kolibrios/programs/develop/libraries/cairo/src/cairo-path-bounds.c
Sergey Semyonov (Serge) 37b6abf576 cairo-1.10.2
git-svn-id: svn://kolibrios.org@1892 a494cfbc-eb01-0410-851d-a64ba20cac60
2011-02-28 06:05:46 +00:00

354 lines
10 KiB
C

/* cairo - a vector graphics library with display and print output
*
* Copyright © 2003 University of Southern California
*
* This library is free software; you can redistribute it and/or
* modify it either under the terms of the GNU Lesser General Public
* License version 2.1 as published by the Free Software Foundation
* (the "LGPL") or, at your option, under the terms of the Mozilla
* Public License Version 1.1 (the "MPL"). If you do not alter this
* notice, a recipient may use your version of this file under either
* the MPL or the LGPL.
*
* You should have received a copy of the LGPL along with this library
* in the file COPYING-LGPL-2.1; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Suite 500, Boston, MA 02110-1335, USA
* You should have received a copy of the MPL along with this library
* in the file COPYING-MPL-1.1
*
* The contents of this file are subject to the Mozilla Public License
* Version 1.1 (the "License"); you may not use this file except in
* compliance with the License. You may obtain a copy of the License at
* http://www.mozilla.org/MPL/
*
* This software is distributed on an "AS IS" basis, WITHOUT WARRANTY
* OF ANY KIND, either express or implied. See the LGPL or the MPL for
* the specific language governing rights and limitations.
*
* The Original Code is the cairo graphics library.
*
* The Initial Developer of the Original Code is University of Southern
* California.
*
* Contributor(s):
* Carl D. Worth <cworth@cworth.org>
*/
#include "cairoint.h"
#include "cairo-path-fixed-private.h"
typedef struct cairo_path_bounder {
cairo_point_t current_point;
cairo_bool_t has_initial_point;
cairo_bool_t has_point;
cairo_box_t extents;
} cairo_path_bounder_t;
static void
_cairo_path_bounder_init (cairo_path_bounder_t *bounder)
{
bounder->has_initial_point = FALSE;
bounder->has_point = FALSE;
}
static void
_cairo_path_bounder_add_point (cairo_path_bounder_t *bounder,
const cairo_point_t *point)
{
if (bounder->has_point) {
if (point->x < bounder->extents.p1.x)
bounder->extents.p1.x = point->x;
if (point->y < bounder->extents.p1.y)
bounder->extents.p1.y = point->y;
if (point->x > bounder->extents.p2.x)
bounder->extents.p2.x = point->x;
if (point->y > bounder->extents.p2.y)
bounder->extents.p2.y = point->y;
} else {
bounder->extents.p1.x = point->x;
bounder->extents.p1.y = point->y;
bounder->extents.p2.x = point->x;
bounder->extents.p2.y = point->y;
bounder->has_point = TRUE;
}
}
static cairo_status_t
_cairo_path_bounder_move_to (void *closure,
const cairo_point_t *point)
{
cairo_path_bounder_t *bounder = closure;
bounder->current_point = *point;
bounder->has_initial_point = TRUE;
return CAIRO_STATUS_SUCCESS;
}
static cairo_status_t
_cairo_path_bounder_line_to (void *closure,
const cairo_point_t *point)
{
cairo_path_bounder_t *bounder = closure;
if (bounder->has_initial_point) {
_cairo_path_bounder_add_point (bounder, &bounder->current_point);
bounder->has_initial_point = FALSE;
}
_cairo_path_bounder_add_point (bounder, point);
bounder->current_point = *point;
return CAIRO_STATUS_SUCCESS;
}
static cairo_status_t
_cairo_path_bounder_curve_to (void *closure,
const cairo_point_t *b,
const cairo_point_t *c,
const cairo_point_t *d)
{
cairo_path_bounder_t *bounder = closure;
/* If the bbox of the control points is entirely inside, then we
* do not need to further evaluate the spline.
