forked from KolibriOS/kolibrios
754f9336f0
git-svn-id: svn://kolibrios.org@4349 a494cfbc-eb01-0410-851d-a64ba20cac60
1855 lines
50 KiB
C
1855 lines
50 KiB
C
/* -*- Mode: c; tab-width: 8; c-basic-offset: 4; indent-tabs-mode: t; -*- */
|
|
/* glitter-paths - polygon scan converter
|
|
*
|
|
* Copyright (c) 2008 M Joonas Pihlaja
|
|
* Copyright (c) 2007 David Turner
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person
|
|
* obtaining a copy of this software and associated documentation
|
|
* files (the "Software"), to deal in the Software without
|
|
* restriction, including without limitation the rights to use,
|
|
* copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
* copies of the Software, and to permit persons to whom the
|
|
* Software is furnished to do so, subject to the following
|
|
* conditions:
|
|
*
|
|
* The above copyright notice and this permission notice shall be
|
|
* included in all copies or substantial portions of the Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
|
|
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
|
|
* OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
|
|
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
|
|
* HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
|
|
* WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
|
|
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
|
|
* OTHER DEALINGS IN THE SOFTWARE.
|
|
*/
|
|
/* This is the Glitter paths scan converter incorporated into cairo.
|
|
* The source is from commit 734c53237a867a773640bd5b64816249fa1730f8
|
|
* of
|
|
*
|
|
* http://gitweb.freedesktop.org/?p=users/joonas/glitter-paths
|
|
*/
|
|
/* Glitter-paths is a stand alone polygon rasteriser derived from
|
|
* David Turner's reimplementation of Tor Anderssons's 15x17
|
|
* supersampling rasteriser from the Apparition graphics library. The
|
|
* main new feature here is cheaply choosing per-scan line between
|
|
* doing fully analytical coverage computation for an entire row at a
|
|
* time vs. using a supersampling approach.
|
|
*
|
|
* David Turner's code can be found at
|
|
*
|
|
* http://david.freetype.org/rasterizer-shootout/raster-comparison-20070813.tar.bz2
|
|
*
|
|
* In particular this file incorporates large parts of ftgrays_tor10.h
|
|
* from raster-comparison-20070813.tar.bz2
|
|
*/
|
|
/* Overview
|
|
*
|
|
* A scan converter's basic purpose to take polygon edges and convert
|
|
* them into an RLE compressed A8 mask. This one works in two phases:
|
|
* gathering edges and generating spans.
|
|
*
|
|
* 1) As the user feeds the scan converter edges they are vertically
|
|
* clipped and bucketted into a _polygon_ data structure. The edges
|
|
* are also snapped from the user's coordinates to the subpixel grid
|
|
* coordinates used during scan conversion.
|
|
*
|
|
* user
|
|
* |
|
|
* | edges
|
|
* V
|
|
* polygon buckets
|
|
*
|
|
* 2) Generating spans works by performing a vertical sweep of pixel
|
|
* rows from top to bottom and maintaining an _active_list_ of edges
|
|
* that intersect the row. From the active list the fill rule
|
|
* determines which edges are the left and right edges of the start of
|
|
* each span, and their contribution is then accumulated into a pixel
|
|
* coverage list (_cell_list_) as coverage deltas. Once the coverage
|
|
* deltas of all edges are known we can form spans of constant pixel
|
|
* coverage by summing the deltas during a traversal of the cell list.
|
|
* At the end of a pixel row the cell list is sent to a coverage
|
|
* blitter for rendering to some target surface.
|
|
*
|
|
* The pixel coverages are computed by either supersampling the row
|
|
* and box filtering a mono rasterisation, or by computing the exact
|
|
* coverages of edges in the active list. The supersampling method is
|
|
* used whenever some edge starts or stops within the row or there are
|
|
* edge intersections in the row.
|
|
*
|
|
* polygon bucket for \
|
|
* current pixel row |
|
|
* | |
|
|
* | activate new edges | Repeat GRID_Y times if we
|
|
* V \ are supersampling this row,
|
|
* active list / or just once if we're computing
|
|
* | | analytical coverage.
