/* ** ** File: fmopl.c - software implementation of FM sound generator ** types OPL and OPL2 ** ** Copyright (C) 2002,2003 Jarek Burczynski (bujar at mame dot net) ** Copyright (C) 1999,2000 Tatsuyuki Satoh , MultiArcadeMachineEmulator development ** ** Version 0.720003 ;D ** Revision History: 06-05-2004 Ripper: - Added mute support 04-30-2004 Ripper: - Raised the main volume (may cut some quality, but at least you can hear it ;) 02-20-2004 Ripper: - Changed YM3812Write to do what we want 04-08-2003 Jarek Burczynski: - removed BFRDY hack. BFRDY is busy flag, and it should be 0 only when the chip handles memory read/write or during the adpcm synthesis when the chip requests another byte of ADPCM data. 24-07-2003 Jarek Burczynski: - added a small hack for Y8950 status BFRDY flag (bit 3 should be set after some (unknown) delay). Right now it's always set. 14-06-2003 Jarek Burczynski: - implemented all of the status register flags in Y8950 emulation - renamed Y8950SetDeltaTMemory() parameters from _rom_ to _mem_ since they can be either RAM or ROM 08-10-2002 Jarek Burczynski (thanks to Dox for the YM3526 chip) - corrected YM3526Read() to always set bit 2 and bit 1 to HIGH state - identical to YM3812Read (verified on real YM3526) 04-28-2002 Jarek Burczynski: - binary exact Envelope Generator (verified on real YM3812); compared to YM2151: the EG clock is equal to internal_clock, rates are 2 times slower and volume resolution is one bit less - modified interface functions (they no longer return pointer - that's internal to the emulator now): - new wrapper functions for OPLCreate: YM3526Init(), YM3812Init() and Y8950Init() - corrected 'off by one' error in feedback calculations (when feedback is off) - enabled waveform usage (credit goes to Vlad Romascanu and zazzal22) - speeded up noise generator calculations (Nicola Salmoria) 03-24-2002 Jarek Burczynski (thanks to Dox for the YM3812 chip) Complete rewrite (all verified on real YM3812): - corrected sin_tab and tl_tab data - corrected operator output calculations - corrected waveform_select_enable register; simply: ignore all writes to waveform_select register when waveform_select_enable == 0 and do not change the waveform previously selected. - corrected KSR handling - corrected Envelope Generator: attack shape, Sustain mode and Percussive/Non-percussive modes handling - Envelope Generator rates are two times slower now - LFO amplitude (tremolo) and phase modulation (vibrato) - rhythm sounds phase generation - white noise generator (big thanks to Olivier Galibert for mentioning Berlekamp-Massey algorithm) - corrected key on/off handling (the 'key' signal is ORed from three sources: FM, rhythm and CSM) - funky details (like ignoring output of operator 1 in BD rhythm sound when connect == 1) 12-28-2001 Acho A. Tang - reflected Delta-T EOS status on Y8950 status port. - fixed subscription range of attack/decay tables To do: add delay before key off in CSM mode (see CSMKeyControll) verify volume of the FM part on the Y8950 */ #include "../version.h" #ifndef USE_GPL #include #include #include #include //#include "driver.h" /* use M.A.M.E. */ //#include "ymdeltat.h" #if _MSC_VER == 1200 // Visual C++ 6 inline void logerror(...) {} #else #define logerror(...) #endif #include "fmopl.h" #ifndef PI #define PI 3.14159265358979323846 #endif /* output final shift */ #if (OPL_SAMPLE_BITS==16) #define FINAL_SH (0) #define MAXOUT (+32767) #define MINOUT (-32768) #else #define FINAL_SH (8) #define MAXOUT (+127) #define MINOUT (-128) #endif #define FREQ_SH 16 /* 16.16 fixed point (frequency calculations) */ #define EG_SH 16 /* 16.16 fixed point (EG timing) */ #define LFO_SH 24 /* 8.24 fixed point (LFO calculations) */ #define TIMER_SH 16 /* 16.16 fixed point (timers calculations) */ #define FREQ_MASK ((1<=0) { if (value < 0x0200) return (value & ~0); if (value < 0x0400) return (value & ~1); if (value < 0x0800) return (value & ~3); if (value < 0x1000) return (value & ~7); if (value < 0x2000) return (value & ~15); if (value < 0x4000) return (value & ~31); return (value & ~63); } /*else value < 0*/ if (value > -0x0200) return (~abs(value) & ~0); if (value > -0x0400) return (~abs(value) & ~1); if (value > -0x0800) return (~abs(value) & ~3); if (value > -0x1000) return (~abs(value) & ~7); if (value > -0x2000) return (~abs(value) & ~15); if (value > -0x4000) return (~abs(value) & ~31); return (~abs(value) & ~63); } static FILE *sample[1]; #if 1 /*save to MONO file */ #define SAVE_ALL_CHANNELS \ { signed int pom = acc_calc(lt); \ fputc((unsigned short)pom&0xff,sample[0]); \ fputc(((unsigned short)pom>>8)&0xff,sample[0]); \ } #else /*save to STEREO file */ #define SAVE_ALL_CHANNELS \ { signed int pom = lt; \ fputc((unsigned short)pom&0xff,sample[0]); \ fputc(((unsigned short)pom>>8)&0xff,sample[0]); \ pom = rt; \ fputc((unsigned short)pom&0xff,sample[0]); \ fputc(((unsigned short)pom>>8)&0xff,sample[0]); \ } #endif #endif /* #define LOG_CYM_FILE */ #ifdef LOG_CYM_FILE FILE * cymfile = NULL; #endif #define OPL_TYPE_WAVESEL 0x01 /* waveform select */ #define OPL_TYPE_ADPCM 0x02 /* DELTA-T ADPCM unit */ #define OPL_TYPE_KEYBOARD 0x04 /* keyboard interface */ #define OPL_TYPE_IO 0x08 /* I/O port */ /* ---------- Generic interface section ---------- */ #define OPL_TYPE_YM3526 (0) #define OPL_TYPE_YM3812 (OPL_TYPE_WAVESEL) #define OPL_TYPE_Y8950 (OPL_TYPE_ADPCM|OPL_TYPE_KEYBOARD|OPL_TYPE_IO) typedef struct{ UINT32 ar; /* attack rate: AR<<2 */ UINT32 dr; /* decay rate: DR<<2 */ UINT32 rr; /* release rate:RR<<2 */ UINT8 KSR; /* key scale rate */ UINT8 ksl; /* keyscale level */ UINT8 ksr; /* key scale rate: kcode>>KSR */ UINT8 mul; /* multiple: mul_tab[ML] */ /* Phase Generator */ UINT32 Cnt; /* frequency counter */ UINT32 Incr; /* frequency counter step */ UINT8 FB; /* feedback shift value */ INT32 *connect1; /* slot1 output pointer */ INT32 op1_out[2]; /* slot1 output for feedback */ UINT8 CON; /* connection (algorithm) type */ /* Envelope Generator */ UINT8 eg_type; /* percussive/non-percussive mode */ UINT8 state; /* phase type */ UINT32 TL; /* total level: TL << 2 */ INT32 TLL; /* adjusted now TL */ INT32 volume; /* envelope counter */ UINT32 sl; /* sustain level: sl_tab[SL] */ UINT8 eg_sh_ar; /* (attack state) */ UINT8 eg_sel_ar; /* (attack state) */ UINT8 eg_sh_dr; /* (decay state) */ UINT8 eg_sel_dr; /* (decay state) */ UINT8 eg_sh_rr; /* (release state) */ UINT8 eg_sel_rr; /* (release state) */ UINT32 key; /* 0 = KEY OFF, >0 = KEY ON */ /* LFO */ UINT32 AMmask; /* LFO Amplitude Modulation enable mask */ UINT8 vib; /* LFO Phase Modulation enable flag (active high)*/ /* waveform select */ unsigned int wavetable; } OPL_SLOT; typedef struct{ OPL_SLOT SLOT[2]; /* phase generator state */ UINT32 block_fnum; /* block+fnum */ UINT32 fc; /* Freq. Increment base */ UINT32 ksl_base; /* KeyScaleLevel Base step */ UINT8 kcode; /* key code (for key scaling) */ BOOL muted; } OPL_CH; /* OPL state */ typedef struct fm_opl_f { /* FM channel slots */ OPL_CH P_CH[9]; /* OPL/OPL2 chips have 9 channels*/ UINT32 eg_cnt; /* global envelope generator counter */ UINT32 eg_timer; /* global envelope generator counter works at frequency = chipclock/72 */ UINT32 eg_timer_add; /* step of eg_timer */ UINT32 eg_timer_overflow; /* envelope generator timer