1
0
kolibrios/drivers/old/radeonhd/rhd_biosscratch.c
Sergey Semyonov (Serge) 7c0a5de1e7 move old ddx driver
git-svn-id: svn://kolibrios.org@1407 a494cfbc-eb01-0410-851d-a64ba20cac60
2010-02-12 17:43:39 +00:00

961 lines
22 KiB
C

/*
* Copyright 2007, 2008 Egbert Eich <eich@novell.com>
* Copyright 2007, 2008 Luc Verhaegen <lverhaegen@novell.com>
* Copyright 2007, 2008 Matthias Hopf <mhopf@novell.com>
* Copyright 2007, 2008 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*/
#ifdef HAVE_CONFIG_H
# include "config.h"
#endif
#ifdef ATOM_BIOS
# include "xf86.h"
#include "rhd.h"
# include "edid.h"
# include "xf86DDC.h"
# if HAVE_XF86_ANSIC_H
# include "xf86_ansic.h"
# else
# include <unistd.h>
# include <string.h>
# include <stdio.h>
# endif
# include "rhd_atombios.h"
# include "rhd_connector.h"
# include "rhd_output.h"
# include "rhd_biosscratch.h"
# include "rhd_crtc.h"
# include "rhd_card.h"
# ifdef ATOM_BIOS_PARSER
# define INT8 INT8
# define INT16 INT16
# define INT32 INT32
# include "CD_Common_Types.h"
# else
# ifndef ULONG
typedef unsigned int ULONG;
# define ULONG ULONG
# endif
# ifndef UCHAR
typedef unsigned char UCHAR;
# define UCHAR UCHAR
# endif
# ifndef USHORT
typedef unsigned short USHORT;
# define USHORT USHORT
# endif
# endif
# include "atombios.h"
struct rhdOutputDevices {
enum atomDevice DeviceId;
enum rhdConnectorType ConnectorType;
};
#if defined (ATOM_BIOS_PARSER)
/*
*
*/
static enum rhdSensedOutput
rhdAtomBIOSScratchDACSenseResults(struct rhdOutput *Output, enum atomDAC DAC, enum atomDevice Device)
{
RHDPtr rhdPtr = RHDPTRI(Output);
CARD32 BIOS_0;
Bool TV = FALSE;
RHDFUNC(Output);
if (rhdPtr->ChipSet < RHD_R600)
BIOS_0 = RHDRegRead(Output, 0x10);
else
BIOS_0 = RHDRegRead(Output, 0x1724);
switch (Device) {
case atomNone:
case atomCRT2:
case atomCRT1:
case atomLCD1:
case atomLCD2:
case atomDFP1:
case atomDFP2:
case atomDFP3:
case atomDFP4:
case atomDFP5:
TV = FALSE;
break;
case atomTV1:
case atomTV2:
case atomCV:
TV = TRUE;
break;
}
RHDDebug(Output->scrnIndex, "BIOSScratch_0: 0x%4.4x\n",BIOS_0);
switch (DAC) {
case atomDACA:
break;
case atomDACB:
BIOS_0 >>= 8;
break;
case atomDACExt:
return RHD_SENSED_NONE;
}
if (!TV) {
if (BIOS_0 & ATOM_S0_CRT1_MASK) {
RHDDebug(Output->scrnIndex, "%s sensed RHD_SENSED_VGA\n",__func__);
return RHD_SENSED_VGA;
}
} else {
if (BIOS_0 & ATOM_S0_TV1_COMPOSITE_A) {
RHDDebug(Output->scrnIndex, "%s: RHD_SENSED_TV_COMPOSITE\n",__func__);
return RHD_SENSED_TV_COMPOSITE;
} else if (BIOS_0 & ATOM_S0_TV1_SVIDEO_A) {
RHDDebug(Output->scrnIndex, "%s: RHD_SENSED_TV_SVIDE\n",__func__);
return RHD_SENSED_TV_SVIDEO;
} else if (BIOS_0 & ATOM_S0_CV_MASK_A) {
RHDDebug(Output->scrnIndex, "%s: RHD_SENSED_TV_COMPONENT\n",__func__);
return RHD_SENSED_TV_COMPONENT;
}
}
RHDDebug(Output->scrnIndex, "%s: RHD_SENSED_NONE\n",__func__);
return RHD_SENSED_NONE;
}
/*
*
*/
enum rhdSensedOutput