*/
if (! bounder->has_point ||
b->x < bounder->extents.p1.x || b->x > bounder->extents.p2.x ||
b->y < bounder->extents.p1.y || b->y > bounder->extents.p2.y ||
c->x < bounder->extents.p1.x || c->x > bounder->extents.p2.x ||
c->y < bounder->extents.p1.y || c->y > bounder->extents.p2.y ||
d->x < bounder->extents.p1.x || d->x > bounder->extents.p2.x ||
d->y < bounder->extents.p1.y || d->y > bounder->extents.p2.y)
{
return _cairo_spline_bound (_cairo_path_bounder_line_to, bounder,
&bounder->current_point, b, c, d);
}
else
{
/* All control points are within the current extents. */
bounder->current_point = *d;
return CAIRO_STATUS_SUCCESS;
}
}
static cairo_status_t
_cairo_path_bounder_close_path (void *closure)
{
return CAIRO_STATUS_SUCCESS;
}
/* This computes the extents of all the points in the path, not those of
* the damage area (i.e it does not consider winding and it only inspects
* the control points of the curves, not the flattened path).
*/
void
_cairo_path_fixed_approximate_clip_extents (const cairo_path_fixed_t *path,
cairo_rectangle_int_t *extents)
{
if (path->extents.p1.x < path->extents.p2.x) {
_cairo_box_round_to_rectangle (&path->extents, extents);
} else {
extents->x = extents->y = 0;
extents->width = extents->height = 0;
}
}
/* A slightly better approximation than above - we actually decompose the
* Bezier, but we continue to ignore winding.
*/
void
_cairo_path_fixed_approximate_fill_extents (const cairo_path_fixed_t *path,
cairo_rectangle_int_t *extents)
{
cairo_path_bounder_t bounder;
cairo_status_t status;
if (! path->has_curve_to) {
bounder.extents = path->extents;
bounder.has_point = path->extents.p1.x < path->extents.p2.x;
} else {
_cairo_path_bounder_init (&bounder);
status = _cairo_path_fixed_interpret (path, CAIRO_DIRECTION_FORWARD,
_cairo_path_bounder_move_to,
_cairo_path_bounder_line_to,
_cairo_path_bounder_curve_to,
_cairo_path_bounder_close_path,
&bounder);
assert (status == CAIRO_STATUS_SUCCESS);
}
if (bounder.has_point) {
_cairo_box_round_to_rectangle (&bounder.extents, extents);
} else {
extents->x = extents->y = 0;
extents->width = extents->height = 0;
}
}
void
_cairo_path_fixed_fill_extents (const cairo_path_fixed_t *path,
cairo_fill_rule_t fill_rule,
double tolerance,
cairo_rectangle_int_t *extents)
{
cairo_path_bounder_t bounder;
cairo_status_t status;
if (! path->has_curve_to) {
bounder.extents = path->extents;
bounder.has_point = path->extents.p1.x < path->extents.p2.x;
} else {
_cairo_path_bounder_init (&bounder);
status = _cairo_path_fixed_interpret_flat (path, CAIRO_DIRECTION_FORWARD,
_cairo_path_bounder_move_to,
_cairo_path_bounder_line_to,
_cairo_path_bounder_close_path,
&bounder, tolerance);
assert (status == CAIRO_STATUS_SUCCESS);
}
if (bounder.has_point) {
_cairo_box_round_to_rectangle (&bounder.extents, extents);
} else {
extents->x = extents->y = 0;
extents->width = extents->height = 0;
}
}
/* Adjusts the fill extents (above) by the device-space pen. */
void
_cairo_path_fixed_approximate_stroke_extents (const cairo_path_fixed_t *path,
const cairo_stroke_style_t *style,
const cairo_matrix_t *ctm,
cairo_rectangle_int_t *extents)
{