overlfows every 1 sample (on real chip) */ UINT8 rhythm; /* Rhythm mode */ UINT32 fn_tab[1024]; /* fnumber->increment counter */ /* LFO */ UINT8 lfo_am_depth; UINT8 lfo_pm_depth_range; UINT32 lfo_am_cnt; UINT32 lfo_am_inc; UINT32 lfo_pm_cnt; UINT32 lfo_pm_inc; UINT32 noise_rng; /* 23 bit noise shift register */ UINT32 noise_p; /* current noise 'phase' */ UINT32 noise_f; /* current noise period */ UINT8 wavesel; /* waveform select enable flag */ int T[2]; /* timer counters */ UINT8 st[2]; /* timer enable */ #if BUILD_Y8950 /* Delta-T ADPCM unit (Y8950) */ YM_DELTAT *deltat; /* Keyboard and I/O ports interface */ UINT8 portDirection; UINT8 portLatch; OPL_PORTHANDLER_R porthandler_r; OPL_PORTHANDLER_W porthandler_w; int port_param; OPL_PORTHANDLER_R keyboardhandler_r; OPL_PORTHANDLER_W keyboardhandler_w; int keyboard_param; #endif /* external event callback handlers */ OPL_TIMERHANDLER TimerHandler; /* TIMER handler */ int TimerParam; /* TIMER parameter */ OPL_IRQHANDLER IRQHandler; /* IRQ handler */ int IRQParam; /* IRQ parameter */ OPL_UPDATEHANDLER UpdateHandler;/* stream update handler */ int UpdateParam; /* stream update parameter */ UINT8 type; /* chip type */ UINT8 address; /* address register */ UINT8 status; /* status flag */ UINT8 statusmask; /* status mask */ UINT8 mode; /* Reg.08 : CSM,notesel,etc. */ int clock; /* master clock (Hz) */ int rate; /* sampling rate (Hz) */ double freqbase; /* frequency base */ double TimerBase; /* Timer base time (==sampling time)*/ } FM_OPL; /* mapping of register number (offset) to slot number used by the emulator */ static const int slot_array[32]= { 0, 2, 4, 1, 3, 5,-1,-1, 6, 8,10, 7, 9,11,-1,-1, 12,14,16,13,15,17,-1,-1, -1,-1,-1,-1,-1,-1,-1,-1 }; /* key scale level */ /* table is 3dB/octave , DV converts this into 6dB/octave */ /* 0.1875 is bit 0 weight of the envelope counter (volume) expressed in the 'decibel' scale */ #define DV(db) (UINT32) (db / (0.1875/2.0)) static const UINT32 ksl_tab[8*16]= { /* OCT 0 */ DV( 0.000),DV( 0.000),DV( 0.000),DV( 0.000), DV( 0.000),DV( 0.000),DV( 0.000),DV( 0.000), DV( 0.000),DV( 0.000),DV( 0.000),DV( 0.000), DV( 0.000),DV( 0.000),DV( 0.000),DV( 0.000), /* OCT 1 */ DV( 0.000),DV( 0.000),DV( 0.000),DV( 0.000), DV( 0.000),DV( 0.000),DV( 0.000),DV( 0.000), DV( 0.000),DV( 0.750),DV( 1.125),DV( 1.500), DV( 1.875),DV( 2.250),DV( 2.625),DV( 3.000), /* OCT 2 */ DV( 0.000),DV( 0.000),DV( 0.000),DV( 0.000), DV( 0.000),DV( 1.125),DV( 1.875),DV( 2.625), DV( 3.000),DV( 3.750),DV( 4.125),DV( 4.500), DV( 4.875),DV( 5.250),DV( 5.625),DV( 6.000), /* OCT 3 */ DV( 0.000),DV( 0.000),DV( 0.000),DV( 1.875), DV( 3.000),DV( 4.125),DV( 4.875),DV( 5.625), DV( 6.000),DV( 6.750),DV( 7.125),DV( 7.500), DV( 7.875),DV( 8.250),DV( 8.625),DV( 9.000), /* OCT 4 */ DV( 0.000),DV( 0.000),DV( 3.000),DV( 4.875), DV( 6.000),DV( 7.125),DV( 7.875),DV( 8.625), DV( 9.000),DV( 9.750),DV(10.125),DV(10.500), DV(10.875),DV(11.250),DV(11.625),DV(12.000), /* OCT 5 */ DV( 0.000),DV( 3.000),DV( 6.000),DV( 7.875), DV( 9.000),DV(10.125),DV(10.875),DV(11.625), DV(12.000),DV(12.750),DV(13.125),DV(13.500), DV(13.875),DV(14.250),DV(14.625),DV(15.000), /* OCT 6 */ DV( 0.000),DV( 6.000),DV( 9.000),DV(10.875), DV(12.000),DV(13.125),DV(13.875),DV(14.625), DV(15.000),DV(15.750),DV(16.125),DV(16.500), DV(16.875),DV(17.250),DV(17.625),DV(18.000), /* OCT 7 */ DV( 0.000),DV( 9.000),DV(12.000),DV(13.875), DV(15.000),DV(16.125),DV(16.875),DV(17.625), DV(18.000),DV(18.750),DV(19.125),DV(19.500), DV(19.875),DV(20.250),DV(20.625),DV(21.000) }; #undef DV /* sustain level table (3dB per step) */ /* 0 - 15: 0, 3, 6, 9,12,15,18,21,24,27,30,33,36,39,42,93 (dB)*/ #define SC(db) (UINT32) ( db * (2.0/ENV_STEP) ) static const UINT32 sl_tab[16]={ SC( 0),SC( 1),SC( 2),SC(3 ),SC(4 ),SC(5 ),SC(6 ),SC( 7), SC( 8),SC( 9),SC(10),SC(11),SC(12),SC(13),SC(14),SC(31) }; #undef SC #define RATE_STEPS (8) static const unsigned char eg_inc[15*RATE_STEPS]={ /*cycle:0 1 2 3 4 5 6 7*/ /* 0 */ 0,1, 0,1, 0,1, 0,1, /* rates 00..12 0 (increment by 0 or 1) */ /* 1 */ 0,1, 0,1, 1,1, 0,1, /* rates 00..12 1 */ /* 2 */ 0,1, 1,1, 0,1, 1,1, /* rates 00..12 2 */ /* 3 */ 0,1, 1,1, 1,1, 1,1, /* rates 00..12 3 */ /* 4 */ 1,1, 1,1, 1,1, 1,1, /* rate 13 0 (increment by 1) */ /* 5 */ 1,1, 1,2, 1,1, 1,2, /* rate 13 1 */ /* 6 */ 1,2, 1,2, 1,2, 1,2, /* rate 13 2 */ /* 7 */ 1,2, 2,2, 1,2, 2,2, /* rate 13 3 */ /* 8 */ 2,2, 2,2, 2,2, 2,2, /* rate 14 0 (increment by 2) */ /* 9 */ 2,2, 2,4, 2,2, 2,4, /* rate 14 1 */ /*10 */ 2,4, 2,4, 2,4, 2,4, /* rate 14 2 */ /*11 */ 2,4, 4,4, 2,4, 4,4, /* rate 14 3 */ /*12 */ 4,4, 4,4, 4,4, 4,4, /* rates 15 0, 15 1, 15 2, 15 3 (increment by 4) */ /*13 */ 8,8, 8,8, 8,8, 8,8, /* rates 15 2, 15 3 for attack */ /*14 */ 0,0, 0,0, 0,0, 0,0, /* infinity rates for attack and decay(s) */ }; #define O(a) (a*RATE_STEPS) /*note that there is no O(13) in this table - it's directly in the code */ static const unsigned char eg_rate_select[16+64+16]={ /* Envelope Generator rates (16 + 64 rates + 16 RKS) */ /* 16 infinite time rates */ O(14),O(14),O(14),O(14),O(14),O(14),O(14),O(14), O(14),O(14),O(14),O(14),O(14),O(14),O(14),O(14), /* rates 00-12 */ O( 0),O( 1),O( 2),O( 3), O( 0),O( 1),O( 2),O( 3), O( 0),O( 1),O( 2),O( 3), O( 0),O( 1),O( 2),O( 3), O( 0),O( 1),O( 2),O( 3), O( 0),O( 1),O( 2),O( 3), O( 0),O( 1),O( 2),O( 3), O( 0),O( 1),O( 2),O( 3), O( 0),O( 1),O( 2),O( 3), O( 0),O( 1),O( 2),O( 3), O( 0),O( 1),O( 2),O( 3), O( 0),O( 1),O( 2),O( 3), O( 0),O( 1),O( 2),O( 3), /* rate 13 */ O( 4),O( 5),O( 6),O( 7), /* rate 14 */ O( 8),O( 9),O(10),O(11), /* rate 15 */ O(12),O(12),O(12),O(12), /* 16 dummy rates (same as 15 3) */ O(12),O(12),O(12),O(12),O(12),O(12),O(12),O(12), O(12),O(12),O(12),O(12),O(12),O(12),O(12),O(12), }; #undef O /*rate 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 */ /*shift 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0, 0, 0, 0 */ /*mask 4095, 2047, 1023, 511, 255, 127, 63, 31, 15, 7, 3, 1, 0, 0, 0, 0 */ #define O(a) (a*1) static const unsigned char eg_rate_shift[16+64+16]={ /* Envelope Generator counter shifts (16 + 64 rates + 16 RKS) */ /* 16 infinite time rates */ O(0),O(0),O(0),O(0),O(0),O(0),O(0),O(0), O(0),O(0),O(0),O(0),O(0),O(0),O(0),O(0), /* rates 00-12 */ O(12),O(12),O(12),O(12), O(11),O(11),O(11),O(11), O(10),O(10),O(10),O(10), O( 9),O( 9),O( 9),O( 9), O( 8),O( 8),O( 8),O( 8), O( 7),O( 7),O( 7),O( 7), O( 6),O( 6),O( 6),O( 6), O( 5),O( 5),O( 5),O( 5), O( 4),O( 4),O( 4),O( 4), O( 3),O( 3),O( 3),O( 3), O( 2),O( 2),O( 2),O( 2), O( 1),O( 1),O( 1),O( 1), O( 0),O( 0),O( 0),O( 0), /* rate 13 */ O( 0),O( 0),O( 0),O( 0), /* rate 14 */ O( 0),O( 0),O( 0),O( 0), /* rate 15 */ O( 0),O( 0),O( 0),O( 0), /* 16 dummy rates (same as 15 3) */ O( 0),O( 0),O( 0),O( 0),O( 0),O( 0),O( 0),O( 0), O( 0),O( 0),O( 0),O( 0),O( 0),O( 0),O( 0),O( 0), }; #undef O /* multiple table */ #define ML(a) (UINT8) (a * 2) static const UINT8 mul_tab[16]= { /* 1/2, 1, 2, 3, 4, 5, 6, 7, 8, 9,10,10,12,12,15,15 */ ML( 0.50),ML( 1.00),ML( 2.00),ML( 3.00),ML( 4.00),ML( 5.00),ML( 6.00),ML( 7.00), ML( 8.00),ML( 9.00),ML(10.00),ML(10.00),ML(12.00),ML(12.00),ML(15.00),ML(15.00) }; #undef ML /* TL_TAB_LEN is calculated as: * 12 - sinus amplitude bits (Y axis) * 2 - sinus sign bit (Y axis) * TL_RES_LEN - sinus resolution (X axis) */ #define TL_TAB_LEN (12*2*TL_RES_LEN) static