(reg_ip + 2 + i_mod*(i_mod != 3) + 2*(!i_mod && i_rm == 6)), // CALL (near or far) + i_reg & 1 && (regs16[REG_CS] = CAST(short)mem[op_from_addr + 2]), // JMP|CALL (far) + R_M_OP(reg_ip, =, mem[op_from_addr]), + set_opcode(0x9A); // Decode like CALL + else // PUSH + R_M_PUSH(mem[rm_addr]) + OPCODE 6: // TEST r/m, imm16 / NOT|NEG|MUL|IMUL|DIV|IDIV reg + op_to_addr = op_from_addr; + + switch (i_reg) + { + OPCODE_CHAIN 0: // TEST + set_opcode(0x20); // Decode like AND + reg_ip += i_w + 1; + R_M_OP(mem[op_to_addr], &, i_data2) + OPCODE 2: // NOT + OP(=~) + OPCODE 3: // NEG + OP(=-); + op_dest = 0; + set_opcode(0x28); // Decode like SUB + set_CF(op_result > op_dest) + OPCODE 4: // MUL + i_w ? MUL_MACRO(unsigned short, regs16) : MUL_MACRO(unsigned char, regs8) + OPCODE 5: // IMUL + i_w ? MUL_MACRO(short, regs16) : MUL_MACRO(char, regs8) + OPCODE 6: // DIV + i_w ? DIV_MACRO(unsigned short, unsigned, regs16) : DIV_MACRO(unsigned char, unsigned short, regs8) + OPCODE 7: // IDIV + i_w ? DIV_MACRO(short, int, regs16) : DIV_MACRO(char, short, regs8); + } + OPCODE 7: // ADD|OR|ADC|SBB|AND|SUB|XOR|CMP AL/AX, immed + rm_addr = REGS_BASE; + i_data2 = i_data0; + i_mod = 3; + i_reg = extra; + reg_ip--; + OPCODE_CHAIN 8: // ADD|OR|ADC|SBB|AND|SUB|XOR|CMP reg, immed + op_to_addr = rm_addr; + regs16[REG_SCRATCH] = (i_d |= !i_w) ? (char)i_data2 : i_data2; + op_from_addr = REGS_BASE + 2 * REG_SCRATCH; + reg_ip += !i_d + 1; + set_opcode(0x08 * (extra = i_reg)); + OPCODE_CHAIN 9: // ADD|OR|ADC|SBB|AND|SUB|XOR|CMP|MOV reg, r/m + switch (extra) + { + OPCODE_CHAIN 0: // ADD + OP(+=), + set_CF(op_result < op_dest) + OPCODE 1: // OR + OP(|=) + OPCODE 2: // ADC + ADC_SBB_MACRO(+) + OPCODE 3: // SBB + ADC_SBB_MACRO(-) + OPCODE 4: // AND + OP(&=) + OPCODE 5: // SUB + OP(-=), + set_CF(op_result > op_dest) + OPCODE 6: // XOR + OP(^=) + OPCODE 7: // CMP + OP(-), + set_CF(op_result > op_dest) + OPCODE 8: // MOV + OP(=); + } + OPCODE 10: // MOV sreg, r/m | POP r/m | LEA reg, r/m + if (!i_w) // MOV + i_w = 1, + i_reg += 8, + DECODE_RM_REG, + OP(=); + else if (!i_d) // LEA + seg_override_en = 1, + seg_override = REG_ZERO, + DECODE_RM_REG, + R_M_OP(mem[op_from_addr], =, rm_addr); + else // POP + R_M_POP(mem[rm_addr]) + OPCODE 11: // MOV AL/AX, [loc] + i_mod = i_reg = 0; + i_rm = 6; + i_data1 = i_data0; + DECODE_RM_REG; + MEM_OP(op_from_addr, =, op_to_addr) + OPCODE 12: // ROL|ROR|RCL|RCR|SHL|SHR|???|SAR reg/mem, 1/CL/imm (80186) + scratch2_uint = SIGN_OF(mem[rm_addr]), + scratch_uint = extra ? // xxx reg/mem, imm + ++reg_ip, + (char)i_data1 + : // xxx reg/mem, CL + i_d + ? 