RHDBIOSScratchDACSense(struct rhdOutput *Output, struct rhdConnector *Connector)
{
RHDPtr rhdPtr = RHDPTRI(Output);
enum atomDAC DAC;
Bool ret;
Bool TV;
enum atomDevice Device;
enum rhdSensedOutput retVal;
int i = 0;
RHDFUNC(Output);
if (!Output->OutputDriverPrivate)
return RHD_SENSED_NONE;
switch (Output->Id) {
case RHD_OUTPUT_DACA:
RHDDebug(Output->scrnIndex, "Sensing DACA on Output %s\n",Output->Name);
DAC = atomDACA;
break;
case RHD_OUTPUT_DACB:
RHDDebug(Output->scrnIndex, "Sensing DACB on Output %s\n",Output->Name);
DAC = atomDACB;
break;
default:
return FALSE;
}
switch (Connector->Type) {
case RHD_CONNECTOR_DVI:
case RHD_CONNECTOR_DVI_SINGLE:
case RHD_CONNECTOR_VGA:
TV = FALSE;
break;
default:
TV = TRUE;
}
while ((Device = Output->OutputDriverPrivate->OutputDevices[i++].DeviceId) != atomNone) {
switch (Device) {
case atomCRT1:
case atomCRT2:
if (TV)
continue;
break;
case atomTV1:
case atomTV2:
case atomCV:
if (!TV)
continue;
break;
default: /* should not get here */
return RHD_SENSED_NONE;
}
ret = AtomDACLoadDetection(rhdPtr->atomBIOS, Device, DAC);
if (!ret)
continue;
if ((retVal = rhdAtomBIOSScratchDACSenseResults(Output, DAC, Device)) != RHD_SENSED_NONE)
return retVal;
}
return RHD_SENSED_NONE;
}
# endif /* ATOM_BIOS_PARSER */
/*
*
*/
static void
rhdAtomBIOSScratchUpdateAttachedState(RHDPtr rhdPtr, enum atomDevice dev, Bool attached)
{
CARD32 BIOS_0;
CARD32 Addr;
CARD32 Mask;
RHDFUNC(rhdPtr);
if (rhdPtr->ChipSet < RHD_R600)
Addr = 0x10;
else
Addr = 0x1724;
BIOS_0 = RHDRegRead(rhdPtr, Addr);
switch (dev) {
case atomDFP1:
Mask = ATOM_S0_DFP1;
break;
case atomDFP2:
Mask = ATOM_S0_DFP2;
break;
case atomLCD1:
Mask = ATOM_S0_LCD1;
break;
case atomLCD2:
Mask = ATOM_S0_LCD2;
break;
case atomTV2:
Mask = ATOM_S0_TV2;
break;
case atomDFP3:
Mask = ATOM_S0_DFP3;
break;
case atomDFP4:
Mask = ATOM_S0_DFP4;
break;
case atomDFP5:
Mask = ATOM_S0_DFP5;
break;
default:
return;
}
if (attached)
BIOS_0 |= Mask;
else
BIOS_0 &= ~Mask;
RHDRegWrite(rhdPtr, Addr, BIOS_0);
}
/*
*
*/
static void
rhdAtomBIOSScratchUpdateOnState(RHDPtr rhdPtr, enum atomDevice dev, Bool on)
{
CARD32 BIOS_3;
CARD32 Addr;
CARD32 Mask = 0;
RHDFUNC(rhdPtr);
if (rhdPtr->ChipSet < RHD_R600)
Addr = 0x1C;
else
Addr = 0x1730;
BIOS_3 = RHDRegRead(rhdPtr, Addr);
switch (dev) {
case atomCRT1:
Mask = ATOM_S3_CRT1_ACTIVE;
break;
case atomLCD1:
Mask = ATOM_S3_LCD1_ACTIVE;
break;
case atomTV1:
Mask = ATOM_S3_TV1_ACTIVE;
break;
case atomDFP1:
Mask = ATOM_S3_DFP1_ACTIVE;
break;
case atomCRT2:
Mask = ATOM_S3_CRT2_ACTIVE;
break;
case atomLCD2:
Mask = ATOM_S3_LCD2_ACTIVE;
break;
case atomTV2:
Mask = ATOM_S3_TV2_ACTIVE;
break;
case atomDFP2:
Mask = ATOM_S3_DFP2_ACTIVE;
break;
case atomCV:
Mask = ATOM_S3_CV_ACTIVE;
break;
case atomDFP3:
Mask = ATOM_S3_DFP3_ACTIVE;
break;
case atomDFP4:
Mask = ATOM_S3_DFP4_ACTIVE;
break;
case atomDFP5:
Mask = ATOM_S3_DFP5_ACTIVE;
break;
case atomNone:
return;
}
if (on)
BIOS_3 |= Mask;
