forked from KolibriOS/kolibrios
304eb30a10
git-svn-id: svn://kolibrios.org@4280 a494cfbc-eb01-0410-851d-a64ba20cac60
3573 lines
104 KiB
C
3573 lines
104 KiB
C
/*
|
|
* Copyright © 2008 Intel Corporation
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a
|
|
* copy of this software and associated documentation files (the "Software"),
|
|
* to deal in the Software without restriction, including without limitation
|
|
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
|
|
* and/or sell copies of the Software, and to permit persons to whom the
|
|
* Software is furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice (including the next
|
|
* paragraph) shall be included in all copies or substantial portions of the
|
|
* Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
|
|
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
|
|
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
|
|
* IN THE SOFTWARE.
|
|
*
|
|
* Authors:
|
|
* Keith Packard <keithp@keithp.com>
|
|
*
|
|
*/
|
|
|
|
#include <linux/i2c.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/export.h>
|
|
#include <drm/drmP.h>
|
|
#include <drm/drm_crtc.h>
|
|
#include <drm/drm_crtc_helper.h>
|
|
#include <drm/drm_edid.h>
|
|
#include "intel_drv.h"
|
|
#include <drm/i915_drm.h>
|
|
#include "i915_drv.h"
|
|
|
|
#define DP_LINK_CHECK_TIMEOUT (10 * 1000)
|
|
|
|
/**
|
|
* is_edp - is the given port attached to an eDP panel (either CPU or PCH)
|
|
* @intel_dp: DP struct
|
|
*
|
|
* If a CPU or PCH DP output is attached to an eDP panel, this function
|
|
* will return true, and false otherwise.
|
|
*/
|
|
static bool is_edp(struct intel_dp *intel_dp)
|
|
{
|
|
struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
|
|
|
|
return intel_dig_port->base.type == INTEL_OUTPUT_EDP;
|
|
}
|
|
|
|
static struct drm_device *intel_dp_to_dev(struct intel_dp *intel_dp)
|
|
{
|
|
struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
|
|
|
|
return intel_dig_port->base.base.dev;
|
|
}
|
|
|
|
static struct intel_dp *intel_attached_dp(struct drm_connector *connector)
|
|
{
|
|
return enc_to_intel_dp(&intel_attached_encoder(connector)->base);
|
|
}
|
|
|
|
static void intel_dp_link_down(struct intel_dp *intel_dp);
|
|
|
|
static int
|
|
intel_dp_max_link_bw(struct intel_dp *intel_dp)
|
|
{
|
|
int max_link_bw = intel_dp->dpcd[DP_MAX_LINK_RATE];
|
|
|
|
switch (max_link_bw) {
|
|
case DP_LINK_BW_1_62:
|
|
case DP_LINK_BW_2_7:
|
|
break;
|
|
case DP_LINK_BW_5_4: /* 1.2 capable displays may advertise higher bw */
|
|
max_link_bw = DP_LINK_BW_2_7;
|
|
break;
|
|
default:
|
|
WARN(1, "invalid max DP link bw val %x, using 1.62Gbps\n",
|
|
max_link_bw);
|
|
max_link_bw = DP_LINK_BW_1_62;
|
|
break;
|
|
}
|
|
return max_link_bw;
|
|
}
|
|
|
|
/*
|
|
* The units on the numbers in the next two are... bizarre. Examples will
|
|
* make it clearer; this one parallels an example in the eDP spec.
|
|
*
|
|
* intel_dp_max_data_rate for one lane of 2.7GHz evaluates as:
|
|
*
|
|
* 270000 * 1 * 8 / 10 == 216000
|
|
*
|
|
* The actual data capacity of that configuration is 2.16Gbit/s, so the
|
|
* units are decakilobits. ->clock in a drm_display_mode is in kilohertz -
|
|
* or equivalently, kilopixels per second - so for 1680x1050R it'd be
|
|
* 119000. At 18bpp that's 2142000 kilobits per second.
|
|
*
|
|
* Thus the strange-looking division by 10 in intel_dp_link_required, to
|
|
* get the result in decakilobits instead of kilobits.
|
|
*/
|
|
|
|
static int
|
|
intel_dp_link_required(int pixel_clock, int bpp)
|
|
{
|
|
return (pixel_clock * bpp + 9) / 10;
|
|
}
|
|
|
|
static int
|
|
intel_dp_max_data_rate(int max_link_clock, int max_lanes)
|
|
{
|
|
return (max_link_clock * max_lanes * 8) / 10;
|
|
}
|
|
|
|
static int
|
|
intel_dp_mode_valid(struct drm_connector *connector,
|
|
struct drm_display_mode *mode)
|
|
{
|
|
struct intel_dp *intel_dp = intel_attached_dp(connector);
|
|
struct intel_connector *intel_connector = to_intel_connector(connector);
|
|
struct drm_display_mode *fixed_mode = intel_connector->panel.fixed_mode;
|
|
int target_clock = mode->clock;
|
|
int max_rate, mode_rate, max_lanes, max_link_clock;
|
|
|
|
if (is_edp(intel_dp) && fixed_mode) {
|
|
if (mode->hdisplay > fixed_mode->hdisplay)
|
|
return MODE_PANEL;
|
|
|
|
if (mode->vdisplay > fixed_mode->vdisplay)
|
|
return MODE_PANEL;
|
|
|
|
target_clock = fixed_mode->clock;
|
|
}
|
|
|
|
max_link_clock = drm_dp_bw_code_to_link_rate(intel_dp_max_link_bw(intel_dp));
|
|
max_lanes = drm_dp_max_lane_count(intel_dp->dpcd);
|
|
|
|
max_rate = intel_dp_max_data_rate(max_link_clock, max_lanes);
|
|
mode_rate = intel_dp_link_required(target_clock, 18);
|
|
|
|
if (mode_rate > max_rate)
|
|
return MODE_CLOCK_HIGH;
|
|
|
|
if (mode->clock < 10000)
|
|
return MODE_CLOCK_LOW;
|
|
|
|
if (mode->flags & DRM_MODE_FLAG_DBLCLK)
|
|
return MODE_H_ILLEGAL;
|
|
|
|
return MODE_OK;
|
|
}
|
|
|
|
static uint32_t
|
|
pack_aux(uint8_t *src, int src_bytes)
|
|
{
|
|
int i;
|
|
uint32_t v = 0;
|
|
|
|
if (src_bytes > 4)
|
|
src_bytes = 4;
|
|
for (i = 0; i < src_bytes; i++)
|
|
v |= ((uint32_t) src[i]) << ((3-i) * 8);
|
|
return v;
|
|
}
|
|
|
|
static void
|
|
unpack_aux(uint32_t src, uint8_t *dst, int dst_bytes)
|
|
{
|
|
int i;
|
|
if (dst_bytes > 4)
|
|
dst_bytes = 4;
|
|
for (i = 0; i < dst_bytes; i++)
|
|
dst[i] = src >> ((3-i) * 8);
|
|
}
|
|
|
|
/* hrawclock is 1/4 the FSB frequency */
|
|
static int
|
|
intel_hrawclk(struct drm_device *dev)
|
|
{
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
uint32_t clkcfg;
|
|
|
|
/* There is no CLKCFG reg in Valleyview. VLV hrawclk is 200 MHz */
|
|
if (IS_VALLEYVIEW(dev))
|
|
return 200;
|
|
|
|
clkcfg = I915_READ(CLKCFG);
|
|
switch (clkcfg & CLKCFG_FSB_MASK) {
|
|
case CLKCFG_FSB_400:
|
|
return 100;
|
|
case CLKCFG_FSB_533:
|
|
return 133;
|
|
case CLKCFG_FSB_667:
|
|
return 166;
|
|
case CLKCFG_FSB_800:
|
|
return 200;
|
|
case CLKCFG_FSB_1067:
|
|
return 266;
|
|
case CLKCFG_FSB_1333:
|
|
return 333;
|
|
/* these two are just a guess; one of them might be right */
|
|
case CLKCFG_FSB_1600:
|
|
case CLKCFG_FSB_1600_ALT:
|
|
return 400;
|
|
default:
|
|
return 133;
|
|
}
|
|
}
|
|
|
|
static bool ironlake_edp_have_panel_power(struct intel_dp *intel_dp)
|
|
{
|
|
struct drm_device *dev = intel_dp_to_dev(intel_dp);
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
u32 pp_stat_reg;
|
|
|
|
pp_stat_reg = IS_VALLEYVIEW(dev) ? PIPEA_PP_STATUS : PCH_PP_STATUS;
|
|
return (I915_READ(pp_stat_reg) & PP_ON) != 0;
|
|
}
|
|
|
|
static bool ironlake_edp_have_panel_vdd(struct intel_dp *intel_dp)
|
|
{
|
|
struct drm_device *dev = intel_dp_to_dev(intel_dp);
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
u32 pp_ctrl_reg;
|
|
|
|
pp_ctrl_reg = IS_VALLEYVIEW(dev) ? PIPEA_PP_CONTROL : PCH_PP_CONTROL;
|
|
return (I915_READ(pp_ctrl_reg) & EDP_FORCE_VDD) != 0;
|
|
}
|
|
|
|
static void
|
|
intel_dp_check_edp(struct intel_dp *intel_dp)
|
|
{
|
|
struct drm_device *dev = intel_dp_to_dev(intel_dp);
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
u32 pp_stat_reg, pp_ctrl_reg;
|
|
|
|
if (!is_edp(intel_dp))
|
|
return;
|
|
|
|
pp_stat_reg = IS_VALLEYVIEW(dev) ? PIPEA_PP_STATUS : PCH_PP_STATUS;
|
|
pp_ctrl_reg = IS_VALLEYVIEW(dev) ? PIPEA_PP_CONTROL : PCH_PP_CONTROL;
|
|
|
|
if (!ironlake_edp_have_panel_power(intel_dp) && !ironlake_edp_have_panel_vdd(intel_dp)) {
|
|
WARN(1, "eDP powered off while attempting aux channel communication.\n");
|
|
DRM_DEBUG_KMS("Status 0x%08x Control 0x%08x\n",
|
|
I915_READ(pp_stat_reg),
|
|
I915_READ(pp_ctrl_reg));
|
|
}
|
|
}
|
|
|
|
static uint32_t
|
|
intel_dp_aux_wait_done(struct intel_dp *intel_dp, bool has_aux_irq)
|
|
{
|
|
struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
|
|
struct drm_device *dev = intel_dig_port->base.base.dev;
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
uint32_t ch_ctl = intel_dp->aux_ch_ctl_reg;
|
|
uint32_t status;
|
|
bool done;
|
|
|
|
#define C (((status = I915_READ_NOTRACE(ch_ctl)) & DP_AUX_CH_CTL_SEND_BUSY) == 0)
|
|
if (has_aux_irq)
|
|
done = wait_event_timeout(dev_priv->gmbus_wait_queue, C,
|
|
msecs_to_jiffies_timeout(10));
|
|
else
|
|
done = wait_for_atomic(C, 10) == 0;
|
|
if (!done)
|
|
DRM_ERROR("dp aux hw did not signal timeout (has irq: %i)!\n",
|
|
has_aux_irq);
|
|
#undef C
|
|
|
|
return status;
|
|
}
|
|
|
|
static uint32_t get_aux_clock_divider(struct intel_dp *intel_dp,
|
|
int index)
|
|
{
|
|
struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
|
|
struct drm_device *dev = intel_dig_port->base.base.dev;
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
|
|
/* The clock divider is based off the hrawclk,
|
|
* and would like to run at 2MHz. So, take the
|
|
* hrawclk value and divide by 2 and use that
|
|
*
|
|
* Note that PCH attached eDP panels should use a 125MHz input
|
|
* clock divider.
|
|
*/
|
|
if (IS_VALLEYVIEW(dev)) {
|
|
return index ? 0 : 100;
|
|
} else if (intel_dig_port->port == PORT_A) {
|
|
if (index)
|
|
return 0;
|
|
if (HAS_DDI(dev))
|
|
return DIV_ROUND_CLOSEST(intel_ddi_get_cdclk_freq(dev_priv), 2000);
|
|
else if (IS_GEN6(dev) || IS_GEN7(dev))
|
|
return 200; /* SNB & IVB eDP input clock at 400Mhz */
|
|
else
|
|
return 225; /* eDP input clock at 450Mhz */
|
|
} else if (dev_priv->pch_id == INTEL_PCH_LPT_DEVICE_ID_TYPE) {
|
|
/* Workaround for non-ULT HSW */
|
|
switch (index) {
|
|
case 0: return 63;
|
|
case 1: return 72;
|
|
default: return 0;
|
|
}
|
|
} else if (HAS_PCH_SPLIT(dev)) {
|
|
return index ? 0 : DIV_ROUND_UP(intel_pch_rawclk(dev), 2);
|
|
} else {
|
|
return index ? 0 :intel_hrawclk(dev) / 2;
|
|
}
|
|
}
|
|
|
|
static int
|
|
intel_dp_aux_ch(struct intel_dp *intel_dp,
|
|
uint8_t *send, int send_bytes,
|
|
uint8_t *recv, int recv_size)
|
|
{
|
|
struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
|
|
struct drm_device *dev = intel_dig_port->base.base.dev;
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
uint32_t ch_ctl = intel_dp->aux_ch_ctl_reg;
|
|
uint32_t ch_data = ch_ctl + 4;
|
|
uint32_t aux_clock_divider;
|
|
int i, ret, recv_bytes;
|
|
uint32_t status;
|
|
int try, precharge, clock = 0;
|
|
bool has_aux_irq = INTEL_INFO(dev)->gen >= 5 && !IS_VALLEYVIEW(dev);
|
|
|
|
/* dp aux is extremely sensitive to irq latency, hence request the
|
|
* lowest possible wakeup latency and so prevent the cpu from going into
|
|
* deep sleep states.
|
|
*/
|
|
// pm_qos_update_request(&dev_priv->pm_qos, 0);
|
|
|
|
intel_dp_check_edp(intel_dp);
|
|
|
|
if (IS_GEN6(dev))
|
|
precharge = 3;
|
|
else
|
|
precharge = 5;
|
|
|
|
intel_aux_display_runtime_get(dev_priv);
|
|
|
|
/* Try to wait for any previous AUX channel activity */
|
|
for (try = 0; try < 3; try++) {
|
|
status = I915_READ_NOTRACE(ch_ctl);
|
|
if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
|
|
break;
|
|
msleep(1);
|
|
}
|
|
|
|
if (try == 3) {
|
|
WARN(1, "dp_aux_ch not started status 0x%08x\n",
|
|
I915_READ(ch_ctl));
|
|
ret = -EBUSY;
|
|
goto out;
|
|
}
|
|
|
|
while ((aux_clock_divider = get_aux_clock_divider(intel_dp, clock++))) {
|
|
/* Must try at least 3 times according to DP spec */
|
|
for (try = 0; try < 5; try++) {
|
|
/* Load the send data into the aux channel data registers */
|
|
for (i = 0; i < send_bytes; i += 4)
|
|
I915_WRITE(ch_data + i,
|
|
pack_aux(send + i, send_bytes - i));
|
|
|
|
/* Send the command and wait for it to complete */
|
|
I915_WRITE(ch_ctl,
|
|
DP_AUX_CH_CTL_SEND_BUSY |
|
|
(has_aux_irq ? DP_AUX_CH_CTL_INTERRUPT : 0) |
|
|
DP_AUX_CH_CTL_TIME_OUT_400us |
|
|
(send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
|
|
(precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
|
|
(aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT) |
|
|
DP_AUX_CH_CTL_DONE |
|
|
DP_AUX_CH_CTL_TIME_OUT_ERROR |
|
|
DP_AUX_CH_CTL_RECEIVE_ERROR);
|
|
|
|
status = intel_dp_aux_wait_done(intel_dp, has_aux_irq);
|
|
|
|
/* Clear done status and any errors */
|
|
I915_WRITE(ch_ctl,
|
|
status |
|
|
DP_AUX_CH_CTL_DONE |
|
|
DP_AUX_CH_CTL_TIME_OUT_ERROR |
|
|
DP_AUX_CH_CTL_RECEIVE_ERROR);
|
|
|
|
if (status & (DP_AUX_CH_CTL_TIME_OUT_ERROR |
|
|
DP_AUX_CH_CTL_RECEIVE_ERROR))
|
|
continue;
|
|
if (status & DP_AUX_CH_CTL_DONE)
|
|
break;
|
|
}
|
|
if (status & DP_AUX_CH_CTL_DONE)
|
|
break;
|
|
}
|
|
|
|
if ((status & DP_AUX_CH_CTL_DONE) == 0) {
|
|
DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status);
|
|
ret = -EBUSY;
|
|
goto out;
|
|
}
|
|
|
|
/* Check for timeout or receive error.