31 & regs8[REG_CL] + : // xxx reg/mem, 1 + 1; + if (scratch_uint) + { + if (i_reg < 4) // Rotate operations + scratch_uint %= i_reg / 2 + TOP_BIT, + R_M_OP(scratch2_uint, =, mem[rm_addr]); + if (i_reg & 1) // Rotate/shift right operations + R_M_OP(mem[rm_addr], >>=, scratch_uint); + else // Rotate/shift left operations + R_M_OP(mem[rm_addr], <<=, scratch_uint); + if (i_reg > 3) // Shift operations + set_opcode(0x10); // Decode like ADC + if (i_reg > 4) // SHR or SAR + set_CF(op_dest >> (scratch_uint - 1) & 1); + } + + switch (i_reg) + { + OPCODE_CHAIN 0: // ROL + R_M_OP(mem[rm_addr], += , scratch2_uint >> (TOP_BIT - scratch_uint)); + set_OF(SIGN_OF(op_result) ^ set_CF(op_result & 1)) + OPCODE 1: // ROR + scratch2_uint &= (1 << scratch_uint) - 1, + R_M_OP(mem[rm_addr], += , scratch2_uint << (TOP_BIT - scratch_uint)); + set_OF(SIGN_OF(op_result * 2) ^ set_CF(SIGN_OF(op_result))) + OPCODE 2: // RCL + R_M_OP(mem[rm_addr], += (regs8[FLAG_CF] << (scratch_uint - 1)) + , scratch2_uint >> (1 + TOP_BIT - scratch_uint)); + set_OF(SIGN_OF(op_result) ^ set_CF(scratch2_uint & 1 << (TOP_BIT - scratch_uint))) + OPCODE 3: // RCR + R_M_OP(mem[rm_addr], += (regs8[FLAG_CF] << (TOP_BIT - scratch_uint)) + , scratch2_uint << (1 + TOP_BIT - scratch_uint)); + set_CF(scratch2_uint & 1 << (scratch_uint - 1)); + set_OF(SIGN_OF(op_result) ^ SIGN_OF(op_result * 2)) + OPCODE 4: // SHL + set_OF(SIGN_OF(op_result) ^ set_CF(SIGN_OF(op_dest << (scratch_uint - 1)))) + OPCODE 5: // SHR + set_OF(SIGN_OF(op_dest)) + OPCODE 7: // SAR + scratch_uint < TOP_BIT || set_CF(scratch2_uint); + set_OF(0); + R_M_OP(mem[rm_addr], +=, scratch2_uint *= ~(((1 << TOP_BIT) - 1) >> scratch_uint)); + } + OPCODE 13: // LOOPxx|JCZX + scratch_uint = !!--regs16[REG_CX]; + + switch(i_reg4bit) + { + OPCODE_CHAIN 0: // LOOPNZ + scratch_uint &= !regs8[FLAG_ZF] + OPCODE 1: // LOOPZ + scratch_uint &= regs8[FLAG_ZF] + OPCODE 3: // JCXXZ + scratch_uint = !++regs16[REG_CX]; + } + reg_ip += scratch_uint*(char)i_data0 + OPCODE 14: // JMP | CALL short/near + reg_ip += 3 - i_d; + if (!i_w) + { + if (i_d) // JMP far + reg_ip = 0, + regs16[REG_CS] = i_data2; + else // CALL + R_M_PUSH(reg_ip); + } + reg_ip += i_d && i_w ? (char)i_data0 : i_data0 + OPCODE 15: // TEST reg, r/m + MEM_OP(op_from_addr, &, op_to_addr) + OPCODE 16: // XCHG AX, regs16 + i_w = 1; + op_to_addr = REGS_BASE; + op_from_addr = GET_REG_ADDR(i_reg4bit); + OPCODE_CHAIN 24: // NOP|XCHG reg, r/m + if (op_to_addr != op_from_addr) + OP(^=), + MEM_OP(op_from_addr, ^=, op_to_addr), + OP(^=) + OPCODE 17: // MOVSx (extra=0)|STOSx (extra=1)|LODSx (extra=2) + scratch2_uint = seg_override_en ? seg_override : REG_DS; + + for (scratch_uint = rep_override_en ? regs16[REG_CX] : 1; scratch_uint; scratch_uint--) + { + MEM_OP(extra < 2 ? SEGREG(REG_ES, REG_DI,) : REGS_BASE, =, extra & 1 ? REGS_BASE : SEGREG(scratch2_uint, REG_SI,)), + extra & 1 || INDEX_INC(REG_SI), + extra & 2 || INDEX_INC(REG_DI); + } + + if (rep_override_en) + regs16[REG_CX] = 0 + OPCODE 18: // CMPSx (extra=0)|SCASx (extra=1) + scratch2_uint = seg_override_en ? seg_override : REG_DS; + + if ((scratch_uint = rep_override_en ? regs16[REG_CX] : 1)) + { + for (; scratch_uint; rep_override_en || scratch_uint--) + { + MEM_OP(extra ? REGS_BASE : SEGREG(scratch2_uint, REG_SI,), -, SEGREG(REG_ES, REG_DI,)), + extra || INDEX_INC(REG_SI), + INDEX_INC(REG_DI), rep_override_en && !(--regs16[REG_CX] && (!op_result == rep_mode)) && (scratch_uint = 0); + } + + set_flags_type = FLAGS_UPDATE_SZP | FLAGS_UPDATE_AO_ARITH; // Funge to set SZP/AO flags + set_CF(op_result > op_dest); + } + OPCODE 19: // RET|RETF|IRET + i_d = i_w; + R_M_POP(reg_ip); + if (extra) // IRET|RETF|RETF imm16 + R_M_POP(regs16[REG_CS]); + if (extra & 2) // IRET + set_flags(R_M_POP(scratch_uint)); + else if (!i_d) // RET|RETF imm16 + regs16[REG_SP] += i_data0 + OPCODE 20: // MOV r/m, immed + R_M_OP(mem[op_from_addr], =, i_data2) + OPCODE 21: // IN AL/AX, DX/imm8 + io_ports[0x20] = 0; // PIC EOI + io_ports[0x42] = --io_ports[0x40]; // PIT channel 0/2 read placeholder + io_ports[0x3DA] ^= 9; // CGA refresh + scratch_uint = extra ? regs16[REG_DX] : (unsigned char)i_data0; + scratch_uint == 0x60 && (io_ports[0x64] = 0); // Scancode read flag + scratch_uint == 0x3D5 && (io_ports[0x3D4] >> 1 == 7) && (io_ports[0x3D5] = ((mem[0x49E]*80 + mem[0x49D] + CAST(short)mem[0x4AD]) & (io_ports[0x3D4] & 1 ? 0xFF : 0xFF00)) >> (io_ports[0x3D4] & 1 ? 0 : 8)); // CRT cursor position + R_M_OP(regs8[REG_AL], =, io_ports[scratch_uint]); + OPCODE 22: // OUT DX/imm8, AL/AX + scratch_uint = extra ? regs16[REG_DX] : (unsigned char)i_data0; + R_M_OP(io_ports[scratch_uint], =, regs8[REG_AL]); + scratch_uint == 0x61 && (io_hi_lo = 0, spkr_en |= regs8[REG_AL] & 3); // Speaker control + (scratch_uint == 0x40 || scratch_uint == 0x42) && (io_ports[0x43] & 6) && (mem[0x469 + scratch_uint - (io_hi_lo ^= 1)] = regs8[REG_AL]); // PIT rate programming +#ifndef NO_GRAPHICS + scratch_uint == 0x43 && (io_hi_lo = 0, regs8[REG_AL] >> 6 == 2) && (SDL_PauseAudio((regs8[REG_AL] & 0xF7) != 0xB6), 0); // Speaker enable +#endif + scratch_uint == 0x3D5 && (io_ports[0x3D4] >> 1 == 6) && (mem[0x4AD + !(io_ports[0x3D4] & 1)] = regs8[REG_AL]); // CRT video RAM start offset + scratch_uint == 0x3D5 && (io_ports[0x3D4] >> 1 == 7) && (scratch2_uint = ((mem[0x49E]*80 + mem[0x49D] + CAST(short)mem[0x4AD]) & (io_ports[0x3D4] & 1 ? 0xFF00 : 0xFF)) + (regs8[REG_AL] << (io_ports[0x3D4] & 1 ? 