cairo_path_bounder_t bounder;
cairo_status_t status;
if (! path->has_curve_to) {
bounder.extents = path->extents;
/* include trailing move-to for degenerate segments */
if (path->has_last_move_point) {
const cairo_point_t *point = &path->last_move_point;
if (point->x < bounder.extents.p1.x)
bounder.extents.p1.x = point->x;
if (point->y < bounder.extents.p1.y)
bounder.extents.p1.y = point->y;
if (point->x > bounder.extents.p2.x)
bounder.extents.p2.x = point->x;
if (point->y > bounder.extents.p2.y)
bounder.extents.p2.y = point->y;
}
bounder.has_point = bounder.extents.p1.x <= bounder.extents.p2.x;
bounder.has_initial_point = FALSE;
} else {
_cairo_path_bounder_init (&bounder);
status = _cairo_path_fixed_interpret (path, CAIRO_DIRECTION_FORWARD,
_cairo_path_bounder_move_to,
_cairo_path_bounder_line_to,
_cairo_path_bounder_curve_to,
_cairo_path_bounder_close_path,
&bounder);
assert (status == CAIRO_STATUS_SUCCESS);
}
if (bounder.has_point) {
double dx, dy;
_cairo_stroke_style_max_distance_from_path (style, ctm, &dx, &dy);
bounder.extents.p1.x -= _cairo_fixed_from_double (dx);
bounder.extents.p2.x += _cairo_fixed_from_double (dx);
bounder.extents.p1.y -= _cairo_fixed_from_double (dy);
bounder.extents.p2.y += _cairo_fixed_from_double (dy);
_cairo_box_round_to_rectangle (&bounder.extents, extents);
} else if (bounder.has_initial_point) {
double dx, dy;
/* accommodate capping of degenerate paths */
_cairo_stroke_style_max_distance_from_path (style, ctm, &dx, &dy);
bounder.extents.p1.x = bounder.current_point.x - _cairo_fixed_from_double (dx);
bounder.extents.p2.x = bounder.current_point.x + _cairo_fixed_from_double (dx);
bounder.extents.p1.y = bounder.current_point.y - _cairo_fixed_from_double (dy);
bounder.extents.p2.y = bounder.current_point.y + _cairo_fixed_from_double (dy);
_cairo_box_round_to_rectangle (&bounder.extents, extents);
} else {
extents->x = extents->y = 0;
extents->width = extents->height = 0;
}
}
cairo_status_t
_cairo_path_fixed_stroke_extents (const cairo_path_fixed_t *path,
const cairo_stroke_style_t *stroke_style,
const cairo_matrix_t *ctm,
const cairo_matrix_t *ctm_inverse,
double tolerance,
cairo_rectangle_int_t *extents)
{
cairo_traps_t traps;
cairo_box_t bbox;
cairo_status_t status;
_cairo_traps_init (&traps);
status = _cairo_path_fixed_stroke_to_traps (path,
stroke_style,
ctm,
ctm_inverse,
tolerance,
&traps);
_cairo_traps_extents (&traps, &bbox);
_cairo_traps_fini (&traps);
_cairo_box_round_to_rectangle (&bbox, extents);
return status;
}
cairo_bool_t
_cairo_path_fixed_extents (const cairo_path_fixed_t *path,
cairo_box_t *box)
{
cairo_path_bounder_t bounder;
cairo_status_t status;
if (! path->has_curve_to) {
*box = path->extents;
/* empty extents should still have an origin and should not
* be {0, 0, 0, 0} */
return path->extents.p1.x <= path->extents.p2.x;
}
_cairo_path_bounder_init (&bounder);
status = _cairo_path_fixed_interpret (path, CAIRO_DIRECTION_FORWARD,
_cairo_path_bounder_move_to,
_cairo_path_bounder_line_to,
_cairo_path_bounder_curve_to,
_cairo_path_bounder_close_path,
&bounder);
assert (status == CAIRO_STATUS_SUCCESS);
*box = bounder.extents;
return bounder.has_point;
}