signed int tl_tab[TL_TAB_LEN]; #define ENV_QUIET (TL_TAB_LEN>>4) /* sin waveform table in 'decibel' scale */ /* four waveforms on OPL2 type chips */ static unsigned int sin_tab[SIN_LEN * 4]; /* LFO Amplitude Modulation table (verified on real YM3812) 27 output levels (triangle waveform); 1 level takes one of: 192, 256 or 448 samples Length: 210 elements. Each of the elements has to be repeated exactly 64 times (on 64 consecutive samples). The whole table takes: 64 * 210 = 13440 samples. When AM = 1 data is used directly When AM = 0 data is divided by 4 before being used (loosing precision is important) */ #define LFO_AM_TAB_ELEMENTS 210 static const UINT8 lfo_am_table[LFO_AM_TAB_ELEMENTS] = { 0,0,0,0,0,0,0, 1,1,1,1, 2,2,2,2, 3,3,3,3, 4,4,4,4, 5,5,5,5, 6,6,6,6, 7,7,7,7, 8,8,8,8, 9,9,9,9, 10,10,10,10, 11,11,11,11, 12,12,12,12, 13,13,13,13, 14,14,14,14, 15,15,15,15, 16,16,16,16, 17,17,17,17, 18,18,18,18, 19,19,19,19, 20,20,20,20, 21,21,21,21, 22,22,22,22, 23,23,23,23, 24,24,24,24, 25,25,25,25, 26,26,26, 25,25,25,25, 24,24,24,24, 23,23,23,23, 22,22,22,22, 21,21,21,21, 20,20,20,20, 19,19,19,19, 18,18,18,18, 17,17,17,17, 16,16,16,16, 15,15,15,15, 14,14,14,14, 13,13,13,13, 12,12,12,12, 11,11,11,11, 10,10,10,10, 9,9,9,9, 8,8,8,8, 7,7,7,7, 6,6,6,6, 5,5,5,5, 4,4,4,4, 3,3,3,3, 2,2,2,2, 1,1,1,1 }; /* LFO Phase Modulation table (verified on real YM3812) */ static const INT8 lfo_pm_table[8*8*2] = { /* FNUM2/FNUM = 00 0xxxxxxx (0x0000) */ 0, 0, 0, 0, 0, 0, 0, 0, /*LFO PM depth = 0*/ 0, 0, 0, 0, 0, 0, 0, 0, /*LFO PM depth = 1*/ /* FNUM2/FNUM = 00 1xxxxxxx (0x0080) */ 0, 0, 0, 0, 0, 0, 0, 0, /*LFO PM depth = 0*/ 1, 0, 0, 0,-1, 0, 0, 0, /*LFO PM depth = 1*/ /* FNUM2/FNUM = 01 0xxxxxxx (0x0100) */ 1, 0, 0, 0,-1, 0, 0, 0, /*LFO PM depth = 0*/ 2, 1, 0,-1,-2,-1, 0, 1, /*LFO PM depth = 1*/ /* FNUM2/FNUM = 01 1xxxxxxx (0x0180) */ 1, 0, 0, 0,-1, 0, 0, 0, /*LFO PM depth = 0*/ 3, 1, 0,-1,-3,-1, 0, 1, /*LFO PM depth = 1*/ /* FNUM2/FNUM = 10 0xxxxxxx (0x0200) */ 2, 1, 0,-1,-2,-1, 0, 1, /*LFO PM depth = 0*/ 4, 2, 0,-2,-4,-2, 0, 2, /*LFO PM depth = 1*/ /* FNUM2/FNUM = 10 1xxxxxxx (0x0280) */ 2, 1, 0,-1,-2,-1, 0, 1, /*LFO PM depth = 0*/ 5, 2, 0,-2,-5,-2, 0, 2, /*LFO PM depth = 1*/ /* FNUM2/FNUM = 11 0xxxxxxx (0x0300) */ 3, 1, 0,-1,-3,-1, 0, 1, /*LFO PM depth = 0*/ 6, 3, 0,-3,-6,-3, 0, 3, /*LFO PM depth = 1*/ /* FNUM2/FNUM = 11 1xxxxxxx (0x0380) */ 3, 1, 0,-1,-3,-1, 0, 1, /*LFO PM depth = 0*/ 7, 3, 0,-3,-7,-3, 0, 3 /*LFO PM depth = 1*/ }; /* lock level of common table */ static int num_lock = 0; static void *cur_chip = NULL; /* current chip pointer */ static OPL_SLOT *SLOT7_1, *SLOT7_2, *SLOT8_1, *SLOT8_2; static signed int phase_modulation; /* phase modulation input (SLOT 2) */ static signed int output[1]; #if BUILD_Y8950 static INT32 output_deltat[4]; /* for Y8950 DELTA-T, chip is mono, that 4 here is just for safety */ #endif static UINT32 LFO_AM; static INT32 LFO_PM; #define INLINE inline INLINE int limit( int val, int max, int min ) { if ( val > max ) val = max; else if ( val < min ) val = min; return val; } /* status set and IRQ handling */ INLINE void OPL_STATUS_SET(FM_OPL *OPL,int flag) { /* set status flag */ OPL->status |= flag; if(!(OPL->status & 0x80)) { if(OPL->status & OPL->statusmask) { /* IRQ on */ OPL->status |= 0x80; /* callback user interrupt handler (IRQ is OFF to ON) */ if(OPL->IRQHandler) (OPL->IRQHandler)(OPL->IRQParam,1); } } } /* status reset and IRQ handling */ INLINE void OPL_STATUS_RESET(FM_OPL *OPL,int flag) { /* reset status flag */ OPL->status &=~flag; if((OPL->status & 0x80)) { if (!(OPL->status & OPL->statusmask) ) { OPL->status &= 0x7f; /* callback user interrupt handler (IRQ is ON to OFF) */ if(OPL->IRQHandler) (OPL->IRQHandler)(OPL->IRQParam,0); } } } /* IRQ mask set */ INLINE void OPL_STATUSMASK_SET(FM_OPL *OPL,int flag) { OPL->statusmask = flag; /* IRQ handling check */ OPL_STATUS_SET(OPL,0); OPL_STATUS_RESET(OPL,0); } /* advance LFO to next sample */ INLINE void advance_lfo(FM_OPL *OPL) { UINT8 tmp; /* LFO */ OPL->lfo_am_cnt += OPL->lfo_am_inc; if (OPL->lfo_am_cnt >= (LFO_AM_TAB_ELEMENTS<lfo_am_cnt -= (LFO_AM_TAB_ELEMENTS<lfo_am_cnt >> LFO_SH ]; if (OPL->lfo_am_depth) LFO_AM = tmp; else LFO_AM = tmp>>2; OPL->lfo_pm_cnt += OPL->lfo_pm_inc; LFO_PM = ((OPL->lfo_pm_cnt>>LFO_SH) & 7) | OPL->lfo_pm_depth_range; } /* advance to next sample */ INLINE void advance(FM_OPL *OPL) { OPL_CH *CH; OPL_SLOT *op; int i; OPL->eg_timer += OPL->eg_timer_add; while (OPL->eg_timer >= OPL->eg_timer_overflow) { OPL->eg_timer -= OPL->eg_timer_overflow; OPL->eg_cnt++; for (i=0; i<9*2; i++) { CH = &OPL->P_CH[i/2]; op = &CH->SLOT[i&1]; /* Envelope Generator */ switch(op->state) { case EG_ATT: /* attack phase */ if ( !(OPL->eg_cnt & ((1<eg_sh_ar)-1) ) ) { op->volume += (~op->volume * (eg_inc[op->eg_sel_ar + ((OPL->eg_cnt>>op->eg_sh_ar)&7)]) ) >>3; if (op->volume <= MIN_ATT_INDEX) { op->volume = MIN_ATT_INDEX; op->state = EG_DEC; } } break; case EG_DEC: /* decay phase */ if ( !(OPL->eg_cnt & ((1<eg_sh_dr)-1) ) ) { op->volume += eg_inc[op->eg_sel_dr + ((OPL->eg_cnt>>op->eg_sh_dr)&7)]; if ( (UINT32) op->volume >= op->sl ) op->state = EG_SUS; } break; case EG_SUS: /* sustain phase */ /* this is important behaviour: one can change percusive/non-percussive modes on the fly and the chip will remain in sustain phase - verified on real YM3812 */ if(op->eg_type) /* non-percussive mode */ { /* do nothing */ } else /* percussive mode */ { /* during sustain phase chip adds Release Rate (in percussive mode) */ if ( !(OPL->eg_cnt & ((1<eg_sh_rr)-1) ) ) { op->volume += eg_inc[op->eg_sel_rr + ((OPL->eg_cnt>>op->eg_sh_rr)&7)]; if ( op->volume >= MAX_ATT_INDEX ) op->volume = MAX_ATT_INDEX; } /* else do nothing in sustain phase */ } break; case EG_REL: /* release phase */ if ( !(OPL->eg_cnt & ((1<eg_sh_rr)-1) ) ) { op->volume += eg_inc[op->eg_sel_rr + ((OPL->eg_cnt>>op->eg_sh_rr)&7)]; if ( op->volume >= MAX_ATT_INDEX ) { op->volume = MAX_ATT_INDEX; op->state = EG_OFF; } } break; default: break; } } } for (i=0; i<9*2; i++) { CH = &OPL->P_CH[i/2]; op = &CH->SLOT[i&1]; /* Phase Generator */ if(op->vib) { UINT8 block; unsigned int block_fnum = CH->block_fnum; unsigned int fnum_lfo = (block_fnum&0x0380) >> 7; signed int lfo_fn_table_index_offset = lfo_pm_table[LFO_PM + 16*fnum_lfo ]; if (lfo_fn_table_index_offset) /* LFO phase modulation active */ { block_fnum += lfo_fn_table_index_offset; block = (block_fnum&0x1c00) >> 10; op->Cnt += (OPL->fn_tab[block_fnum&0x03ff] >> (7-block)) * op->mul; } else /* LFO phase modulation = zero */ { op->Cnt += op->Incr; } } else /* LFO phase modulation disabled for this operator */ { op->Cnt += op->Incr; } } /* The Noise Generator of the YM3812 is 23-bit shift register. * Period is equal to 2^23-2 samples. * Register works at sampling frequency of the chip, so output * can change on every sample. * * Output of the register and input to the bit 22 is: * bit0 XOR bit14 XOR bit15 XOR bit22 * * Simply use bit 22 as the noise output. */ OPL->noise_p += OPL->noise_f; i = OPL->noise_p >> FREQ_SH; /* number of events (shifts of the shift register) */ OPL->noise_p &= FREQ_MASK; while (i) { /* UINT32 j; j = ( (OPL->noise_rng) ^ (OPL->noise_rng>>14) ^ (OPL->noise_rng>>15) ^ (OPL->noise_rng>>22) ) & 1; OPL->noise_rng = (j<<22) | (OPL->noise_rng>>1); */ /* Instead