0 : 8)) - CAST(short)mem[0x4AD], mem[0x49D] = scratch2_uint % 80, mem[0x49E] = scratch2_uint / 80); // CRT cursor position + scratch_uint == 0x3B5 && io_ports[0x3B4] == 1 && (GRAPHICS_X = regs8[REG_AL] * 16); // Hercules resolution reprogramming. Defaults are set in the BIOS + scratch_uint == 0x3B5 && io_ports[0x3B4] == 6 && (GRAPHICS_Y = regs8[REG_AL] * 4); + OPCODE 23: // REPxx + rep_override_en = 2; + rep_mode = i_w; + seg_override_en && seg_override_en++ + OPCODE 25: // PUSH reg + R_M_PUSH(regs16[extra]) + OPCODE 26: // POP reg + R_M_POP(regs16[extra]) + OPCODE 27: // xS: segment overrides + seg_override_en = 2; + seg_override = extra; + rep_override_en && rep_override_en++ + OPCODE 28: // DAA/DAS + i_w = 0; + extra ? DAA_DAS(-=, >=, 0xFF, 0x99) : DAA_DAS(+=, <, 0xF0, 0x90) // extra = 0 for DAA, 1 for DAS + OPCODE 29: // AAA/AAS + op_result = AAA_AAS(extra - 1) + OPCODE 30: // CBW + regs8[REG_AH] = -SIGN_OF(regs8[REG_AL]) + OPCODE 31: // CWD + regs16[REG_DX] = -SIGN_OF(regs16[REG_AX]) + OPCODE 32: // CALL FAR imm16:imm16 + R_M_PUSH(regs16[REG_CS]); + R_M_PUSH(reg_ip + 5); + regs16[REG_CS] = i_data2; + reg_ip = i_data0 + OPCODE 33: // PUSHF + make_flags(); + R_M_PUSH(scratch_uint) + OPCODE 34: // POPF + set_flags(R_M_POP(scratch_uint)) + OPCODE 35: // SAHF + make_flags(); + set_flags((scratch_uint & 0xFF00) + regs8[REG_AH]) + OPCODE 36: // LAHF + make_flags(), + regs8[REG_AH] = scratch_uint + OPCODE 37: // LES|LDS reg, r/m + i_w = i_d = 1; + DECODE_RM_REG; + OP(=); + MEM_OP(REGS_BASE + extra, =, rm_addr + 2) + OPCODE 38: // INT 3 + ++reg_ip; + pc_interrupt(3) + OPCODE 39: // INT imm8 + reg_ip += 2; + pc_interrupt(i_data0) + OPCODE 40: // INTO + ++reg_ip; + regs8[FLAG_OF] && pc_interrupt(4) + OPCODE 41: // AAM + if (i_data0 &= 0xFF) + regs8[REG_AH] = regs8[REG_AL] / i_data0, + op_result = regs8[REG_AL] %= i_data0; + else // Divide by zero + pc_interrupt(0) + OPCODE 42: // AAD + i_w = 0; + regs16[REG_AX] = op_result = 0xFF & regs8[REG_AL] + i_data0 * regs8[REG_AH] + OPCODE 43: // SALC + regs8[REG_AL] = -regs8[FLAG_CF] + OPCODE 44: // XLAT + regs8[REG_AL] = mem[SEGREG(seg_override_en ? seg_override : REG_DS, REG_BX, regs8[REG_AL] +)] + OPCODE 45: // CMC + regs8[FLAG_CF] ^= 1 + OPCODE 46: // CLC|STC|CLI|STI|CLD|STD + regs8[extra / 2] = extra & 1 + OPCODE 47: // TEST AL/AX, immed + R_M_OP(regs8[REG_AL], &, i_data0) + OPCODE 48: // Emulator-specific 0F xx opcodes + switch ((char)i_data0) + { + OPCODE_CHAIN 0: // PUTCHAR_AL + write(1, regs8, 1); + printf("%c", regs8[0]); + OPCODE 1: // GET_RTC + time(&clock_buf); + ftime(&ms_clock); + memcpy(mem + SEGREG(REG_ES, REG_BX,), localtime(&clock_buf), sizeof(struct tm)); + CAST(short)mem[SEGREG(REG_ES, REG_BX, 36+)] = ms_clock.millitm; + OPCODE 2: // DISK_READ + OPCODE_CHAIN 3: // DISK_WRITE + regs8[REG_AL] = ~lseek(disk[regs8[REG_DL]], CAST(unsigned)regs16[REG_BP] << 