/* gamma.c * * Gamma function * * * * SYNOPSIS: * * double x, y, __tgamma_r(); * int* sgngam; * y = __tgamma_r( x, sgngam ); * * double x, y, tgamma(); * y = tgamma( x) * * * * DESCRIPTION: * * Returns gamma function of the argument. The result is * correctly signed. In the reentrant version the sign (+1 or -1) * is returned in the variable referenced by sgngam. * * Arguments |x| <= 34 are reduced by recurrence and the function * approximated by a rational function of degree 6/7 in the * interval (2,3). Large arguments are handled by Stirling's * formula. Large negative arguments are made positive using * a reflection formula. * * * ACCURACY: * * Relative error: * arithmetic domain # trials peak rms * DEC -34, 34 10000 1.3e-16 2.5e-17 * IEEE -170,-33 20000 2.3e-15 3.3e-16 * IEEE -33, 33 20000 9.4e-16 2.2e-16 * IEEE 33, 171.6 20000 2.3e-15 3.2e-16 * * Error for arguments outside the test range will be larger * owing to error amplification by the exponential function. * */ /* Cephes Math Library Release 2.8: June, 2000 Copyright 1984, 1987, 1989, 1992, 2000 by Stephen L. Moshier */ /* * 26-11-2002 Modified for mingw. * Danny Smith <dannysmith@users.sourceforge.net> */ #ifndef __MINGW32__ #include "mconf.h" #else #include "cephes_mconf.h" #endif #ifdef UNK static const double P[] = { 1.60119522476751861407E-4, 1.19135147006586384913E-3, 1.04213797561761569935E-2, 4.76367800457137231464E-2, 2.07448227648435975150E-1, 4.94214826801497100753E-1, 9.99999999999999996796E-1 }; static const double Q[] = { -2.31581873324120129819E-5, 5.39605580493303397842E-4, -4.45641913851797240494E-3, 1.18139785222060435552E-2, 3.58236398605498653373E-2, -2.34591795718243348568E-1, 7.14304917030273074085E-2, 1.00000000000000000320E0 }; #define MAXGAM 171.624376956302725 static const double LOGPI = 1.14472988584940017414; #endif #ifdef DEC static const unsigned short P[] = { 0035047,0162701,0146301,0005234, 0035634,0023437,0032065,0176530, 0036452,0137157,0047330,0122574, 0037103,0017310,0143041,0017232, 0037524,0066516,0162563,0164605, 0037775,0004671,0146237,0014222, 0040200,0000000,0000000,0000000 }; static const unsigned short Q[] = { 0134302,0041724,0020006,0116565, 0035415,0072121,0044251,0025634, 0136222,0003447,0035205,0121114, 0036501,0107552,0154335,0104271, 0037022,0135717,0014776,0171471, 0137560,0034324,0165024,0037021, 0037222,0045046,0047151,0161213, 0040200,0000000,0000000,0000000 }; #define MAXGAM 34.84425627277176174 #endif #ifdef IBMPC static const unsigned short P[] = { 0x2153,0x3998,0xfcb8,0x3f24, 0xbfab,0xe686,0x84e3,0x3f53, 0x14b0,0xe9db,0x57cd,0x3f85, 0x23d3,0x18c4,0x63d9,0x3fa8, 0x7d31,0xdcae,0x8da9,0x3fca, 0xe312,0x3993,0xa137,0x3fdf, 0x0000,0x0000,0x0000,0x3ff0 }; static const unsigned short Q[] = { 0xd3af,0x8400,0x487a,0xbef8, 0x2573,0x2915,0xae8a,0x3f41, 0xb44a,0xe750,0x40e4,0xbf72, 0xb117,0x5b1b,0x31ed,0x3f88, 0xde67,0xe33f,0x5779,0x3fa2, 0x87c2,0x9d42,0x071a,0xbfce, 0x3c51,0xc9cd,0x4944,0x3fb2, 0x0000,0x0000,0x0000,0x3ff0 }; #define MAXGAM 171.624376956302725 #endif #ifdef MIEEE static const unsigned short P[] = { 0x3f24,0xfcb8,0x3998,0x2153, 0x3f53,0x84e3,0xe686,0xbfab, 0x3f85,0x57cd,0xe9db,0x14b0, 0x3fa8,0x63d9,0x18c4,0x23d3, 0x3fca,0x8da9,0xdcae,0x7d31, 0x3fdf,0xa137,0x3993,0xe312, 0x3ff0,0x0000,0x0000,0x0000 }; static const unsigned short Q[] = { 0xbef8,0x487a,0x8400,0xd3af, 0x3f41,0xae8a,0x2915,0x2573, 0xbf72,0x40e4,0xe750,0xb44a, 0x3f88,0x31ed,0x5b1b,0xb117, 0x3fa2,0x5779,0xe33f,0xde67, 0xbfce,0x071a,0x9d42,0x87c2, 0x3fb2,0x4944,0xc9cd,0x3c51, 0x3ff0,0x0000,0x0000,0x0000 }; #define MAXGAM 171.624376956302725 #endif /* Stirling's formula for the gamma function */ #if UNK static const double STIR[5] = { 