|
|
* Timeouts occur when the sink is not connected
|
|
*/
|
|
if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
|
|
DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status);
|
|
ret = -EIO;
|
|
goto out;
|
|
}
|
|
|
|
/* Timeouts occur when the device isn't connected, so they're
|
|
* "normal" -- don't fill the kernel log with these */
|
|
if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
|
|
DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status);
|
|
ret = -ETIMEDOUT;
|
|
goto out;
|
|
}
|
|
|
|
/* Unload any bytes sent back from the other side */
|
|
recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
|
|
DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
|
|
if (recv_bytes > recv_size)
|
|
recv_bytes = recv_size;
|
|
|
|
for (i = 0; i < recv_bytes; i += 4)
|
|
unpack_aux(I915_READ(ch_data + i),
|
|
recv + i, recv_bytes - i);
|
|
|
|
ret = recv_bytes;
|
|
out:
|
|
// pm_qos_update_request(&dev_priv->pm_qos, PM_QOS_DEFAULT_VALUE);
|
|
intel_aux_display_runtime_put(dev_priv);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/* Write data to the aux channel in native mode */
|
|
static int
|
|
intel_dp_aux_native_write(struct intel_dp *intel_dp,
|
|
uint16_t address, uint8_t *send, int send_bytes)
|
|
{
|
|
int ret;
|
|
uint8_t msg[20];
|
|
int msg_bytes;
|
|
uint8_t ack;
|
|
|
|
intel_dp_check_edp(intel_dp);
|
|
if (send_bytes > 16)
|
|
return -1;
|
|
msg[0] = AUX_NATIVE_WRITE << 4;
|
|
msg[1] = address >> 8;
|
|
msg[2] = address & 0xff;
|
|
msg[3] = send_bytes - 1;
|
|
memcpy(&msg[4], send, send_bytes);
|
|
msg_bytes = send_bytes + 4;
|
|
for (;;) {
|
|
ret = intel_dp_aux_ch(intel_dp, msg, msg_bytes, &ack, 1);
|
|
if (ret < 0)
|
|
return ret;
|
|
if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK)
|
|
break;
|
|
else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER)
|
|
udelay(100);
|
|
else
|
|
return -EIO;
|
|
}
|
|
return send_bytes;
|
|
}
|
|
|
|
/* Write a single byte to the aux channel in native mode */
|
|
static int
|
|
intel_dp_aux_native_write_1(struct intel_dp *intel_dp,
|
|
uint16_t address, uint8_t byte)
|
|
{
|
|
return intel_dp_aux_native_write(intel_dp, address, &byte, 1);
|
|
}
|
|
|
|
/* read bytes from a native aux channel */
|
|
static int
|
|
intel_dp_aux_native_read(struct intel_dp *intel_dp,
|
|
uint16_t address, uint8_t *recv, int recv_bytes)
|
|
{
|
|
uint8_t msg[4];
|
|
int msg_bytes;
|
|
uint8_t reply[20];
|
|
int reply_bytes;
|
|
uint8_t ack;
|
|
int ret;
|
|
|
|
intel_dp_check_edp(intel_dp);
|
|
msg[0] = AUX_NATIVE_READ << 4;
|
|
msg[1] = address >> 8;
|
|
msg[2] = address & 0xff;
|
|
msg[3] = recv_bytes - 1;
|
|
|
|
msg_bytes = 4;
|
|
reply_bytes = recv_bytes + 1;
|
|
|
|
for (;;) {
|
|
ret = intel_dp_aux_ch(intel_dp, msg, msg_bytes,
|
|
reply, reply_bytes);
|
|
if (ret == 0)
|
|
return -EPROTO;
|
|
if (ret < 0)
|
|
return ret;
|
|
ack = reply[0];
|
|
if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK) {
|
|
memcpy(recv, reply + 1, ret - 1);
|
|
return ret - 1;
|
|
}
|
|
else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER)
|
|
udelay(100);
|
|
else
|
|
return -EIO;
|
|
}
|
|
}
|
|
|
|
static int
|
|
intel_dp_i2c_aux_ch(struct i2c_adapter *adapter, int mode,
|
|
uint8_t write_byte, uint8_t *read_byte)
|
|
{
|
|
struct i2c_algo_dp_aux_data *algo_data = adapter->algo_data;
|
|
struct intel_dp *intel_dp = container_of(adapter,
|
|
struct intel_dp,
|
|
adapter);
|
|
uint16_t address = algo_data->address;
|
|
uint8_t msg[5];
|
|
uint8_t reply[2];
|
|
unsigned retry;
|
|
int msg_bytes;
|
|
int reply_bytes;
|
|
int ret;
|
|
|
|
intel_dp_check_edp(intel_dp);
|
|
/* Set up the command byte */
|
|
if (mode & MODE_I2C_READ)
|
|
msg[0] = AUX_I2C_READ << 4;
|
|
else
|
|
msg[0] = AUX_I2C_WRITE << 4;
|
|
|
|
if (!(mode & MODE_I2C_STOP))
|
|
msg[0] |= AUX_I2C_MOT << 4;
|
|
|
|
msg[1] = address >> 8;
|
|
msg[2] = address;
|
|
|
|
switch (mode) {
|
|
case MODE_I2C_WRITE:
|
|
msg[3] = 0;
|
|
msg[4] = write_byte;
|
|
msg_bytes = 5;
|
|
reply_bytes = 1;
|
|
break;
|
|
case MODE_I2C_READ:
|
|
msg[3] = 0;
|
|
msg_bytes = 4;
|
|
reply_bytes = 2;
|
|
break;
|
|
default:
|
|
msg_bytes = 3;
|
|
reply_bytes = 1;
|
|
break;
|
|
}
|
|
|
|
for (retry = 0; retry < 5; retry++) {
|
|
ret = intel_dp_aux_ch(intel_dp,
|
|
msg, msg_bytes,
|
|
reply, reply_bytes);
|
|
if (ret < 0) {
|
|
DRM_DEBUG_KMS("aux_ch failed %d\n", ret);
|
|
return ret;
|
|
}
|
|
|
|
switch (reply[0] & AUX_NATIVE_REPLY_MASK) {
|
|
case AUX_NATIVE_REPLY_ACK:
|
|
/* I2C-over-AUX Reply field is only valid
|
|
* when paired with AUX ACK.
|
|
*/
|
|
break;
|
|
case AUX_NATIVE_REPLY_NACK:
|
|
DRM_DEBUG_KMS("aux_ch native nack\n");
|
|
return -EREMOTEIO;
|
|
case AUX_NATIVE_REPLY_DEFER:
|
|
udelay(500);
|
|
continue;
|
|
default:
|
|
DRM_ERROR("aux_ch invalid native reply 0x%02x\n",
|
|
reply[0]);
|
|
return -EREMOTEIO;
|
|
}
|
|
|
|
switch (reply[0] & AUX_I2C_REPLY_MASK) {
|
|
case AUX_I2C_REPLY_ACK:
|
|
if (mode == MODE_I2C_READ) {
|
|
*read_byte = reply[1];
|
|
}
|
|
return reply_bytes - 1;
|
|
case AUX_I2C_REPLY_NACK:
|
|
DRM_DEBUG_KMS("aux_i2c nack\n");
|
|
return -EREMOTEIO;
|
|
case AUX_I2C_REPLY_DEFER:
|
|
DRM_DEBUG_KMS("aux_i2c defer\n");
|
|
udelay(100);
|
|
break;
|
|
default:
|
|
DRM_ERROR("aux_i2c invalid reply 0x%02x\n", reply[0]);
|
|
return -EREMOTEIO;
|
|
}
|
|
}
|
|
|
|
DRM_ERROR("too many retries, giving up\n");
|
|
return -EREMOTEIO;
|
|
}
|
|
|
|
static int
|
|
intel_dp_i2c_init(struct intel_dp *intel_dp,
|
|
struct intel_connector *intel_connector, const char *name)
|
|
{
|
|
int ret;
|
|
|
|
DRM_DEBUG_KMS("i2c_init %s\n", name);
|
|
intel_dp->algo.running = false;
|
|
intel_dp->algo.address = 0;
|
|
intel_dp->algo.aux_ch = intel_dp_i2c_aux_ch;
|
|
|
|
memset(&intel_dp->adapter, '\0', sizeof(intel_dp->adapter));
|
|
intel_dp->adapter.owner = THIS_MODULE;
|
|
intel_dp->adapter.class = I2C_CLASS_DDC;
|
|
strncpy(intel_dp->adapter.name, name, sizeof(intel_dp->adapter.name) - 1);
|
|
intel_dp->adapter.name[sizeof(intel_dp->adapter.name) - 1] = '\0';
|
|
intel_dp->adapter.algo_data = &intel_dp->algo;
|
|
intel_dp->adapter.dev.parent = &intel_connector->base.kdev;
|
|
|
|
ironlake_edp_panel_vdd_on(intel_dp);
|
|
ret = i2c_dp_aux_add_bus(&intel_dp->adapter);
|
|
ironlake_edp_panel_vdd_off(intel_dp, false);
|
|
return ret;
|
|
}
|
|
|
|
static void
|
|
intel_dp_set_clock(struct intel_encoder *encoder,
|
|
struct intel_crtc_config *pipe_config, int link_bw)
|
|
{
|
|
struct drm_device *dev = encoder->base.dev;
|
|
|
|
if (IS_G4X(dev)) {
|
|
if (link_bw == DP_LINK_BW_1_62) {
|
|
pipe_config->dpll.p1 = 2;
|
|
pipe_config->dpll.p2 = 10;
|
|
pipe_config->dpll.n = 2;
|
|
pipe_config->dpll.m1 = 23;
|
|
pipe_config->dpll.m2 = 8;
|
|
} else {
|
|
pipe_config->dpll.p1 = 1;
|
|
pipe_config->dpll.p2 = 10;
|
|
pipe_config->dpll.n = 1;
|
|
pipe_config->dpll.m1 = 14;
|
|
pipe_config->dpll.m2 = 2;
|
|
}
|
|
pipe_config->clock_set = true;
|
|
} else if (IS_HASWELL(dev)) {
|
|
/* Haswell has special-purpose DP DDI clocks. */
|
|
} else if (HAS_PCH_SPLIT(dev)) {
|
|
if (link_bw == DP_LINK_BW_1_62) {
|
|
pipe_config->dpll.n = 1;
|
|
pipe_config->dpll.p1 = 2;
|
|
pipe_config->dpll.p2 = 10;
|
|
pipe_config->dpll.m1 = 12;
|
|
pipe_config->dpll.m2 = 9;
|
|
} else {
|
|
pipe_config->dpll.n = 2;
|
|
pipe_config->dpll.p1 = 1;
|
|
pipe_config->dpll.p2 = 10;
|
|
pipe_config->dpll.m1 = 14;
|
|
pipe_config->dpll.m2 = 8;
|
|
}
|
|
pipe_config->clock_set = true;
|
|
} else if (IS_VALLEYVIEW(dev)) {
|
|
/* FIXME: Need to figure out optimized DP clocks for vlv. */
|
|
}
|
|
}
|
|
|
|
bool
|
|
intel_dp_compute_config(struct intel_encoder *encoder,
|
|
struct intel_crtc_config *pipe_config)
|
|
{
|
|
struct drm_device *dev = encoder->base.dev;
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
|
|
struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
|
|
enum port port = dp_to_dig_port(intel_dp)->port;
|
|
struct intel_crtc *intel_crtc = encoder->new_crtc;
|
|
struct intel_connector *intel_connector = intel_dp->attached_connector;
|
|
int lane_count, clock;
|
|
int max_lane_count = drm_dp_max_lane_count(intel_dp->dpcd);
|
|
int max_clock = intel_dp_max_link_bw(intel_dp) == DP_LINK_BW_2_7 ? 1 : 0;
|
|
int bpp, mode_rate;
|
|
static int bws[2] = { DP_LINK_BW_1_62, DP_LINK_BW_2_7 };
|
|
int link_avail, link_clock;
|
|
|
|
if (HAS_PCH_SPLIT(dev) && !HAS_DDI(dev) && port != PORT_A)
|
|
pipe_config->has_pch_encoder = true;
|
|
|
|
pipe_config->has_dp_encoder = true;
|
|
|
|
if (is_edp(intel_dp) && intel_connector->panel.fixed_mode) {
|
|
intel_fixed_panel_mode(intel_connector->panel.fixed_mode,
|
|
adjusted_mode);
|
|
if (!HAS_PCH_SPLIT(dev))
|
|
intel_gmch_panel_fitting(intel_crtc, pipe_config,
|
|
intel_connector->panel.fitting_mode);
|
|
else
|
|
intel_pch_panel_fitting(intel_crtc, pipe_config,
|
|
intel_connector->panel.fitting_mode);
|
|
}
|
|
|
|
if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK)
|
|
return false;
|
|
|
|
DRM_DEBUG_KMS("DP link computation with max lane count %i "
|
|
"max bw %02x pixel clock %iKHz\n",
|
|
max_lane_count, bws[max_clock], adjusted_mode->clock);
|
|
|
|
/* Walk through all bpp values. Luckily they're all nicely spaced with 2
|
|
* bpc in between. */
|
|
bpp = pipe_config->pipe_bpp;
|
|
if (is_edp(intel_dp) && dev_priv->vbt.edp_bpp) {
|
|
DRM_DEBUG_KMS("clamping bpp for eDP panel to BIOS-provided %i\n",
|
|
dev_priv->vbt.edp_bpp);
|
|
bpp = min_t(int, bpp, dev_priv->vbt.edp_bpp);
|
|
}
|
|
|
|
for (; bpp >= 6*3; bpp -= 2*3) {
|
|
mode_rate = intel_dp_link_required(adjusted_mode->clock, bpp);
|
|
|
|
for (clock = 0; clock <= max_clock; clock++) {
|
|
for (lane_count = 1; lane_count <= max_lane_count; lane_count <<= 1) {
|
|
link_clock = drm_dp_bw_code_to_link_rate(bws[clock]);
|
|
link_avail = intel_dp_max_data_rate(link_clock,
|
|
lane_count);
|
|
|
|
if (mode_rate <= link_avail) {
|
|
goto found;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
return false;
|
|
|
|
found:
|
|
if (intel_dp->color_range_auto) {
|
|
/*
|
|
* See:
|
|
* CEA-861-E - 5.1 Default Encoding Parameters
|
|
* VESA DisplayPort Ver.1.2a - 5.1.1.1 Video Colorimetry
|
|
*/
|
|
if (bpp != 18 && drm_match_cea_mode(adjusted_mode) > 1)
|
|
intel_dp->color_range = DP_COLOR_RANGE_16_235;
|
|
else
|
|
intel_dp->color_range = 0;
|
|
}
|
|
|
|
if (intel_dp->color_range)
|
|
pipe_config->limited_color_range = true;
|
|
|
|
intel_dp->link_bw = bws[clock];
|
|
intel_dp->lane_count = lane_count;
|
|
pipe_config->pipe_bpp = bpp;
|
|
pipe_config->port_clock = drm_dp_bw_code_to_link_rate(intel_dp->link_bw);
|
|
|
|
DRM_DEBUG_KMS("DP link bw %02x lane count %d clock %d bpp %d\n",
|
|
intel_dp->link_bw, intel_dp->lane_count,
|
|
pipe_config->port_clock, bpp);
|
|
DRM_DEBUG_KMS("DP link bw required %i available %i\n",
|
|
mode_rate, link_avail);
|
|
|
|
intel_link_compute_m_n(bpp, lane_count,
|
|
adjusted_mode->clock, pipe_config->port_clock,
|
|
&pipe_config->dp_m_n);
|
|
|
|
intel_dp_set_clock(encoder, pipe_config, intel_dp->link_bw);
|
|
|
|
return true;
|
|
}
|
|
|
|
void intel_dp_init_link_config(struct intel_dp *intel_dp)
|
|
{
|
|
memset(intel_dp->link_configuration, 0, DP_LINK_CONFIGURATION_SIZE);
|
|
intel_dp->link_configuration[0] = intel_dp->link_bw;
|
|
intel_dp->link_configuration[1] = intel_dp->lane_count;
|
|
intel_dp->link_configuration[8] = DP_SET_ANSI_8B10B;
|
|
/*
|
|
* Check for DPCD version > 1.1 and enhanced framing support
|
|
*/
|
|
if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
|
|
(intel_dp->dpcd[DP_MAX_LANE_COUNT] & DP_ENHANCED_FRAME_CAP)) {
|
|
intel_dp->link_configuration[1] |= DP_LANE_COUNT_ENHANCED_FRAME_EN;
|
|
}
|
|
}
|
|
|
|
static void ironlake_set_pll_cpu_edp(struct intel_dp *intel_dp)
|
|
{
|
|
struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
|
|
struct intel_crtc *crtc = to_intel_crtc(dig_port->base.base.crtc);
|
|
struct drm_device *dev = crtc->base.dev;
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
u32 dpa_ctl;
|
|
|
|
DRM_DEBUG_KMS("eDP PLL enable for clock %d\n", crtc->config.port_clock);
|
|
dpa_ctl = I915_READ(DP_A);
|
|
dpa_ctl &= ~DP_PLL_FREQ_MASK;
|
|
|
|
if (crtc->config.port_clock == 162000) {
|
|
/* For a long time we've carried around a ILK-DevA w/a for the
|
|
* 160MHz clock. If we're really unlucky, it's still required.
|
|
*/
|
|
DRM_DEBUG_KMS("160MHz cpu eDP clock, might need ilk devA w/a\n");
|
|
dpa_ctl |= DP_PLL_FREQ_160MHZ;
|
|
intel_dp->DP |= DP_PLL_FREQ_160MHZ;
|
|
} else {
|
|
dpa_ctl |= DP_PLL_FREQ_270MHZ;
|
|
intel_dp->DP |= DP_PLL_FREQ_270MHZ;
|
|
}
|
|
|
|
I915_WRITE(DP_A, dpa_ctl);
|
|
|
|
POSTING_READ(DP_A);
|
|
udelay(500);
|
|
}
|
|
|
|
static void intel_dp_mode_set(struct intel_encoder *encoder)
|
|
{
|
|
struct drm_device *dev = encoder->base.dev;
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
|
|
enum port port = dp_to_dig_port(intel_dp)->port;
|
|
struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
|
|
struct drm_display_mode *adjusted_mode = &crtc->config.adjusted_mode;
|
|
|
|
/*
|
|
* There are four kinds of DP registers:
|
|
*
|
|
* IBX PCH
|
|
* SNB CPU
|
|
* IVB CPU
|
|
* CPT PCH
|
|
*
|
|
* IBX PCH and CPU are the same for almost everything,
|
|
* except that the CPU DP PLL is configured in this
|
|
* register
|
|
*
|
|
* CPT PCH is quite different, having many bits moved
|
|
* to the TRANS_DP_CTL register instead. That
|
|
* configuration happens (oddly) in ironlake_pch_enable
|
|
*/
|
|
|
|
/* Preserve the BIOS-computed detected bit. This is
|
|
* supposed to be read-only.