|
|
* | coverage deltas |
|
|
* V |
|
|
* pixel coverage list /
|
|
* |
|
|
* V
|
|
* coverage blitter
|
|
*/
|
|
#include "cairoint.h"
|
|
#include "cairo-spans-private.h"
|
|
#include "cairo-error-private.h"
|
|
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include <limits.h>
|
|
#include <setjmp.h>
|
|
|
|
/*-------------------------------------------------------------------------
|
|
* cairo specific config
|
|
*/
|
|
#define I static
|
|
|
|
/* Prefer cairo's status type. */
|
|
#define GLITTER_HAVE_STATUS_T 1
|
|
#define GLITTER_STATUS_SUCCESS CAIRO_STATUS_SUCCESS
|
|
#define GLITTER_STATUS_NO_MEMORY CAIRO_STATUS_NO_MEMORY
|
|
typedef cairo_status_t glitter_status_t;
|
|
|
|
/* The input coordinate scale and the rasterisation grid scales. */
|
|
#define GLITTER_INPUT_BITS CAIRO_FIXED_FRAC_BITS
|
|
#define GRID_X_BITS CAIRO_FIXED_FRAC_BITS
|
|
#define GRID_Y 15
|
|
|
|
/* Set glitter up to use a cairo span renderer to do the coverage
|
|
* blitting. */
|
|
struct pool;
|
|
struct cell_list;
|
|
|
|
/*-------------------------------------------------------------------------
|
|
* glitter-paths.h
|
|
*/
|
|
|
|
/* "Input scaled" numbers are fixed precision reals with multiplier
|
|
* 2**GLITTER_INPUT_BITS. Input coordinates are given to glitter as
|
|
* pixel scaled numbers. These get converted to the internal grid
|
|
* scaled numbers as soon as possible. Internal overflow is possible
|
|
* if GRID_X/Y inside glitter-paths.c is larger than
|
|
* 1<<GLITTER_INPUT_BITS. */
|
|
#ifndef GLITTER_INPUT_BITS
|
|
# define GLITTER_INPUT_BITS 8
|
|
#endif
|
|
#define GLITTER_INPUT_SCALE (1<<GLITTER_INPUT_BITS)
|
|
typedef int glitter_input_scaled_t;
|
|
|
|
#if !GLITTER_HAVE_STATUS_T
|
|
typedef enum {
|
|
GLITTER_STATUS_SUCCESS = 0,
|
|
GLITTER_STATUS_NO_MEMORY
|
|
} glitter_status_t;
|
|
#endif
|
|
|
|
#ifndef I
|
|
# define I /*static*/
|
|
#endif
|
|
|
|
/* Opaque type for scan converting. */
|
|
typedef struct glitter_scan_converter glitter_scan_converter_t;
|
|
|
|
/* Reset a scan converter to accept polygon edges and set the clip box
|
|
* in pixels. Allocates O(ymax-ymin) bytes of memory. The clip box
|
|
* is set to integer pixel coordinates xmin <= x < xmax, ymin <= y <
|
|
* ymax. */
|
|
I glitter_status_t
|
|
glitter_scan_converter_reset(
|
|
glitter_scan_converter_t *converter,
|
|
int xmin, int ymin,
|
|
int xmax, int ymax);
|
|
|
|
/* Render the polygon in the scan converter to the given A8 format
|
|
* image raster. Only the pixels accessible as pixels[y*stride+x] for
|
|
* x,y inside the clip box are written to, where xmin <= x < xmax,
|
|
* ymin <= y < ymax. The image is assumed to be clear on input.
|
|
*
|
|
* If nonzero_fill is true then the interior of the polygon is
|
|
* computed with the non-zero fill rule. Otherwise the even-odd fill
|
|
* rule is used.
|
|
*
|
|
* The scan converter must be reset or destroyed after this call. */
|
|
|
|
/*-------------------------------------------------------------------------
|
|
* glitter-paths.c: Implementation internal types
|
|
*/
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include <limits.h>
|
|
|
|
/* All polygon coordinates are snapped onto a subsample grid. "Grid
|
|
* scaled" numbers are fixed precision reals with multiplier GRID_X or
|
|
* GRID_Y. */
|
|
typedef int grid_scaled_t;
|
|
typedef int grid_scaled_x_t;
|
|
typedef int grid_scaled_y_t;
|
|
|
|
/* Default x/y scale factors.