of doing all the logic operations above, we use a trick here (and use bit 0 as the noise output). The difference is only that the noise bit changes one step ahead. This doesn't matter since we don't know what is real state of the noise_rng after the reset. */ if (OPL->noise_rng & 1) OPL->noise_rng ^= 0x800302; OPL->noise_rng >>= 1; i--; } } INLINE signed int op_calc(UINT32 phase, unsigned int env, signed int pm, unsigned int wave_tab) { UINT32 p; p = (env<<4) + sin_tab[wave_tab + ((((signed int)((phase & ~FREQ_MASK) + (pm<<16))) >> FREQ_SH ) & SIN_MASK) ]; if (p >= TL_TAB_LEN) return 0; return tl_tab[p]; } INLINE signed int op_calc1(UINT32 phase, unsigned int env, signed int pm, unsigned int wave_tab) { UINT32 p; p = (env<<4) + sin_tab[wave_tab + ((((signed int)((phase & ~FREQ_MASK) + pm )) >> FREQ_SH ) & SIN_MASK) ]; if (p >= TL_TAB_LEN) return 0; return tl_tab[p]; } #define volume_calc(OP) ((OP)->TLL + ((UINT32)(OP)->volume) + (LFO_AM & (OP)->AMmask)) /* calculate output */ INLINE void OPL_CALC_CH( OPL_CH *CH ) { OPL_SLOT *SLOT; unsigned int env; signed int out; phase_modulation = 0; /* SLOT 1 */ SLOT = &CH->SLOT[SLOT1]; env = volume_calc(SLOT); out = SLOT->op1_out[0] + SLOT->op1_out[1]; SLOT->op1_out[0] = SLOT->op1_out[1]; if(!CH->muted || SLOT->connect1!=output) *SLOT->connect1 += SLOT->op1_out[0]; SLOT->op1_out[1] = 0; if( env < ENV_QUIET ) { if (!SLOT->FB) out = 0; SLOT->op1_out[1] = op_calc1(SLOT->Cnt, env, (out<FB), SLOT->wavetable ); } if(CH->muted) return; /* SLOT 2 */ SLOT++; env = volume_calc(SLOT); if( env < ENV_QUIET ) output[0] += op_calc(SLOT->Cnt, env, phase_modulation, SLOT->wavetable); } /* operators used in the rhythm sounds generation process: Envelope Generator: channel operator register number Bass High Snare Tom Top / slot number TL ARDR SLRR Wave Drum Hat Drum Tom Cymbal 6 / 0 12 50 70 90 f0 + 6 / 1 15 53 73 93 f3 + 7 / 0 13 51 71 91 f1 + 7 / 1 16 54 74 94 f4 + 8 / 0 14 52 72 92 f2 + 8 / 1 17 55 75 95 f5 + Phase Generator: channel operator register number Bass High Snare Tom Top / slot number MULTIPLE Drum Hat Drum Tom Cymbal 6 / 0 12 30 + 6 / 1 15 33 + 7 / 0 13 31 + + + 7 / 1 16 34 ----- n o t u s e d ----- 8 / 0 14 32 + 8 / 1 17 35 + + channel operator register number Bass High Snare Tom Top number number BLK/FNUM2 FNUM Drum Hat Drum Tom Cymbal 6 12,15 B6 A6 + 7 13,16 B7 A7 + + + 8 14,17 B8 A8 + + + */ /* calculate rhythm */ INLINE void OPL_CALC_RH( OPL_CH *CH, unsigned int noise ) { OPL_SLOT *SLOT; signed int out; unsigned int env; /* Bass Drum (verified on real YM3812): - depends on the channel 6 'connect' register: when connect = 0 it works the same as in normal (non-rhythm) mode (op1->op2->out) when connect = 1 _only_ operator 2 is present on output (op2->out), operator 1 is ignored - output sample always is multiplied by 2 */ phase_modulation = 0; /* SLOT 1 */ SLOT = &CH[6].SLOT[SLOT1]; env = volume_calc(SLOT); out = SLOT->op1_out[0] + SLOT->op1_out[1]; SLOT->op1_out[0] = SLOT->op1_out[1]; if (!SLOT->CON) phase_modulation = SLOT->op1_out[0]; /* else ignore output of operator 1 */ SLOT->op1_out[1] = 0; if( env < ENV_QUIET ) { if (!SLOT->FB) out = 0; SLOT->op1_out[1] = op_calc1(SLOT->Cnt, env, (out<FB), SLOT->wavetable ); } /* SLOT 2 */ SLOT++; env = volume_calc(SLOT); if( env < ENV_QUIET && !CH->muted) output[0] += op_calc(SLOT->Cnt, env, phase_modulation, SLOT->wavetable) * 2; /* Phase generation is based on: */ /* HH (13) channel 7->slot 1 combined with channel 8->slot 2 (same combination as TOP CYMBAL but different output phases) */ /* SD (16) channel 7->slot 1 */ /* TOM (14) channel 8->slot 1 */ /* TOP (17) channel 7->slot 1 combined with channel 8->slot 2 (same combination as HIGH HAT but different output phases) */ /* Envelope generation based on: */ /* HH channel 7->slot1 */ /* SD channel 7->slot2 */ /* TOM channel 8->slot1 */ /* TOP channel 8->slot2 */ /* The following formulas can be well optimized. I leave them in direct form for now (in case I've missed something). */ /* High Hat (verified on real YM3812) */ env = volume_calc(SLOT7_1); if( env < ENV_QUIET && !CH->muted) { /* high hat phase generation: phase = d0 or 234 (based on frequency only) phase = 34 or 2d0 (based on noise) */ /* base frequency derived from operator 1 in channel 7 */ unsigned char bit7 = ((SLOT7_1->Cnt>>FREQ_SH)>>7)&1; unsigned char bit3 = ((SLOT7_1->Cnt>>FREQ_SH)>>3)&1; unsigned char bit2 = ((SLOT7_1->Cnt>>FREQ_SH)>>2)&1; unsigned char res1 = (bit2 ^ bit7) | bit3; /* when res1 = 0 phase = 0x000 | 0xd0; */ /* when res1 = 1 phase = 0x200 | (0xd0>>2); */ UINT32 phase = res1 ? (0x200|(0xd0>>2)) : 0xd0; /* enable gate based on frequency of operator 2 in channel 8 */ unsigned char bit5e= ((SLOT8_2->Cnt>>FREQ_SH)>>5)&1; unsigned char bit3e= ((SLOT8_2->Cnt>>FREQ_SH)>>3)&1; unsigned char res2 = (bit3e ^ bit5e); /* when res2 = 0 pass the phase from calculation above (res1); */ /* when res2 = 1 phase = 0x200 | (0xd0>>2); */ if (res2) phase = (0x200|(0xd0>>2)); /* when phase & 0x200 is set and noise=1 then phase = 0x200|0xd0 */ /* when phase & 0x200 is set and noise=0 then phase = 0x200|(0xd0>>2), ie no change */ if (phase&0x200) { if (noise) phase = 0x200|0xd0; } else /* when phase & 0x200 is clear and noise=1 then phase = 0xd0>>2 */ /* when phase & 0x200 is clear and noise=0 then phase = 0xd0, ie no change */ { if (noise) phase = 0xd0>>2; } output[0] += op_calc(phase<wavetable) * 2; } /* Snare Drum (verified on real YM3812) */ env = volume_calc(SLOT7_2); if( env < ENV_QUIET && !CH->muted) { /* base frequency derived from operator 1 in channel 7 */ unsigned char bit8 = ((SLOT7_1->Cnt>>FREQ_SH)>>8)&1; /* when bit8 = 0 phase = 0x100; */ /* when bit8 = 1 phase = 0x200; */ UINT32 phase = bit8 ? 0x200 : 0x100; /* Noise bit XOR'es phase by 0x100 */ /* when noisebit = 0 pass the phase from calculation above */ /* when noisebit = 1 phase ^= 0x100; */ /* in other words: phase ^= (noisebit<<8); */ if (noise) phase ^= 0x100; output[0] += op_calc(phase<wavetable) * 2; } /* Tom Tom (verified on real YM3812) */ env = volume_calc(SLOT8_1); if( env < ENV_QUIET && !CH->muted) output[0] += op_calc(SLOT8_1->Cnt, env, 0, SLOT8_1->wavetable) * 2; /* Top Cymbal (verified on real YM3812) */ env = volume_calc(SLOT8_2); if( env < ENV_QUIET && !CH->muted) { /* base frequency derived from operator 1 in channel 7 */ unsigned char bit7 = ((SLOT7_1->Cnt>>FREQ_SH)>>7)&1; unsigned char bit3 = ((SLOT7_1->Cnt>>FREQ_SH)>>3)&1; unsigned char bit2 = ((SLOT7_1->Cnt>>FREQ_SH)>>2)&1; unsigned char res1 = (bit2 ^ bit7) | bit3; /* when res1 = 0 phase = 0x000 | 0x100; */ /* when res1 = 1 phase = 0x200 | 0x100; */ UINT32 phase = res1 ? 