|
|
*/
|
|
intel_dp->DP = I915_READ(intel_dp->output_reg) & DP_DETECTED;
|
|
|
|
/* Handle DP bits in common between all three register formats */
|
|
intel_dp->DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
|
|
intel_dp->DP |= DP_PORT_WIDTH(intel_dp->lane_count);
|
|
|
|
if (intel_dp->has_audio) {
|
|
DRM_DEBUG_DRIVER("Enabling DP audio on pipe %c\n",
|
|
pipe_name(crtc->pipe));
|
|
intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE;
|
|
intel_write_eld(&encoder->base, adjusted_mode);
|
|
}
|
|
|
|
intel_dp_init_link_config(intel_dp);
|
|
|
|
/* Split out the IBX/CPU vs CPT settings */
|
|
|
|
if (port == PORT_A && IS_GEN7(dev) && !IS_VALLEYVIEW(dev)) {
|
|
if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
|
|
intel_dp->DP |= DP_SYNC_HS_HIGH;
|
|
if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
|
|
intel_dp->DP |= DP_SYNC_VS_HIGH;
|
|
intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
|
|
|
|
if (intel_dp->link_configuration[1] & DP_LANE_COUNT_ENHANCED_FRAME_EN)
|
|
intel_dp->DP |= DP_ENHANCED_FRAMING;
|
|
|
|
intel_dp->DP |= crtc->pipe << 29;
|
|
} else if (!HAS_PCH_CPT(dev) || port == PORT_A) {
|
|
if (!HAS_PCH_SPLIT(dev) && !IS_VALLEYVIEW(dev))
|
|
intel_dp->DP |= intel_dp->color_range;
|
|
|
|
if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
|
|
intel_dp->DP |= DP_SYNC_HS_HIGH;
|
|
if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
|
|
intel_dp->DP |= DP_SYNC_VS_HIGH;
|
|
intel_dp->DP |= DP_LINK_TRAIN_OFF;
|
|
|
|
if (intel_dp->link_configuration[1] & DP_LANE_COUNT_ENHANCED_FRAME_EN)
|
|
intel_dp->DP |= DP_ENHANCED_FRAMING;
|
|
|
|
if (crtc->pipe == 1)
|
|
intel_dp->DP |= DP_PIPEB_SELECT;
|
|
} else {
|
|
intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
|
|
}
|
|
|
|
if (port == PORT_A && !IS_VALLEYVIEW(dev))
|
|
ironlake_set_pll_cpu_edp(intel_dp);
|
|
}
|
|
|
|
#define IDLE_ON_MASK (PP_ON | 0 | PP_SEQUENCE_MASK | 0 | PP_SEQUENCE_STATE_MASK)
|
|
#define IDLE_ON_VALUE (PP_ON | 0 | PP_SEQUENCE_NONE | 0 | PP_SEQUENCE_STATE_ON_IDLE)
|
|
|
|
#define IDLE_OFF_MASK (PP_ON | 0 | PP_SEQUENCE_MASK | 0 | PP_SEQUENCE_STATE_MASK)
|
|
#define IDLE_OFF_VALUE (0 | 0 | PP_SEQUENCE_NONE | 0 | PP_SEQUENCE_STATE_OFF_IDLE)
|
|
|
|
#define IDLE_CYCLE_MASK (PP_ON | 0 | PP_SEQUENCE_MASK | PP_CYCLE_DELAY_ACTIVE | PP_SEQUENCE_STATE_MASK)
|
|
#define IDLE_CYCLE_VALUE (0 | 0 | PP_SEQUENCE_NONE | 0 | PP_SEQUENCE_STATE_OFF_IDLE)
|
|
|
|
static void ironlake_wait_panel_status(struct intel_dp *intel_dp,
|
|
u32 mask,
|
|
u32 value)
|
|
{
|
|
struct drm_device *dev = intel_dp_to_dev(intel_dp);
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
u32 pp_stat_reg, pp_ctrl_reg;
|
|
|
|
pp_stat_reg = IS_VALLEYVIEW(dev) ? PIPEA_PP_STATUS : PCH_PP_STATUS;
|
|
pp_ctrl_reg = IS_VALLEYVIEW(dev) ? PIPEA_PP_CONTROL : PCH_PP_CONTROL;
|
|
|
|
DRM_DEBUG_KMS("mask %08x value %08x status %08x control %08x\n",
|
|
mask, value,
|
|
I915_READ(pp_stat_reg),
|
|
I915_READ(pp_ctrl_reg));
|
|
|
|
if (_wait_for((I915_READ(pp_stat_reg) & mask) == value, 5000, 10)) {
|
|
DRM_ERROR("Panel status timeout: status %08x control %08x\n",
|
|
I915_READ(pp_stat_reg),
|
|
I915_READ(pp_ctrl_reg));
|
|
}
|
|
}
|
|
|
|
static void ironlake_wait_panel_on(struct intel_dp *intel_dp)
|
|
{
|
|
DRM_DEBUG_KMS("Wait for panel power on\n");
|
|
ironlake_wait_panel_status(intel_dp, IDLE_ON_MASK, IDLE_ON_VALUE);
|
|
}
|
|
|
|
static void ironlake_wait_panel_off(struct intel_dp *intel_dp)
|
|
{
|
|
DRM_DEBUG_KMS("Wait for panel power off time\n");
|
|
ironlake_wait_panel_status(intel_dp, IDLE_OFF_MASK, IDLE_OFF_VALUE);
|
|
}
|
|
|
|
static void ironlake_wait_panel_power_cycle(struct intel_dp *intel_dp)
|
|
{
|
|
DRM_DEBUG_KMS("Wait for panel power cycle\n");
|
|
ironlake_wait_panel_status(intel_dp, IDLE_CYCLE_MASK, IDLE_CYCLE_VALUE);
|
|
}
|
|
|
|
|
|
/* Read the current pp_control value, unlocking the register if it
|
|
* is locked
|
|
*/
|
|
|
|
static u32 ironlake_get_pp_control(struct intel_dp *intel_dp)
|
|
{
|
|
struct drm_device *dev = intel_dp_to_dev(intel_dp);
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
u32 control;
|
|
u32 pp_ctrl_reg;
|
|
|
|
pp_ctrl_reg = IS_VALLEYVIEW(dev) ? PIPEA_PP_CONTROL : PCH_PP_CONTROL;
|
|
control = I915_READ(pp_ctrl_reg);
|
|
|
|
control &= ~PANEL_UNLOCK_MASK;
|
|
control |= PANEL_UNLOCK_REGS;
|
|
return control;
|
|
}
|
|
|
|
void ironlake_edp_panel_vdd_on(struct intel_dp *intel_dp)
|
|
{
|
|
struct drm_device *dev = intel_dp_to_dev(intel_dp);
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
u32 pp;
|
|
u32 pp_stat_reg, pp_ctrl_reg;
|
|
|
|
if (!is_edp(intel_dp))
|
|
return;
|
|
DRM_DEBUG_KMS("Turn eDP VDD on\n");
|
|
|
|
WARN(intel_dp->want_panel_vdd,
|
|
"eDP VDD already requested on\n");
|
|
|
|
intel_dp->want_panel_vdd = true;
|
|
|
|
if (ironlake_edp_have_panel_vdd(intel_dp)) {
|
|
DRM_DEBUG_KMS("eDP VDD already on\n");
|
|
return;
|
|
}
|
|
|
|
if (!ironlake_edp_have_panel_power(intel_dp))
|
|
ironlake_wait_panel_power_cycle(intel_dp);
|
|
|
|
pp = ironlake_get_pp_control(intel_dp);
|
|
pp |= EDP_FORCE_VDD;
|
|
|
|
pp_stat_reg = IS_VALLEYVIEW(dev) ? PIPEA_PP_STATUS : PCH_PP_STATUS;
|
|
pp_ctrl_reg = IS_VALLEYVIEW(dev) ? PIPEA_PP_CONTROL : PCH_PP_CONTROL;
|
|
|
|
I915_WRITE(pp_ctrl_reg, pp);
|
|
POSTING_READ(pp_ctrl_reg);
|
|
DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
|
|
I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg));
|
|
/*
|
|
* If the panel wasn't on, delay before accessing aux channel
|
|
*/
|
|
if (!ironlake_edp_have_panel_power(intel_dp)) {
|
|
DRM_DEBUG_KMS("eDP was not running\n");
|
|
msleep(intel_dp->panel_power_up_delay);
|
|
}
|
|
}
|
|
|
|
static void ironlake_panel_vdd_off_sync(struct intel_dp *intel_dp)
|
|
{
|
|
struct drm_device *dev = intel_dp_to_dev(intel_dp);
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
u32 pp;
|
|
u32 pp_stat_reg, pp_ctrl_reg;
|
|
|
|
WARN_ON(!mutex_is_locked(&dev->mode_config.mutex));
|
|
|
|
if (!intel_dp->want_panel_vdd && ironlake_edp_have_panel_vdd(intel_dp)) {
|
|
pp = ironlake_get_pp_control(intel_dp);
|
|
pp &= ~EDP_FORCE_VDD;
|
|
|
|
pp_stat_reg = IS_VALLEYVIEW(dev) ? PIPEA_PP_STATUS : PCH_PP_STATUS;
|
|
pp_ctrl_reg = IS_VALLEYVIEW(dev) ? PIPEA_PP_CONTROL : PCH_PP_CONTROL;
|
|
|
|
I915_WRITE(pp_ctrl_reg, pp);
|
|
POSTING_READ(pp_ctrl_reg);
|
|
|
|
/* Make sure sequencer is idle before allowing subsequent activity */
|
|
DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
|
|
I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg));
|
|
msleep(intel_dp->panel_power_down_delay);
|
|
}
|
|
}
|
|
|
|
static void ironlake_panel_vdd_work(struct work_struct *__work)
|
|
{
|
|
struct intel_dp *intel_dp = container_of(to_delayed_work(__work),
|
|
struct intel_dp, panel_vdd_work);
|
|
struct drm_device *dev = intel_dp_to_dev(intel_dp);
|
|
|
|
mutex_lock(&dev->mode_config.mutex);
|
|
ironlake_panel_vdd_off_sync(intel_dp);
|
|
mutex_unlock(&dev->mode_config.mutex);
|
|
}
|
|
|
|
void ironlake_edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync)
|
|
{
|
|
if (!is_edp(intel_dp))
|
|
return;
|
|
|
|
DRM_DEBUG_KMS("Turn eDP VDD off %d\n", intel_dp->want_panel_vdd);
|
|
WARN(!intel_dp->want_panel_vdd, "eDP VDD not forced on");
|
|
|
|
intel_dp->want_panel_vdd = false;
|
|
|
|
if (sync) {
|
|
ironlake_panel_vdd_off_sync(intel_dp);
|
|
} else {
|
|
/*
|
|
* Queue the timer to fire a long
|
|
* time from now (relative to the power down delay)
|
|
* to keep the panel power up across a sequence of operations
|
|
*/
|
|
schedule_delayed_work(&intel_dp->panel_vdd_work,
|
|
msecs_to_jiffies(intel_dp->panel_power_cycle_delay * 5));
|
|
}
|
|
}
|
|
|
|
void ironlake_edp_panel_on(struct intel_dp *intel_dp)
|
|
{
|
|
struct drm_device *dev = intel_dp_to_dev(intel_dp);
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
u32 pp;
|
|
u32 pp_ctrl_reg;
|
|
|
|
if (!is_edp(intel_dp))
|
|
return;
|
|
|
|
DRM_DEBUG_KMS("Turn eDP power on\n");
|
|
|
|
if (ironlake_edp_have_panel_power(intel_dp)) {
|
|
DRM_DEBUG_KMS("eDP power already on\n");
|
|
return;
|
|
}
|
|
|
|
ironlake_wait_panel_power_cycle(intel_dp);
|
|
|
|
pp = ironlake_get_pp_control(intel_dp);
|
|
if (IS_GEN5(dev)) {
|
|
/* ILK workaround: disable reset around power sequence */
|
|
pp &= ~PANEL_POWER_RESET;
|
|
I915_WRITE(PCH_PP_CONTROL, pp);
|
|
POSTING_READ(PCH_PP_CONTROL);
|
|
}
|
|
|
|
pp |= POWER_TARGET_ON;
|
|
if (!IS_GEN5(dev))
|
|
pp |= PANEL_POWER_RESET;
|
|
|
|
pp_ctrl_reg = IS_VALLEYVIEW(dev) ? PIPEA_PP_CONTROL : PCH_PP_CONTROL;
|
|
|
|
I915_WRITE(pp_ctrl_reg, pp);
|
|
POSTING_READ(pp_ctrl_reg);
|
|
|
|
ironlake_wait_panel_on(intel_dp);
|
|
|
|
if (IS_GEN5(dev)) {
|
|
pp |= PANEL_POWER_RESET; /* restore panel reset bit */
|
|
I915_WRITE(PCH_PP_CONTROL, pp);
|
|
POSTING_READ(PCH_PP_CONTROL);
|
|
}
|
|
}
|
|
|
|
void ironlake_edp_panel_off(struct intel_dp *intel_dp)
|
|
{
|
|
struct drm_device *dev = intel_dp_to_dev(intel_dp);
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
u32 pp;
|
|
u32 pp_ctrl_reg;
|
|
|
|
if (!is_edp(intel_dp))
|
|
return;
|
|
|
|
DRM_DEBUG_KMS("Turn eDP power off\n");
|
|
|
|
WARN(!intel_dp->want_panel_vdd, "Need VDD to turn off panel\n");
|
|
|
|
pp = ironlake_get_pp_control(intel_dp);
|
|
/* We need to switch off panel power _and_ force vdd, for otherwise some
|
|
* panels get very unhappy and cease to work. */
|
|
pp &= ~(POWER_TARGET_ON | EDP_FORCE_VDD | PANEL_POWER_RESET | EDP_BLC_ENABLE);
|
|
|
|
pp_ctrl_reg = IS_VALLEYVIEW(dev) ? PIPEA_PP_CONTROL : PCH_PP_CONTROL;
|
|
|
|
I915_WRITE(pp_ctrl_reg, pp);
|
|
POSTING_READ(pp_ctrl_reg);
|
|
|
|
intel_dp->want_panel_vdd = false;
|
|
|
|
ironlake_wait_panel_off(intel_dp);
|
|
}
|
|
|
|
void ironlake_edp_backlight_on(struct intel_dp *intel_dp)
|
|
{
|
|
struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
|
|
struct drm_device *dev = intel_dig_port->base.base.dev;
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
int pipe = to_intel_crtc(intel_dig_port->base.base.crtc)->pipe;
|
|
u32 pp;
|
|
u32 pp_ctrl_reg;
|
|
|
|
if (!is_edp(intel_dp))
|
|
return;
|
|
|
|
DRM_DEBUG_KMS("\n");
|
|
/*
|
|
* If we enable the backlight right away following a panel power
|
|
* on, we may see slight flicker as the panel syncs with the eDP
|
|
* link. So delay a bit to make sure the image is solid before
|
|
* allowing it to appear.
|
|
*/
|
|
msleep(intel_dp->backlight_on_delay);
|
|
pp = ironlake_get_pp_control(intel_dp);
|
|
pp |= EDP_BLC_ENABLE;
|
|
|
|
pp_ctrl_reg = IS_VALLEYVIEW(dev) ? PIPEA_PP_CONTROL : PCH_PP_CONTROL;
|
|
|
|
I915_WRITE(pp_ctrl_reg, pp);
|
|
POSTING_READ(pp_ctrl_reg);
|
|
|
|
intel_panel_enable_backlight(dev, pipe);
|
|
}
|
|
|
|
void ironlake_edp_backlight_off(struct intel_dp *intel_dp)
|
|
{
|
|
struct drm_device *dev = intel_dp_to_dev(intel_dp);
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
u32 pp;
|
|
u32 pp_ctrl_reg;
|
|
|
|
if (!is_edp(intel_dp))
|
|
return;
|
|
|
|
intel_panel_disable_backlight(dev);
|
|
|
|
DRM_DEBUG_KMS("\n");
|
|
pp = ironlake_get_pp_control(intel_dp);
|
|
pp &= ~EDP_BLC_ENABLE;
|
|
|
|
pp_ctrl_reg = IS_VALLEYVIEW(dev) ? PIPEA_PP_CONTROL : PCH_PP_CONTROL;
|
|
|
|
I915_WRITE(pp_ctrl_reg, pp);
|
|
POSTING_READ(pp_ctrl_reg);
|
|
msleep(intel_dp->backlight_off_delay);
|
|
}
|
|
|
|
static void ironlake_edp_pll_on(struct intel_dp *intel_dp)
|
|
{
|
|
struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
|
|
struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
|
|
struct drm_device *dev = crtc->dev;
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
u32 dpa_ctl;
|
|
|
|
assert_pipe_disabled(dev_priv,
|
|
to_intel_crtc(crtc)->pipe);
|
|
|
|
DRM_DEBUG_KMS("\n");
|
|
dpa_ctl = I915_READ(DP_A);
|
|
WARN(dpa_ctl & DP_PLL_ENABLE, "dp pll on, should be off\n");
|
|
WARN(dpa_ctl & DP_PORT_EN, "dp port still on, should be off\n");
|
|
|
|
/* We don't adjust intel_dp->DP while tearing down the link, to
|
|
* facilitate link retraining (e.g. after hotplug). Hence clear all
|
|
* enable bits here to ensure that we don't enable too much. */
|
|
intel_dp->DP &= ~(DP_PORT_EN | DP_AUDIO_OUTPUT_ENABLE);
|
|
intel_dp->DP |= DP_PLL_ENABLE;
|
|
I915_WRITE(DP_A, intel_dp->DP);
|
|
POSTING_READ(DP_A);
|
|
udelay(200);
|
|
}
|
|
|
|
static void ironlake_edp_pll_off(struct intel_dp *intel_dp)
|
|
{
|
|
struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
|
|
struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
|
|
struct drm_device *dev = crtc->dev;
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
u32 dpa_ctl;
|
|
|
|
assert_pipe_disabled(dev_priv,
|
|
to_intel_crtc(crtc)->pipe);
|
|
|
|
dpa_ctl = I915_READ(DP_A);
|
|
WARN((dpa_ctl & DP_PLL_ENABLE) == 0,
|
|
"dp pll off, should be on\n");
|
|
WARN(dpa_ctl & DP_PORT_EN, "dp port still on, should be off\n");
|
|
|
|
/* We can't rely on the value tracked for the DP register in
|
|
* intel_dp->DP because link_down must not change that (otherwise link
|
|
* re-training will fail. */
|
|
dpa_ctl &= ~DP_PLL_ENABLE;
|
|
I915_WRITE(DP_A, dpa_ctl);
|
|
POSTING_READ(DP_A);
|
|
udelay(200);
|
|
}
|
|
|
|
/* If the sink supports it, try to set the power state appropriately */
|
|
void intel_dp_sink_dpms(struct intel_dp *intel_dp, int mode)
|
|
{
|
|
int ret, i;
|
|
|
|
/* Should have a valid DPCD by this point */
|
|
if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
|
|
return;
|
|
|
|
if (mode != DRM_MODE_DPMS_ON) {
|
|
ret = intel_dp_aux_native_write_1(intel_dp, DP_SET_POWER,
|
|
DP_SET_POWER_D3);
|
|
if (ret != 1)
|
|
DRM_DEBUG_DRIVER("failed to write sink power state\n");
|
|
} else {
|
|
/*
|
|
* When turning on, we need to retry for 1ms to give the sink
|
|
* time to wake up.
