/* -*- Mode: c; tab-width: 8; c-basic-offset: 4; indent-tabs-mode: t; -*- */ /* * Copyright © 2002 Keith Packard * Copyright © 2007 Red Hat, Inc. * * This library is free software; you can redistribute it and/or * modify it either under the terms of the GNU Lesser General Public * License version 2.1 as published by the Free Software Foundation * (the "LGPL") or, at your option, under the terms of the Mozilla * Public License Version 1.1 (the "MPL"). If you do not alter this * notice, a recipient may use your version of this file under either * the MPL or the LGPL. * * You should have received a copy of the LGPL along with this library * in the file COPYING-LGPL-2.1; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Suite 500, Boston, MA 02110-1335, USA * You should have received a copy of the MPL along with this library * in the file COPYING-MPL-1.1 * * The contents of this file are subject to the Mozilla Public License * Version 1.1 (the "License"); you may not use this file except in * compliance with the License. You may obtain a copy of the License at * http://www.mozilla.org/MPL/ * * This software is distributed on an "AS IS" basis, WITHOUT WARRANTY * OF ANY KIND, either express or implied. See the LGPL or the MPL for * the specific language governing rights and limitations. * * The Original Code is the cairo graphics library. * * The Initial Developer of the Original Code is Keith Packard * * Contributor(s): * Keith R. Packard * Carl D. Worth * * 2002-07-15: Converted from XRenderCompositeDoublePoly to #cairo_trap_t. Carl D. Worth */ #include "cairoint.h" #include "cairo-box-inline.h" #include "cairo-boxes-private.h" #include "cairo-error-private.h" #include "cairo-region-private.h" #include "cairo-slope-private.h" #include "cairo-traps-private.h" #include "cairo-spans-private.h" /* private functions */ void _cairo_traps_init (cairo_traps_t *traps) { VG (VALGRIND_MAKE_MEM_UNDEFINED (traps, sizeof (cairo_traps_t))); traps->status = CAIRO_STATUS_SUCCESS; traps->maybe_region = 1; traps->is_rectilinear = 0; traps->is_rectangular = 0; traps->num_traps = 0; traps->traps_size = ARRAY_LENGTH (traps->traps_embedded); traps->traps = traps->traps_embedded; traps->num_limits = 0; traps->has_intersections = FALSE; } void _cairo_traps_limit (cairo_traps_t *traps, const cairo_box_t *limits, int num_limits) { int i; traps->limits = limits; traps->num_limits = num_limits; traps->bounds = limits[0]; for (i = 1; i < num_limits; i++) _cairo_box_add_box (&traps->bounds, &limits[i]); } void _cairo_traps_init_with_clip (cairo_traps_t *traps, const cairo_clip_t *clip) { _cairo_traps_init (traps); if (clip) _cairo_traps_limit (traps, clip->boxes, clip->num_boxes); } void _cairo_traps_clear (cairo_traps_t *traps) { traps->status = CAIRO_STATUS_SUCCESS; traps->maybe_region = 1; traps->is_rectilinear = 0; traps->is_rectangular = 0; traps->num_traps = 0; traps->has_intersections = FALSE; } void _cairo_traps_fini (cairo_traps_t *traps) { if (traps->traps != traps->traps_embedded) free (traps->traps); VG (VALGRIND_MAKE_MEM_NOACCESS (traps, sizeof (cairo_traps_t))); } /* make room for at least one more trap */ static cairo_bool_t _cairo_traps_grow (cairo_traps_t *traps) { cairo_trapezoid_t *new_traps; int new_size = 4 * traps->traps_size; if (CAIRO_INJECT_FAULT ()) { traps->status = _cairo_error (CAIRO_STATUS_NO_MEMORY); return FALSE; } if (traps->traps == traps->traps_embedded) { new_traps = _cairo_malloc_ab (new_size, sizeof (cairo_trapezoid_t)); if (new_traps != NULL) memcpy (new_traps, traps->traps, sizeof (traps->traps_embedded)); } else { new_traps = _cairo_realloc_ab (traps->traps, new_size, sizeof (cairo_trapezoid_t)); } if (unlikely (new_traps == NULL)) { traps->status = _cairo_error (CAIRO_STATUS_NO_MEMORY); return FALSE; } traps->traps = new_traps; traps->traps_size = new_size; return TRUE; } void _cairo_traps_add_trap (cairo_traps_t *traps, cairo_fixed_t top, cairo_fixed_t bottom, cairo_line_t *left, cairo_line_t *right) { cairo_trapezoid_t *trap; if (unlikely (traps->num_traps == traps->traps_size)) { if (unlikely (! _cairo_traps_grow (traps))) return; } trap = &traps->traps[traps->num_traps++]; trap->top = top; trap->bottom = bottom; trap->left = *left; trap->right = *right; } static void _cairo_traps_add_clipped_trap (cairo_traps_t *traps, cairo_fixed_t _top, cairo_fixed_t _bottom, cairo_line_t *_left, cairo_line_t *_right) { /* Note: With the goofy trapezoid specification, (where an * arbitrary two points on the lines can specified for the left * and right edges), these limit checks would not work in * general. For example, one can imagine a trapezoid entirely * within the limits, but with two points used to specify the left * edge entirely to the right of the limits. Fortunately, for our * purposes, cairo will never generate such a crazy * trapezoid. Instead, cairo always uses for its points the * extreme positions of the edge that are visible on at least some * trapezoid. With this constraint, it's impossible for both * points to be outside the limits while the relevant edge is * entirely inside the limits. */ if (traps->num_limits) { const cairo_box_t *b = &traps->bounds; cairo_fixed_t top = _top, bottom = _bottom; cairo_line_t left = *_left, right = *_right; /* Trivially reject if trapezoid is entirely to the right or * to the left of the limits. */ if (left.p1.x >= b->p2.x && left.p2.x >= b->p2.x) return; if (right.p1.x <= b->p1.x && right.p2.x <= b->p1.x) return; /* And reject if the trapezoid is entirely above or below */ if (top >= b->p2.y || bottom <= b->p1.y) return; /* Otherwise, clip the trapezoid to the limits. We only clip * where an edge is entirely outside the limits. If we wanted * to be more clever, we could handle cases where a trapezoid * edge intersects the edge of the limits, but that would * require slicing this trapezoid into multiple trapezoids, * and I'm not sure the effort would be worth it. */ if (top < b->p1.y) top = b->p1.y; if (bottom > b->p2.y) bottom = b->p2.y; if (left.p1.x <= b->p1.x && left.p2.x <= b->p1.x) left.p1.x = left.p2.x = b->p1.x; if (right.p1.x >= b->p2.x && right.p2.x >= b->p2.x) right.p1.x = right.p2.x = b->p2.x; /* Trivial discards for empty trapezoids that are likely to * be produced by our tessellators (most notably convex_quad * when given a simple rectangle). */ if (top >= bottom) return; /* cheap colinearity check */ if (right.p1.x <= left.p1.x && right.p1.y == left.p1.y && right.p2.x <= left.p2.x && right.p2.y == left.p2.y) return; _cairo_traps_add_trap (traps, top, bottom, &left, &right); } else _cairo_traps_add_trap (traps, _top, _bottom, _left, _right); } static int _compare_point_fixed_by_y (const void *av, const void *bv) { const cairo_point_t *a = av, *b = bv; int ret = a->y - b->y; if (ret == 0) ret = a->x - b->x; return ret; } void _cairo_traps_tessellate_convex_quad (cairo_traps_t *traps, const cairo_point_t q[4]) { int a, b, c, d; int i; cairo_slope_t ab, ad; cairo_bool_t b_left_of_d; cairo_line_t left; cairo_line_t right; /* Choose a as a point with minimal y */ a = 0; for (i = 1; i < 4; i++) if (_compare_point_fixed_by_y (&q[i], &q[a]) < 0) a = i; /* b