/* gammaf.c * * Gamma function * * * * SYNOPSIS: * * float x, y, __tgammaf_r(); * int* sgngamf; * y = __tgammaf_r( x, sgngamf ); * * float x, y, tgammaf(); * y = tgammaf( x); * * * DESCRIPTION: * * Returns gamma function of the argument. The result is * correctly signed. In the reentrant version the sign (+1 or -1) * is returned in the variable referenced by sgngamf. * * Arguments between 0 and 10 are reduced by recurrence and the * function is approximated by a polynomial function covering * the interval (2,3). Large arguments are handled by Stirling's * formula. Negative arguments are made positive using * a reflection formula. * * * ACCURACY: * * Relative error: * arithmetic domain # trials peak rms * IEEE 0,-33 100,000 5.7e-7 1.0e-7 * IEEE -33,0 100,000 6.1e-7 1.2e-7 * * */ /* Cephes Math Library Release 2.7: July, 1998 Copyright 1984, 1987, 1989, 1992, 1998 by Stephen L. Moshier */ /* * 26-11-2002 Modified for mingw. * Danny Smith <dannysmith@users.sourceforge.net> */ #ifndef __MINGW32__ #include "mconf.h" #else #include "cephes_mconf.h" #endif /* define MAXGAM 34.84425627277176174 */ /* Stirling's formula for the gamma function * gamma(x) = sqrt(2 pi) x^(x-.5) exp(-x) ( 1 + 1/x P(1/x) ) * .028 < 1/x < .1 * relative error < 1.9e-11 */ static const float STIR[] = { -2.705194986674176E-003, 3.473255786154910E-003, 8.333331788340907E-002, }; static const float MAXSTIR = 26.77; static const float SQTPIF = 2.50662827463100050242; /* sqrt( 2 pi ) */ #ifndef __MINGW32__ extern float MAXLOGF, MAXNUMF, PIF; #ifdef ANSIC float expf(float); float logf(float); float powf( float, float ); float sinf(float); float gammaf(float); float floorf(float); static float stirf(float); float polevlf( float, float *, int ); float p1evlf( float, float *, int ); #else float expf(), logf(), powf(), sinf(), floorf(); float polevlf(), p1evlf(); static float stirf(); #endif #else /* __MINGW32__ */ static float stirf(float); #endif /* Gamma function computed by Stirling's formula, * sqrt(2 pi) x^(x-.5) exp(-x) (1 + 1/x P(1/x)) * The polynomial STIR is valid for 33 <= x <= 172. */ static float stirf( float x ) { float y, w, v; w = 1.0/x; w = 1.0 + w * polevlf( w, STIR, 2 ); y = expf( -x ); if( x > MAXSTIR ) { /* Avoid overflow in pow() */ v = powf( x, 0.5 * x - 0.25 ); y *= v; y *= v; } else { y = powf( x, x - 0.5 ) * y; } y = SQTPIF * y * w; return( y ); } /* gamma(x+2), 0 < x < 1 */ static const float P[] = { 1.536830450601906E-003, 5.397581592950993E-003, 4.130370201859976E-003, 7.232307985516519E-002, 8.203960091619193E-002, 4.117857447645796E-001, 4.227867745131584E-001, 9.999999822945073E-001, }; float __tgammaf_r( float x, int* sgngamf) { float p, q, z, nz; int i, direction, negative; #ifdef NANS if( isnan(x) ) return(x); #endif #ifdef INFINITIES #ifdef NANS if( x == INFINITYF ) return(x); if( x == -INFINITYF ) return(NANF); #else if( !isfinite(x) ) return(x); #endif #endif *sgngamf = 1; negative = 0; nz = 0.0; if( x < 0.0 ) { negative = 1; q = -x; p = floorf(q); if( p == q ) { gsing: _SET_ERRNO(EDOM); mtherr( "tgammaf", SING ); #ifdef INFINITIES return (INFINITYF); #else return (MAXNUMF); #endif } i = p; if( (i & 1) == 0 ) *sgngamf = -1; nz = q - p; if( nz > 0.5 ) { p += 1.0; nz = q - p; } nz = q * sinf( PIF * nz ); if( nz == 0.0 ) { _SET_ERRNO(ERANGE); mtherr( "tgamma", OVERFLOW ); #ifdef INFINITIES return( *sgngamf * INFINITYF); #else return( *sgngamf * MAXNUMF); #endif } if( nz < 0 ) nz = -nz; x = q; } if( x >= 10.0 ) { z = stirf(x); } if( x < 2.0 ) direction = 1; else direction = 0; z = 1.0; while( x >= 3.0 ) { x -= 1.0; z *= x; } /* while( x < 0.0 ) { if( x > -1.E-4 ) goto Small; z *=x; x += 1.0; } */ while( x < 2.0 ) { if( x < 1.e-4 ) goto Small; z *=x; x += 1.0; } if( direction ) z = 1.0/z; if( x == 2.0 ) return(z); x -= 2.0; p = z * polevlf( x, P, 7 ); gdone: if( negative ) { p = *sgngamf * PIF/(nz * p ); } return(p); Small: if( x == 0.0 ) { goto gsing; } else { p = z / ((1.0 + 0.5772156649015329 * x) * x); goto gdone; } } /* This is the C99 version */ float tgammaf(float x) { int local_sgngamf=0; return (__tgammaf_r(x, &local_sgngamf)); }