|
|
* You can either define GRID_X/Y_BITS to get a power-of-two scale
|
|
* or define GRID_X/Y separately. */
|
|
#if !defined(GRID_X) && !defined(GRID_X_BITS)
|
|
# define GRID_X_BITS 8
|
|
#endif
|
|
#if !defined(GRID_Y) && !defined(GRID_Y_BITS)
|
|
# define GRID_Y 15
|
|
#endif
|
|
|
|
/* Use GRID_X/Y_BITS to define GRID_X/Y if they're available. */
|
|
#ifdef GRID_X_BITS
|
|
# define GRID_X (1 << GRID_X_BITS)
|
|
#endif
|
|
#ifdef GRID_Y_BITS
|
|
# define GRID_Y (1 << GRID_Y_BITS)
|
|
#endif
|
|
|
|
/* The GRID_X_TO_INT_FRAC macro splits a grid scaled coordinate into
|
|
* integer and fractional parts. The integer part is floored. */
|
|
#if defined(GRID_X_TO_INT_FRAC)
|
|
/* do nothing */
|
|
#elif defined(GRID_X_BITS)
|
|
# define GRID_X_TO_INT_FRAC(x, i, f) \
|
|
_GRID_TO_INT_FRAC_shift(x, i, f, GRID_X_BITS)
|
|
#else
|
|
# define GRID_X_TO_INT_FRAC(x, i, f) \
|
|
_GRID_TO_INT_FRAC_general(x, i, f, GRID_X)
|
|
#endif
|
|
|
|
#define _GRID_TO_INT_FRAC_general(t, i, f, m) do { \
|
|
(i) = (t) / (m); \
|
|
(f) = (t) % (m); \
|
|
if ((f) < 0) { \
|
|
--(i); \
|
|
(f) += (m); \
|
|
} \
|
|
} while (0)
|
|
|
|
#define _GRID_TO_INT_FRAC_shift(t, i, f, b) do { \
|
|
(f) = (t) & ((1 << (b)) - 1); \
|
|
(i) = (t) >> (b); \
|
|
} while (0)
|
|
|
|
/* A grid area is a real in [0,1] scaled by 2*GRID_X*GRID_Y. We want
|
|
* to be able to represent exactly areas of subpixel trapezoids whose
|
|
* vertices are given in grid scaled coordinates. The scale factor
|
|
* comes from needing to accurately represent the area 0.5*dx*dy of a
|
|
* triangle with base dx and height dy in grid scaled numbers. */
|
|
#define GRID_XY (2*GRID_X*GRID_Y) /* Unit area on the grid. */
|
|
|
|
/* GRID_AREA_TO_ALPHA(area): map [0,GRID_XY] to [0,255]. */
|
|
#if GRID_XY == 510
|
|
# define GRID_AREA_TO_ALPHA(c) (((c)+1) >> 1)
|
|
#elif GRID_XY == 255
|
|
# define GRID_AREA_TO_ALPHA(c) (c)
|
|
#elif GRID_XY == 64
|
|
# define GRID_AREA_TO_ALPHA(c) (((c) << 2) | -(((c) & 0x40) >> 6))
|
|
#elif GRID_XY == 128
|
|
# define GRID_AREA_TO_ALPHA(c) ((((c) << 1) | -((c) >> 7)) & 255)
|
|
#elif GRID_XY == 256
|
|
# define GRID_AREA_TO_ALPHA(c) (((c) | -((c) >> 8)) & 255)
|
|
#elif GRID_XY == 15
|
|
# define GRID_AREA_TO_ALPHA(c) (((c) << 4) + (c))
|
|
#elif GRID_XY == 2*256*15
|
|
# define GRID_AREA_TO_ALPHA(c) (((c) + ((c)<<4) + 256) >> 9)
|
|
#else
|
|
# define GRID_AREA_TO_ALPHA(c) (((c)*255 + GRID_XY/2) / GRID_XY)
|
|
#endif
|
|
|
|
#define UNROLL3(x) x x x
|
|
|
|
struct quorem {
|
|
int32_t quo;
|
|
int32_t rem;
|
|
};
|
|
|
|
/* Header for a chunk of memory in a memory pool. */
|
|
struct _pool_chunk {
|
|
/* # bytes used in this chunk. */
|
|
size_t size;
|
|
|
|
/* # bytes total in this chunk */
|
|
size_t capacity;
|
|
|
|
/* Pointer to the previous chunk or %NULL if this is the sentinel
|
|
* chunk in the pool header. */
|
|
struct _pool_chunk *prev_chunk;
|
|
|
|
/* Actual data starts here. Well aligned for pointers. */
|
|
};
|
|
|
|
/* A memory pool. This is supposed to be embedded on the stack or
|
|