else
BIOS_3 &= ~Mask;
RHDRegWrite(rhdPtr, Addr, BIOS_3);
}
/*
*
*/
void
RHDAtomBIOSScratchSetAccelratorMode(RHDPtr rhdPtr, Bool on)
{
CARD32 Addr;
CARD32 Mask = ATOM_S6_ACC_MODE | ATOM_S6_ACC_BLOCK_DISPLAY_SWITCH;
if (rhdPtr->ChipSet < RHD_R600)
Addr = 0x10 + (6 << 2);
else
Addr = 0x1724 + (6 << 2);
RHDRegMask(rhdPtr, Addr, on ? Mask : 0, Mask);
}
/*
*
*/
static void
rhdAtomBIOSScratchSetAcceleratorModeForDevice(RHDPtr rhdPtr,
enum atomDevice Device, Bool on)
{
CARD32 Addr;
CARD32 Mask = 0;
if (rhdPtr->ChipSet < RHD_R600)
Addr = 0x10 + (6 << 2);
else
Addr = 0x1724 + (6 << 2);
switch (Device) {
case atomCRT1:
Mask = ATOM_S6_ACC_REQ_CRT1;
break;
case atomLCD1:
Mask = ATOM_S6_ACC_REQ_LCD1;
break;
case atomTV1:
Mask = ATOM_S6_ACC_REQ_TV1;
break;
case atomDFP1:
Mask = ATOM_S6_ACC_REQ_DFP1;
break;
case atomCRT2:
Mask = ATOM_S6_ACC_REQ_CRT2;
break;
case atomLCD2:
Mask = ATOM_S6_ACC_REQ_LCD2;
break;
case atomTV2:
Mask = ATOM_S6_ACC_REQ_TV2;
break;
case atomDFP2:
Mask = ATOM_S6_ACC_REQ_DFP2;
break;
case atomCV:
Mask = ATOM_S6_ACC_REQ_CV;
break;
case atomDFP3:
Mask = ATOM_S6_ACC_REQ_DFP3;
break;
case atomDFP4:
Mask = ATOM_S6_ACC_REQ_DFP4;
break;
case atomDFP5:
Mask = ATOM_S6_ACC_REQ_DFP5;
break;
case atomNone:
return;
}
RHDRegMask(rhdPtr, Addr, on ? Mask : 0, Mask);
}
/*
*
*/
static void
rhdAtomBIOSScratchSetCrtcState(RHDPtr rhdPtr, enum atomDevice dev, enum atomCrtc Crtc)
{
CARD32 BIOS_3;
CARD32 Addr;
CARD32 Mask = 0;
RHDFUNC(rhdPtr);
if (rhdPtr->ChipSet < RHD_R600)
Addr = 0x1C;
else
Addr = 0x1730;
BIOS_3 = RHDRegRead(rhdPtr, Addr);
switch (dev) {
case atomCRT1:
Mask = ATOM_S3_CRT1_CRTC_ACTIVE;
break;
case atomLCD1:
Mask = ATOM_S3_LCD1_CRTC_ACTIVE;
break;
case atomTV1:
Mask = ATOM_S3_TV1_CRTC_ACTIVE;
break;
case atomDFP1:
Mask = ATOM_S3_DFP1_CRTC_ACTIVE;
break;
case atomCRT2:
Mask = ATOM_S3_CRT2_CRTC_ACTIVE;
break;
case atomLCD2:
Mask = ATOM_S3_LCD2_CRTC_ACTIVE;
break;
case atomTV2:
Mask = ATOM_S3_TV2_CRTC_ACTIVE;
break;
case atomDFP2:
Mask = ATOM_S3_DFP2_CRTC_ACTIVE;
break;
case atomCV:
Mask = ATOM_S3_CV_CRTC_ACTIVE;
break;
case atomDFP3:
Mask = ATOM_S3_DFP3_CRTC_ACTIVE;
break;
case atomDFP4:
Mask = ATOM_S3_DFP4_CRTC_ACTIVE;
break;
case atomDFP5:
Mask = ATOM_S3_DFP5_CRTC_ACTIVE;
break;
case atomNone:
return;
}
if (Crtc == atomCrtc2)
BIOS_3 |= Mask;
else
BIOS_3 &= ~Mask;
RHDRegWrite(rhdPtr, Addr, BIOS_3);
}
/*
*
*/
void
RHDAtomBIOSScratchPMState(RHDPtr rhdPtr, struct rhdOutput *Output, int PowerManagementMode)
{
CARD32 Addr;
CARD32 Mask = 0, Mask1;
enum atomDevice Device = Output->OutputDriverPrivate->Device;
if (rhdPtr->ChipSet < RHD_R600)
Addr = 0x10 + (2 << 2);
else
Addr = 0x1724 + (2 << 2);
switch (Device) {
case atomCRT1:
Mask = ATOM_S2_CRT1_DPMS_STATE;
break;
case atomLCD1:
Mask = ATOM_S2_LCD1_DPMS_STATE;
break;
case atomTV1:
Mask = ATOM_S2_TV1_DPMS_STATE;
break;
case atomDFP1:
Mask = ATOM_S2_DFP1_DPMS_STATE;
break;
case atomCRT2:
Mask = ATOM_S2_CRT2_DPMS_STATE;
break;
case atomLCD2:
Mask = ATOM_S2_LCD2_DPMS_STATE;
break;
case atomTV2:
Mask = ATOM_S2_TV2_DPMS_STATE;
break;
case atomDFP2:
Mask = ATOM_S2_DFP2_DPMS_STATE;
break;
case atomCV:
Mask = ATOM_S2_CV_DPMS_STATE;
break;
case atomDFP3:
Mask = ATOM_S2_DFP3_DPMS_STATE;
break;
case atomDFP4:
Mask = ATOM_S2_DFP4_DPMS_STATE;
break;
case atomDFP5:
Mask = ATOM_S2_DFP5_DPMS_STATE;
break;
case atomNone:
return;
}
switch (PowerManagementMode) {
case DPMSModeOn:
Mask1 = 0;
break;
case DPMSModeStandby:
case DPMSModeSuspend:
case DPMSModeOff:
default:
Mask1 = Mask;
break;
}
RHDRegMask(rhdPtr, Addr, Mask1, Mask);
}
/*
*
*/
void
RHDAtomBIOSScratchBlLevel(RHDPtr rhdPtr, enum rhdBIOSScratchBlAction action, int *val)
{
CARD32 Addr;
RHDFUNC(rhdPtr);
if (rhdPtr->ChipSet < RHD_R600)
Addr = 0x18;
else
Addr = 0x172C;
switch (action) {
case rhdBIOSScratchBlGet:
*val = (RHDRegRead(rhdPtr, Addr) >> 8) & 0xFF;
RHDDebug(rhdPtr->scrnIndex, "Get BL level: 0x%x\n",*val);
break;
case rhdBIOSScratchBlSet:
RHDDebug(rhdPtr->scrnIndex, "Set BL level: 0x%x\n",*val);
RHDRegMask(rhdPtr, Addr, (*val) << 8, 0xFF00);
break;
}
}
/*
* This function finds the AtomBIOS device ID of the device that we currently
* want to drive with a specific output. It contains a logic to deal with CRTC vs. TV
* on DACs.
* This function preferrably gets called from within the function that also updates
* the BIOS scratch registers.
*/
static enum atomDevice
rhdBIOSScratchSetDeviceForOutput(struct rhdOutput *Output)
{
int i = 0;
RHDFUNC(Output);
if (!Output->Connector) {
RHDDebug(Output->scrnIndex,"%s: No connector assigned to output %s\n",__func__,Output->Name);
return atomNone;
}
if (!Output->OutputDriverPrivate) {
RHDDebug(Output->scrnIndex,"%s: Output %s has no DriverPrivate\n",__func__,Output->Name);
return atomNone;
}
while (Output->OutputDriverPrivate->OutputDevices[i].DeviceId != atomNone) {
if (Output->OutputDriverPrivate->OutputDevices[i].ConnectorType == Output->Connector->Type){
switch (Output->OutputDriverPrivate->OutputDevices[i].DeviceId) {
case atomCrtc1:
case atomCrtc2:
if (Output->SensedType == RHD_SENSED_VGA
|| Output->SensedType == RHD_SENSED_NONE) /* if nothing was sensed default to VGA */
break;
i++;
continue;
case atomTV1:
case atomTV2:
if (Output->SensedType == RHD_SENSED_TV_SVIDEO
|| Output->SensedType == RHD_SENSED_TV_COMPOSITE)
break;
i++;
continue;
case atomCV:
if (Output->SensedType == RHD_SENSED_TV_COMPONENT)
break;
i++;
continue;
default:
break;
}
Output->OutputDriverPrivate->Device = Output->OutputDriverPrivate->OutputDevices[i].DeviceId;
return Output->OutputDriverPrivate->Device;
}
i++;
}
RHDDebugVerb(Output->scrnIndex,1,"%s: No device found: ConnectorType: %2.2x SensedType: %2.2x\n",
__func__, Output->Connector->Type, Output->SensedType);
return atomNone;
}
/*
* This function is public as it is used from within other outputs, too.