9, 0) + ? ((char)i_data0 == 3 ? (int(*)())write : (int(*)())read)(disk[regs8[REG_DL]], mem + SEGREG(REG_ES, REG_BX,), regs16[REG_AX]) + : 0; + } + } + + // Increment instruction pointer by computed instruction length. Tables in the BIOS binary + // help us here. + reg_ip += (i_mod*(i_mod != 3) + 2*(!i_mod && i_rm == 6))*i_mod_size + bios_table_lookup[TABLE_BASE_INST_SIZE][raw_opcode_id] + bios_table_lookup[TABLE_I_W_SIZE][raw_opcode_id]*(i_w + 1); + + // If instruction needs to update SF, ZF and PF, set them as appropriate + if (set_flags_type & FLAGS_UPDATE_SZP) + { + regs8[FLAG_SF] = SIGN_OF(op_result); + regs8[FLAG_ZF] = !op_result; + regs8[FLAG_PF] = bios_table_lookup[TABLE_PARITY_FLAG][(unsigned char)op_result]; + + // If instruction is an arithmetic or logic operation, also set AF/OF/CF as appropriate. + if (set_flags_type & FLAGS_UPDATE_AO_ARITH) + set_AF_OF_arith(); + if (set_flags_type & FLAGS_UPDATE_OC_LOGIC) + set_CF(0), set_OF(0); + } + + // Poll timer/keyboard every KEYBOARD_TIMER_UPDATE_DELAY instructions + if (!(++inst_counter % KEYBOARD_TIMER_UPDATE_DELAY)) + int8_asap = 1; + +#ifndef NO_GRAPHICS + // Update the video graphics display every GRAPHICS_UPDATE_DELAY instructions + if (!(inst_counter % GRAPHICS_UPDATE_DELAY)) + { + // Video card in graphics mode? + if (io_ports[0x3B8] & 2) + { + // If we don't already have an SDL window open, set it up and compute color and video memory translation tables + if (!sdl_screen) + { + for (int i = 0; i < 16; i++) + pixel_colors[i] = mem[0x4AC] ? // CGA? + cga_colors[(i & 12) >> 2] + (cga_colors[i & 3] << 16) // CGA -> RGB332 + : 0xFF*(((i & 1) << 24) + ((i & 2) << 15) + ((i & 4) << 6) + ((i & 8) >> 3)); // Hercules -> RGB332 + + for (int i = 0; i < GRAPHICS_X * GRAPHICS_Y / 4; i++) + vid_addr_lookup[i] = i / GRAPHICS_X * (GRAPHICS_X / 8) + (i / 2) % (GRAPHICS_X / 8) + 0x2000*(mem[0x4AC] ? (2 * i / GRAPHICS_X) % 2 : (4 * i / GRAPHICS_X) % 4); + + SDL_Init(SDL_INIT_VIDEO); + sdl_screen = SDL_SetVideoMode(GRAPHICS_X, GRAPHICS_Y, 8, 0); + SDL_EnableUNICODE(1); + SDL_EnableKeyRepeat(500, 30); + } + + // Refresh SDL display from emulated graphics card video RAM + vid_mem_base = mem + 0xB0000 + 0x8000*(mem[0x4AC] ? 1 : io_ports[0x3B8] >> 7); // B800:0 for CGA/Hercules bank 2, B000:0 for Hercules bank 1 + for (int i = 0; i < GRAPHICS_X * GRAPHICS_Y / 4; i++) + ((unsigned *)sdl_screen->pixels)[i] = pixel_colors[15 & (vid_mem_base[vid_addr_lookup[i]] >> 4*!