|
|
*/
|
|
for (i = 0; i < 3; i++) {
|
|
ret = intel_dp_aux_native_write_1(intel_dp,
|
|
DP_SET_POWER,
|
|
DP_SET_POWER_D0);
|
|
if (ret == 1)
|
|
break;
|
|
msleep(1);
|
|
}
|
|
}
|
|
}
|
|
|
|
static bool intel_dp_get_hw_state(struct intel_encoder *encoder,
|
|
enum pipe *pipe)
|
|
{
|
|
struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
|
|
enum port port = dp_to_dig_port(intel_dp)->port;
|
|
struct drm_device *dev = encoder->base.dev;
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
u32 tmp = I915_READ(intel_dp->output_reg);
|
|
|
|
if (!(tmp & DP_PORT_EN))
|
|
return false;
|
|
|
|
if (port == PORT_A && IS_GEN7(dev) && !IS_VALLEYVIEW(dev)) {
|
|
*pipe = PORT_TO_PIPE_CPT(tmp);
|
|
} else if (!HAS_PCH_CPT(dev) || port == PORT_A) {
|
|
*pipe = PORT_TO_PIPE(tmp);
|
|
} else {
|
|
u32 trans_sel;
|
|
u32 trans_dp;
|
|
int i;
|
|
|
|
switch (intel_dp->output_reg) {
|
|
case PCH_DP_B:
|
|
trans_sel = TRANS_DP_PORT_SEL_B;
|
|
break;
|
|
case PCH_DP_C:
|
|
trans_sel = TRANS_DP_PORT_SEL_C;
|
|
break;
|
|
case PCH_DP_D:
|
|
trans_sel = TRANS_DP_PORT_SEL_D;
|
|
break;
|
|
default:
|
|
return true;
|
|
}
|
|
|
|
for_each_pipe(i) {
|
|
trans_dp = I915_READ(TRANS_DP_CTL(i));
|
|
if ((trans_dp & TRANS_DP_PORT_SEL_MASK) == trans_sel) {
|
|
*pipe = i;
|
|
return true;
|
|
}
|
|
}
|
|
|
|
DRM_DEBUG_KMS("No pipe for dp port 0x%x found\n",
|
|
intel_dp->output_reg);
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
static void intel_dp_get_config(struct intel_encoder *encoder,
|
|
struct intel_crtc_config *pipe_config)
|
|
{
|
|
struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
|
|
u32 tmp, flags = 0;
|
|
struct drm_device *dev = encoder->base.dev;
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
enum port port = dp_to_dig_port(intel_dp)->port;
|
|
struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
|
|
|
|
if ((port == PORT_A) || !HAS_PCH_CPT(dev)) {
|
|
tmp = I915_READ(intel_dp->output_reg);
|
|
if (tmp & DP_SYNC_HS_HIGH)
|
|
flags |= DRM_MODE_FLAG_PHSYNC;
|
|
else
|
|
flags |= DRM_MODE_FLAG_NHSYNC;
|
|
|
|
if (tmp & DP_SYNC_VS_HIGH)
|
|
flags |= DRM_MODE_FLAG_PVSYNC;
|
|
else
|
|
flags |= DRM_MODE_FLAG_NVSYNC;
|
|
} else {
|
|
tmp = I915_READ(TRANS_DP_CTL(crtc->pipe));
|
|
if (tmp & TRANS_DP_HSYNC_ACTIVE_HIGH)
|
|
flags |= DRM_MODE_FLAG_PHSYNC;
|
|
else
|
|
flags |= DRM_MODE_FLAG_NHSYNC;
|
|
|
|
if (tmp & TRANS_DP_VSYNC_ACTIVE_HIGH)
|
|
flags |= DRM_MODE_FLAG_PVSYNC;
|
|
else
|
|
flags |= DRM_MODE_FLAG_NVSYNC;
|
|
}
|
|
|
|
pipe_config->adjusted_mode.flags |= flags;
|
|
|
|
if (dp_to_dig_port(intel_dp)->port == PORT_A) {
|
|
if ((I915_READ(DP_A) & DP_PLL_FREQ_MASK) == DP_PLL_FREQ_160MHZ)
|
|
pipe_config->port_clock = 162000;
|
|
else
|
|
pipe_config->port_clock = 270000;
|
|
}
|
|
|
|
if (is_edp(intel_dp) && dev_priv->vbt.edp_bpp &&
|
|
pipe_config->pipe_bpp > dev_priv->vbt.edp_bpp) {
|
|
/*
|
|
* This is a big fat ugly hack.
|
|
*
|
|
* Some machines in UEFI boot mode provide us a VBT that has 18
|
|
* bpp and 1.62 GHz link bandwidth for eDP, which for reasons
|
|
* unknown we fail to light up. Yet the same BIOS boots up with
|
|
* 24 bpp and 2.7 GHz link. Use the same bpp as the BIOS uses as
|
|
* max, not what it tells us to use.
|
|
*
|
|
* Note: This will still be broken if the eDP panel is not lit
|
|
* up by the BIOS, and thus we can't get the mode at module
|
|
* load.
|
|
*/
|
|
DRM_DEBUG_KMS("pipe has %d bpp for eDP panel, overriding BIOS-provided max %d bpp\n",
|
|
pipe_config->pipe_bpp, dev_priv->vbt.edp_bpp);
|
|
dev_priv->vbt.edp_bpp = pipe_config->pipe_bpp;
|
|
}
|
|
}
|
|
|
|
static bool is_edp_psr(struct intel_dp *intel_dp)
|
|
{
|
|
return is_edp(intel_dp) &&
|
|
intel_dp->psr_dpcd[0] & DP_PSR_IS_SUPPORTED;
|
|
}
|
|
|
|
static bool intel_edp_is_psr_enabled(struct drm_device *dev)
|
|
{
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
|
|
if (!IS_HASWELL(dev))
|
|
return false;
|
|
|
|
return I915_READ(EDP_PSR_CTL) & EDP_PSR_ENABLE;
|
|
}
|
|
|
|
static void intel_edp_psr_write_vsc(struct intel_dp *intel_dp,
|
|
struct edp_vsc_psr *vsc_psr)
|
|
{
|
|
struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
|
|
struct drm_device *dev = dig_port->base.base.dev;
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
struct intel_crtc *crtc = to_intel_crtc(dig_port->base.base.crtc);
|
|
u32 ctl_reg = HSW_TVIDEO_DIP_CTL(crtc->config.cpu_transcoder);
|
|
u32 data_reg = HSW_TVIDEO_DIP_VSC_DATA(crtc->config.cpu_transcoder);
|
|
uint32_t *data = (uint32_t *) vsc_psr;
|
|
unsigned int i;
|
|
|
|
/* As per BSPec (Pipe Video Data Island Packet), we need to disable
|
|
the video DIP being updated before program video DIP data buffer
|
|
registers for DIP being updated. */
|
|
I915_WRITE(ctl_reg, 0);
|
|
POSTING_READ(ctl_reg);
|
|
|
|
for (i = 0; i < VIDEO_DIP_VSC_DATA_SIZE; i += 4) {
|
|
if (i < sizeof(struct edp_vsc_psr))
|
|
I915_WRITE(data_reg + i, *data++);
|
|
else
|
|
I915_WRITE(data_reg + i, 0);
|
|
}
|
|
|
|
I915_WRITE(ctl_reg, VIDEO_DIP_ENABLE_VSC_HSW);
|
|
POSTING_READ(ctl_reg);
|
|
}
|
|
|
|
static void intel_edp_psr_setup(struct intel_dp *intel_dp)
|
|
{
|
|
struct drm_device *dev = intel_dp_to_dev(intel_dp);
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
struct edp_vsc_psr psr_vsc;
|
|
|
|
if (intel_dp->psr_setup_done)
|
|
return;
|
|
|
|
/* Prepare VSC packet as per EDP 1.3 spec, Table 3.10 */
|
|
memset(&psr_vsc, 0, sizeof(psr_vsc));
|
|
psr_vsc.sdp_header.HB0 = 0;
|
|
psr_vsc.sdp_header.HB1 = 0x7;
|
|
psr_vsc.sdp_header.HB2 = 0x2;
|
|
psr_vsc.sdp_header.HB3 = 0x8;
|
|
intel_edp_psr_write_vsc(intel_dp, &psr_vsc);
|
|
|
|
/* Avoid continuous PSR exit by masking memup and hpd */
|
|
I915_WRITE(EDP_PSR_DEBUG_CTL, EDP_PSR_DEBUG_MASK_MEMUP |
|
|
EDP_PSR_DEBUG_MASK_HPD | EDP_PSR_DEBUG_MASK_LPSP);
|
|
|
|
intel_dp->psr_setup_done = true;
|
|
}
|
|
|
|
static void intel_edp_psr_enable_sink(struct intel_dp *intel_dp)
|
|
{
|
|
struct drm_device *dev = intel_dp_to_dev(intel_dp);
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
uint32_t aux_clock_divider = get_aux_clock_divider(intel_dp, 0);
|
|
int precharge = 0x3;
|
|
int msg_size = 5; /* Header(4) + Message(1) */
|
|
|
|
/* Enable PSR in sink */
|
|
if (intel_dp->psr_dpcd[1] & DP_PSR_NO_TRAIN_ON_EXIT)
|
|
intel_dp_aux_native_write_1(intel_dp, DP_PSR_EN_CFG,
|
|
DP_PSR_ENABLE &
|
|
~DP_PSR_MAIN_LINK_ACTIVE);
|
|
else
|
|
intel_dp_aux_native_write_1(intel_dp, DP_PSR_EN_CFG,
|
|
DP_PSR_ENABLE |
|
|
DP_PSR_MAIN_LINK_ACTIVE);
|
|
|
|
/* Setup AUX registers */
|
|
I915_WRITE(EDP_PSR_AUX_DATA1, EDP_PSR_DPCD_COMMAND);
|
|
I915_WRITE(EDP_PSR_AUX_DATA2, EDP_PSR_DPCD_NORMAL_OPERATION);
|
|
I915_WRITE(EDP_PSR_AUX_CTL,
|
|
DP_AUX_CH_CTL_TIME_OUT_400us |
|
|
(msg_size << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
|
|
(precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
|
|
(aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT));
|
|
}
|
|
|
|
static void intel_edp_psr_enable_source(struct intel_dp *intel_dp)
|
|
{
|
|
struct drm_device *dev = intel_dp_to_dev(intel_dp);
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
uint32_t max_sleep_time = 0x1f;
|
|
uint32_t idle_frames = 1;
|
|
uint32_t val = 0x0;
|
|
|
|
if (intel_dp->psr_dpcd[1] & DP_PSR_NO_TRAIN_ON_EXIT) {
|
|
val |= EDP_PSR_LINK_STANDBY;
|
|
val |= EDP_PSR_TP2_TP3_TIME_0us;
|
|
val |= EDP_PSR_TP1_TIME_0us;
|
|
val |= EDP_PSR_SKIP_AUX_EXIT;
|
|
} else
|
|
val |= EDP_PSR_LINK_DISABLE;
|
|
|
|
I915_WRITE(EDP_PSR_CTL, val |
|
|
EDP_PSR_MIN_LINK_ENTRY_TIME_8_LINES |
|
|
max_sleep_time << EDP_PSR_MAX_SLEEP_TIME_SHIFT |
|
|
idle_frames << EDP_PSR_IDLE_FRAME_SHIFT |
|
|
EDP_PSR_ENABLE);
|
|
}
|
|
|
|
static bool intel_edp_psr_match_conditions(struct intel_dp *intel_dp)
|
|
{
|
|
struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
|
|
struct drm_device *dev = dig_port->base.base.dev;
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
struct drm_crtc *crtc = dig_port->base.base.crtc;
|
|
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
|
|
struct drm_i915_gem_object *obj = to_intel_framebuffer(crtc->fb)->obj;
|
|
struct intel_encoder *intel_encoder = &dp_to_dig_port(intel_dp)->base;
|
|
|
|
if (!IS_HASWELL(dev)) {
|
|
DRM_DEBUG_KMS("PSR not supported on this platform\n");
|
|
dev_priv->no_psr_reason = PSR_NO_SOURCE;
|
|
return false;
|
|
}
|
|
|
|
if ((intel_encoder->type != INTEL_OUTPUT_EDP) ||
|
|
(dig_port->port != PORT_A)) {
|
|
DRM_DEBUG_KMS("HSW ties PSR to DDI A (eDP)\n");
|
|
dev_priv->no_psr_reason = PSR_HSW_NOT_DDIA;
|
|
return false;
|
|
}
|
|
|
|
if (!is_edp_psr(intel_dp)) {
|
|
DRM_DEBUG_KMS("PSR not supported by this panel\n");
|
|
dev_priv->no_psr_reason = PSR_NO_SINK;
|
|
return false;
|
|
}
|
|
|
|
if (!i915_enable_psr) {
|
|
DRM_DEBUG_KMS("PSR disable by flag\n");
|
|
dev_priv->no_psr_reason = PSR_MODULE_PARAM;
|
|
return false;
|
|
}
|
|
|
|
crtc = dig_port->base.base.crtc;
|
|
if (crtc == NULL) {
|
|
DRM_DEBUG_KMS("crtc not active for PSR\n");
|
|
dev_priv->no_psr_reason = PSR_CRTC_NOT_ACTIVE;
|
|
return false;
|
|
}
|
|
|
|
intel_crtc = to_intel_crtc(crtc);
|
|
if (!intel_crtc->active || !crtc->fb || !crtc->mode.clock) {
|
|
DRM_DEBUG_KMS("crtc not active for PSR\n");
|
|
dev_priv->no_psr_reason = PSR_CRTC_NOT_ACTIVE;
|
|
return false;
|
|
}
|
|
|
|
obj = to_intel_framebuffer(crtc->fb)->obj;
|
|
if (obj->tiling_mode != I915_TILING_X ||
|
|
obj->fence_reg == I915_FENCE_REG_NONE) {
|
|
DRM_DEBUG_KMS("PSR condition failed: fb not tiled or fenced\n");
|
|
dev_priv->no_psr_reason = PSR_NOT_TILED;
|
|
return false;
|
|
}
|
|
|
|
if (I915_READ(SPRCTL(intel_crtc->pipe)) & SPRITE_ENABLE) {
|
|
DRM_DEBUG_KMS("PSR condition failed: Sprite is Enabled\n");
|
|
dev_priv->no_psr_reason = PSR_SPRITE_ENABLED;
|
|
return false;
|
|
}
|
|
|
|
if (I915_READ(HSW_STEREO_3D_CTL(intel_crtc->config.cpu_transcoder)) &
|
|
S3D_ENABLE) {
|
|
DRM_DEBUG_KMS("PSR condition failed: Stereo 3D is Enabled\n");
|
|
dev_priv->no_psr_reason = PSR_S3D_ENABLED;
|
|
return false;
|
|
}
|
|
|
|
if (crtc->mode.flags & DRM_MODE_FLAG_INTERLACE) {
|
|
DRM_DEBUG_KMS("PSR condition failed: Interlaced is Enabled\n");
|
|
dev_priv->no_psr_reason = PSR_INTERLACED_ENABLED;
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
static void intel_edp_psr_do_enable(struct intel_dp *intel_dp)
|
|
{
|
|
struct drm_device *dev = intel_dp_to_dev(intel_dp);
|
|
|
|
if (!intel_edp_psr_match_conditions(intel_dp) ||
|
|
intel_edp_is_psr_enabled(dev))
|
|
return;
|
|
|
|
/* Setup PSR once */
|
|
intel_edp_psr_setup(intel_dp);
|
|
|
|
/* Enable PSR on the panel */
|
|
intel_edp_psr_enable_sink(intel_dp);
|
|
|
|
/* Enable PSR on the host */
|
|
intel_edp_psr_enable_source(intel_dp);
|
|
}
|
|
|
|
void intel_edp_psr_enable(struct intel_dp *intel_dp)
|
|
{
|
|
struct drm_device *dev = intel_dp_to_dev(intel_dp);
|
|
|
|
if (intel_edp_psr_match_conditions(intel_dp) &&
|
|
!intel_edp_is_psr_enabled(dev))
|
|
intel_edp_psr_do_enable(intel_dp);
|
|
}
|
|
|
|
void intel_edp_psr_disable(struct intel_dp *intel_dp)
|
|
{
|
|
struct drm_device *dev = intel_dp_to_dev(intel_dp);
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
|
|
if (!intel_edp_is_psr_enabled(dev))
|
|
return;
|
|
|
|
I915_WRITE(EDP_PSR_CTL, I915_READ(EDP_PSR_CTL) & ~EDP_PSR_ENABLE);
|
|
|
|
/* Wait till PSR is idle */
|
|
if (_wait_for((I915_READ(EDP_PSR_STATUS_CTL) &
|
|
EDP_PSR_STATUS_STATE_MASK) == 0, 2000, 10))
|
|
DRM_ERROR("Timed out waiting for PSR Idle State\n");
|
|
}
|
|
|
|
void intel_edp_psr_update(struct drm_device *dev)
|
|
{
|
|
struct intel_encoder *encoder;
|
|
struct intel_dp *intel_dp = NULL;
|
|
|
|
list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head)
|
|
if (encoder->type == INTEL_OUTPUT_EDP) {
|
|
intel_dp = enc_to_intel_dp(&encoder->base);
|
|
|
|
if (!is_edp_psr(intel_dp))
|
|
return;
|
|
|
|
if (!intel_edp_psr_match_conditions(intel_dp))
|
|
intel_edp_psr_disable(intel_dp);
|
|
else
|
|
if (!intel_edp_is_psr_enabled(dev))
|
|
intel_edp_psr_do_enable(intel_dp);
|
|
}
|
|
}
|
|
|
|
static void intel_disable_dp(struct intel_encoder *encoder)
|
|
{
|
|
struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
|
|
enum port port = dp_to_dig_port(intel_dp)->port;
|
|
struct drm_device *dev = encoder->base.dev;
|
|
|
|
/* Make sure the panel is off before trying to change the mode. But also
|
|
* ensure that we have vdd while we switch off the panel. */
|
|
ironlake_edp_panel_vdd_on(intel_dp);
|
|
ironlake_edp_backlight_off(intel_dp);
|
|
intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
|
|
ironlake_edp_panel_off(intel_dp);
|
|
|
|
/* cpu edp my only be disable _after_ the cpu pipe/plane is disabled. */
|
|
if (!(port == PORT_A || IS_VALLEYVIEW(dev)))
|
|
intel_dp_link_down(intel_dp);
|
|
}
|
|
|
|
static void intel_post_disable_dp(struct intel_encoder *encoder)
|
|
{
|
|
struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
|
|
enum port port = dp_to_dig_port(intel_dp)->port;
|
|
struct drm_device *dev = encoder->base.dev;
|
|
|
|
if (port == PORT_A || IS_VALLEYVIEW(dev)) {
|
|
intel_dp_link_down(intel_dp);
|
|
if (!IS_VALLEYVIEW(dev))
|
|
ironlake_edp_pll_off(intel_dp);
|
|
}
|
|
}
|
|
|
|
static void intel_enable_dp(struct intel_encoder *encoder)
|
|
{
|
|
struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
|
|
struct drm_device *dev = encoder->base.dev;
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
uint32_t dp_reg = I915_READ(intel_dp->output_reg);
|
|
|
|
if (WARN_ON(dp_reg & DP_PORT_EN))
|
|
return;
|
|
|
|
ironlake_edp_panel_vdd_on(intel_dp);
|
|
intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
|
|
intel_dp_start_link_train(intel_dp);
|
|
ironlake_edp_panel_on(intel_dp);
|
|
ironlake_edp_panel_vdd_off(intel_dp, true);
|
|
intel_dp_complete_link_train(intel_dp);
|
|
intel_dp_stop_link_train(intel_dp);
|
|
ironlake_edp_backlight_on(intel_dp);
|
|
}
|
|
|
|
static void vlv_enable_dp(struct intel_encoder *encoder)
|
|
{
|
|
}
|
|
|
|
static void intel_pre_enable_dp(struct intel_encoder *encoder)
|
|
{
|
|
struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
|
|
struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
|
|
|
|
if (dport->port == PORT_A)
|
|
ironlake_edp_pll_on(intel_dp);
|
|
}
|
|
|
|
static void vlv_pre_enable_dp(struct intel_encoder *encoder)
|
|
{
|
|
struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
|
|
struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
|
|
struct drm_device *dev = encoder->base.dev;
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
struct intel_crtc *intel_crtc = to_intel_crtc(encoder->base.crtc);
|
|
int port = vlv_dport_to_channel(dport);
|
|
int pipe = intel_crtc->pipe;
|
|
u32 val;
|
|
|
|
mutex_lock(&dev_priv->dpio_lock);
|
|
|
|
val = vlv_dpio_read(dev_priv, DPIO_DATA_LANE_A(port));
|
|
val = 0;
|
|
if (pipe)
|
|
val |= (1<<21);
|
|
else
|
|
val &= ~(1<<21);
|
|
val |= 0x001000c4;
|
|
vlv_dpio_write(dev_priv, DPIO_DATA_CHANNEL(port), val);
|
|
vlv_dpio_write(dev_priv, DPIO_PCS_CLOCKBUF0(port), 0x00760018);
|
|
vlv_dpio_write(dev_priv, DPIO_PCS_CLOCKBUF8(port), 0x00400888);
|
|
|
|
mutex_unlock(&dev_priv->dpio_lock);
|
|
|
|
intel_enable_dp(encoder);
|
|
|
|
vlv_wait_port_ready(dev_priv, port);
|
|
}
|
|
|
|
static void intel_dp_pre_pll_enable(struct intel_encoder *encoder)
|
|
{
|
|
struct intel_digital_port *dport = enc_to_dig_port(&encoder->base);
|
|
struct drm_device *dev = encoder->base.dev;
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
int port = vlv_dport_to_channel(dport);
|
|
|
|
if (!IS_VALLEYVIEW(dev))
|
|
return;
|
|
|
|
/* Program Tx lane resets to default */
|
|
mutex_lock(&dev_priv->dpio_lock);
|
|
vlv_dpio_write(dev_priv, DPIO_PCS_TX(port),
|
|
DPIO_PCS_TX_LANE2_RESET |
|
|
DPIO_PCS_TX_LANE1_RESET);
|
|
vlv_dpio_write(dev_priv, DPIO_PCS_CLK(port),
|
|
DPIO_PCS_CLK_CRI_RXEB_EIOS_EN |
|
|
DPIO_PCS_CLK_CRI_RXDIGFILTSG_EN |
|
|
(1<<DPIO_PCS_CLK_DATAWIDTH_SHIFT) |
|
|
DPIO_PCS_CLK_SOFT_RESET);
|
|
|
|
/* Fix up inter-pair skew failure */
|
|
vlv_dpio_write(dev_priv, DPIO_PCS_STAGGER1(port), 0x00750f00);
|
|
vlv_dpio_write(dev_priv, DPIO_TX_CTL(port), 0x00001500);
|
|
vlv_dpio_write(dev_priv, DPIO_TX_LANE(port), 0x40400000);
|
|
mutex_unlock(&dev_priv->dpio_lock);
|
|
}
|
|
|
|
/*
|
|
* Native read with retry for link status and receiver capability reads for
|
|
* cases where the sink may still be asleep.