and d are adjacent to a, while c is opposite */ b = (a + 1) % 4; c = (a + 2) % 4; d = (a + 3) % 4; /* Choose between b and d so that b.y is less than d.y */ if (_compare_point_fixed_by_y (&q[d], &q[b]) < 0) { b = (a + 3) % 4; d = (a + 1) % 4; } /* Without freedom left to choose anything else, we have four * cases to tessellate. * * First, we have to determine the Y-axis sort of the four * vertices, (either abcd or abdc). After that we need to detemine * which edges will be "left" and which will be "right" in the * resulting trapezoids. This can be determined by computing a * slope comparison of ab and ad to determine if b is left of d or * not. * * Note that "left of" here is in the sense of which edges should * be the left vs. right edges of the trapezoid. In particular, b * left of d does *not* mean that b.x is less than d.x. * * This should hopefully be made clear in the lame ASCII art * below. Since the same slope comparison is used in all cases, we * compute it before testing for the Y-value sort. */ /* Note: If a == b then the ab slope doesn't give us any * information. In that case, we can replace it with the ac (or * equivalenly the bc) slope which gives us exactly the same * information we need. At worst the names of the identifiers ab * and b_left_of_d are inaccurate in this case, (would be ac, and * c_left_of_d). */ if (q[a].x == q[b].x && q[a].y == q[b].y) _cairo_slope_init (&ab, &q[a], &q[c]); else _cairo_slope_init (&ab, &q[a], &q[b]); _cairo_slope_init (&ad, &q[a], &q[d]); b_left_of_d = _cairo_slope_compare (&ab, &ad) > 0; if (q[c].y <= q[d].y) { if (b_left_of_d) { /* Y-sort is abcd and b is left of d, (slope(ab) > slope (ad)) * * top bot left right * _a a a * / / /| |\ a.y b.y ab ad * b / b | b \ * / / | | \ \ b.y c.y bc ad * c / c | c \ * | / \| \ \ c.y d.y cd ad * d d d */ left.p1 = q[a]; left.p2 = q[b]; right.p1 = q[a]; right.p2 = q[d]; _cairo_traps_add_clipped_trap (traps, q[a].y, q[b].y, &left, &right); left.p1 = q[b]; left.p2 = q[c]; _cairo_traps_add_clipped_trap (traps, q[b].y, q[c].y, &left, &right); left.p1 = q[c]; left.p2 = q[d]; _cairo_traps_add_clipped_trap (traps, q[c].y, q[d].y, &left, &right); } else { /* Y-sort is abcd and b is right of d, (slope(ab) <= slope (ad)) * * a a a_ * /| |\ \ \ a.y b.y ad ab * / b | b \ b * / / | | \ \ b.y c.y ad bc * / c | c \ c * / / |/ \ | c.y d.y ad cd * d d d */ left.p1 = q[a]; left.p2 = q[d]; right.p1 = q[a]; right.p2 = q[b]; _cairo_traps_add_clipped_trap (traps, q[a].y, q[b].y, &left, &right); right.p1 = q[b]; right.p2 = q[c]; _cairo_traps_add_clipped_trap (traps, q[b].y, q[c].y, &left, &right); right.p1 = q[c]; right.p2 = q[d]; _cairo_traps_add_clipped_trap (traps, q[c].y, q[d].y, &left, &right); } } else { if (b_left_of_d) { /* Y-sort is abdc and b is left of d, (slope (ab) > slope (ad)) * * a a a * // / \ |\ a.y b.y ab ad * /b/ b \ b \ * / / \ \ \ \ b.y d.y bc ad * /d/ \ d \ d * // \ / \| d.y c.y bc dc * c c c */ left.p1 = q[a]; left.p2 = q[b]; right.p1 = q[a]; right.p2 = q[d]; _cairo_traps_add_clipped_trap (traps, q[a].y, q[b].y, &left, &right); left.p1 = q[b]; left.p2 = q[c]; _cairo_traps_add_clipped_trap (traps, q[b].y, q[d].y, &left, &right); right.p1 = q[d]; right.p2 = q[c]; _cairo_traps_add_clipped_trap (traps, q[d].y, q[c].y, &left, &right); } else { /* Y-sort is abdc and b is right of d, (slope (ab) <= slope (ad)) * * a a a * /| / \ \\ a.y b.y ad ab * / b / b \b\ * / / / / \ \ b.y d.y ad bc * d / d / \d\ * |/ \ / \\ d.y c.y dc bc * c c c */ left.p1 = q[a]; left.p2 = q[d]; right.p1 = q[a]; right.p2 = q[b]; _cairo_traps_add_clipped_trap (traps, q[a].y, q[b].y, &left, &right); right.p1 = q[b]; right.p2 = q[c]; _cairo_traps_add_clipped_trap (traps, q[b].y, q[d].y, &left, &right); left.p1 = q[d]; left.p2 = q[c]; _cairo_traps_add_clipped_trap (traps, q[d].y, q[c].y, &left, &right); } } } /* A triangle is simply a degenerate case of a convex * quadrilateral. We would not benefit from having any distinct * implementation of triangle vs. quadrilateral tessellation here. */ void _cairo_traps_tessellate_triangle (cairo_traps_t *traps, const cairo_point_t t[3]) { cairo_point_t quad[4]; quad[0] = t[0]; quad[1] = t[0]; quad[2] = t[1]; quad[3] = t[2]; _cairo_traps_tessellate_convex_quad (traps, quad); } /** * _cairo_traps_init_boxes: * @traps: a #cairo_traps_t * @box: an array box that will each be converted to a single trapezoid * to store in @traps. * * Initializes a #cairo_traps_t to contain an array of rectangular * trapezoids. **/ cairo_status_t _cairo_traps_init_boxes (cairo_traps_t *traps, const cairo_boxes_t *boxes) { cairo_trapezoid_t *trap; const struct _cairo_boxes_chunk *chunk; _cairo_traps_init (traps); while (traps->traps_size < boxes->num_boxes) { if (unlikely (! _cairo_traps_grow (traps))) { _cairo_traps_fini (traps); return _cairo_error (CAIRO_STATUS_NO_MEMORY); } } traps->num_traps = boxes->num_boxes; traps->is_rectilinear = TRUE; traps->is_rectangular = TRUE; traps->maybe_region = boxes->is_pixel_aligned; trap = &traps->traps[0]; for (chunk = &boxes->chunks; chunk != NULL; chunk = chunk->next) { const cairo_box_t *box; int i; box = chunk->base; for (i = 0; i < chunk->count; i++) { trap->top = box->p1.y; trap->bottom = box->p2.y; trap->left.p1 = box->p1; trap->left.p2.x = box->p1.x; trap->left.p2.y = box->p2.y; trap->right.p1.x = box->p2.x; trap->right.p1.y = box->p1.y; trap->right.p2 = box->p2; box++, trap++; } } return CAIRO_STATUS_SUCCESS; } cairo_status_t _cairo_traps_tessellate_rectangle (cairo_traps_t *traps, const cairo_point_t *top_left, const cairo_point_t *bottom_right) { cairo_line_t left; cairo_line_t right; cairo_fixed_t top, bottom; if (top_left->y == bottom_right->y) return CAIRO_STATUS_SUCCESS; if (top_left->x == bottom_right->x) return CAIRO_STATUS_SUCCESS; left.p1.x = left.p2.x = top_left->x; left.p1.y = right.p1.y = top_left->y; right.p1.x = right.p2.x = bottom_right->x; left.p2.y = right.p2.y = bottom_right->y; top = top_left->y; bottom = bottom_right->y; if (traps->num_limits) { cairo_bool_t reversed; int n; if (top >= traps->bounds.p2.y || bottom <= traps->bounds.p1.y) return CAIRO_STATUS_SUCCESS; /* support counter-clockwise winding for rectangular tessellation */ reversed = top_left->x > bottom_right->x; if (reversed) { right.p1.x = right.p2.x = top_left->x; left.p1.x = left.p2.x = bottom_right->x; } if (left.p1.x >= traps->bounds.p2.x || right.p1.x <= traps->bounds.p1.x) return CAIRO_STATUS_SUCCESS; for (n = 0; n < traps->num_limits; n++) { const cairo_box_t *limits = &traps->limits[n]; cairo_line_t _left, _right; cairo_fixed_t _top, _bottom; if (top >= limits->p2.y) continue; if (bottom <= limits->p1.y) continue; /* Trivially reject if trapezoid is entirely to the right or * to the left of the limits. */ if (left.p1.x >= limits->p2.x) continue; if (right.p1.x <= limits->p1.x) continue; /* Otherwise, clip the trapezoid to the limits. */ _top = top; if (_top < limits->p1.y) _top = limits->p1.y; _bottom = bottom; if (_bottom > limits->p2.y) _bottom = limits->p2.y; if (_bottom <= _top) continue; _left = left; if (_left.p1.x < limits->p1.x) { _left.p1.x = limits->p1.x; _left.p1.y = limits->p1.y; _left.p2.x = limits->p1.x; _left.p2.y = limits->p2.y; } _right = right; if (_right.p1.x > limits->p2.x) { _right.p1.x = limits->p2.x; _right.p1.y = limits->p1.y; _right.p2.x = limits->p2.x; _right.p2.y = limits->p2.y; } if (left.p1.x >= right.p1.x) continue; if (reversed) _cairo_traps_add_trap (traps, _top, _bottom, &_right, &_left); else _cairo_traps_add_trap (traps, _top, _bottom, &_left, &_right); } } else { _cairo_traps_add_trap (traps, top, bottom, &left, &right); } return traps->status; } void _cairo_traps_translate (cairo_traps_t *traps, int x, int y) { cairo_fixed_t xoff, yoff; cairo_trapezoid_t *t; int i; /* Ugh. The cairo_composite/(Render) interface doesn't allow an offset for the trapezoids. Need to manually shift all the coordinates to align with the offset origin of the intermediate surface. */ xoff = _cairo_fixed_from_int (x); yoff = _cairo_fixed_from_int (y); for (i = 0, t = traps->traps; i < traps->num_traps; i++, t++) { t->top += yoff; t->bottom += yoff; t->left.p1.x += xoff; t->left.p1.y += yoff; t->left.p2.x += xoff; t->left.p2.y += yoff; t->right.p1.x += xoff; t->right.p1.y += yoff; t->right.p2.x += xoff; t->right.p2.y += yoff; } } void _cairo_trapezoid_array_translate_and_scale (cairo_trapezoid_t *offset_traps, cairo_trapezoid_t *src_traps, int num_traps, double tx, double ty, double sx, double sy) { int i; cairo_fixed_t xoff = _cairo_fixed_from_double (tx); cairo_fixed_t yoff = _cairo_fixed_from_double (ty); if (sx == 1.0 && sy == 1.0) { for (i = 0; i < num_traps; i++) { offset_traps[i].top = src_traps[i].top + yoff; offset_traps[i].bottom = src_traps[i].bottom + yoff; offset_traps[i].left.p1.x = src_traps[i].left.p1.x + xoff; offset_traps[i].left.p1.y = src_traps[i].left.p1.y + yoff; offset_traps[i].left.p2.x = src_traps[i].left.p2.x + xoff; offset_traps[i].left.p2.y = src_traps[i].left.p2.y + yoff; offset_traps[i].right.p1.x = src_traps[i].right.p1.x + xoff; offset_traps[i].right.p1.y = src_traps[i].right.p1.y + yoff; offset_traps[i].right.p2.x = src_traps[i].right.p2.x + xoff; offset_traps[i].right.p2.y = src_traps[i].right.p2.y + yoff; } } else { cairo_fixed_t xsc = _cairo_fixed_from_double (sx); cairo_fixed_t ysc = _cairo_fixed_from_double (sy); for (i = 0; i < num_traps; i++) { offset_traps[i].top = _cairo_fixed_mul (src_traps[i].top + yoff, ysc); offset_traps[i].bottom = _cairo_fixed_mul (src_traps[i].bottom + yoff, ysc); offset_traps[i].left.p1.x = _cairo_fixed_mul (src_traps[i].left.p1.x + xoff, xsc); offset_traps[i].left.p1.y = _cairo_fixed_mul (src_traps[i].left.p1.y + yoff, ysc); offset_traps[i].left.p2.x = _cairo_fixed_mul (src_traps[i].left.p2.x + xoff, xsc); offset_traps[i].left.p2.y = _cairo_fixed_mul (src_traps[i].left.p2.y + yoff, ysc); offset_traps[i].right.p1.x = _cairo_fixed_mul (src_traps[i].right.p1.x + xoff, xsc); offset_traps[i].right.p1.y = _cairo_fixed_mul (src_traps[i].right.p1.y + yoff, ysc); offset_traps[i].right.p2.x = _cairo_fixed_mul (src_traps[i].right.p2.x + xoff, xsc); offset_traps[i].right.p2.y = _cairo_fixed_mul (src_traps[i].right.p2.y + yoff, ysc); } } } static cairo_bool_t _cairo_trap_contains (cairo_trapezoid_t *t, cairo_point_t *pt) { cairo_slope_t slope_left, slope_pt, slope_right; if (t->top > pt->y) return FALSE; if (t->bottom < pt->y) return FALSE; _cairo_slope_init (&slope_left, &t->left.p1, &t->left.p2); _cairo_slope_init (&slope_pt, &t->left.p1, pt); if (_cairo_slope_compare (&slope_left, &slope_pt) < 0) return FALSE; _cairo_slope_init (&slope_right, &t->right.p1, &t->right.p2); _cairo_slope_init (&slope_pt, &t->right.p1, pt); if (_cairo_slope_compare (&slope_pt, &slope_right) < 0) return FALSE; return TRUE; } cairo_bool_t _cairo_traps_contain (const cairo_traps_t *traps, double x, double y) { int i; cairo_point_t point; point.x = _cairo_fixed_from_double (x); point.y = _cairo_fixed_from_double (y); for (i = 0; i < traps->num_traps; i++) { if (_cairo_trap_contains (&traps->traps[i], &point)) return TRUE; } return FALSE; } static cairo_fixed_t _line_compute_intersection_x_for_y (const cairo_line_t *line, cairo_fixed_t y) { return _cairo_edge_compute_intersection_x_for_y (&line->p1, &line->p2, y); } void _cairo_traps_extents (const cairo_traps_t *traps, cairo_box_t *extents) { int i; if (traps->num_traps == 0) { extents->p1.x = extents->p1.y = 0; extents->p2.x = extents->p2.y = 0; return; } extents->p1.x = extents->p1.y = INT32_MAX; extents->p2.x = extents->p2.y = INT32_MIN; for (i = 0; i < traps->num_traps; i++) { const cairo_trapezoid_t *trap = &traps->traps[i]; if (trap->top < extents->p1.y) extents->p1.y = trap->top; if (trap->bottom > extents->p2.y) extents->p2.y = trap->bottom; if (trap->left.p1.x < extents->p1.x) { cairo_fixed_t x = trap->left.p1.x; if (trap->top != trap->left.p1.y) { x = _line_compute_intersection_x_for_y (&trap->left, trap->top); if (x < extents->p1.x) extents->p1.x = x; } else extents->p1.x = x; } if (trap->left.p2.x < extents->p1.x) { cairo_fixed_t x = trap->left.p2.x; if (trap->bottom != trap->left.p2.y) { x = _line_compute_intersection_x_for_y (&trap->left, trap->bottom); if (x < extents->p1.x) extents->p1.x = x; } else extents->p1.x = x; } if (trap->right.p1.x > extents->p2.x) { cairo_fixed_t x = trap->right.p1.x; if (trap->top != trap->right.p1.y) { x = _line_compute_intersection_x_for_y (&trap->right, trap->top); if (x > extents->p2.x) extents->p2.x = x; } else extents->p2.x = x; } if (trap->right.p2.x > extents->p2.x) { cairo_fixed_t x = trap->right.p2.x; if (trap->bottom != trap->right.p2.y) { x = _line_compute_intersection_x_for_y (&trap->right, trap->bottom); if (x > extents->p2.x) extents->p2.x = x; } else extents->p2.x = x; } } } static cairo_bool_t _mono_edge_is_vertical (const cairo_line_t *line) { return _cairo_fixed_integer_round_down (line->p1.x) == _cairo_fixed_integer_round_down (line->p2.x); } static cairo_bool_t _traps_are_pixel_aligned (cairo_traps_t *traps, cairo_antialias_t antialias) { int i; if (antialias == CAIRO_ANTIALIAS_NONE) { for (i = 0; i < traps->num_traps; i++) { if (! _mono_edge_is_vertical (&traps->traps[i].left) || ! _mono_edge_is_vertical (&traps->traps[i].right)) { traps->maybe_region = FALSE; return FALSE; } } } else { for (i = 0; i < traps->num_traps; i++) { if (traps->traps[i].left.p1.x != traps->traps[i].left.p2.x || traps->traps[i].right.p1.x != traps->traps[i].right.p2.x || ! _cairo_fixed_is_integer (traps->traps[i].top) || ! _cairo_fixed_is_integer (traps->traps[i].bottom) || ! _cairo_fixed_is_integer (traps->traps[i].left.p1.x) || ! _cairo_fixed_is_integer (traps->traps[i].right.p1.x)) { traps->maybe_region = FALSE; return FALSE; } } } return TRUE; } /** * _cairo_traps_extract_region: * @traps: a #cairo_traps_t * @region: a #cairo_region_t * * Determines if a set of trapezoids are exactly representable as a * cairo region. If so, the passed-in region is initialized to * the area representing the given traps. It should be finalized * with cairo_region_fini(). If not, %CAIRO_INT_STATUS_UNSUPPORTED * is returned. * * Return value: %CAIRO_STATUS_SUCCESS, %CAIRO_INT_STATUS_UNSUPPORTED * or %CAIRO_STATUS_NO_MEMORY **/ cairo_int_status_t _cairo_traps_extract_region (cairo_traps_t *traps, cairo_antialias_t antialias, cairo_region_t **region) { cairo_rectangle_int_t stack_rects[CAIRO_STACK_ARRAY_LENGTH (cairo_rectangle_int_t)]; cairo_rectangle_int_t *rects = stack_rects; cairo_int_status_t status; int i, rect_count; /* we only treat this a hint... */ if (antialias != CAIRO_ANTIALIAS_NONE && ! traps->maybe_region) return CAIRO_INT_STATUS_UNSUPPORTED; if (! _traps_are_pixel_aligned (traps, antialias)) { traps->maybe_region = FALSE; return CAIRO_INT_STATUS_UNSUPPORTED; } if (traps->num_traps > ARRAY_LENGTH (stack_rects)) { rects = _cairo_malloc_ab (traps->num_traps, sizeof (cairo_rectangle_int_t)); if (unlikely (rects == NULL)) return _cairo_error (CAIRO_STATUS_NO_MEMORY); } rect_count = 0; for (i = 0; i < traps->num_traps; i++) { int x1, y1, x2, y2; if (antialias == CAIRO_ANTIALIAS_NONE) { x1 = _cairo_fixed_integer_round_down (traps->traps[i].left.p1.x); y1 = _cairo_fixed_integer_round_down (traps->traps[i].top); x2 = _cairo_fixed_integer_round_down (traps->traps[i].right.p1.x); y2 = _cairo_fixed_integer_round_down (traps->traps[i].bottom); } else { x1 = _cairo_fixed_integer_part (traps->traps[i].left.p1.x); y1 = _cairo_fixed_integer_part (traps->traps[i].top); x2 = _cairo_fixed_integer_part (traps->traps[i].right.p1.x); y2 = _cairo_fixed_integer_part (traps->traps[i].bottom); } if (x2 > x1 && y2 > y1) { rects[rect_count].x = x1; rects[rect_count].y = y1; rects[rect_count].width = x2 - x1; rects[rect_count].height = y2 - y1; rect_count++; } } *region = cairo_region_create_rectangles (rects, rect_count); status = (*region)->status; if (rects != stack_rects) free (rects); return status; } cairo_bool_t _cairo_traps_to_boxes (cairo_traps_t *traps, cairo_antialias_t antialias, cairo_boxes_t *boxes) { int i; for (i = 0; i < traps->num_traps; i++) { if (traps->traps[i].left.p1.x != traps->traps[i].left.p2.x || traps->traps[i].right.p1.x != traps->traps[i].right.p2.x) return FALSE; } _cairo_boxes_init (boxes); boxes->num_boxes = traps->num_traps; boxes->chunks.base = (cairo_box_t *) traps->traps; boxes->chunks.count = traps->num_traps; boxes->chunks.size = traps->num_traps; if (antialias != CAIRO_ANTIALIAS_NONE) { for (i = 0; i < traps->num_traps; i++) { /* Note the traps and boxes alias so we need to take the local copies first. */ cairo_fixed_t x1 = traps->traps[i].left.p1.x; cairo_fixed_t x2 = traps->traps[i].right.p1.x; cairo_fixed_t y1 = traps->traps[i].top; cairo_fixed_t y2 = traps->traps[i].bottom; boxes->chunks.base[i].p1.x = x1; boxes->chunks.base[i].p1.y = y1; boxes->chunks.base[i].p2.x = x2; boxes->chunks.base[i].p2.y = y2; if (boxes->is_pixel_aligned) { boxes->is_pixel_aligned = _cairo_fixed_is_integer (x1) && _cairo_fixed_is_integer (y1) && _cairo_fixed_is_integer (x2) && _cairo_fixed_is_integer (y2); } } } else { boxes->is_pixel_aligned = TRUE; for (i = 0; i < traps->num_traps; i++) { /* Note the traps and boxes alias so we need to take the local copies first. */ cairo_fixed_t x1 = traps->traps[i].left.p1.x; cairo_fixed_t x2 = traps->traps[i].right.p1.x; cairo_fixed_t y1 = traps->traps[i].top; cairo_fixed_t y2 = traps->traps[i].bottom; /* round down here to match Pixman's behavior when using traps. */ boxes->chunks.base[i].p1.x = _cairo_fixed_round_down (x1); boxes->chunks.base[i].p1.y = _cairo_fixed_round_down (y1); boxes->chunks.base[i].p2.x = _cairo_fixed_round_down (x2); boxes->chunks.base[i].p2.y = _cairo_fixed_round_down (y2); } } return TRUE; } /* moves trap points such that they become the actual corners of the trapezoid */ static void _sanitize_trap (cairo_trapezoid_t *t) { cairo_trapezoid_t s = *t; #define FIX(lr, tb, p) \ if (t->lr.p.y != t->tb) { \ t->lr.p.x = s.lr.p2.x + _cairo_fixed_mul_div_floor (s.lr.p1.x - s.lr.p2.x, s.tb - s.lr.p2.y, s.lr.p1.y - s.lr.p2.y); \ t->lr.p.y = s.tb; \ } FIX (left, top, p1); FIX (left, bottom, p2); FIX (right, top, p1); FIX (right, bottom, p2); } cairo_private cairo_status_t _cairo_traps_path (const cairo_traps_t *traps, cairo_path_fixed_t *path) { int i; for (i = 0; i < traps->num_traps; i++) { cairo_status_t status; cairo_trapezoid_t trap = traps->traps[i]; if (trap.top == trap.bottom) continue; _sanitize_trap (&trap); status = _cairo_path_fixed_move_to (path, trap.left.p1.x, trap.top); if (unlikely (status)) return status; status = _cairo_path_fixed_line_to (path, trap.right.p1.x, trap.top); if (unlikely (status)) return status; status = _cairo_path_fixed_line_to (path, trap.right.p2.x, trap.bottom); if (unlikely (status)) return status; status = _cairo_path_fixed_line_to (path, trap.left.p2.x, trap.bottom); if (unlikely (status)) return status; status = _cairo_path_fixed_close_path (path); if (unlikely (status)) return status; } return CAIRO_STATUS_SUCCESS; } void _cairo_debug_print_traps (FILE *file, const cairo_traps_t *traps) { cairo_box_t extents; int n; #if 0 if (traps->has_limits) { printf ("%s: limits=(%d, %d, %d, %d)\n", filename, traps->limits.p1.x, traps->limits.p1.y, traps->limits.p2.x, traps->limits.p2.y); } #endif _cairo_traps_extents (traps, &extents); fprintf (file, "extents=(%d, %d, %d, %d)\n", extents.p1.x, extents.p1.y, extents.p2.x, extents.p2.y); for (n = 0; n < traps->num_traps; n++) { fprintf (file, "%d %d L:(%d, %d), (%d, %d) R:(%d, %d), (%d, %d)\n", traps->traps[n].top, traps->traps[n].bottom, traps->traps[n].left.p1.x, traps->traps[n].left.p1.y, traps->traps[n].left.p2.x, traps->traps[n].left.p2.y, traps->traps[n].right.p1.x, traps->traps[n].right.p1.y, traps->traps[n].right.p2.x, traps->traps[n].right.p2.y); } } struct cairo_trap_renderer { cairo_span_renderer_t base; cairo_traps_t *traps; }; static cairo_status_t span_to_traps (void *abstract_renderer, int y, int h, const cairo_half_open_span_t *spans, unsigned num_spans) { struct cairo_trap_renderer *r = abstract_renderer; cairo_fixed_t top, bot; if (num_spans == 0) return CAIRO_STATUS_SUCCESS; top = _cairo_fixed_from_int (y); bot = _cairo_fixed_from_int (y + h); do { if (spans[0].coverage) { cairo_fixed_t x0 = _cairo_fixed_from_int(spans[0].x); cairo_fixed_t x1 = _cairo_fixed_from_int(spans[1].x); cairo_line_t left = { { x0, top }, { x0, bot } }, right = { { x1, top }, { x1, bot } }; _cairo_traps_add_trap (r->traps, top, bot, &left, &right); } spans++; } while (--num_spans > 1); return CAIRO_STATUS_SUCCESS; } cairo_int_status_t _cairo_rasterise_polygon_to_traps (cairo_polygon_t *polygon, cairo_fill_rule_t fill_rule, cairo_antialias_t antialias, cairo_traps_t *traps) { struct cairo_trap_renderer renderer; cairo_scan_converter_t *converter; cairo_int_status_t status; cairo_rectangle_int_t r; TRACE ((stderr, "%s: fill_rule=%d, antialias=%d\n", __FUNCTION__, fill_rule, antialias)); assert(antialias == CAIRO_ANTIALIAS_NONE); renderer.traps = traps; renderer.base.render_rows = span_to_traps; _cairo_box_round_to_rectangle (&polygon->extents, &r); converter = _cairo_mono_scan_converter_create (r.x, r.y, r.x + r.width, r.y + r.height, fill_rule); status = _cairo_mono_scan_converter_add_polygon (converter, polygon); if (likely (status == CAIRO_INT_STATUS_SUCCESS)) status = converter->generate (converter, &renderer.base); converter->destroy (converter); return status; }