0x300 : 0x100; /* enable gate based on frequency of operator 2 in channel 8 */ unsigned char bit5e= ((SLOT8_2->Cnt>>FREQ_SH)>>5)&1; unsigned char bit3e= ((SLOT8_2->Cnt>>FREQ_SH)>>3)&1; unsigned char res2 = (bit3e ^ bit5e); /* when res2 = 0 pass the phase from calculation above (res1); */ /* when res2 = 1 phase = 0x200 | 0x100; */ if (res2) phase = 0x300; output[0] += op_calc(phase<wavetable) * 2; } } /* generic table initialize */ static int init_tables(void) { signed int i,x; signed int n; double o,m; for (x=0; x>= 4; /* 12 bits here */ if (n&1) /* round to nearest */ n = (n>>1)+1; else n = n>>1; /* 11 bits here (rounded) */ n <<= 1; /* 12 bits here (as in real chip) */ tl_tab[ x*2 + 0 ] = n; tl_tab[ x*2 + 1 ] = -tl_tab[ x*2 + 0 ]; for (i=1; i<12; i++) { tl_tab[ x*2+0 + i*2*TL_RES_LEN ] = tl_tab[ x*2+0 ]>>i; tl_tab[ x*2+1 + i*2*TL_RES_LEN ] = -tl_tab[ x*2+0 + i*2*TL_RES_LEN ]; } #if 0 logerror("tl %04i", x*2); for (i=0; i<12; i++) logerror(", [%02i] %5i", i*2, tl_tab[ x*2 /*+1*/ + i*2*TL_RES_LEN ] ); logerror("\n"); #endif } /*logerror("FMOPL.C: TL_TAB_LEN = %i elements (%i bytes)\n",TL_TAB_LEN, (int)sizeof(tl_tab));*/ for (i=0; i0.0) o = 8*log(1.0/m)/log(2.0); /* convert to 'decibels' */ else o = 8*log(-1.0/m)/log(2.0); /* convert to 'decibels' */ o = o / (ENV_STEP/4); n = (int)(2.0*o); if (n&1) /* round to nearest */ n = (n>>1)+1; else n = n>>1; sin_tab[ i ] = n*2 + (m>=0.0? 0: 1 ); /*logerror("FMOPL.C: sin [%4i (hex=%03x)]= %4i (tl_tab value=%5i)\n", i, i, sin_tab[i], tl_tab[sin_tab[i]] );*/ } for (i=0; i>1) ]; /* waveform 3: _ _ _ _ */ /* / |_/ |_/ |_/ |_*/ /* abs(output only first quarter of the sinus waveform) */ if (i & (1<<(SIN_BITS-2)) ) sin_tab[3*SIN_LEN+i] = TL_TAB_LEN; else sin_tab[3*SIN_LEN+i] = sin_tab[i & (SIN_MASK>>2)]; /*logerror("FMOPL.C: sin1[%4i]= %4i (tl_tab value=%5i)\n", i, sin_tab[1*SIN_LEN+i], tl_tab[sin_tab[1*SIN_LEN+i]] ); logerror("FMOPL.C: sin2[%4i]= %4i (tl_tab value=%5i)\n", i, sin_tab[2*SIN_LEN+i], tl_tab[sin_tab[2*SIN_LEN+i]] ); logerror("FMOPL.C: sin3[%4i]= %4i (tl_tab value=%5i)\n", i, sin_tab[3*SIN_LEN+i], tl_tab[sin_tab[3*SIN_LEN+i]] );*/ } /*logerror("FMOPL.C: ENV_QUIET= %08x (dec*8=%i)\n", ENV_QUIET, ENV_QUIET*8 );*/ #ifdef SAVE_SAMPLE sample[0]=fopen("sampsum.pcm","wb"); #endif return 1; } static void OPLCloseTable( void ) { #ifdef SAVE_SAMPLE fclose(sample[0]); #endif } static void OPL_initalize(FM_OPL *OPL) { int i; /* frequency base */ OPL->freqbase = (OPL->rate) ? ((double)OPL->clock / 72.0) / OPL->rate : 0; #if 0 OPL->rate = (double)OPL->clock / 72.0; OPL->freqbase = 1.0; #endif /*logerror("freqbase=%f\n", OPL->freqbase);*/ /* Timer base time */ OPL->TimerBase = 1.0 / ((double)OPL->clock / 72.0 ); /* make fnumber -> increment counter table */ for( i=0 ; i < 1024 ; i++ ) { /* opn phase increment counter = 20bit */ OPL->fn_tab[i] = (UINT32)( (double)i * 64 * OPL->freqbase * (1<<(FREQ_SH-10)) ); /* -10 because chip works with 10.10 fixed point, while we use 16.16 */ #if 0 logerror("FMOPL.C: fn_tab[%4i] = %08x (dec=%8i)\n", i, OPL->fn_tab[i]>>6, OPL->fn_tab[i]>>6 ); #endif } #if 0 for( i=0 ; i < 16 ; i++ ) { logerror("FMOPL.C: sl_tab[%i] = %08x\n", i, sl_tab[i] ); } for( i=0 ; i < 8 ; i++ ) { int j; logerror("FMOPL.C: ksl_tab[oct=%2i] =",i); for (j=0; j<16; j++) { logerror("%08x ", ksl_tab[i*16+j] ); } logerror("\n"); } #endif /* Amplitude modulation: 27 output levels (triangle waveform); 1 level takes one of: 192, 256 or 448 samples */ /* One entry from LFO_AM_TABLE lasts for 64 samples */ OPL->lfo_am_inc = (UINT32) ((1.0 / 64.0 ) * (1<freqbase); /* Vibrato: 8 output levels (triangle waveform); 1 level takes 1024 samples */ OPL->lfo_pm_inc = (UINT32) ((1.0 / 1024.0) * (1<freqbase); /*logerror ("OPL->lfo_am_inc = %8x ; OPL->lfo_pm_inc = %8x\n", OPL->lfo_am_inc, OPL->lfo_pm_inc);*/ /* Noise generator: a step takes 1 sample */ OPL->noise_f = (UINT32) ((1.0 / 1.0) * (1<freqbase); OPL->eg_timer_add = (UINT32) ((1<freqbase); OPL->eg_timer_overflow = ( 1 ) * (1<eg_timer_add, OPL->eg_timer_overflow);*/ } INLINE void FM_KEYON(OPL_SLOT *SLOT, UINT32 key_set) { if( !SLOT->key ) { /* restart Phase Generator */ SLOT->Cnt = 0; /* phase -> Attack */ SLOT->state = EG_ATT; } SLOT->key |= key_set; } INLINE void FM_KEYOFF(OPL_SLOT *SLOT, UINT32 key_clr) { if( SLOT->key ) { SLOT->key &= key_clr; if( !SLOT->key ) { /* phase -> Release */ if (SLOT->state>EG_REL) SLOT->state = EG_REL; } } } /* update phase increment counter of operator (also update the EG rates if necessary) */ INLINE void CALC_FCSLOT(OPL_CH *CH,OPL_SLOT *SLOT) { int ksr; /* (frequency) phase increment counter */ SLOT->Incr = CH->fc * SLOT->mul; ksr = CH->kcode >> SLOT->KSR; if( SLOT->ksr != ksr ) { SLOT->ksr = ksr; /* calculate envelope generator rates */ if ((SLOT->ar + SLOT->ksr) < 16+62) { SLOT->eg_sh_ar = eg_rate_shift [SLOT->ar + SLOT->ksr ]; SLOT->eg_sel_ar = eg_rate_select[SLOT->ar + SLOT->ksr ]; } else { SLOT->eg_sh_ar = 0; SLOT->eg_sel_ar = 13*RATE_STEPS; } SLOT->eg_sh_dr = eg_rate_shift [SLOT->dr + SLOT->ksr ]; SLOT->eg_sel_dr = eg_rate_select[SLOT->dr + SLOT->ksr ]; SLOT->eg_sh_rr = eg_rate_shift [SLOT->rr + SLOT->ksr ]; SLOT->eg_sel_rr = eg_rate_select[SLOT->rr + SLOT->ksr ]; } } /* set multi,am,vib,EG-TYP,KSR,mul */ INLINE void set_mul(FM_OPL *OPL,int slot,int v) { OPL_CH *CH = &OPL->P_CH[slot/2]; OPL_SLOT *SLOT = &CH->SLOT[slot&1]; SLOT->mul = mul_tab[v&0x0f]; SLOT->KSR = (v&0x10) ? 0 : 2; SLOT->eg_type = (v&0x20); SLOT->vib = (v&0x40); SLOT->AMmask = (v&0x80) ? ~0 : 0; CALC_FCSLOT(CH,SLOT); } /* set ksl & tl */ INLINE void set_ksl_tl(FM_OPL *OPL,int slot,int v) { OPL_CH *CH = &OPL->P_CH[slot/2]; OPL_SLOT *SLOT = &CH->SLOT[slot&1]; int ksl = v>>6; /* 0 / 1.5 / 3.0 / 6.0 dB/OCT */ SLOT->ksl = ksl ? 3-ksl : 31; SLOT->TL = (v&0x3f)<<(ENV_BITS-1-7); /* 7 bits TL (bit 6 = always 0) */ SLOT->TLL = SLOT->TL + (CH->ksl_base>>SLOT->ksl); } /* set attack rate & decay rate */ INLINE void set_ar_dr(FM_OPL *OPL,int slot,int v) { OPL_CH *CH = &OPL->P_CH[slot/2]; OPL_SLOT *SLOT = &CH->SLOT[slot&1]; SLOT->ar = (v>>4) ? 16 + ((v>>4) <<2) : 0; if ((SLOT->ar + SLOT->ksr) < 16+62) { SLOT->eg_sh_ar = eg_rate_shift [SLOT->ar + SLOT->ksr ]; SLOT->eg_sel_ar = eg_rate_select[SLOT->ar + SLOT->ksr ]; } else { SLOT->eg_sh_ar = 0; SLOT->eg_sel_ar = 13*RATE_STEPS; } SLOT->dr = (v&0x0f)? 16 + ((v&0x0f)<<2) : 0; SLOT->eg_sh_dr = eg_rate_shift [SLOT->dr + SLOT->ksr ]; SLOT->eg_sel_dr = eg_rate_select[SLOT->dr + SLOT->ksr ]; } /* set sustain level & release rate */ INLINE void set_sl_rr(FM_OPL *OPL,int slot,int v) { OPL_CH *CH = &OPL->P_CH[slot/2]; OPL_SLOT *SLOT = &CH->SLOT[slot&1]; SLOT->sl = sl_tab[ v>>4 ]; SLOT->rr = (v&0x0f)? 16 + ((v&0x0f)<<2) : 0; SLOT->eg_sh_rr = eg_rate_shift [SLOT->rr + SLOT->ksr ]; SLOT->eg_sel_rr = eg_rate_select[SLOT->rr + SLOT->ksr ]; } /* write a value v to register r on OPL chip */ static void OPLWriteReg(FM_OPL *OPL, int r, int v) { OPL_CH *CH; int slot; int block_fnum; /* adjust bus to 8 bits */ r &= 0xff; v &= 0xff; #ifdef LOG_CYM_FILE if ((cymfile) && (r!