|
|
*/
|
|
static bool
|
|
intel_dp_aux_native_read_retry(struct intel_dp *intel_dp, uint16_t address,
|
|
uint8_t *recv, int recv_bytes)
|
|
{
|
|
int ret, i;
|
|
|
|
/*
|
|
* Sinks are *supposed* to come up within 1ms from an off state,
|
|
* but we're also supposed to retry 3 times per the spec.
|
|
*/
|
|
for (i = 0; i < 3; i++) {
|
|
ret = intel_dp_aux_native_read(intel_dp, address, recv,
|
|
recv_bytes);
|
|
if (ret == recv_bytes)
|
|
return true;
|
|
msleep(1);
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/*
|
|
* Fetch AUX CH registers 0x202 - 0x207 which contain
|
|
* link status information
|
|
*/
|
|
static bool
|
|
intel_dp_get_link_status(struct intel_dp *intel_dp, uint8_t link_status[DP_LINK_STATUS_SIZE])
|
|
{
|
|
return intel_dp_aux_native_read_retry(intel_dp,
|
|
DP_LANE0_1_STATUS,
|
|
link_status,
|
|
DP_LINK_STATUS_SIZE);
|
|
}
|
|
|
|
#if 0
|
|
static char *voltage_names[] = {
|
|
"0.4V", "0.6V", "0.8V", "1.2V"
|
|
};
|
|
static char *pre_emph_names[] = {
|
|
"0dB", "3.5dB", "6dB", "9.5dB"
|
|
};
|
|
static char *link_train_names[] = {
|
|
"pattern 1", "pattern 2", "idle", "off"
|
|
};
|
|
#endif
|
|
|
|
/*
|
|
* These are source-specific values; current Intel hardware supports
|
|
* a maximum voltage of 800mV and a maximum pre-emphasis of 6dB
|
|
*/
|
|
|
|
static uint8_t
|
|
intel_dp_voltage_max(struct intel_dp *intel_dp)
|
|
{
|
|
struct drm_device *dev = intel_dp_to_dev(intel_dp);
|
|
enum port port = dp_to_dig_port(intel_dp)->port;
|
|
|
|
if (IS_VALLEYVIEW(dev))
|
|
return DP_TRAIN_VOLTAGE_SWING_1200;
|
|
else if (IS_GEN7(dev) && port == PORT_A)
|
|
return DP_TRAIN_VOLTAGE_SWING_800;
|
|
else if (HAS_PCH_CPT(dev) && port != PORT_A)
|
|
return DP_TRAIN_VOLTAGE_SWING_1200;
|
|
else
|
|
return DP_TRAIN_VOLTAGE_SWING_800;
|
|
}
|
|
|
|
static uint8_t
|
|
intel_dp_pre_emphasis_max(struct intel_dp *intel_dp, uint8_t voltage_swing)
|
|
{
|
|
struct drm_device *dev = intel_dp_to_dev(intel_dp);
|
|
enum port port = dp_to_dig_port(intel_dp)->port;
|
|
|
|
if (HAS_DDI(dev)) {
|
|
switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
|
|
case DP_TRAIN_VOLTAGE_SWING_400:
|
|
return DP_TRAIN_PRE_EMPHASIS_9_5;
|
|
case DP_TRAIN_VOLTAGE_SWING_600:
|
|
return DP_TRAIN_PRE_EMPHASIS_6;
|
|
case DP_TRAIN_VOLTAGE_SWING_800:
|
|
return DP_TRAIN_PRE_EMPHASIS_3_5;
|
|
case DP_TRAIN_VOLTAGE_SWING_1200:
|
|
default:
|
|
return DP_TRAIN_PRE_EMPHASIS_0;
|
|
}
|
|
} else if (IS_VALLEYVIEW(dev)) {
|
|
switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
|
|
case DP_TRAIN_VOLTAGE_SWING_400:
|
|
return DP_TRAIN_PRE_EMPHASIS_9_5;
|
|
case DP_TRAIN_VOLTAGE_SWING_600:
|
|
return DP_TRAIN_PRE_EMPHASIS_6;
|
|
case DP_TRAIN_VOLTAGE_SWING_800:
|
|
return DP_TRAIN_PRE_EMPHASIS_3_5;
|
|
case DP_TRAIN_VOLTAGE_SWING_1200:
|
|
default:
|
|
return DP_TRAIN_PRE_EMPHASIS_0;
|
|
}
|
|
} else if (IS_GEN7(dev) && port == PORT_A) {
|
|
switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
|
|
case DP_TRAIN_VOLTAGE_SWING_400:
|
|
return DP_TRAIN_PRE_EMPHASIS_6;
|
|
case DP_TRAIN_VOLTAGE_SWING_600:
|
|
case DP_TRAIN_VOLTAGE_SWING_800:
|
|
return DP_TRAIN_PRE_EMPHASIS_3_5;
|
|
default:
|
|
return DP_TRAIN_PRE_EMPHASIS_0;
|
|
}
|
|
} else {
|
|
switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
|
|
case DP_TRAIN_VOLTAGE_SWING_400:
|
|
return DP_TRAIN_PRE_EMPHASIS_6;
|
|
case DP_TRAIN_VOLTAGE_SWING_600:
|
|
return DP_TRAIN_PRE_EMPHASIS_6;
|
|
case DP_TRAIN_VOLTAGE_SWING_800:
|
|
return DP_TRAIN_PRE_EMPHASIS_3_5;
|
|
case DP_TRAIN_VOLTAGE_SWING_1200:
|
|
default:
|
|
return DP_TRAIN_PRE_EMPHASIS_0;
|
|
}
|
|
}
|
|
}
|
|
|
|
static uint32_t intel_vlv_signal_levels(struct intel_dp *intel_dp)
|
|
{
|
|
struct drm_device *dev = intel_dp_to_dev(intel_dp);
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
|
|
unsigned long demph_reg_value, preemph_reg_value,
|
|
uniqtranscale_reg_value;
|
|
uint8_t train_set = intel_dp->train_set[0];
|
|
int port = vlv_dport_to_channel(dport);
|
|
|
|
switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
|
|
case DP_TRAIN_PRE_EMPHASIS_0:
|
|
preemph_reg_value = 0x0004000;
|
|
switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
|
|
case DP_TRAIN_VOLTAGE_SWING_400:
|
|
demph_reg_value = 0x2B405555;
|
|
uniqtranscale_reg_value = 0x552AB83A;
|
|
break;
|
|
case DP_TRAIN_VOLTAGE_SWING_600:
|
|
demph_reg_value = 0x2B404040;
|
|
uniqtranscale_reg_value = 0x5548B83A;
|
|
break;
|
|
case DP_TRAIN_VOLTAGE_SWING_800:
|
|
demph_reg_value = 0x2B245555;
|
|
uniqtranscale_reg_value = 0x5560B83A;
|
|
break;
|
|
case DP_TRAIN_VOLTAGE_SWING_1200:
|
|
demph_reg_value = 0x2B405555;
|
|
uniqtranscale_reg_value = 0x5598DA3A;
|
|
break;
|
|
default:
|
|
return 0;
|
|
}
|
|
break;
|
|
case DP_TRAIN_PRE_EMPHASIS_3_5:
|
|
preemph_reg_value = 0x0002000;
|
|
switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
|
|
case DP_TRAIN_VOLTAGE_SWING_400:
|
|
demph_reg_value = 0x2B404040;
|
|
uniqtranscale_reg_value = 0x5552B83A;
|
|
break;
|
|
case DP_TRAIN_VOLTAGE_SWING_600:
|
|
demph_reg_value = 0x2B404848;
|
|
uniqtranscale_reg_value = 0x5580B83A;
|
|
break;
|
|
case DP_TRAIN_VOLTAGE_SWING_800:
|
|
demph_reg_value = 0x2B404040;
|
|
uniqtranscale_reg_value = 0x55ADDA3A;
|
|
break;
|
|
default:
|
|
return 0;
|
|
}
|
|
break;
|
|
case DP_TRAIN_PRE_EMPHASIS_6:
|
|
preemph_reg_value = 0x0000000;
|
|
switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
|
|
case DP_TRAIN_VOLTAGE_SWING_400:
|
|
demph_reg_value = 0x2B305555;
|
|
uniqtranscale_reg_value = 0x5570B83A;
|
|
break;
|
|
case DP_TRAIN_VOLTAGE_SWING_600:
|
|
demph_reg_value = 0x2B2B4040;
|
|
uniqtranscale_reg_value = 0x55ADDA3A;
|
|
break;
|
|
default:
|
|
return 0;
|
|
}
|
|
break;
|
|
case DP_TRAIN_PRE_EMPHASIS_9_5:
|
|
preemph_reg_value = 0x0006000;
|
|
switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
|
|
case DP_TRAIN_VOLTAGE_SWING_400:
|
|
demph_reg_value = 0x1B405555;
|
|
uniqtranscale_reg_value = 0x55ADDA3A;
|
|
break;
|
|
default:
|
|
return 0;
|
|
}
|
|
break;
|
|
default:
|
|
return 0;
|
|
}
|
|
|
|
mutex_lock(&dev_priv->dpio_lock);
|
|
vlv_dpio_write(dev_priv, DPIO_TX_OCALINIT(port), 0x00000000);
|
|
vlv_dpio_write(dev_priv, DPIO_TX_SWING_CTL4(port), demph_reg_value);
|
|
vlv_dpio_write(dev_priv, DPIO_TX_SWING_CTL2(port),
|
|
uniqtranscale_reg_value);
|
|
vlv_dpio_write(dev_priv, DPIO_TX_SWING_CTL3(port), 0x0C782040);
|
|
vlv_dpio_write(dev_priv, DPIO_PCS_STAGGER0(port), 0x00030000);
|
|
vlv_dpio_write(dev_priv, DPIO_PCS_CTL_OVER1(port), preemph_reg_value);
|
|
vlv_dpio_write(dev_priv, DPIO_TX_OCALINIT(port), 0x80000000);
|
|
mutex_unlock(&dev_priv->dpio_lock);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
intel_get_adjust_train(struct intel_dp *intel_dp, uint8_t link_status[DP_LINK_STATUS_SIZE])
|
|
{
|
|
uint8_t v = 0;
|
|
uint8_t p = 0;
|
|
int lane;
|
|
uint8_t voltage_max;
|
|
uint8_t preemph_max;
|
|
|
|
for (lane = 0; lane < intel_dp->lane_count; lane++) {
|
|
uint8_t this_v = drm_dp_get_adjust_request_voltage(link_status, lane);
|
|
uint8_t this_p = drm_dp_get_adjust_request_pre_emphasis(link_status, lane);
|
|
|
|
if (this_v > v)
|
|
v = this_v;
|
|
if (this_p > p)
|
|
p = this_p;
|
|
}
|
|
|
|
voltage_max = intel_dp_voltage_max(intel_dp);
|
|
if (v >= voltage_max)
|
|
v = voltage_max | DP_TRAIN_MAX_SWING_REACHED;
|
|
|
|
preemph_max = intel_dp_pre_emphasis_max(intel_dp, v);
|
|
if (p >= preemph_max)
|
|
p = preemph_max | DP_TRAIN_MAX_PRE_EMPHASIS_REACHED;
|
|
|
|
for (lane = 0; lane < 4; lane++)
|
|
intel_dp->train_set[lane] = v | p;
|
|
}
|
|
|
|
static uint32_t
|
|
intel_gen4_signal_levels(uint8_t train_set)
|
|
{
|
|
uint32_t signal_levels = 0;
|
|
|
|
switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
|
|
case DP_TRAIN_VOLTAGE_SWING_400:
|
|
default:
|
|
signal_levels |= DP_VOLTAGE_0_4;
|
|
break;
|
|
case DP_TRAIN_VOLTAGE_SWING_600:
|
|
signal_levels |= DP_VOLTAGE_0_6;
|
|
break;
|
|
case DP_TRAIN_VOLTAGE_SWING_800:
|
|
signal_levels |= DP_VOLTAGE_0_8;
|
|
break;
|
|
case DP_TRAIN_VOLTAGE_SWING_1200:
|
|
signal_levels |= DP_VOLTAGE_1_2;
|
|
break;
|
|
}
|
|
switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
|
|
case DP_TRAIN_PRE_EMPHASIS_0:
|
|
default:
|
|
signal_levels |= DP_PRE_EMPHASIS_0;
|
|
break;
|
|
case DP_TRAIN_PRE_EMPHASIS_3_5:
|
|
signal_levels |= DP_PRE_EMPHASIS_3_5;
|
|
break;
|
|
case DP_TRAIN_PRE_EMPHASIS_6:
|
|
signal_levels |= DP_PRE_EMPHASIS_6;
|
|
break;
|
|
case DP_TRAIN_PRE_EMPHASIS_9_5:
|
|
signal_levels |= DP_PRE_EMPHASIS_9_5;
|
|
break;
|
|
}
|
|
return signal_levels;
|
|
}
|
|
|
|
/* Gen6's DP voltage swing and pre-emphasis control */
|
|
static uint32_t
|
|
intel_gen6_edp_signal_levels(uint8_t train_set)
|
|
{
|
|
int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
|
|
DP_TRAIN_PRE_EMPHASIS_MASK);
|
|
switch (signal_levels) {
|
|
case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
|
|
case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
|
|
return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
|
|
case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
|
|
return EDP_LINK_TRAIN_400MV_3_5DB_SNB_B;
|
|
case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
|
|
case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_6:
|
|
return EDP_LINK_TRAIN_400_600MV_6DB_SNB_B;
|
|
case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
|
|
case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
|
|
return EDP_LINK_TRAIN_600_800MV_3_5DB_SNB_B;
|
|
case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
|
|
case DP_TRAIN_VOLTAGE_SWING_1200 | DP_TRAIN_PRE_EMPHASIS_0:
|
|
return EDP_LINK_TRAIN_800_1200MV_0DB_SNB_B;
|
|
default:
|
|
DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
|
|
"0x%x\n", signal_levels);
|
|
return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
|
|
}
|
|
}
|
|
|
|
/* Gen7's DP voltage swing and pre-emphasis control */
|
|
static uint32_t
|
|
intel_gen7_edp_signal_levels(uint8_t train_set)
|
|
{
|
|
int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
|
|
DP_TRAIN_PRE_EMPHASIS_MASK);
|
|
switch (signal_levels) {
|
|
case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
|
|
return EDP_LINK_TRAIN_400MV_0DB_IVB;
|
|
case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
|
|
return EDP_LINK_TRAIN_400MV_3_5DB_IVB;
|
|
case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
|
|
return EDP_LINK_TRAIN_400MV_6DB_IVB;
|
|
|
|
case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
|
|
return EDP_LINK_TRAIN_600MV_0DB_IVB;
|
|
case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
|
|
return EDP_LINK_TRAIN_600MV_3_5DB_IVB;
|
|
|
|
case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
|
|
return EDP_LINK_TRAIN_800MV_0DB_IVB;
|
|
case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
|
|
return EDP_LINK_TRAIN_800MV_3_5DB_IVB;
|
|
|
|
default:
|
|
DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
|
|
"0x%x\n", signal_levels);
|
|
return EDP_LINK_TRAIN_500MV_0DB_IVB;
|
|
}
|
|
}
|
|
|
|
/* Gen7.5's (HSW) DP voltage swing and pre-emphasis control */
|
|
static uint32_t
|
|
intel_hsw_signal_levels(uint8_t train_set)
|
|
{
|
|
int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
|
|
DP_TRAIN_PRE_EMPHASIS_MASK);
|
|
switch (signal_levels) {
|
|
case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
|
|
return DDI_BUF_EMP_400MV_0DB_HSW;
|
|
case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
|
|
return DDI_BUF_EMP_400MV_3_5DB_HSW;
|
|
case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
|
|
return DDI_BUF_EMP_400MV_6DB_HSW;
|
|
case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_9_5:
|
|
return DDI_BUF_EMP_400MV_9_5DB_HSW;
|
|
|
|
case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
|
|
return DDI_BUF_EMP_600MV_0DB_HSW;
|
|
case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
|
|
return DDI_BUF_EMP_600MV_3_5DB_HSW;
|
|
case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_6:
|
|
return DDI_BUF_EMP_600MV_6DB_HSW;
|
|
|
|
case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
|
|
return DDI_BUF_EMP_800MV_0DB_HSW;
|
|
case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
|
|
return DDI_BUF_EMP_800MV_3_5DB_HSW;
|
|
default:
|
|
DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
|
|
"0x%x\n", signal_levels);
|
|
return DDI_BUF_EMP_400MV_0DB_HSW;
|
|
}
|
|
}
|
|
|
|
/* Properly updates "DP" with the correct signal levels. */
|
|
static void
|
|
intel_dp_set_signal_levels(struct intel_dp *intel_dp, uint32_t *DP)
|
|
{
|
|
struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
|
|
enum port port = intel_dig_port->port;
|
|
struct drm_device *dev = intel_dig_port->base.base.dev;
|
|
uint32_t signal_levels, mask;
|
|
uint8_t train_set = intel_dp->train_set[0];
|
|
|
|
if (HAS_DDI(dev)) {
|
|
signal_levels = intel_hsw_signal_levels(train_set);
|
|
mask = DDI_BUF_EMP_MASK;
|
|
} else if (IS_VALLEYVIEW(dev)) {
|
|
signal_levels = intel_vlv_signal_levels(intel_dp);
|
|
mask = 0;
|
|
} else if (IS_GEN7(dev) && port == PORT_A) {
|
|
signal_levels = intel_gen7_edp_signal_levels(train_set);
|
|
mask = EDP_LINK_TRAIN_VOL_EMP_MASK_IVB;
|
|
} else if (IS_GEN6(dev) && port == PORT_A) {
|
|
signal_levels = intel_gen6_edp_signal_levels(train_set);
|
|
mask = EDP_LINK_TRAIN_VOL_EMP_MASK_SNB;
|
|
} else {
|
|
signal_levels = intel_gen4_signal_levels(train_set);
|
|
mask = DP_VOLTAGE_MASK | DP_PRE_EMPHASIS_MASK;
|
|
}
|
|
|
|
DRM_DEBUG_KMS("Using signal levels %08x\n", signal_levels);
|
|
|
|
*DP = (*DP & ~mask) | signal_levels;
|
|
}
|
|
|
|
static bool
|
|
intel_dp_set_link_train(struct intel_dp *intel_dp,
|
|
uint32_t dp_reg_value,
|
|
uint8_t dp_train_pat)
|
|
{
|
|
struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
|
|
struct drm_device *dev = intel_dig_port->base.base.dev;
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
enum port port = intel_dig_port->port;
|
|
int ret;
|
|
|
|
if (HAS_DDI(dev)) {
|
|
uint32_t temp = I915_READ(DP_TP_CTL(port));
|
|
|
|
if (dp_train_pat & DP_LINK_SCRAMBLING_DISABLE)
|
|
temp |= DP_TP_CTL_SCRAMBLE_DISABLE;
|
|
else
|
|
temp &= ~DP_TP_CTL_SCRAMBLE_DISABLE;
|
|
|
|
temp &= ~DP_TP_CTL_LINK_TRAIN_MASK;
|
|
switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
|
|
case DP_TRAINING_PATTERN_DISABLE:
|
|
temp |= DP_TP_CTL_LINK_TRAIN_NORMAL;
|
|
|
|
break;
|
|
case DP_TRAINING_PATTERN_1:
|
|
temp |= DP_TP_CTL_LINK_TRAIN_PAT1;
|
|
break;
|
|
case DP_TRAINING_PATTERN_2:
|
|
temp |= DP_TP_CTL_LINK_TRAIN_PAT2;
|
|
break;
|
|
case DP_TRAINING_PATTERN_3:
|
|
temp |= DP_TP_CTL_LINK_TRAIN_PAT3;
|
|
break;
|
|
}
|
|
I915_WRITE(DP_TP_CTL(port), temp);
|
|
|
|
} else if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || port != PORT_A)) {
|
|
dp_reg_value &= ~DP_LINK_TRAIN_MASK_CPT;
|
|
|
|
switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
|
|
case DP_TRAINING_PATTERN_DISABLE:
|
|
dp_reg_value |= DP_LINK_TRAIN_OFF_CPT;
|
|
break;
|
|
case DP_TRAINING_PATTERN_1:
|
|
dp_reg_value |= DP_LINK_TRAIN_PAT_1_CPT;
|
|
break;
|
|
case DP_TRAINING_PATTERN_2:
|
|
dp_reg_value |= DP_LINK_TRAIN_PAT_2_CPT;
|
|
break;
|
|
case DP_TRAINING_PATTERN_3:
|
|
DRM_ERROR("DP training pattern 3 not supported\n");
|
|
dp_reg_value |= DP_LINK_TRAIN_PAT_2_CPT;
|
|
break;
|
|
}
|
|
|
|
} else {
|
|
dp_reg_value &= ~DP_LINK_TRAIN_MASK;
|
|
|
|
switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
|
|
case DP_TRAINING_PATTERN_DISABLE:
|
|
dp_reg_value |= DP_LINK_TRAIN_OFF;
|
|
break;
|
|
case DP_TRAINING_PATTERN_1:
|
|
dp_reg_value |= DP_LINK_TRAIN_PAT_1;
|
|
break;
|
|
case DP_TRAINING_PATTERN_2:
|
|
dp_reg_value |= DP_LINK_TRAIN_PAT_2;
|
|
break;
|
|
case DP_TRAINING_PATTERN_3:
|
|
DRM_ERROR("DP training pattern 3 not supported\n");
|
|
dp_reg_value |= DP_LINK_TRAIN_PAT_2;
|
|
break;
|
|
}
|
|
}
|
|
|
|
I915_WRITE(intel_dp->output_reg, dp_reg_value);
|
|
POSTING_READ(intel_dp->output_reg);
|
|
|
|
intel_dp_aux_native_write_1(intel_dp,
|
|
DP_TRAINING_PATTERN_SET,
|
|
dp_train_pat);
|
|
|
|
if ((dp_train_pat & DP_TRAINING_PATTERN_MASK) !=
|
|
DP_TRAINING_PATTERN_DISABLE) {
|
|
ret = intel_dp_aux_native_write(intel_dp,
|
|
DP_TRAINING_LANE0_SET,
|
|
intel_dp->train_set,
|
|
intel_dp->lane_count);
|
|
if (ret != intel_dp->lane_count)
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
static void intel_dp_set_idle_link_train(struct intel_dp *intel_dp)
|
|
{
|
|
struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
|
|
struct drm_device *dev = intel_dig_port->base.base.dev;
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
enum port port = intel_dig_port->port;
|
|
uint32_t val;
|
|
|
|
if (!HAS_DDI(dev))
|
|
return;
|
|
|
|
val = I915_READ(DP_TP_CTL(port));
|
|
val &= ~DP_TP_CTL_LINK_TRAIN_MASK;
|
|
val |= DP_TP_CTL_LINK_TRAIN_IDLE;
|
|
I915_WRITE(DP_TP_CTL(port), val);
|
|
|
|
/*
|
|
* On PORT_A we can have only eDP in SST mode. There the only reason
|
|
* we need to set idle transmission mode is to work around a HW issue
|
|
* where we enable the pipe while not in idle link-training mode.
|
|
* In this case there is requirement to wait for a minimum number of
|
|
* idle patterns to be sent.
|
|
*/
|
|
if (port == PORT_A)
|
|
return;
|
|
|
|
if (wait_for((I915_READ(DP_TP_STATUS(port)) & DP_TP_STATUS_IDLE_DONE),
|
|
1))
|
|
DRM_ERROR("Timed out waiting for DP idle patterns\n");
|
|
}
|
|
|
|
/* Enable corresponding port and start training pattern 1 */
|
|
void
|
|
intel_dp_start_link_train(struct intel_dp *intel_dp)
|
|
{
|
|
struct drm_encoder *encoder = &dp_to_dig_port(intel_dp)->base.base;
|
|
struct drm_device *dev = encoder->dev;
|
|
int i;
|
|
uint8_t voltage;
|
|
int voltage_tries, loop_tries;
|
|
uint32_t DP = intel_dp->DP;
|
|
|
|
if (HAS_DDI(dev))
|
|
intel_ddi_prepare_link_retrain(encoder);
|
|
|
|
/* Write the link configuration data */
|
|
intel_dp_aux_native_write(intel_dp, DP_LINK_BW_SET,
|
|
intel_dp->link_configuration,
|
|
DP_LINK_CONFIGURATION_SIZE);
|
|
|
|
DP |= DP_PORT_EN;
|
|
|
|
memset(intel_dp->train_set, 0, 4);
|
|
voltage = 0xff;
|
|
voltage_tries = 0;
|
|
loop_tries = 0;
|
|
for (;;) {
|
|
/* Use intel_dp->train_set[0] to set the voltage and pre emphasis values */
|
|
uint8_t link_status[DP_LINK_STATUS_SIZE];
|
|
|
|
intel_dp_set_signal_levels(intel_dp, &DP);
|
|
|
|
/* Set training pattern 1 */
|
|
if (!intel_dp_set_link_train(intel_dp, DP,
|
|
DP_TRAINING_PATTERN_1 |
|
|
DP_LINK_SCRAMBLING_DISABLE))
|
|
break;
|
|
|
|
drm_dp_link_train_clock_recovery_delay(intel_dp->dpcd);
|
|
if (!intel_dp_get_link_status(intel_dp, link_status)) {
|
|
DRM_ERROR("failed to get link status\n");
|
|
break;
|
|
}
|
|
|
|
if (drm_dp_clock_recovery_ok(link_status, intel_dp->lane_count)) {
|
|
DRM_DEBUG_KMS("clock recovery OK\n");
|
|
break;
|
|
}
|
|
|
|
/* Check to see if we've tried the max voltage */
|
|
for (i = 0; i < intel_dp->lane_count; i++)
|
|
if ((intel_dp->train_set[i] & DP_TRAIN_MAX_SWING_REACHED) == 0)
|
|
break;
|
|
if (i == intel_dp->lane_count) {
|
|
++loop_tries;
|
|
if (loop_tries == 5) {
|
|
DRM_DEBUG_KMS("too many full retries, give up\n");
|
|
break;
|
|
}
|
|
memset(intel_dp->train_set, 0, 4);
|
|
voltage_tries = 0;
|
|
continue;
|
|
}
|
|
|
|
/* Check to see if we've tried the same voltage 5 times */
|
|
if ((intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK) == voltage) {
|
|
++voltage_tries;
|
|
if (voltage_tries == 5) {
|
|
DRM_DEBUG_KMS("too many voltage retries, give up\n");
|
|
break;
|
|
}
|
|
} else
|
|
voltage_tries = 0;
|
|
voltage = intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK;
|
|
|
|
/* Compute new intel_dp->train_set as requested by target */
|
|
intel_get_adjust_train(intel_dp, link_status);
|
|
}
|
|
|
|
intel_dp->DP = DP;
|
|
}
|
|
|
|
void
|
|
intel_dp_complete_link_train(struct intel_dp *intel_dp)
|
|
{
|
|
bool channel_eq = false;
|
|
int tries, cr_tries;
|
|
uint32_t DP = intel_dp->DP;
|
|
|
|
/* channel equalization */
|
|
tries = 0;
|
|
cr_tries = 0;
|
|
channel_eq = false;
|
|
for (;;) {
|
|
uint8_t link_status[DP_LINK_STATUS_SIZE];
|
|
|
|
if (cr_tries > 5) {
|
|
DRM_ERROR("failed to train DP, aborting\n");
|
|
intel_dp_link_down(intel_dp);
|
|
break;
|
|
}
|
|
|
|
intel_dp_set_signal_levels(intel_dp, &DP);
|
|
|
|
/* channel eq pattern */
|
|
if (!intel_dp_set_link_train(intel_dp, DP,
|
|
DP_TRAINING_PATTERN_2 |
|
|
DP_LINK_SCRAMBLING_DISABLE))
|
|
break;
|
|
|
|
drm_dp_link_train_channel_eq_delay(intel_dp->dpcd);
|
|
if (!intel_dp_get_link_status(intel_dp, link_status))
|
|
break;
|
|
|
|
/* Make sure clock is still ok */
|
|
if (!drm_dp_clock_recovery_ok(link_status, intel_dp->lane_count)) {
|
|
intel_dp_start_link_train(intel_dp);
|
|
cr_tries++;
|
|
continue;
|
|
}
|
|
|
|
if (drm_dp_channel_eq_ok(link_status, intel_dp->lane_count)) {
|
|
channel_eq = true;
|
|
break;
|
|
}
|
|
|
|
/* Try 5 times, then try clock recovery if that fails */
|
|
if (tries > 5) {
|
|
intel_dp_link_down(intel_dp);
|
|
intel_dp_start_link_train(intel_dp);
|
|
tries = 0;
|
|
cr_tries++;
|
|
continue;
|
|
}
|
|
|
|
/* Compute new intel_dp->train_set as requested by target */
|
|
intel_get_adjust_train(intel_dp, link_status);
|
|
++tries;
|
|
}
|
|
|
|
intel_dp_set_idle_link_train(intel_dp);
|
|
|
|
intel_dp->DP = DP;
|
|
|
|
if (channel_eq)
|
|
DRM_DEBUG_KMS("Channel EQ done. DP Training successful\n");
|
|
|
|
}
|
|
|
|
void intel_dp_stop_link_train(struct intel_dp *intel_dp)
|
|
{
|
|
intel_dp_set_link_train(intel_dp, intel_dp->DP,
|
|
DP_TRAINING_PATTERN_DISABLE);
|
|
}
|
|
|
|
static void
|
|
intel_dp_link_down(struct intel_dp *intel_dp)
|
|
{
|
|
struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
|
|
enum port port = intel_dig_port->port;
|
|
struct drm_device *dev = intel_dig_port->base.base.dev;
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
struct intel_crtc *intel_crtc =
|
|
to_intel_crtc(intel_dig_port->base.base.crtc);
|
|
uint32_t DP = intel_dp->DP;
|
|
|
|
/*
|
|
* DDI code has a strict mode set sequence and we should try to respect
|
|
* it, otherwise we might hang the machine in many different ways. So we
|
|
* really should be disabling the port only on a complete crtc_disable
|
|
* sequence. This function is just called under two conditions on DDI
|
|
* code:
|
|
* - Link train failed while doing crtc_enable, and on this case we
|
|
* really should respect the mode set sequence and wait for a
|
|
* crtc_disable.
|
|
* - Someone turned the monitor off and intel_dp_check_link_status
|
|
* called us. We don't need to disable the whole port on this case, so
|
|
* when someone turns the monitor on again,
|
|
* intel_ddi_prepare_link_retrain will take care of redoing the link
|
|
* train.
|
|
*/
|
|
if (HAS_DDI(dev))
|
|
return;
|
|
|
|
if (WARN_ON((I915_READ(intel_dp->output_reg) & DP_PORT_EN) == 0))
|
|
return;
|
|
|
|
DRM_DEBUG_KMS("\n");
|
|
|
|
if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || port != PORT_A)) {
|
|
DP &= ~DP_LINK_TRAIN_MASK_CPT;
|
|
I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE_CPT);
|
|
} else {
|
|
DP &= ~DP_LINK_TRAIN_MASK;
|
|
I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE);
|
|
}
|
|
POSTING_READ(intel_dp->output_reg);
|
|
|
|
/* We don't really know why we're doing this */
|
|
intel_wait_for_vblank(dev, intel_crtc->pipe);
|
|
|
|
if (HAS_PCH_IBX(dev) &&
|
|
I915_READ(intel_dp->output_reg) & DP_PIPEB_SELECT) {
|
|
struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
|
|
|
|
/* Hardware workaround: leaving our transcoder select
|
|
* set to transcoder B while it's off will prevent the
|
|
* corresponding HDMI output on transcoder A.
|
|
*
|
|
* Combine this with another hardware workaround:
|
|
* transcoder select bit can only be cleared while the
|
|
* port is enabled.
|
|
*/
|
|
DP &= ~DP_PIPEB_SELECT;
|
|
I915_WRITE(intel_dp->output_reg, DP);
|
|
|
|
/* Changes to enable or select take place the vblank
|
|
* after being written.