*/
static enum atomDevice
rhdBIOSScratchUpdateBIOSScratchForOutput(struct rhdOutput *Output)
{
RHDPtr rhdPtr = RHDPTRI(Output);
struct rhdOutputDevices *devList;
enum atomDevice Device;
int i = 0;
RHDFUNC(Output);
if (!Output->OutputDriverPrivate) {
RHDDebug(Output->scrnIndex,"%s: no output driver private present\n",__func__);
return atomNone;
}
devList = Output->OutputDriverPrivate->OutputDevices;
if (Output->Connector) {
/* connected - enable */
Device = rhdBIOSScratchSetDeviceForOutput(Output);
if (Device == atomNone && rhdPtr->Card->ConnectorInfo[0].Type != RHD_CONNECTOR_NONE) {
xf86DrvMsg(Output->scrnIndex, X_WARNING, "%s: AtomBIOS DeviceID unknown\n",__func__);
return Device;
}
ASSERT(Device != atomNone);
if (Output->Crtc)
rhdAtomBIOSScratchSetCrtcState(rhdPtr, Device,
Output->Crtc->Id == 1 ? atomCrtc2 : atomCrtc1);
rhdAtomBIOSScratchUpdateOnState(rhdPtr, Device, Output->Active);
rhdAtomBIOSScratchSetAcceleratorModeForDevice(rhdPtr, Device, Output->Active);
rhdAtomBIOSScratchUpdateAttachedState(rhdPtr, Device, TRUE);
while (devList[i].DeviceId != atomNone) {
if (devList[i].DeviceId != Device)
rhdAtomBIOSScratchUpdateOnState(rhdPtr, devList[i].DeviceId, FALSE);
i++;
}
} else {
/* not connected - just disable everything */
Device = atomNone;
Output->OutputDriverPrivate->Device = Device;
while (devList[i].DeviceId != atomNone) {
rhdAtomBIOSScratchUpdateOnState(rhdPtr, devList[i].DeviceId, FALSE);
rhdAtomBIOSScratchSetAcceleratorModeForDevice(rhdPtr,
devList[i].DeviceId, FALSE);
rhdAtomBIOSScratchUpdateAttachedState(rhdPtr, devList[i].DeviceId, FALSE);
i++;
}
}
return Device;
}
/*
*
*/
static void
rhdBIOSScratchPower(struct rhdOutput *Output, int Power)
{
rhdBIOSScratchUpdateBIOSScratchForOutput(Output);
Output->OutputDriverPrivate->Power(Output, Power);
}
/*
*
*/
static void
rhdBIOSScratchMode(struct rhdOutput *Output, DisplayModePtr Mode)
{
rhdBIOSScratchUpdateBIOSScratchForOutput(Output);
Output->OutputDriverPrivate->Mode(Output, Mode);
}
/*
* This destroys the privates again. It is implemented as an output destroy wrapper.
*/
static void
rhdBIOSScratchDestroyOutputDriverPrivate(struct rhdOutput *Output)
{
RHDFUNC(Output);
if (Output->OutputDriverPrivate) {
void (*Destroy) (struct rhdOutput *Output) = Output->OutputDriverPrivate->Destroy;
xfree(Output->OutputDriverPrivate->OutputDevices);
xfree(Output->OutputDriverPrivate);
Output->OutputDriverPrivate = NULL;
if (Destroy)
Destroy(Output);
}
}
/*
* This sets up the AtomBIOS driver output private.