(i & 1))]; + + SDL_Flip(sdl_screen); + } + else if (sdl_screen) // Application has gone back to text mode, so close the SDL window + { + SDL_QuitSubSystem(SDL_INIT_VIDEO); + sdl_screen = 0; + } + SDL_PumpEvents(); + } +#endif + + // Application has set trap flag, so fire INT 1 + if (trap_flag) + pc_interrupt(1); + + trap_flag = regs8[FLAG_TF]; + + // If a timer tick is pending, interrupts are enabled, and no overrides/REP are active, + // then process the tick and check for new keystrokes + if (int8_asap && !seg_override_en && !rep_override_en && regs8[FLAG_IF] && !regs8[FLAG_TF]) + pc_interrupt(0xA), int8_asap = 0, SDL_KEYBOARD_DRIVER; + } + +#ifndef NO_GRAPHICS + SDL_Quit(); +#endif + return 0; +} diff --git a/contrib/other/8086tiny/Makefile b/contrib/other/8086tiny/Makefile new file mode 100644 index 0000000000..eed1509149 --- /dev/null +++ b/contrib/other/8086tiny/Makefile @@ -0,0 +1,6 @@ +OUTFILE = 8086tiny +OBJS = 8086tiny.o +CFLAGS += -O3 -std=c99 +LIBS += -lSDL +include $(MENUETDEV)/makefiles/Makefile_for_program + diff --git a/contrib/other/8086tiny/Tupfile.lua b/contrib/other/8086tiny/Tupfile.lua new file mode 100644 index 0000000000..2ef85fee15 --- /dev/null +++ b/contrib/other/8086tiny/Tupfile.lua @@ -0,0 +1,12 @@ +if tup.getconfig("NO_GCC") ~= "" then return end +if tup.getconfig("HELPERDIR") == "" +then + if tup.getconfig("NO_NASM") ~= "" then return end -- required for SDL compilation + HELPERDIR = "../../../programs" +end +tup.include(HELPERDIR .. "/use_gcc.lua") +tup.include(HELPERDIR .. "/use_menuetlibc.lua") +tup.include(HELPERDIR .. "/use_sdl.lua") +CFLAGS = CFLAGS_OPTIMIZE_SPEED .. " -std=c99 -U_WIN32 -fwhole-program" +compile_gcc{"8086tiny.c"} +link_gcc("8086tiny") diff --git a/contrib/other/8086tiny/console.c b/contrib/other/8086tiny/console.c new file mode 100644 index 0000000000..2ece619ba5 --- /dev/null +++ b/contrib/other/8086tiny/console.c @@ -0,0 +1,150 @@ +#include + + +///=========================== + +#define CON_COLOR_BLUE 1 +#define CON_COLOR_GREEN 2 +#define CON_COLOR_RED 4 +#define CON_COLOR_BRIGHT 8 +/* цвет фона */ +#define CON_BGR_BLUE 0x10 +#define CON_BGR_GREEN 0x20 +#define CON_BGR_RED 0x40 +#define CON_BGR_BRIGHT 0x80 + +///=========================== +#define _stdcall __attribute__((stdcall)) +#define __stdcall __attribute__((stdcall)) +#define _cdecl __attribute__((cdecl)) +#define __cdecl __attribute__((cdecl)) + + + + + +void (* _stdcall con_init)(unsigned w_w, unsigned w_h, unsigned s_w, unsigned s_h, const char* t); +void (* _cdecl printf)(const char* format,...); +void (* _stdcall _exit2)(char bCloseWindow); +void (* __stdcall gets)(char* str, int n); + int (* __stdcall getch)(void); + int (* __stdcall kbhit)(void); + int (* __stdcall con_get_font_height)(void); + int (* __stdcall con_set_cursor_height)(int new_height); +unsigned (*__stdcall con_get_flags)(void); +unsigned (*__stdcall con_set_flags)(unsigned new_flags); +void (*__stdcall