7.87311395793093628397E-4, -2.29549961613378126380E-4, -2.68132617805781232825E-3, 3.47222221605458667310E-3, 8.33333333333482257126E-2, }; #define MAXSTIR 143.01608 static const double SQTPI = 2.50662827463100050242E0; #endif #if DEC static const unsigned short STIR[20] = { 0035516,0061622,0144553,0112224, 0135160,0131531,0037460,0165740, 0136057,0134460,0037242,0077270, 0036143,0107070,0156306,0027751, 0037252,0125252,0125252,0146064, }; #define MAXSTIR 26.77 static const unsigned short SQT[4] = { 0040440,0066230,0177661,0034055, }; #define SQTPI *(double *)SQT #endif #if IBMPC static const unsigned short STIR[20] = { 0x7293,0x592d,0xcc72,0x3f49, 0x1d7c,0x27e6,0x166b,0xbf2e, 0x4fd7,0x07d4,0xf726,0xbf65, 0xc5fd,0x1b98,0x71c7,0x3f6c, 0x5986,0x5555,0x5555,0x3fb5, }; #define MAXSTIR 143.01608 static const union { unsigned short s[4]; double d; } sqt = {{0x2706,0x1ff6,0x0d93,0x4004}}; #define SQTPI (sqt.d) #endif #if MIEEE static const unsigned short STIR[20] = { 0x3f49,0xcc72,0x592d,0x7293, 0xbf2e,0x166b,0x27e6,0x1d7c, 0xbf65,0xf726,0x07d4,0x4fd7, 0x3f6c,0x71c7,0x1b98,0xc5fd, 0x3fb5,0x5555,0x5555,0x5986, }; #define MAXSTIR 143.01608 static const unsigned short SQT[4] = { 0x4004,0x0d93,0x1ff6,0x2706, }; #define SQTPI *(double *)SQT #endif #ifndef __MINGW32__ int sgngam = 0; extern int sgngam; extern double MAXLOG, MAXNUM, PI; #ifdef ANSIPROT extern double pow ( double, double ); extern double log ( double ); extern double exp ( double ); extern double sin ( double ); extern double polevl ( double, void *, int ); extern double p1evl ( double, void *, int ); extern double floor ( double ); extern double fabs ( double ); extern int isnan ( double ); extern int isfinite ( double ); static double stirf ( double ); double lgam ( double ); #else double pow(), log(), exp(), sin(), polevl(), p1evl(), floor(), fabs(); int isnan(), isfinite(); static double stirf(); double lgam(); #endif #ifdef INFINITIES extern double INFINITY; #endif #ifdef NANS extern double NAN; #endif #else /* __MINGW32__ */ static double stirf ( double ); #endif /* Gamma function computed by Stirling's formula. * The polynomial STIR is valid for 33 <= x <= 172. */ static double stirf(x) double x; { double y, w, v; w = 1.0/x; w = 1.0 + w * polevl( w, STIR, 4 ); y = exp(x); if( x > MAXSTIR ) { /* Avoid overflow in pow() */ v = pow( x, 0.5 * x - 0.25 ); y = v * (v / y); } else { y = pow( x, x - 0.5 ) / y; } y = SQTPI * y * w; return( y ); } double __tgamma_r(double x, int* sgngam) { double p, q, z; int i; *sgngam = 1; #ifdef NANS if( isnan(x) ) return(x); #endif #ifdef INFINITIES #ifdef NANS if( x == INFINITY ) return(x); if( x == -INFINITY ) return(NAN); #else if( !isfinite(x) ) return(x); #endif #endif q = fabs(x); if( q > 33.0 ) { if( x < 0.0 ) { p = floor(q); if( p == q ) { gsing: _SET_ERRNO(EDOM); mtherr( "tgamma", SING ); #ifdef INFINITIES return (INFINITY); #else return (MAXNUM); #endif } i = p; if( (i & 1) == 0 ) *sgngam = -1; z = q - p; if( z > 0.5 ) { p += 1.0; z = q - p; } z = q * sin( PI * z ); if( z == 0.0 ) { _SET_ERRNO(ERANGE); mtherr( "tgamma", OVERFLOW ); #ifdef INFINITIES return( *sgngam * INFINITY); #else return( *sgngam * MAXNUM); #endif } z = fabs(z); z = PI/(z * stirf(q) ); } else { z = stirf(x); } return( *sgngam * z ); } z = 1.0; while( x >= 3.0 ) { x -= 1.0; z *= x; } while( x < 0.0 ) { if( x > -1.E-9 ) goto Small; z /= x; x += 1.0; } while( x < 2.0 ) { if( x < 1.e-9 ) goto Small; z /= x; x += 1.0; } if( x == 2.0 ) return(z); x -= 2.0; p = polevl( x, P, 6 ); q = polevl( x, Q, 7 ); return( z * p / q ); Small: if( x == 0.0 ) { goto gsing; } else return( z/((1.0 + 0.5772156649015329 * x) * x) ); } /* This is the C99 version */ double tgamma(double x) { int local_sgngam=0; return (__tgamma_r(x, &local_sgngam)); }