* within some other structure. It may optionally be followed by an
|
|
* embedded array from which requests are fulfilled until
|
|
* malloc needs to be called to allocate a first real chunk. */
|
|
struct pool {
|
|
/* Chunk we're allocating from. */
|
|
struct _pool_chunk *current;
|
|
|
|
jmp_buf *jmp;
|
|
|
|
/* Free list of previously allocated chunks. All have >= default
|
|
* capacity. */
|
|
struct _pool_chunk *first_free;
|
|
|
|
/* The default capacity of a chunk. */
|
|
size_t default_capacity;
|
|
|
|
/* Header for the sentinel chunk. Directly following the pool
|
|
* struct should be some space for embedded elements from which
|
|
* the sentinel chunk allocates from. */
|
|
struct _pool_chunk sentinel[1];
|
|
};
|
|
|
|
/* A polygon edge. */
|
|
struct edge {
|
|
/* Next in y-bucket or active list. */
|
|
struct edge *next, *prev;
|
|
|
|
/* Number of subsample rows remaining to scan convert of this
|
|
* edge. */
|
|
grid_scaled_y_t height_left;
|
|
|
|
/* Original sign of the edge: +1 for downwards, -1 for upwards
|
|
* edges. */
|
|
int dir;
|
|
int vertical;
|
|
|
|
/* Current x coordinate while the edge is on the active
|
|
* list. Initialised to the x coordinate of the top of the
|
|
* edge. The quotient is in grid_scaled_x_t units and the
|
|
* remainder is mod dy in grid_scaled_y_t units.*/
|
|
struct quorem x;
|
|
|
|
/* Advance of the current x when moving down a subsample line. */
|
|
struct quorem dxdy;
|
|
|
|
/* Advance of the current x when moving down a full pixel
|
|
* row. Only initialised when the height of the edge is large
|
|
* enough that there's a chance the edge could be stepped by a
|
|
* full row's worth of subsample rows at a time. */
|
|
struct quorem dxdy_full;
|
|
|
|
/* The clipped y of the top of the edge. */
|
|
grid_scaled_y_t ytop;
|
|
|
|
/* y2-y1 after orienting the edge downwards. */
|
|
grid_scaled_y_t dy;
|
|
};
|
|
|
|
#define EDGE_Y_BUCKET_INDEX(y, ymin) (((y) - (ymin))/GRID_Y)
|
|
|
|
/* A collection of sorted and vertically clipped edges of the polygon.
|
|
* Edges are moved from the polygon to an active list while scan
|
|
* converting. */
|
|
struct polygon {
|
|
/* The vertical clip extents. */
|
|
grid_scaled_y_t ymin, ymax;
|
|
|
|
/* Array of edges all starting in the same bucket. An edge is put
|
|
* into bucket EDGE_BUCKET_INDEX(edge->ytop, polygon->ymin) when
|
|
* it is added to the polygon. */
|
|
struct edge **y_buckets;
|
|
struct edge *y_buckets_embedded[64];
|
|
|
|
struct {
|
|
struct pool base[1];
|
|
struct edge embedded[32];
|
|
} edge_pool;
|
|
};
|
|
|
|
/* A cell records the effect on pixel coverage of polygon edges
|
|
* passing through a pixel. It contains two accumulators of pixel
|
|
* coverage.
|
|
*
|
|
* Consider the effects of a polygon edge on the coverage of a pixel
|
|
* it intersects and that of the following one. The coverage of the
|
|
* following pixel is the height of the edge multiplied by the width
|
|
* of the pixel, and the coverage of the pixel itself is the area of
|
|
* the trapezoid formed by the edge and the right side of the pixel.