con_cls)(void); + +typedef struct +{ +unsigned p00 __attribute__((packed)); +unsigned p04 __attribute__((packed)); +unsigned p08 __attribute__((packed)); +unsigned p12 __attribute__((packed)); +unsigned p16 __attribute__((packed)); +char p20 __attribute__((packed)); +char *p21 __attribute__((packed)); +} kol_struct70 __attribute__((packed)); + +typedef struct +{ +char *name __attribute__((packed)); +void *data __attribute__((packed)); +} kol_struct_import __attribute__((packed)); + +///=========================== + +void kol_exit() +{ +__asm ("int $0x40"::"a"(-1)); +} + +int kol_file_70(kol_struct70 *k) +{ +__asm ("int $0x40"::"a"(70), "b"(k)); +} + + + +void* kol_cofflib_procload (kol_struct_import *imp, char *name) +{ +int i; +for (i=0;;i++) + if ( NULL == ((imp+i) -> name)) + break; + else + if ( 0 == strcmp(name, (imp+i)->name) ) + return (imp+i)->data; +return NULL; +} + + + + +void CONSOLE_INIT(char title[]) +{ +kol_struct_import *imp; + +__menuet__debug_out ("console init"); +imp = __kolibri__cofflib_load("/sys/lib/console.obj"); +if (imp == NULL) + {__menuet__debug_out ("imp NULL"); kol_exit();} + +con_init = ( _stdcall void (*)(unsigned, unsigned, unsigned, unsigned, const char*)) + kol_cofflib_procload (imp, "con_init"); +if (con_init == NULL) + {__menuet__debug_out ("con init failed"); kol_exit();} + +printf = ( _cdecl void (*)(const char*,...)) + kol_cofflib_procload (imp, "con_printf"); +if (printf == NULL) + kol_exit(); + +_exit2 = ( _stdcall void (*)(char)) + kol_cofflib_procload (imp, "con_exit"); +if (_exit2 == NULL) + kol_exit(); + +gets = ( _stdcall void (*)(char*, int)) + kol_cofflib_procload (imp, "con_gets"); +if (gets == NULL) + kol_exit(); + +getch = ( _stdcall int (*)(void)) + kol_cofflib_procload (imp, "con_getch2"); +if (getch == NULL) + kol_exit(); + +kbhit = ( _stdcall int (*)(void)) + kol_cofflib_procload (imp, "con_kbhit"); +if (getch == NULL) + kol_exit(); + +con_get_font_height = ( _stdcall int (*)(void)) + kol_cofflib_procload (imp, "con_get_font_height"); +if (con_get_font_height == NULL) + kol_exit(); + +con_set_cursor_height = ( _stdcall int (*)(int)) + kol_cofflib_procload (imp, "con_set_cursor_height"); +if (con_set_cursor_height == NULL) + kol_exit(); + +con_get_flags = ( _stdcall unsigned (*)(void)) + kol_cofflib_procload (imp, "con_get_flags"); +if (con_get_flags == NULL) + kol_exit(); + +con_set_flags = ( _stdcall unsigned (*)(unsigned)) + kol_cofflib_procload (imp, "con_set_flags"); +if (con_set_flags == NULL) + kol_exit(); + +con_cls = ( _stdcall void (*)(void)) + kol_cofflib_procload (imp, "con_cls"); +if (con_cls == NULL) + kol_exit(); + +__menuet__debug_out ("success"); +con_init(-1, -1, -1, -1, title); +}