|
|
*/
|
|
if (WARN_ON(crtc == NULL)) {
|
|
/* We should never try to disable a port without a crtc
|
|
* attached. For paranoia keep the code around for a
|
|
* bit. */
|
|
POSTING_READ(intel_dp->output_reg);
|
|
msleep(50);
|
|
} else
|
|
intel_wait_for_vblank(dev, intel_crtc->pipe);
|
|
}
|
|
|
|
DP &= ~DP_AUDIO_OUTPUT_ENABLE;
|
|
I915_WRITE(intel_dp->output_reg, DP & ~DP_PORT_EN);
|
|
POSTING_READ(intel_dp->output_reg);
|
|
msleep(intel_dp->panel_power_down_delay);
|
|
}
|
|
|
|
static bool
|
|
intel_dp_get_dpcd(struct intel_dp *intel_dp)
|
|
{
|
|
char dpcd_hex_dump[sizeof(intel_dp->dpcd) * 3];
|
|
|
|
if (intel_dp_aux_native_read_retry(intel_dp, 0x000, intel_dp->dpcd,
|
|
sizeof(intel_dp->dpcd)) == 0)
|
|
return false; /* aux transfer failed */
|
|
|
|
hex_dump_to_buffer(intel_dp->dpcd, sizeof(intel_dp->dpcd),
|
|
32, 1, dpcd_hex_dump, sizeof(dpcd_hex_dump), false);
|
|
DRM_DEBUG_KMS("DPCD: %s\n", dpcd_hex_dump);
|
|
|
|
if (intel_dp->dpcd[DP_DPCD_REV] == 0)
|
|
return false; /* DPCD not present */
|
|
|
|
/* Check if the panel supports PSR */
|
|
memset(intel_dp->psr_dpcd, 0, sizeof(intel_dp->psr_dpcd));
|
|
intel_dp_aux_native_read_retry(intel_dp, DP_PSR_SUPPORT,
|
|
intel_dp->psr_dpcd,
|
|
sizeof(intel_dp->psr_dpcd));
|
|
if (is_edp_psr(intel_dp))
|
|
DRM_DEBUG_KMS("Detected EDP PSR Panel.\n");
|
|
if (!(intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
|
|
DP_DWN_STRM_PORT_PRESENT))
|
|
return true; /* native DP sink */
|
|
|
|
if (intel_dp->dpcd[DP_DPCD_REV] == 0x10)
|
|
return true; /* no per-port downstream info */
|
|
|
|
if (intel_dp_aux_native_read_retry(intel_dp, DP_DOWNSTREAM_PORT_0,
|
|
intel_dp->downstream_ports,
|
|
DP_MAX_DOWNSTREAM_PORTS) == 0)
|
|
return false; /* downstream port status fetch failed */
|
|
|
|
return true;
|
|
}
|
|
|
|
static void
|
|
intel_dp_probe_oui(struct intel_dp *intel_dp)
|
|
{
|
|
u8 buf[3];
|
|
|
|
if (!(intel_dp->dpcd[DP_DOWN_STREAM_PORT_COUNT] & DP_OUI_SUPPORT))
|
|
return;
|
|
|
|
ironlake_edp_panel_vdd_on(intel_dp);
|
|
|
|
if (intel_dp_aux_native_read_retry(intel_dp, DP_SINK_OUI, buf, 3))
|
|
DRM_DEBUG_KMS("Sink OUI: %02hx%02hx%02hx\n",
|
|
buf[0], buf[1], buf[2]);
|
|
|
|
if (intel_dp_aux_native_read_retry(intel_dp, DP_BRANCH_OUI, buf, 3))
|
|
DRM_DEBUG_KMS("Branch OUI: %02hx%02hx%02hx\n",
|
|
buf[0], buf[1], buf[2]);
|
|
|
|
ironlake_edp_panel_vdd_off(intel_dp, false);
|
|
}
|
|
|
|
static bool
|
|
intel_dp_get_sink_irq(struct intel_dp *intel_dp, u8 *sink_irq_vector)
|
|
{
|
|
int ret;
|
|
|
|
ret = intel_dp_aux_native_read_retry(intel_dp,
|
|
DP_DEVICE_SERVICE_IRQ_VECTOR,
|
|
sink_irq_vector, 1);
|
|
if (!ret)
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
static void
|
|
intel_dp_handle_test_request(struct intel_dp *intel_dp)
|
|
{
|
|
/* NAK by default */
|
|
intel_dp_aux_native_write_1(intel_dp, DP_TEST_RESPONSE, DP_TEST_NAK);
|
|
}
|
|
|
|
/*
|
|
* According to DP spec
|
|
* 5.1.2:
|
|
* 1. Read DPCD
|
|
* 2. Configure link according to Receiver Capabilities
|
|
* 3. Use Link Training from 2.5.3.3 and 3.5.1.3
|
|
* 4. Check link status on receipt of hot-plug interrupt
|
|
*/
|
|
|
|
void
|
|
intel_dp_check_link_status(struct intel_dp *intel_dp)
|
|
{
|
|
struct intel_encoder *intel_encoder = &dp_to_dig_port(intel_dp)->base;
|
|
u8 sink_irq_vector;
|
|
u8 link_status[DP_LINK_STATUS_SIZE];
|
|
|
|
if (!intel_encoder->connectors_active)
|
|
return;
|
|
|
|
if (WARN_ON(!intel_encoder->base.crtc))
|
|
return;
|
|
|
|
/* Try to read receiver status if the link appears to be up */
|
|
if (!intel_dp_get_link_status(intel_dp, link_status)) {
|
|
intel_dp_link_down(intel_dp);
|
|
return;
|
|
}
|
|
|
|
/* Now read the DPCD to see if it's actually running */
|
|
if (!intel_dp_get_dpcd(intel_dp)) {
|
|
intel_dp_link_down(intel_dp);
|
|
return;
|
|
}
|
|
|
|
/* Try to read the source of the interrupt */
|
|
if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
|
|
intel_dp_get_sink_irq(intel_dp, &sink_irq_vector)) {
|
|
/* Clear interrupt source */
|
|
intel_dp_aux_native_write_1(intel_dp,
|
|
DP_DEVICE_SERVICE_IRQ_VECTOR,
|
|
sink_irq_vector);
|
|
|
|
if (sink_irq_vector & DP_AUTOMATED_TEST_REQUEST)
|
|
intel_dp_handle_test_request(intel_dp);
|
|
if (sink_irq_vector & (DP_CP_IRQ | DP_SINK_SPECIFIC_IRQ))
|
|
DRM_DEBUG_DRIVER("CP or sink specific irq unhandled\n");
|
|
}
|
|
|
|
if (!drm_dp_channel_eq_ok(link_status, intel_dp->lane_count)) {
|
|
DRM_DEBUG_KMS("%s: channel EQ not ok, retraining\n",
|
|
drm_get_encoder_name(&intel_encoder->base));
|
|
intel_dp_start_link_train(intel_dp);
|
|
intel_dp_complete_link_train(intel_dp);
|
|
intel_dp_stop_link_train(intel_dp);
|
|
}
|
|
}
|
|
|
|
/* XXX this is probably wrong for multiple downstream ports */
|
|
static enum drm_connector_status
|
|
intel_dp_detect_dpcd(struct intel_dp *intel_dp)
|
|
{
|
|
uint8_t *dpcd = intel_dp->dpcd;
|
|
bool hpd;
|
|
uint8_t type;
|
|
|
|
if (!intel_dp_get_dpcd(intel_dp))
|
|
return connector_status_disconnected;
|
|
|
|
/* if there's no downstream port, we're done */
|
|
if (!(dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_PRESENT))
|
|
return connector_status_connected;
|
|
|
|
/* If we're HPD-aware, SINK_COUNT changes dynamically */
|
|
hpd = !!(intel_dp->downstream_ports[0] & DP_DS_PORT_HPD);
|
|
if (hpd) {
|
|
uint8_t reg;
|
|
if (!intel_dp_aux_native_read_retry(intel_dp, DP_SINK_COUNT,
|
|
®, 1))
|
|
return connector_status_unknown;
|
|
return DP_GET_SINK_COUNT(reg) ? connector_status_connected
|
|
: connector_status_disconnected;
|
|
}
|
|
|
|
/* If no HPD, poke DDC gently */
|
|
if (drm_probe_ddc(&intel_dp->adapter))
|
|
return connector_status_connected;
|
|
|
|
/* Well we tried, say unknown for unreliable port types */
|
|
type = intel_dp->downstream_ports[0] & DP_DS_PORT_TYPE_MASK;
|
|
if (type == DP_DS_PORT_TYPE_VGA || type == DP_DS_PORT_TYPE_NON_EDID)
|
|
return connector_status_unknown;
|
|
|
|
/* Anything else is out of spec, warn and ignore */
|
|
DRM_DEBUG_KMS("Broken DP branch device, ignoring\n");
|
|
return connector_status_disconnected;
|
|
}
|
|
|
|
static enum drm_connector_status
|
|
ironlake_dp_detect(struct intel_dp *intel_dp)
|
|
{
|
|
struct drm_device *dev = intel_dp_to_dev(intel_dp);
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
|
|
enum drm_connector_status status;
|
|
|
|
/* Can't disconnect eDP, but you can close the lid... */
|
|
if (is_edp(intel_dp)) {
|
|
status = intel_panel_detect(dev);
|
|
if (status == connector_status_unknown)
|
|
status = connector_status_connected;
|
|
return status;
|
|
}
|
|
|
|
if (!ibx_digital_port_connected(dev_priv, intel_dig_port))
|
|
return connector_status_disconnected;
|
|
|
|
return intel_dp_detect_dpcd(intel_dp);
|
|
}
|
|
|
|
static enum drm_connector_status
|
|
g4x_dp_detect(struct intel_dp *intel_dp)
|
|
{
|
|
struct drm_device *dev = intel_dp_to_dev(intel_dp);
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
|
|
uint32_t bit;
|
|
|
|
/* Can't disconnect eDP, but you can close the lid... */
|
|
if (is_edp(intel_dp)) {
|
|
enum drm_connector_status status;
|
|
|
|
status = intel_panel_detect(dev);
|
|
if (status == connector_status_unknown)
|
|
status = connector_status_connected;
|
|
return status;
|
|
}
|
|
|
|
switch (intel_dig_port->port) {
|
|
case PORT_B:
|
|
bit = PORTB_HOTPLUG_LIVE_STATUS;
|
|
break;
|
|
case PORT_C:
|
|
bit = PORTC_HOTPLUG_LIVE_STATUS;
|
|
break;
|
|
case PORT_D:
|
|
bit = PORTD_HOTPLUG_LIVE_STATUS;
|
|
break;
|
|
default:
|
|
return connector_status_unknown;
|
|
}
|
|
|
|
if ((I915_READ(PORT_HOTPLUG_STAT) & bit) == 0)
|
|
return connector_status_disconnected;
|
|
|
|
return intel_dp_detect_dpcd(intel_dp);
|
|
}
|
|
|
|
static struct edid *
|
|
intel_dp_get_edid(struct drm_connector *connector, struct i2c_adapter *adapter)
|
|
{
|
|
struct intel_connector *intel_connector = to_intel_connector(connector);
|
|
|
|
/* use cached edid if we have one */
|
|
if (intel_connector->edid) {
|
|
struct edid *edid;
|
|
int size;
|
|
|
|
/* invalid edid */
|
|
if (IS_ERR(intel_connector->edid))
|
|
return NULL;
|
|
|
|
size = (intel_connector->edid->extensions + 1) * EDID_LENGTH;
|
|
edid = kmemdup(intel_connector->edid, size, GFP_KERNEL);
|
|
if (!edid)
|
|
return NULL;
|
|
|
|
return edid;
|
|
}
|
|
|
|
return drm_get_edid(connector, adapter);
|
|
}
|
|
|
|
static int
|
|
intel_dp_get_edid_modes(struct drm_connector *connector, struct i2c_adapter *adapter)
|
|
{
|
|
struct intel_connector *intel_connector = to_intel_connector(connector);
|
|
|
|
/* use cached edid if we have one */
|
|
if (intel_connector->edid) {
|
|
/* invalid edid */
|
|
if (IS_ERR(intel_connector->edid))
|
|
return 0;
|
|
|
|
return intel_connector_update_modes(connector,
|
|
intel_connector->edid);
|
|
}
|
|
|
|
return intel_ddc_get_modes(connector, adapter);
|
|
}
|
|
|
|
static enum drm_connector_status
|
|
intel_dp_detect(struct drm_connector *connector, bool force)
|
|
{
|
|
struct intel_dp *intel_dp = intel_attached_dp(connector);
|
|
struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
|
|
struct intel_encoder *intel_encoder = &intel_dig_port->base;
|
|
struct drm_device *dev = connector->dev;
|
|
enum drm_connector_status status;
|
|
struct edid *edid = NULL;
|
|
|
|
DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
|
|
connector->base.id, drm_get_connector_name(connector));
|
|
|
|
intel_dp->has_audio = false;
|
|
|
|
if (HAS_PCH_SPLIT(dev))
|
|
status = ironlake_dp_detect(intel_dp);
|
|
else
|
|
status = g4x_dp_detect(intel_dp);
|
|
|
|
if (status != connector_status_connected)
|
|
return status;
|
|
|
|
intel_dp_probe_oui(intel_dp);
|
|
|
|
if (intel_dp->force_audio != HDMI_AUDIO_AUTO) {
|
|
intel_dp->has_audio = (intel_dp->force_audio == HDMI_AUDIO_ON);
|
|
} else {
|
|
edid = intel_dp_get_edid(connector, &intel_dp->adapter);
|
|
if (edid) {
|
|
intel_dp->has_audio = drm_detect_monitor_audio(edid);
|
|
kfree(edid);
|
|
}
|
|
}
|
|
|
|
if (intel_encoder->type != INTEL_OUTPUT_EDP)
|
|
intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
|
|
return connector_status_connected;
|
|
}
|
|
|
|
static int intel_dp_get_modes(struct drm_connector *connector)
|
|
{
|
|
struct intel_dp *intel_dp = intel_attached_dp(connector);
|
|
struct intel_connector *intel_connector = to_intel_connector(connector);
|
|
struct drm_device *dev = connector->dev;
|
|
int ret;
|
|
|
|
/* We should parse the EDID data and find out if it has an audio sink
|
|
*/
|
|
|
|
ret = intel_dp_get_edid_modes(connector, &intel_dp->adapter);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/* if eDP has no EDID, fall back to fixed mode */
|
|
if (is_edp(intel_dp) && intel_connector->panel.fixed_mode) {
|
|
struct drm_display_mode *mode;
|
|
mode = drm_mode_duplicate(dev,
|
|
intel_connector->panel.fixed_mode);
|
|
if (mode) {
|
|
drm_mode_probed_add(connector, mode);
|
|
return 1;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static bool
|
|
intel_dp_detect_audio(struct drm_connector *connector)
|
|
{
|
|
struct intel_dp *intel_dp = intel_attached_dp(connector);
|
|
struct edid *edid;
|
|
bool has_audio = false;
|
|
|
|
edid = intel_dp_get_edid(connector, &intel_dp->adapter);
|
|
if (edid) {
|
|
has_audio = drm_detect_monitor_audio(edid);
|
|
kfree(edid);
|
|
}
|
|
|
|
return has_audio;
|
|
}
|
|
|
|
static int
|
|
intel_dp_set_property(struct drm_connector *connector,
|
|
struct drm_property *property,
|
|
uint64_t val)
|
|
{
|
|
struct drm_i915_private *dev_priv = connector->dev->dev_private;
|
|
struct intel_connector *intel_connector = to_intel_connector(connector);
|
|
struct intel_encoder *intel_encoder = intel_attached_encoder(connector);
|
|
struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
|
|
int ret;
|
|
|
|
ret = drm_object_property_set_value(&connector->base, property, val);
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (property == dev_priv->force_audio_property) {
|
|
int i = val;
|
|
bool has_audio;
|
|
|
|
if (i == intel_dp->force_audio)
|
|
return 0;
|
|
|
|
intel_dp->force_audio = i;
|
|
|
|
if (i == HDMI_AUDIO_AUTO)
|
|
has_audio = intel_dp_detect_audio(connector);
|
|
else
|
|
has_audio = (i == HDMI_AUDIO_ON);
|
|
|
|
if (has_audio == intel_dp->has_audio)
|
|
return 0;
|
|
|
|
intel_dp->has_audio = has_audio;
|
|
goto done;
|
|
}
|
|
|
|
if (property == dev_priv->broadcast_rgb_property) {
|
|
bool old_auto = intel_dp->color_range_auto;
|
|
uint32_t old_range = intel_dp->color_range;
|
|
|
|
switch (val) {
|
|
case INTEL_BROADCAST_RGB_AUTO:
|
|
intel_dp->color_range_auto = true;
|
|
break;
|
|
case INTEL_BROADCAST_RGB_FULL:
|
|
intel_dp->color_range_auto = false;
|
|
intel_dp->color_range = 0;
|
|
break;
|
|
case INTEL_BROADCAST_RGB_LIMITED:
|
|
intel_dp->color_range_auto = false;
|
|
intel_dp->color_range = DP_COLOR_RANGE_16_235;
|
|
break;
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (old_auto == intel_dp->color_range_auto &&
|
|
old_range == intel_dp->color_range)
|
|
return 0;
|
|
|
|
goto done;
|
|
}
|
|
|
|
if (is_edp(intel_dp) &&
|
|
property == connector->dev->mode_config.scaling_mode_property) {
|
|
if (val == DRM_MODE_SCALE_NONE) {
|
|
DRM_DEBUG_KMS("no scaling not supported\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (intel_connector->panel.fitting_mode == val) {
|
|
/* the eDP scaling property is not changed */
|
|
return 0;
|
|
}
|
|
intel_connector->panel.fitting_mode = val;
|
|
|
|
goto done;
|
|
}
|
|
|
|
return -EINVAL;
|
|
|
|
done:
|
|
if (intel_encoder->base.crtc)
|
|
intel_crtc_restore_mode(intel_encoder->base.crtc);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
intel_dp_connector_destroy(struct drm_connector *connector)
|
|
{
|
|
struct intel_connector *intel_connector = to_intel_connector(connector);
|
|
|
|
if (!IS_ERR_OR_NULL(intel_connector->edid))
|
|
kfree(intel_connector->edid);
|
|
|
|
/* Can't call is_edp() since the encoder may have been destroyed
|
|
* already. */
|
|
if (connector->connector_type == DRM_MODE_CONNECTOR_eDP)
|
|
intel_panel_fini(&intel_connector->panel);
|
|
|
|
drm_sysfs_connector_remove(connector);
|
|
drm_connector_cleanup(connector);
|
|
kfree(connector);
|
|
}
|
|
|
|
void intel_dp_encoder_destroy(struct drm_encoder *encoder)
|
|
{
|
|
struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
|
|
struct intel_dp *intel_dp = &intel_dig_port->dp;
|
|
struct drm_device *dev = intel_dp_to_dev(intel_dp);
|
|
|
|
i2c_del_adapter(&intel_dp->adapter);
|
|
drm_encoder_cleanup(encoder);
|
|
if (is_edp(intel_dp)) {
|
|
// cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
|
|
mutex_lock(&dev->mode_config.mutex);
|
|
ironlake_panel_vdd_off_sync(intel_dp);
|
|
mutex_unlock(&dev->mode_config.mutex);
|
|
}
|
|
kfree(intel_dig_port);
|
|
}
|
|
|
|
static const struct drm_connector_funcs intel_dp_connector_funcs = {
|
|
.dpms = intel_connector_dpms,
|
|
.detect = intel_dp_detect,
|
|
.fill_modes = drm_helper_probe_single_connector_modes,
|
|
.set_property = intel_dp_set_property,
|
|
.destroy = intel_dp_connector_destroy,
|
|
};
|
|
|
|
static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = {
|
|
.get_modes = intel_dp_get_modes,
|
|
.mode_valid = intel_dp_mode_valid,
|
|
.best_encoder = intel_best_encoder,
|
|
};
|
|
|
|
static const struct drm_encoder_funcs intel_dp_enc_funcs = {
|
|
.destroy = intel_dp_encoder_destroy,
|
|
};
|
|
|
|
static void
|
|
intel_dp_hot_plug(struct intel_encoder *intel_encoder)
|
|
{
|
|
struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
|
|
|
|
intel_dp_check_link_status(intel_dp);
|
|
}
|
|
|
|
/* Return which DP Port should be selected for Transcoder DP control */
|
|
int