* It allocates the data structure and sets up the list of devices
* including the connector they are associated with.
*/
Bool
RHDAtomSetupOutputDriverPrivate(struct rhdAtomOutputDeviceList *Devices, struct rhdOutput *Output)
{
struct rhdOutputDevices *od = NULL;
struct BIOSScratchOutputPrivate *OutputDriverPrivate;
int i = 0, cnt = 0;
RHDFUNC(Output);
if (!Devices) {
RHDDebug(Output->scrnIndex, "%s: Device list doesn't exist.\n");
return FALSE;
}
RHDDebugVerb(Output->scrnIndex, 1, " Output: %s[0x%2.2x] - adding devices:\n", Output->Name, Output->Id);
while (Devices[i].DeviceId != atomNone) {
RHDDebugVerb(Output->scrnIndex,1," Looking at DeviceID: 0x%2.2x OutputType: 0x%2.2x ConnectorType: 0x%2.2x\n",
Devices[i].DeviceId,Devices[i].OutputType,Devices[i].ConnectorType);
if (Devices[i].OutputType == Output->Id) {
if (!(od = (struct rhdOutputDevices *)xrealloc(od, sizeof(struct rhdOutputDevices) * (cnt + 1))))
return FALSE;
RHDDebugVerb(Output->scrnIndex,1," >> 0x%2.2x\n", Devices[i].DeviceId);
od[cnt].DeviceId = Devices[i].DeviceId;
od[cnt].ConnectorType = Devices[i].ConnectorType;
cnt++;
}
i++;
}
if (!(od = (struct rhdOutputDevices *)xrealloc(od, sizeof(struct rhdOutputDevices) * (cnt + 1))))
return FALSE;
od[cnt].DeviceId = atomNone;
if (!(OutputDriverPrivate = (struct BIOSScratchOutputPrivate *)xalloc(sizeof(struct BIOSScratchOutputPrivate)))) {
xfree(od);
return FALSE;
}
OutputDriverPrivate->OutputDevices = od;
OutputDriverPrivate->Destroy = Output->Destroy;
Output->Destroy = rhdBIOSScratchDestroyOutputDriverPrivate;
OutputDriverPrivate->Power = Output->Power;
Output->Power = rhdBIOSScratchPower;
OutputDriverPrivate->Mode = Output->Mode;
Output->Mode = rhdBIOSScratchMode;
Output->OutputDriverPrivate = OutputDriverPrivate;
return TRUE;
}
/*
* Find the connector and output type for a specific atom device.
* This information is kept in the output lists.
*/
Bool
RHDFindConnectorAndOutputTypesForDevice(RHDPtr rhdPtr, enum atomDevice Device, enum rhdOutputType *ot, enum rhdConnectorType *ct)
{
struct rhdOutput *Output;
*ot = RHD_OUTPUT_NONE;
*ct = RHD_CONNECTOR_NONE;
for (Output = rhdPtr->Outputs; Output; Output = Output->Next) {
struct rhdOutputDevices *DeviceList;
int i = 0;
if (!Output->OutputDriverPrivate)
continue;
DeviceList = Output->OutputDriverPrivate->OutputDevices;
while (DeviceList[i].DeviceId != atomNone) {
if (DeviceList[i].DeviceId == Device) {
*ot = Output->Id;
*ct = DeviceList[i].ConnectorType;
return TRUE;
}
i++;
}
}
return FALSE;
}
/*
*
*/
enum atomDevice
RHDGetDeviceOnCrtc(RHDPtr rhdPtr, enum atomCrtc Crtc)
{
CARD32 BIOS_3;
CARD32 Addr;
CARD32 Mask = 0;
RHDFUNC(rhdPtr);
if (rhdPtr->ChipSet < RHD_R600)
Addr = 0x1C;