=0) ) { fputc( (unsigned char)r, cymfile ); fputc( (unsigned char)v, cymfile ); } #endif switch(r&0xe0) { case 0x00: /* 00-1f:control */ switch(r&0x1f) { case 0x01: /* waveform select enable */ if(OPL->type&OPL_TYPE_WAVESEL) { OPL->wavesel = v&0x20; /* do not change the waveform previously selected */ } break; case 0x02: /* Timer 1 */ OPL->T[0] = (256-v)*4; break; case 0x03: /* Timer 2 */ OPL->T[1] = (256-v)*16; break; case 0x04: /* IRQ clear / mask and Timer enable */ if(v&0x80) { /* IRQ flag clear */ OPL_STATUS_RESET(OPL,0x7f-0x08); /* don't reset BFRDY flag or we will have to call deltat module to set the flag */ } else { /* set IRQ mask ,timer enable*/ UINT8 st1 = v&1; UINT8 st2 = (v>>1)&1; /* IRQRST,T1MSK,t2MSK,EOSMSK,BRMSK,x,ST2,ST1 */ OPL_STATUS_RESET(OPL, v & (0x78-0x08) ); OPL_STATUSMASK_SET(OPL, (~v) & 0x78 ); /* timer 2 */ if(OPL->st[1] != st2) { double interval = st2 ? (double)OPL->T[1]*OPL->TimerBase : 0.0; OPL->st[1] = st2; if (OPL->TimerHandler) (OPL->TimerHandler)(OPL->TimerParam+1,interval); } /* timer 1 */ if(OPL->st[0] != st1) { double interval = st1 ? (double)OPL->T[0]*OPL->TimerBase : 0.0; OPL->st[0] = st1; if (OPL->TimerHandler) (OPL->TimerHandler)(OPL->TimerParam+0,interval); } } break; #if BUILD_Y8950 case 0x06: /* Key Board OUT */ if(OPL->type&OPL_TYPE_KEYBOARD) { if(OPL->keyboardhandler_w) OPL->keyboardhandler_w(OPL->keyboard_param,v); else logerror("Y8950: write unmapped KEYBOARD port\n"); } break; case 0x07: /* DELTA-T control 1 : START,REC,MEMDATA,REPT,SPOFF,x,x,RST */ if(OPL->type&OPL_TYPE_ADPCM) YM_DELTAT_ADPCM_Write(OPL->deltat,r-0x07,v); break; #endif case 0x08: /* MODE,DELTA-T control 2 : CSM,NOTESEL,x,x,smpl,da/ad,64k,rom */ OPL->mode = v; #if BUILD_Y8950 if(OPL->type&OPL_TYPE_ADPCM) YM_DELTAT_ADPCM_Write(OPL->deltat,r-0x07,v&0x0f); /* mask 4 LSBs in register 08 for DELTA-T unit */ #endif break; #if BUILD_Y8950 case 0x09: /* START ADD */ case 0x0a: case 0x0b: /* STOP ADD */ case 0x0c: case 0x0d: /* PRESCALE */ case 0x0e: case 0x0f: /* ADPCM data write */ case 0x10: /* DELTA-N */ case 0x11: /* DELTA-N */ case 0x12: /* ADPCM volume */ if(OPL->type&OPL_TYPE_ADPCM) YM_DELTAT_ADPCM_Write(OPL->deltat,r-0x07,v); break; case 0x15: /* DAC data high 8 bits (F7,F6...F2) */ case 0x16: /* DAC data low 2 bits (F1, F0 in bits 7,6) */ case 0x17: /* DAC data shift (S2,S1,S0 in bits 2,1,0) */ logerror("FMOPL.C: DAC data register written, but not implemented reg=%02x val=%02x\n",r,v); break; case 0x18: /* I/O CTRL (Direction) */ if(OPL->type&OPL_TYPE_IO) OPL->portDirection = v&0x0f; break; case 0x19: /* I/O DATA */ if(OPL->type&OPL_TYPE_IO) { OPL->portLatch = v; if(OPL->porthandler_w) OPL->porthandler_w(OPL->port_param,v&OPL->portDirection); } break; #endif default: logerror("FMOPL.C: write to unknown register: %02x\n",r); break; } break; case 0x20: /* am ON, vib ON, ksr, eg_type, mul */ slot = slot_array[r&0x1f]; if(slot < 0) return; set_mul(OPL,slot,v); break; case 0x40: slot = slot_array[r&0x1f]; if(slot < 0) return; set_ksl_tl(OPL,slot,v); break; case 0x60: slot = slot_array[r&0x1f]; if(slot < 0) return; set_ar_dr(OPL,slot,v); break; case 0x80: slot = slot_array[r&0x1f]; if(slot < 0) return; set_sl_rr(OPL,slot,v); break; case 0xa0: if (r == 0xbd) /* am depth, vibrato depth, r,bd,sd,tom,tc,hh */ { OPL->lfo_am_depth = v & 0x80; OPL->lfo_pm_depth_range = (v&0x40) ? 8 : 0; OPL->rhythm = v&0x3f; if(OPL->rhythm&0x20) { /* BD key on/off */ if(v&0x10) { FM_KEYON (&OPL->P_CH[6].SLOT[SLOT1], 2); FM_KEYON (&OPL->P_CH[6].SLOT[SLOT2], 2); } else { FM_KEYOFF(&OPL->P_CH[6].SLOT[SLOT1],~2); FM_KEYOFF(&OPL->P_CH[6].SLOT[SLOT2],~2); } /* HH key on/off */ if(v&0x01) FM_KEYON (&OPL->P_CH[7].SLOT[SLOT1], 2); else FM_KEYOFF(&OPL->P_CH[7].SLOT[SLOT1],~2); /* SD key on/off */ if(v&0x08) FM_KEYON (&OPL->P_CH[7].SLOT[SLOT2], 2); else FM_KEYOFF(&OPL->P_CH[7].SLOT[SLOT2],~2); /* TOM key on/off */ if(v&0x04) FM_KEYON (&OPL->P_CH[8].SLOT[SLOT1], 2); else FM_KEYOFF(&OPL->P_CH[8].SLOT[SLOT1],~2); /* TOP-CY key on/off */ if(v&0x02) FM_KEYON (&OPL->P_CH[8].SLOT[SLOT2], 2); else FM_KEYOFF(&OPL->P_CH[8].SLOT[SLOT2],~2); } else { /* BD key off */ FM_KEYOFF(&OPL->P_CH[6].SLOT[SLOT1],~2); FM_KEYOFF(&OPL->P_CH[6].SLOT[SLOT2],~2); /* HH key off */ FM_KEYOFF(&OPL->P_CH[7].SLOT[SLOT1],~2); /* SD key off */ FM_KEYOFF(&OPL->P_CH[7].SLOT[SLOT2],~2); /* TOM key off */ FM_KEYOFF(&OPL->P_CH[8].SLOT[SLOT1],~2); /* TOP-CY off */ FM_KEYOFF(&OPL->P_CH[8].SLOT[SLOT2],~2); } return; } /* keyon,block,fnum */ if( (r&0x0f) > 8) return; CH = &OPL->P_CH[r&0x0f]; if(!(r&0x10)) { /* a0-a8 */ block_fnum = (CH->block_fnum&0x1f00) | v; } else { /* b0-b8 */ block_fnum = ((v&0x1f)<<8) | (CH->block_fnum&0xff); if(v&0x20) { FM_KEYON (&CH->SLOT[SLOT1], 1); FM_KEYON (&CH->SLOT[SLOT2], 1); } else { FM_KEYOFF(&CH->SLOT[SLOT1],~1); FM_KEYOFF(&CH->SLOT[SLOT2],~1); } } /* update */ if(CH->block_fnum != (UINT32) block_fnum) { UINT8 block = block_fnum >> 10; CH->block_fnum = block_fnum; CH->ksl_base = ksl_tab[block_fnum>>6]; CH->fc = OPL->fn_tab[block_fnum&0x03ff] >> (7-block); /* BLK 2,1,0 bits -> bits 3,2,1 of kcode */ CH->kcode = (CH->block_fnum&0x1c00)>>9; /* the info below is actually opposite to what is stated in the Manuals (verifed on real YM3812) */ /* if notesel == 0 -> lsb of kcode is bit 10 (MSB) of fnum */ /* if notesel == 1 -> lsb of kcode is bit 9 (MSB-1) of fnum */ if (OPL->mode&0x40) CH->kcode |= (CH->block_fnum&0x100)>>8; /* notesel == 1 */ else CH->kcode |= (CH->block_fnum&0x200)>>9; /* notesel == 0 */ /* refresh Total Level in both SLOTs of this channel */ CH->SLOT[SLOT1].TLL = CH->SLOT[SLOT1].TL + (CH->ksl_base>>CH->SLOT[SLOT1].ksl); CH->SLOT[SLOT2].TLL = CH->SLOT[SLOT2].TL + (CH->ksl_base>>CH->SLOT[SLOT2].ksl); /* refresh frequency counter in both SLOTs of this channel */ CALC_FCSLOT(CH,&CH->SLOT[SLOT1]); CALC_FCSLOT(CH,&CH->SLOT[SLOT2]); } break; case 0xc0: /* FB,C */ if( (r&0x0f) > 8) return; CH = &OPL->P_CH[r&0x0f]; CH->SLOT[SLOT1].FB = (v>>1)&7 ? ((v>>1)&7) + 7 : 0; CH->SLOT[SLOT1].CON = v&1; CH->SLOT[SLOT1].connect1 = CH->SLOT[SLOT1].CON ? &output[0] : &phase_modulation; break; case 0xe0: /* waveform select */ /* simply ignore write to the waveform select register if selecting not enabled in test register */ if(OPL->wavesel) { slot = slot_array[r&0x1f]; if(slot < 0) return; CH = &OPL->P_CH[slot/2]; CH->SLOT[slot&1].wavetable = (v&0x03)*SIN_LEN; } break; } } static void OPLMute(FM_OPL *OPL,int channel,BOOL mute) { if(channel<0 || channel>8) return; OPL_CH *CH = &OPL->P_CH[channel]; CH->muted=mute; /* if(!mute) { if(ChannelMuted[channel]&1) { FM_KEYON (&CH->SLOT[SLOT1], 1); FM_KEYON (&CH->SLOT[SLOT2], 1); } ChannelMuted[channel]=0; } else { if(CH->SLOT[SLOT1].volumeSLOT[SLOT1],~1); FM_KEYOFF(&CH->SLOT[SLOT2],~1); CH->SLOT[SLOT1].volume = MAX_ATT_INDEX; CH->SLOT[SLOT1].state = EG_OFF; CH->SLOT[SLOT2].volume = MAX_ATT_INDEX; CH->SLOT[SLOT2].state = EG_OFF; ChannelMuted[channel]=3; // muted + keyon flag } else { MessageBox(NULL,"HmMEMmSDUHSoi","arghl",MB_OK); ChannelMuted[channel]=2; // muted } }*/ } #ifdef LOG_CYM_FILE static void cymfile_callback (int n) { if (cymfile) { fputc( (unsigned char)0, cymfile ); } } #endif /* lock/unlock for common table */ static int OPL_LockTable(void) { num_lock++; if(num_lock>1) return 0; /* first time */ cur_chip = NULL; /* allocate total level table (128kb space) */ if( !init_tables() ) { num_lock--; return -1; } #ifdef LOG_CYM_FILE cymfile = fopen("3812_.cym","wb"); if (cymfile) timer_pulse ( TIME_IN_HZ(110), 0, cymfile_callback); /*110 Hz pulse timer*/ else logerror("Could not create file 3812_.cym\n"); #endif return 0; } static void OPL_UnLockTable(void) { if(num_lock) num_lock--; if(num_lock) return; /* last time */ cur_chip = NULL; OPLCloseTable(); #ifdef LOG_CYM_FILE fclose (cymfile); cymfile = NULL; #endif } static void OPLResetChip(FM_OPL *OPL) { int c,s; int i; OPL->eg_timer = 0; OPL->eg_cnt = 0; OPL->noise_rng = 1; /* noise shift register */ OPL->mode = 0; /* normal mode */ OPL_STATUS_RESET(OPL,0x7f); /* reset with register write */ OPLWriteReg(OPL,0x01,0); /* wavesel disable */ OPLWriteReg(OPL,0x02,0); /* Timer1 */ OPLWriteReg(OPL,0x03,0); /* Timer2 */ OPLWriteReg(OPL,0x04,0); /* IRQ mask clear */ for(i = 0xff ; i >= 0x20 ; i-- ) OPLWriteReg(OPL,i,0); /* reset