|
|
intel_trans_dp_port_sel(struct drm_crtc *crtc)
|
|
{
|
|
struct drm_device *dev = crtc->dev;
|
|
struct intel_encoder *intel_encoder;
|
|
struct intel_dp *intel_dp;
|
|
|
|
for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
|
|
intel_dp = enc_to_intel_dp(&intel_encoder->base);
|
|
|
|
if (intel_encoder->type == INTEL_OUTPUT_DISPLAYPORT ||
|
|
intel_encoder->type == INTEL_OUTPUT_EDP)
|
|
return intel_dp->output_reg;
|
|
}
|
|
|
|
return -1;
|
|
}
|
|
|
|
/* check the VBT to see whether the eDP is on DP-D port */
|
|
bool intel_dpd_is_edp(struct drm_device *dev)
|
|
{
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
struct child_device_config *p_child;
|
|
int i;
|
|
|
|
if (!dev_priv->vbt.child_dev_num)
|
|
return false;
|
|
|
|
for (i = 0; i < dev_priv->vbt.child_dev_num; i++) {
|
|
p_child = dev_priv->vbt.child_dev + i;
|
|
|
|
if (p_child->dvo_port == PORT_IDPD &&
|
|
p_child->device_type == DEVICE_TYPE_eDP)
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
static void
|
|
intel_dp_add_properties(struct intel_dp *intel_dp, struct drm_connector *connector)
|
|
{
|
|
struct intel_connector *intel_connector = to_intel_connector(connector);
|
|
|
|
intel_attach_force_audio_property(connector);
|
|
intel_attach_broadcast_rgb_property(connector);
|
|
intel_dp->color_range_auto = true;
|
|
|
|
if (is_edp(intel_dp)) {
|
|
drm_mode_create_scaling_mode_property(connector->dev);
|
|
drm_object_attach_property(
|
|
&connector->base,
|
|
connector->dev->mode_config.scaling_mode_property,
|
|
DRM_MODE_SCALE_ASPECT);
|
|
intel_connector->panel.fitting_mode = DRM_MODE_SCALE_ASPECT;
|
|
}
|
|
}
|
|
|
|
static void
|
|
intel_dp_init_panel_power_sequencer(struct drm_device *dev,
|
|
struct intel_dp *intel_dp,
|
|
struct edp_power_seq *out)
|
|
{
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
struct edp_power_seq cur, vbt, spec, final;
|
|
u32 pp_on, pp_off, pp_div, pp;
|
|
int pp_control_reg, pp_on_reg, pp_off_reg, pp_div_reg;
|
|
|
|
if (HAS_PCH_SPLIT(dev)) {
|
|
pp_control_reg = PCH_PP_CONTROL;
|
|
pp_on_reg = PCH_PP_ON_DELAYS;
|
|
pp_off_reg = PCH_PP_OFF_DELAYS;
|
|
pp_div_reg = PCH_PP_DIVISOR;
|
|
} else {
|
|
pp_control_reg = PIPEA_PP_CONTROL;
|
|
pp_on_reg = PIPEA_PP_ON_DELAYS;
|
|
pp_off_reg = PIPEA_PP_OFF_DELAYS;
|
|
pp_div_reg = PIPEA_PP_DIVISOR;
|
|
}
|
|
|
|
/* Workaround: Need to write PP_CONTROL with the unlock key as
|
|
* the very first thing. */
|
|
pp = ironlake_get_pp_control(intel_dp);
|
|
I915_WRITE(pp_control_reg, pp);
|
|
|
|
pp_on = I915_READ(pp_on_reg);
|
|
pp_off = I915_READ(pp_off_reg);
|
|
pp_div = I915_READ(pp_div_reg);
|
|
|
|
/* Pull timing values out of registers */
|
|
cur.t1_t3 = (pp_on & PANEL_POWER_UP_DELAY_MASK) >>
|
|
PANEL_POWER_UP_DELAY_SHIFT;
|
|
|
|
cur.t8 = (pp_on & PANEL_LIGHT_ON_DELAY_MASK) >>
|
|
PANEL_LIGHT_ON_DELAY_SHIFT;
|
|
|
|
cur.t9 = (pp_off & PANEL_LIGHT_OFF_DELAY_MASK) >>
|
|
PANEL_LIGHT_OFF_DELAY_SHIFT;
|
|
|
|
cur.t10 = (pp_off & PANEL_POWER_DOWN_DELAY_MASK) >>
|
|
PANEL_POWER_DOWN_DELAY_SHIFT;
|
|
|
|
cur.t11_t12 = ((pp_div & PANEL_POWER_CYCLE_DELAY_MASK) >>
|
|
PANEL_POWER_CYCLE_DELAY_SHIFT) * 1000;
|
|
|
|
DRM_DEBUG_KMS("cur t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
|
|
cur.t1_t3, cur.t8, cur.t9, cur.t10, cur.t11_t12);
|
|
|
|
vbt = dev_priv->vbt.edp_pps;
|
|
|
|
/* Upper limits from eDP 1.3 spec. Note that we use the clunky units of
|
|
* our hw here, which are all in 100usec. */
|
|
spec.t1_t3 = 210 * 10;
|
|
spec.t8 = 50 * 10; /* no limit for t8, use t7 instead */
|
|
spec.t9 = 50 * 10; /* no limit for t9, make it symmetric with t8 */
|
|
spec.t10 = 500 * 10;
|
|
/* This one is special and actually in units of 100ms, but zero
|
|
* based in the hw (so we need to add 100 ms). But the sw vbt
|
|
* table multiplies it with 1000 to make it in units of 100usec,
|
|
* too. */
|
|
spec.t11_t12 = (510 + 100) * 10;
|
|
|
|
DRM_DEBUG_KMS("vbt t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
|
|
vbt.t1_t3, vbt.t8, vbt.t9, vbt.t10, vbt.t11_t12);
|
|
|
|
/* Use the max of the register settings and vbt. If both are
|
|
* unset, fall back to the spec limits. */
|
|
#define assign_final(field) final.field = (max(cur.field, vbt.field) == 0 ? \
|
|
spec.field : \
|
|
max(cur.field, vbt.field))
|
|
assign_final(t1_t3);
|
|
assign_final(t8);
|
|
assign_final(t9);
|
|
assign_final(t10);
|
|
assign_final(t11_t12);
|
|
#undef assign_final
|
|
|
|
#define get_delay(field) (DIV_ROUND_UP(final.field, 10))
|
|
intel_dp->panel_power_up_delay = get_delay(t1_t3);
|
|
intel_dp->backlight_on_delay = get_delay(t8);
|
|
intel_dp->backlight_off_delay = get_delay(t9);
|
|
intel_dp->panel_power_down_delay = get_delay(t10);
|
|
intel_dp->panel_power_cycle_delay = get_delay(t11_t12);
|
|
#undef get_delay
|
|
|
|
DRM_DEBUG_KMS("panel power up delay %d, power down delay %d, power cycle delay %d\n",
|
|
intel_dp->panel_power_up_delay, intel_dp->panel_power_down_delay,
|
|
intel_dp->panel_power_cycle_delay);
|
|
|
|
DRM_DEBUG_KMS("backlight on delay %d, off delay %d\n",
|
|
intel_dp->backlight_on_delay, intel_dp->backlight_off_delay);
|
|
|
|
if (out)
|
|
*out = final;
|
|
}
|
|
|
|
static void
|
|
intel_dp_init_panel_power_sequencer_registers(struct drm_device *dev,
|
|
struct intel_dp *intel_dp,
|
|
struct edp_power_seq *seq)
|
|
{
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
u32 pp_on, pp_off, pp_div, port_sel = 0;
|
|
int div = HAS_PCH_SPLIT(dev) ? intel_pch_rawclk(dev) : intel_hrawclk(dev);
|
|
int pp_on_reg, pp_off_reg, pp_div_reg;
|
|
|
|
if (HAS_PCH_SPLIT(dev)) {
|
|
pp_on_reg = PCH_PP_ON_DELAYS;
|
|
pp_off_reg = PCH_PP_OFF_DELAYS;
|
|
pp_div_reg = PCH_PP_DIVISOR;
|
|
} else {
|
|
pp_on_reg = PIPEA_PP_ON_DELAYS;
|
|
pp_off_reg = PIPEA_PP_OFF_DELAYS;
|
|
pp_div_reg = PIPEA_PP_DIVISOR;
|
|
}
|
|
|
|
/* And finally store the new values in the power sequencer. */
|
|
pp_on = (seq->t1_t3 << PANEL_POWER_UP_DELAY_SHIFT) |
|
|
(seq->t8 << PANEL_LIGHT_ON_DELAY_SHIFT);
|
|
pp_off = (seq->t9 << PANEL_LIGHT_OFF_DELAY_SHIFT) |
|
|
(seq->t10 << PANEL_POWER_DOWN_DELAY_SHIFT);
|
|
/* Compute the divisor for the pp clock, simply match the Bspec
|
|
* formula. */
|
|
pp_div = ((100 * div)/2 - 1) << PP_REFERENCE_DIVIDER_SHIFT;
|
|
pp_div |= (DIV_ROUND_UP(seq->t11_t12, 1000)
|
|
<< PANEL_POWER_CYCLE_DELAY_SHIFT);
|
|
|
|
/* Haswell doesn't have any port selection bits for the panel
|
|
* power sequencer any more. */
|
|
if (IS_VALLEYVIEW(dev)) {
|
|
port_sel = I915_READ(pp_on_reg) & 0xc0000000;
|
|
} else if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
|
|
if (dp_to_dig_port(intel_dp)->port == PORT_A)
|
|
port_sel = PANEL_POWER_PORT_DP_A;
|
|
else
|
|
port_sel = PANEL_POWER_PORT_DP_D;
|
|
}
|
|
|
|
pp_on |= port_sel;
|
|
|
|
I915_WRITE(pp_on_reg, pp_on);
|
|
I915_WRITE(pp_off_reg, pp_off);
|
|
I915_WRITE(pp_div_reg, pp_div);
|
|
|
|
DRM_DEBUG_KMS("panel power sequencer register settings: PP_ON %#x, PP_OFF %#x, PP_DIV %#x\n",
|
|
I915_READ(pp_on_reg),
|
|
I915_READ(pp_off_reg),
|
|
I915_READ(pp_div_reg));
|
|
}
|
|
|
|
static bool intel_edp_init_connector(struct intel_dp *intel_dp,
|
|
struct intel_connector *intel_connector)
|
|
{
|
|
struct drm_connector *connector = &intel_connector->base;
|
|
struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
|
|
struct drm_device *dev = intel_dig_port->base.base.dev;
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
struct drm_display_mode *fixed_mode = NULL;
|
|
struct edp_power_seq power_seq = { 0 };
|
|
bool has_dpcd;
|
|
struct drm_display_mode *scan;
|
|
struct edid *edid;
|
|
|
|
if (!is_edp(intel_dp))
|
|
return true;
|
|
|
|
intel_dp_init_panel_power_sequencer(dev, intel_dp, &power_seq);
|
|
|
|
/* Cache DPCD and EDID for edp. */
|
|
ironlake_edp_panel_vdd_on(intel_dp);
|
|
has_dpcd = intel_dp_get_dpcd(intel_dp);
|
|
ironlake_edp_panel_vdd_off(intel_dp, false);
|
|
|
|
if (has_dpcd) {
|
|
if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11)
|
|
dev_priv->no_aux_handshake =
|
|
intel_dp->dpcd[DP_MAX_DOWNSPREAD] &
|
|
DP_NO_AUX_HANDSHAKE_LINK_TRAINING;
|
|
} else {
|
|
/* if this fails, presume the device is a ghost */
|
|
DRM_INFO("failed to retrieve link info, disabling eDP\n");
|
|
return false;
|
|
}
|
|
|
|
/* We now know it's not a ghost, init power sequence regs. */
|
|
intel_dp_init_panel_power_sequencer_registers(dev, intel_dp,
|
|
&power_seq);
|
|
|
|
ironlake_edp_panel_vdd_on(intel_dp);
|
|
edid = drm_get_edid(connector, &intel_dp->adapter);
|
|
if (edid) {
|
|
if (drm_add_edid_modes(connector, edid)) {
|
|
drm_mode_connector_update_edid_property(connector,
|
|
edid);
|
|
drm_edid_to_eld(connector, edid);
|
|
} else {
|
|
kfree(edid);
|
|
edid = ERR_PTR(-EINVAL);
|
|
}
|
|
} else {
|
|
edid = ERR_PTR(-ENOENT);
|
|
}
|
|
intel_connector->edid = edid;
|
|
|
|
/* prefer fixed mode from EDID if available */
|
|
list_for_each_entry(scan, &connector->probed_modes, head) {
|
|
if ((scan->type & DRM_MODE_TYPE_PREFERRED)) {
|
|
fixed_mode = drm_mode_duplicate(dev, scan);
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* fallback to VBT if available for eDP */
|
|
if (!fixed_mode && dev_priv->vbt.lfp_lvds_vbt_mode) {
|
|
fixed_mode = drm_mode_duplicate(dev,
|
|
dev_priv->vbt.lfp_lvds_vbt_mode);
|
|
if (fixed_mode)
|
|
fixed_mode->type |= DRM_MODE_TYPE_PREFERRED;
|
|
}
|
|
|
|
ironlake_edp_panel_vdd_off(intel_dp, false);
|
|
|
|
intel_panel_init(&intel_connector->panel, fixed_mode);
|
|
intel_panel_setup_backlight(connector);
|
|
|
|
return true;
|
|
}
|
|
|
|
bool
|
|
intel_dp_init_connector(struct intel_digital_port *intel_dig_port,
|
|
struct intel_connector *intel_connector)
|
|
{
|
|
struct drm_connector *connector = &intel_connector->base;
|
|
struct intel_dp *intel_dp = &intel_dig_port->dp;
|
|
struct intel_encoder *intel_encoder = &intel_dig_port->base;
|
|
struct drm_device *dev = intel_encoder->base.dev;
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
enum port port = intel_dig_port->port;
|
|
const char *name = NULL;
|
|
int type, error;
|
|
|
|
/* Preserve the current hw state. */
|
|
intel_dp->DP = I915_READ(intel_dp->output_reg);
|
|
intel_dp->attached_connector = intel_connector;
|
|
|
|
type = DRM_MODE_CONNECTOR_DisplayPort;
|
|
/*
|
|
* FIXME : We need to initialize built-in panels before external panels.
|
|
* For X0, DP_C is fixed as eDP. Revisit this as part of VLV eDP cleanup
|
|
*/
|
|
switch (port) {
|
|
case PORT_A:
|
|
type = DRM_MODE_CONNECTOR_eDP;
|
|
break;
|
|
case PORT_C:
|
|
if (IS_VALLEYVIEW(dev))
|
|
type = DRM_MODE_CONNECTOR_eDP;
|
|
break;
|
|
case PORT_D:
|
|
if (HAS_PCH_SPLIT(dev) && intel_dpd_is_edp(dev))
|
|
type = DRM_MODE_CONNECTOR_eDP;
|
|
break;
|
|
default: /* silence GCC warning */
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* For eDP we always set the encoder type to INTEL_OUTPUT_EDP, but
|
|
* for DP the encoder type can be set by the caller to
|
|
* INTEL_OUTPUT_UNKNOWN for DDI, so don't rewrite it.
|
|
*/
|
|
if (type == DRM_MODE_CONNECTOR_eDP)
|
|
intel_encoder->type = INTEL_OUTPUT_EDP;
|
|
|
|
DRM_DEBUG_KMS("Adding %s connector on port %c\n",
|
|
type == DRM_MODE_CONNECTOR_eDP ? "eDP" : "DP",
|
|
port_name(port));
|
|
|
|
drm_connector_init(dev, connector, &intel_dp_connector_funcs, type);
|
|
drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs);
|
|
|
|
connector->interlace_allowed = true;
|
|
connector->doublescan_allowed = 0;
|
|
|
|
INIT_DELAYED_WORK(&intel_dp->panel_vdd_work,
|
|
ironlake_panel_vdd_work);
|
|
|
|
intel_connector_attach_encoder(intel_connector, intel_encoder);
|
|
drm_sysfs_connector_add(connector);
|
|
|
|
if (HAS_DDI(dev))
|
|
intel_connector->get_hw_state = intel_ddi_connector_get_hw_state;
|
|
else
|
|
intel_connector->get_hw_state = intel_connector_get_hw_state;
|
|
|
|
intel_dp->aux_ch_ctl_reg = intel_dp->output_reg + 0x10;
|
|
if (HAS_DDI(dev)) {
|
|
switch (intel_dig_port->port) {
|
|
case PORT_A:
|
|
intel_dp->aux_ch_ctl_reg = DPA_AUX_CH_CTL;
|
|
break;
|
|
case PORT_B:
|
|
intel_dp->aux_ch_ctl_reg = PCH_DPB_AUX_CH_CTL;
|
|
break;
|
|
case PORT_C:
|
|
intel_dp->aux_ch_ctl_reg = PCH_DPC_AUX_CH_CTL;
|
|
break;
|
|
case PORT_D:
|
|
intel_dp->aux_ch_ctl_reg = PCH_DPD_AUX_CH_CTL;
|
|
break;
|
|
default:
|
|
BUG();
|
|
}
|
|
}
|
|
|
|
/* Set up the DDC bus. */
|
|
switch (port) {
|
|
case PORT_A:
|
|
intel_encoder->hpd_pin = HPD_PORT_A;
|
|
name = "DPDDC-A";
|
|
break;
|
|
case PORT_B:
|
|
intel_encoder->hpd_pin = HPD_PORT_B;
|
|
name = "DPDDC-B";
|
|
break;
|
|
case PORT_C:
|
|
intel_encoder->hpd_pin = HPD_PORT_C;
|
|
name = "DPDDC-C";
|
|
break;
|
|
case PORT_D:
|
|
intel_encoder->hpd_pin = HPD_PORT_D;
|
|
name = "DPDDC-D";
|
|
break;
|
|
default:
|
|
BUG();
|
|
}
|
|
|
|
error = intel_dp_i2c_init(intel_dp, intel_connector, name);
|
|
WARN(error, "intel_dp_i2c_init failed with error %d for port %c\n",
|
|
error, port_name(port));
|
|
|
|
intel_dp->psr_setup_done = false;
|
|
|
|
if (!intel_edp_init_connector(intel_dp, intel_connector)) {
|
|
i2c_del_adapter(&intel_dp->adapter);
|
|
if (is_edp(intel_dp)) {
|
|
// cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
|
|
mutex_lock(&dev->mode_config.mutex);
|
|
ironlake_panel_vdd_off_sync(intel_dp);
|
|
mutex_unlock(&dev->mode_config.mutex);
|
|
}
|
|
drm_sysfs_connector_remove(connector);
|
|
drm_connector_cleanup(connector);
|
|
return false;
|
|
}
|
|
|
|
intel_dp_add_properties(intel_dp, connector);
|
|
|
|
/* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
|
|
* 0xd. Failure to do so will result in spurious interrupts being
|
|
* generated on the port when a cable is not attached.
|
|
*/
|
|
if (IS_G4X(dev) && !IS_GM45(dev)) {
|
|
u32 temp = I915_READ(PEG_BAND_GAP_DATA);
|
|
I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd);
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
void
|
|
intel_dp_init(struct drm_device *dev, int output_reg, enum port port)
|
|
{
|
|
struct intel_digital_port *intel_dig_port;
|
|
struct intel_encoder *intel_encoder;
|
|
struct drm_encoder *encoder;
|
|
struct intel_connector *intel_connector;
|
|
|
|
intel_dig_port = kzalloc(sizeof(struct intel_digital_port), GFP_KERNEL);
|
|
if (!intel_dig_port)
|
|
return;
|
|
|
|
intel_connector = kzalloc(sizeof(struct intel_connector), GFP_KERNEL);
|
|
if (!intel_connector) {
|
|
kfree(intel_dig_port);
|
|
return;
|
|
}
|
|
|
|
intel_encoder = &intel_dig_port->base;
|
|
encoder = &intel_encoder->base;
|
|
|
|
drm_encoder_init(dev, &intel_encoder->base, &intel_dp_enc_funcs,
|
|
DRM_MODE_ENCODER_TMDS);
|
|
|
|
intel_encoder->compute_config = intel_dp_compute_config;
|
|
intel_encoder->mode_set = intel_dp_mode_set;
|
|
intel_encoder->disable = intel_disable_dp;
|
|
intel_encoder->post_disable = intel_post_disable_dp;
|
|
intel_encoder->get_hw_state = intel_dp_get_hw_state;
|
|
intel_encoder->get_config = intel_dp_get_config;
|
|
if (IS_VALLEYVIEW(dev)) {
|
|
intel_encoder->pre_pll_enable = intel_dp_pre_pll_enable;
|
|
intel_encoder->pre_enable = vlv_pre_enable_dp;
|
|
intel_encoder->enable = vlv_enable_dp;
|
|
} else {
|
|
intel_encoder->pre_enable = intel_pre_enable_dp;
|
|
intel_encoder->enable = intel_enable_dp;
|
|
}
|
|
|
|
intel_dig_port->port = port;
|
|
intel_dig_port->dp.output_reg = output_reg;
|
|
|
|
intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
|
|
intel_encoder->crtc_mask = (1 << 0) | (1 << 1) | (1 << 2);
|
|
intel_encoder->cloneable = false;
|
|
intel_encoder->hot_plug = intel_dp_hot_plug;
|
|
|
|
if (!intel_dp_init_connector(intel_dig_port, intel_connector)) {
|
|
drm_encoder_cleanup(encoder);
|
|
kfree(intel_dig_port);
|
|
kfree(intel_connector);
|
|
}
|
|
}
|