else
Addr = 0x1730;
if (Crtc == atomCrtc1)
Mask = ~Mask;
BIOS_3 = RHDRegRead(rhdPtr, Addr);
RHDDebug(rhdPtr->scrnIndex, "%s: BIOS_3 = 0x%x\n",__func__,BIOS_3);
if (BIOS_3 & ATOM_S3_CRT1_ACTIVE
&& ((BIOS_3 ^ Mask) & ATOM_S3_CRT1_CRTC_ACTIVE))
return atomCRT1;
else if (BIOS_3 & ATOM_S3_LCD1_ACTIVE
&& ((BIOS_3 ^ Mask) & ATOM_S3_LCD1_CRTC_ACTIVE))
return atomLCD1;
else if (BIOS_3 & ATOM_S3_DFP1_ACTIVE
&& ((BIOS_3 ^ Mask) & ATOM_S3_DFP1_CRTC_ACTIVE))
return atomDFP1;
else if (BIOS_3 & ATOM_S3_CRT2_ACTIVE
&& ((BIOS_3 ^ Mask) & ATOM_S3_CRT2_CRTC_ACTIVE))
return atomCRT2;
else if (BIOS_3 & ATOM_S3_LCD2_ACTIVE
&& ((BIOS_3 ^ Mask) & ATOM_S3_LCD2_CRTC_ACTIVE))
return atomLCD2;
else if (BIOS_3 & ATOM_S3_TV2_ACTIVE
&& ((BIOS_3 ^ Mask) & ATOM_S3_TV2_CRTC_ACTIVE))
return atomTV2;
else if (BIOS_3 & ATOM_S3_DFP2_ACTIVE
&& ((BIOS_3 ^ Mask) & ATOM_S3_DFP2_CRTC_ACTIVE))
return atomDFP2;
else if (BIOS_3 & ATOM_S3_CV_ACTIVE
&& ((BIOS_3 ^ Mask) & ATOM_S3_CV_CRTC_ACTIVE))
return atomCV;
else if (BIOS_3 & ATOM_S3_DFP3_ACTIVE
&& ((BIOS_3 ^ Mask) & ATOM_S3_DFP3_CRTC_ACTIVE))
return atomDFP3;
else if (BIOS_3 & ATOM_S3_DFP4_ACTIVE
&& ((BIOS_3 ^ Mask) & ATOM_S3_DFP4_CRTC_ACTIVE))
return atomDFP4;
else if (BIOS_3 & ATOM_S3_DFP5_ACTIVE
&& ((BIOS_3 ^ Mask) & ATOM_S3_DFP5_CRTC_ACTIVE))
return atomDFP5;
else
return atomNone;
}
struct rhdBiosScratchRegisters {
CARD32 Scratch0;
CARD32 Scratch2;
CARD32 Scratch3;
CARD32 Scratch6;
};
struct rhdBiosScratchRegisters *
RHDSaveBiosScratchRegisters(RHDPtr rhdPtr)
{
struct rhdBiosScratchRegisters *regs;
CARD32 S0Addr, S2Addr, S3Addr, S6Addr;
RHDFUNC(rhdPtr);
if (!(regs = (struct rhdBiosScratchRegisters *)xalloc(sizeof(struct rhdBiosScratchRegisters))))
return NULL;
if (rhdPtr->ChipSet < RHD_R600) {
S0Addr = 0x10;
S2Addr = 0x18;
S3Addr = 0x1C;
S6Addr = 0x10 + (6 << 2);
} else {
S0Addr = 0x1724;
S2Addr = 0x172C;
S3Addr = 0x1730;
S6Addr = 0x1724 + (6 << 2);
}
regs->Scratch0 = RHDRegRead(rhdPtr, S0Addr);
regs->Scratch2 = RHDRegRead(rhdPtr, S2Addr);
regs->Scratch3 = RHDRegRead(rhdPtr, S3Addr);
regs->Scratch6 = RHDRegRead(rhdPtr, S6Addr);
return regs;
}
void
RHDRestoreBiosScratchRegisters(RHDPtr rhdPtr, struct rhdBiosScratchRegisters *regs)
{
CARD32 S0Addr, S2Addr, S3Addr, S6Addr;
RHDFUNC(rhdPtr);
if (!regs)
return;
if (rhdPtr->ChipSet < RHD_R600) {
S0Addr = 0x10;
S2Addr = 0x18;
S3Addr = 0x1C;
S6Addr = 0x10 + (6 << 2);
} else {
S0Addr = 0x1724;
S2Addr = 0x172C;
S3Addr = 0x1730;
S6Addr = 0x1724 + (6 << 2);
}
RHDRegWrite(rhdPtr, S0Addr, regs->Scratch0);
RHDRegWrite(rhdPtr, S2Addr, regs->Scratch2);
RHDRegWrite(rhdPtr, S3Addr, regs->Scratch3);
RHDRegWrite(rhdPtr, S6Addr, regs->Scratch6);
xfree(regs);
}
#endif /* ATOM_BIOS */