operator parameters */ for( c = 0 ; c < 9 ; c++ ) { OPL_CH *CH = &OPL->P_CH[c]; for(s = 0 ; s < 2 ; s++ ) { /* wave table */ CH->SLOT[s].wavetable = 0; CH->SLOT[s].state = EG_OFF; CH->SLOT[s].volume = MAX_ATT_INDEX; } } #if BUILD_Y8950 if(OPL->type&OPL_TYPE_ADPCM) { YM_DELTAT *DELTAT = OPL->deltat; DELTAT->freqbase = OPL->freqbase; DELTAT->output_pointer = &output_deltat[0]; DELTAT->portshift = 5; DELTAT->output_range = 1<<23; YM_DELTAT_ADPCM_Reset(DELTAT,0); } #endif } /* Create one of virtual YM3812/YM3526/Y8950 */ /* 'clock' is chip clock in Hz */ /* 'rate' is sampling rate */ static FM_OPL *OPLCreate(int type, int clock, int rate) { char *ptr; FM_OPL *OPL; int state_size; if (OPL_LockTable() ==-1) return NULL; /* calculate OPL state size */ state_size = sizeof(FM_OPL); #if BUILD_Y8950 if (type&OPL_TYPE_ADPCM) state_size+= sizeof(YM_DELTAT); #endif /* allocate memory block */ ptr = (char *) malloc(state_size); if (ptr==NULL) return NULL; /* clear */ memset(ptr,0,state_size); OPL = (FM_OPL *)(void *)ptr; // ptr comes from malloc, so it is correctly aligned ptr += sizeof(FM_OPL); #if BUILD_Y8950 if (type&OPL_TYPE_ADPCM) { OPL->deltat = (YM_DELTAT *)ptr; } ptr += sizeof(YM_DELTAT); #endif OPL->type = type; OPL->clock = clock; OPL->rate = rate; /* init global tables */ OPL_initalize(OPL); return OPL; } /* Destroy one of virtual YM3812 */ static void OPLDestroy(FM_OPL *OPL) { OPL_UnLockTable(); free(OPL); } /* Optional handlers */ static void OPLSetTimerHandler(FM_OPL *OPL,OPL_TIMERHANDLER TimerHandler,int channelOffset) { OPL->TimerHandler = TimerHandler; OPL->TimerParam = channelOffset; } static void OPLSetIRQHandler(FM_OPL *OPL,OPL_IRQHANDLER IRQHandler,int param) { OPL->IRQHandler = IRQHandler; OPL->IRQParam = param; } static void OPLSetUpdateHandler(FM_OPL *OPL,OPL_UPDATEHANDLER UpdateHandler,int param) { OPL->UpdateHandler = UpdateHandler; OPL->UpdateParam = param; } #if defined(BUILD_YM3526) || defined(BUILD_Y8950) static int OPLWrite(FM_OPL *OPL,int a,int v) { if( !(a&1) ) { /* address port */ OPL->address = v & 0xff; } else { /* data port */ if(OPL->UpdateHandler) OPL->UpdateHandler(OPL->UpdateParam,0); OPLWriteReg(OPL,OPL->address,v); } return OPL->status>>7; } #endif static unsigned char OPLRead(FM_OPL *OPL,int a) { if( !(a&1) ) { /* status port */ #if BUILD_Y8950 if(OPL->type&OPL_TYPE_ADPCM) /* Y8950 */ { return (OPL->status & (OPL->statusmask|0x80)) | (OPL->deltat->PCM_BSY&1); } #endif /* OPL and OPL2 */ return OPL->status & (OPL->statusmask|0x80); } #if BUILD_Y8950 /* data port */ switch(OPL->address) { case 0x05: /* KeyBoard IN */ if(OPL->type&OPL_TYPE_KEYBOARD) { if(OPL->keyboardhandler_r) return OPL->keyboardhandler_r(OPL->keyboard_param); else logerror("Y8950: read unmapped KEYBOARD port\n"); } return 0; case 0x0f: /* ADPCM-DATA */ if(OPL->type&OPL_TYPE_ADPCM) { UINT8 val; val = YM_DELTAT_ADPCM_Read(OPL->deltat); /*logerror("Y8950: read ADPCM value read=%02x\n",val);*/ return val; } return 0; case 0x19: /* I/O DATA */ if(OPL->type&OPL_TYPE_IO) { if(OPL->porthandler_r) return OPL->porthandler_r(OPL->port_param); else logerror("Y8950:read unmapped I/O port\n"); } return 0; case 0x1a: /* PCM-DATA */ if(OPL->type&OPL_TYPE_ADPCM) { logerror("Y8950 A/D convertion is accessed but not implemented !\n"); return 0x80; /* 2's complement PCM data - result from A/D convertion */ } return 0; } #endif return 0xff; } /* CSM Key Controll */ INLINE void CSMKeyControll(OPL_CH *CH) { FM_KEYON (&CH->SLOT[SLOT1], 4); FM_KEYON (&CH->SLOT[SLOT2], 4); /* The key off should happen exactly one sample later - not implemented correctly yet */ FM_KEYOFF(&CH->SLOT[SLOT1], ~4); FM_KEYOFF(&CH->SLOT[SLOT2], ~4); } static int OPLTimerOver(FM_OPL *OPL,int c) { if( c ) { /* Timer B */ OPL_STATUS_SET(OPL,0x20); } else { /* Timer A */ OPL_STATUS_SET(OPL,0x40); /* CSM mode key,TL controll */ if( OPL->mode & 0x80 ) { /* CSM mode total level latch and auto key on */ int ch; if(OPL->UpdateHandler) OPL->UpdateHandler(OPL->UpdateParam,0); for(ch=0; ch<9; ch++) CSMKeyControll( &OPL->P_CH[ch] ); } } /* reload timer */ if (OPL->TimerHandler) (OPL->TimerHandler)(OPL->TimerParam+c,(double)OPL->T[c]*OPL->TimerBase); return OPL->status>>7; } #define MAX_OPL_CHIPS 2 #if (BUILD_YM3812) static FM_OPL *OPL_YM3812[MAX_OPL_CHIPS]; /* array of pointers to the YM3812's */ static int YM3812NumChips = 0; /* number of chips */ int YM3812Init(int num, int clock, int rate) { int i; if (YM3812NumChips) return -1; /* duplicate init. */ YM3812NumChips = num; for (i = 0;i < YM3812NumChips; i++) { /* emulator create */ OPL_YM3812[i] = OPLCreate(OPL_TYPE_YM3812,clock,rate); if(OPL_YM3812[i] == NULL) { /* it's really bad - we run out of memeory */ YM3812NumChips = 0; return -1; } /* reset */ YM3812ResetChip(i); } return 0; } void YM3812Shutdown(void) { int i; for (i = 0;i < YM3812NumChips; i++) { /* emulator shutdown */ OPLDestroy(OPL_YM3812[i]); OPL_YM3812[i] = NULL; } YM3812NumChips = 0; } void YM3812ResetChip(int which) { OPLResetChip(OPL_YM3812[which]); } int YM3812Write(int which, int a, int v) { OPLWriteReg(OPL_YM3812[which], a, v); return (OPL_YM3812[which]->status>>7); } unsigned char YM3812Read(int which, int a) { /* YM3812 always returns bit2 and bit1 in HIGH state */ return OPLRead(OPL_YM3812[which], a) | 0x06 ; } void YM3812Mute(int which, int channel, BOOL mute) { OPLMute(OPL_YM3812[which], channel, mute); } int YM3812TimerOver(int which, int c) { return OPLTimerOver(OPL_YM3812[which], c); } void YM3812SetTimerHandler(int which, OPL_TIMERHANDLER TimerHandler, int channelOffset) { OPLSetTimerHandler(OPL_YM3812[which], TimerHandler, channelOffset); } void YM3812SetIRQHandler(int which,OPL_IRQHANDLER IRQHandler,int param) { OPLSetIRQHandler(OPL_YM3812[which], IRQHandler, param); } void YM3812SetUpdateHandler(int which,OPL_UPDATEHANDLER UpdateHandler,int param) { OPLSetUpdateHandler(OPL_YM3812[which], UpdateHandler, param); } /* ** Generate samples for one of the YM3812's ** ** 'which' is the virtual YM3812 number ** '*buffer' is the output buffer pointer ** 'length' is the number of samples that should be generated */ void YM3812UpdateOne(int which, INT16 *buffer, int length) { FM_OPL *OPL = OPL_YM3812[which]; UINT8 rhythm = OPL->rhythm&0x20; OPLSAMPLE *buf = buffer; int i; if( (void *)OPL != cur_chip ){ cur_chip = (void *)OPL; /* rhythm slots */ SLOT7_1 = &OPL->P_CH[7].SLOT[SLOT1]; SLOT7_2 = &OPL->P_CH[7].SLOT[SLOT2]; SLOT8_1 = &OPL->P_CH[8].SLOT[SLOT1]; SLOT8_2 = &OPL->P_CH[8].SLOT[SLOT2]; } for( i=0; i < length ; i++ ) { int lt; output[0] = 0; advance_lfo(OPL); /* FM part */ OPL_CALC_CH(&OPL->P_CH[0]); OPL_CALC_CH(&OPL->P_CH[1]); OPL_CALC_CH(&OPL->P_CH[2]); OPL_CALC_CH(&OPL->P_CH[3]); OPL_CALC_CH(&OPL->P_CH[4]); OPL_CALC_CH(&OPL->P_CH[5]); if(!rhythm) { OPL_CALC_CH(&OPL->P_CH[6]); OPL_CALC_CH(&OPL->P_CH[7]); OPL_CALC_CH(&OPL->P_CH[8]); } else /* Rhythm part */ { OPL_CALC_RH(&OPL->P_CH[0], (OPL->noise_rng>>0)&1 ); } lt = output[0]; // lt >>= FINAL_SH; lt<<=2; /* limit check */ lt = limit( lt , MAXOUT, MINOUT ); #ifdef SAVE_SAMPLE if (which==0) { SAVE_ALL_CHANNELS } #endif /* store to sound buffer */ /* #if (OPL_SAMPLE_BITS == 16) lt += 32768; #else lt += 128; #endif*/ // buf[i] = lt; buf[i*2] = lt; // stereo version buf[i*2+1] = lt; advance(OPL); } } #endif /* BUILD_YM3812 */ #if (BUILD_YM3526) static FM_OPL *OPL_YM3526[MAX_OPL_CHIPS]; /* array of pointers to the YM3526's */ static int YM3526NumChips = 0; /* number of chips */ int YM3526Init(int num, int clock, int rate) { int i; if (YM3526NumChips) return -1; /* duplicate init. */ YM3526NumChips = num; for (i = 0;i < YM3526NumChips; i++) { /* emulator create */ OPL_YM3526[i] = OPLCreate(OPL_TYPE_YM3526,clock,rate); if(OPL_YM3526[i] == NULL) { /* it's really bad - we run out of memeory */ YM3526NumChips = 0; return -1; } /* reset */ YM3526ResetChip(i); } return 0; } void YM3526Shutdown(void) { int i; for (i = 0;i < YM3526NumChips; i++) { /* emulator shutdown */ OPLDestroy(OPL_YM3526[i]); OPL_YM3526[i] = NULL; } YM3526NumChips = 0; } void YM3526ResetChip(int which) { OPLResetChip(OPL_YM3526[which]); } int YM3526Write(int which, int a, int v) { return OPLWrite(OPL_YM3526[which], a, v); } unsigned char YM3526Read(int which, int a) { /* YM3526 always returns bit2 and bit1 in HIGH state */ return OPLRead(OPL_YM3526[which], a) | 0x06 ; } int YM3526TimerOver(int which, int c) { return OPLTimerOver(OPL_YM3526[which], c); } void YM3526SetTimerHandler(int which, OPL_TIMERHANDLER TimerHandler, int channelOffset) { OPLSetTimerHandler(OPL_YM3526[which], TimerHandler, channelOffset); } void YM3526SetIRQHandler(int which,OPL_IRQHANDLER IRQHandler,int param) { OPLSetIRQHandler(OPL_YM3526[which], IRQHandler, param); } void YM3526SetUpdateHandler(int which,OPL_UPDATEHANDLER UpdateHandler,int param) { OPLSetUpdateHandler(OPL_YM3526[which], UpdateHandler, param); } /* ** Generate samples for one of the YM3526's ** ** 'which' is the virtual YM3526 number ** '*buffer' is the output buffer pointer ** 'length' is the number of samples that should be generated */ void YM3526UpdateOne(int which, INT16 *buffer, int length) { FM_OPL *OPL = OPL_YM3526[which]; UINT8 rhythm = OPL->rhythm&0x20; OPLSAMPLE *buf = buffer; int i; if( (void *)OPL != cur_chip ){ cur_chip = (void *)OPL; /* rhythm slots */ SLOT7_1 = &OPL->P_CH[7].SLOT[SLOT1]; SLOT7_2 = &OPL->P_CH[7].SLOT[SLOT2]; SLOT8_1 = &OPL->P_CH[8].SLOT[SLOT1]; SLOT8_2 = &OPL->P_CH[8].SLOT[SLOT2]; } for( i=0; i < length ; i++ ) { int lt; output[0] = 0; advance_lfo(OPL); /* FM part */ OPL_CALC_CH(&OPL->P_CH[0]); OPL_CALC_CH(&OPL->P_CH[1]); OPL_CALC_CH(&OPL->P_CH[2]); OPL_CALC_CH(&OPL->P_CH[3]); OPL_CALC_CH(&OPL->P_CH[4]); OPL_CALC_CH(&OPL->P_CH[5]); if(!rhythm) { OPL_CALC_CH(&OPL->P_CH[6]); OPL_CALC_CH(&OPL->P_CH[7]); OPL_CALC_CH(&OPL->P_CH[8]); } else /* Rhythm part */ { OPL_CALC_RH(&OPL->P_CH[0], (OPL->noise_rng>>0)&1 ); } lt = output[0]; lt >>= FINAL_SH; /* limit check */ lt = limit( lt , MAXOUT, MINOUT ); #ifdef SAVE_SAMPLE if (which==0) { SAVE_ALL_CHANNELS } #endif /* store to sound buffer */ buf[i] = lt; advance(OPL); } } #endif /* BUILD_YM3526 */ #if BUILD_Y8950 static FM_OPL *OPL_Y8950[MAX_OPL_CHIPS]; /* array of pointers to the Y8950's */ static int Y8950NumChips = 0; /* number of chips */ static void Y8950_deltat_status_set(UINT8 which, UINT8 changebits) { OPL_STATUS_SET(OPL_Y8950[which], changebits); } static void Y8950_deltat_status_reset(UINT8 which, UINT8 changebits) { OPL_STATUS_RESET(OPL_Y8950[which], changebits); } int Y8950Init(int num, int clock, int rate) { int i; if (Y8950NumChips) return -1; /* duplicate init. */ Y8950NumChips = num; for (i = 0;i < Y8950NumChips; i++) { /* emulator create */ OPL_Y8950[i] = OPLCreate(OPL_TYPE_Y8950,clock,rate); if(OPL_Y8950[i] == NULL) { /* it's really bad - we run out of memeory */ Y8950NumChips = 0; return -1; } OPL_Y8950[i]->deltat->status_set_handler = Y8950_deltat_status_set; OPL_Y8950[i]->deltat->status_reset_handler = Y8950_deltat_status_reset; OPL_Y8950[i]->deltat->status_change_which_chip = i; OPL_Y8950[i]->deltat->status_change_EOS_bit = 0x10; /* status flag: set bit4 on End Of Sample */ OPL_Y8950[i]->deltat->status_change_BRDY_bit = 0x08; /* status flag: set bit3 on BRDY (End Of: ADPCM analysis/synthesis, memory reading/writing) */ /*OPL_Y8950[i]->deltat->write_time = 10.0 / clock;*/ /* a single byte write takes 10 cycles of main clock */ /*OPL_Y8950[i]->deltat->read_time = 8.0 / clock;*/ /* a single byte read takes 8 cycles of main clock */ /* reset */ Y8950ResetChip(i); } return 0; } void Y8950Shutdown(void) { int i; for (i = 0;i < Y8950NumChips; i++) { /* emulator shutdown */ OPLDestroy(OPL_Y8950[i]); OPL_Y8950[i] = NULL; } Y8950NumChips = 0; } void Y8950ResetChip(int which) { OPLResetChip(OPL_Y8950[which]); } int Y8950Write(int which, int a, int v) { return OPLWrite(OPL_Y8950[which], a, v); } unsigned char Y8950Read(int which, int a) { return OPLRead(OPL_Y8950[which], a); } int Y8950TimerOver(int which, int c) { return OPLTimerOver(OPL_Y8950[which], c); } void Y8950SetTimerHandler(int which, OPL_TIMERHANDLER TimerHandler, int channelOffset) { OPLSetTimerHandler(OPL_Y8950[which], TimerHandler, channelOffset); } void Y8950SetIRQHandler(int which,OPL_IRQHANDLER IRQHandler,int param) { OPLSetIRQHandler(OPL_Y8950[which], IRQHandler, param); } void Y8950SetUpdateHandler(int which,OPL_UPDATEHANDLER UpdateHandler,int param) { OPLSetUpdateHandler(OPL_Y8950[which], UpdateHandler, param); } void Y8950SetDeltaTMemory(int which, void * deltat_mem_ptr, int deltat_mem_size ) { FM_OPL *OPL = OPL_Y8950[which]; OPL->deltat->memory = (UINT8 *)(deltat_mem_ptr); OPL->deltat->memory_size = deltat_mem_size; } /* ** Generate samples for one of the Y8950's ** ** 'which' is the virtual Y8950 number ** '*buffer' is the output buffer pointer ** 'length' is the number of samples that should be generated */ void Y8950UpdateOne(int which, INT16 *buffer, int length) { int i; FM_OPL *OPL = OPL_Y8950[which]; UINT8 rhythm = OPL->rhythm&0x20; YM_DELTAT *DELTAT = OPL->deltat; OPLSAMPLE *buf = buffer; if( (void *)OPL != cur_chip ){ cur_chip = (void *)OPL; /* rhythm slots */ SLOT7_1 = &OPL->P_CH[7].SLOT[SLOT1]; SLOT7_2 = &OPL->P_CH[7].SLOT[SLOT2]; SLOT8_1 = &OPL->P_CH[8].SLOT[SLOT1]; SLOT8_2 = &OPL->P_CH[8].SLOT[SLOT2]; } for( i=0; i < length ; i++ ) { int lt; output[0] = 0; output_deltat[0] = 0; advance_lfo(OPL); /* deltaT ADPCM */ if( DELTAT->portstate&0x80 ) YM_DELTAT_ADPCM_CALC(DELTAT); /* FM part */ OPL_CALC_CH(&OPL->P_CH[0]); OPL_CALC_CH(&OPL->P_CH[1]); OPL_CALC_CH(&OPL->P_CH[2]); OPL_CALC_CH(&OPL->P_CH[3]); OPL_CALC_CH(&OPL->P_CH[4]); OPL_CALC_CH(&OPL->P_CH[5]); if(!rhythm) { OPL_CALC_CH(&OPL->P_CH[6]); OPL_CALC_CH(&OPL->P_CH[7]); OPL_CALC_CH(&OPL->P_CH[8]); } else /* Rhythm part */ { OPL_CALC_RH(&OPL->P_CH[0], (OPL->noise_rng>>0)&1 ); } lt = output[0] + (output_deltat[0]>>11); lt >>= FINAL_SH; /* limit check */ lt = limit( lt , MAXOUT, MINOUT ); #ifdef SAVE_SAMPLE if (which==0) { SAVE_ALL_CHANNELS } #endif /* store to sound buffer */ buf[i] = lt; advance(OPL); } } void Y8950SetPortHandler(int which,OPL_PORTHANDLER_W PortHandler_w,OPL_PORTHANDLER_R PortHandler_r,int param) { FM_OPL *OPL = OPL_Y8950[which]; OPL->porthandler_w = PortHandler_w; OPL->porthandler_r = PortHandler_r; OPL->port_param = param; } void Y8950SetKeyboardHandler(int which,OPL_PORTHANDLER_W KeyboardHandler_w,OPL_PORTHANDLER_R KeyboardHandler_r,int param) { FM_OPL *OPL = OPL_Y8950[which]; OPL->keyboardhandler_w = KeyboardHandler_w; OPL->keyboardhandler_r = KeyboardHandler_r; OPL->keyboard_param = param; } #endif #endif // ifndef USE_GPL