|
|
*
|
|
* +-----------------------+-----------------------+
|
|
* | | |
|
|
* | | |
|
|
* |_______________________|_______________________|
|
|
* | \...................|.......................|\
|
|
* | \..................|.......................| |
|
|
* | \.................|.......................| |
|
|
* | \....covered.....|.......................| |
|
|
* | \....area.......|.......................| } covered height
|
|
* | \..............|.......................| |
|
|
* |uncovered\.............|.......................| |
|
|
* | area \............|.......................| |
|
|
* |___________\...........|.......................|/
|
|
* | | |
|
|
* | | |
|
|
* | | |
|
|
* +-----------------------+-----------------------+
|
|
*
|
|
* Since the coverage of the following pixel will always be a multiple
|
|
* of the width of the pixel, we can store the height of the covered
|
|
* area instead. The coverage of the pixel itself is the total
|
|
* coverage minus the area of the uncovered area to the left of the
|
|
* edge. As it's faster to compute the uncovered area we only store
|
|
* that and subtract it from the total coverage later when forming
|
|
* spans to blit.
|
|
*
|
|
* The heights and areas are signed, with left edges of the polygon
|
|
* having positive sign and right edges having negative sign. When
|
|
* two edges intersect they swap their left/rightness so their
|
|
* contribution above and below the intersection point must be
|
|
* computed separately. */
|
|
struct cell {
|
|
struct cell *next;
|
|
int x;
|
|
int16_t uncovered_area;
|
|
int16_t covered_height;
|
|
};
|
|
|
|
/* A cell list represents the scan line sparsely as cells ordered by
|
|
* ascending x. It is geared towards scanning the cells in order
|
|
* using an internal cursor. */
|
|
struct cell_list {
|
|
/* Sentinel nodes */
|
|
struct cell head, tail;
|
|
|
|
/* Cursor state for iterating through the cell list. */
|
|
struct cell *cursor, *rewind;
|
|
|
|
/* Cells in the cell list are owned by the cell list and are
|
|
* allocated from this pool. */
|
|
struct {
|
|
struct pool base[1];
|
|
struct cell embedded[32];
|
|
} cell_pool;
|
|
};
|
|
|
|
struct cell_pair {
|
|
struct cell *cell1;
|
|
struct cell *cell2;
|
|
};
|
|
|
|
/* The active list contains edges in the current scan line ordered by
|
|
* the x-coordinate of the intercept of the edge and the scan line. */
|
|
struct active_list {
|
|
/* Leftmost edge on the current scan line. */
|
|
struct edge head, tail;
|
|
|
|
/* A lower bound on the height of the active edges is used to
|
|
* estimate how soon some active edge ends. We can't advance the
|
|
* scan conversion by a full pixel row if an edge ends somewhere
|
|
* within it. */
|
|
grid_scaled_y_t min_height;
|
|
int is_vertical;
|
|
};
|
|
|
|
struct glitter_scan_converter {
|
|
struct polygon polygon[1];
|
|
struct active_list active[1];
|
|
struct cell_list coverages[1];
|
|
|
|
cairo_half_open_span_t *spans;
|
|
cairo_half_open_span_t spans_embedded[64];
|
|
|
|
/* Clip box. */
|
|
grid_scaled_x_t xmin, xmax;
|
|
grid_scaled_y_t ymin, ymax;
|
|
};
|
|
|
|
/* Compute the floored division a/b. Assumes / and % perform symmetric
|
|
* division. */
|
|
inline static struct quorem
|
|
floored_divrem(int a, int b)
|
|
{
|
|
struct quorem qr;
|
|
qr.quo = a/b;
|
|
qr.rem = a%b;
|
|
if ((a^b)<0 && qr.rem) {
|
|
qr.quo -= 1;
|
|
qr.rem += b;
|
|
}
|
|
return qr;
|
|
}
|
|
|
|
/* Compute the floored division (x*a)/b. Assumes / and % perform symmetric
|
|
* division. */
|
|
static struct quorem
|
|
floored_muldivrem(int x, int a, int b)
|
|
{
|
|
struct quorem qr;
|
|
long long xa = (long long)x*a;
|
|
qr.quo = xa/b;
|
|
qr.rem = xa%b;
|
|
if ((xa>=0) != (b>=0) && qr.rem) {
|
|
qr.quo -= 1;
|
|
qr.rem += b;
|
|
}
|
|
return qr;
|
|
}
|
|
|
|
static struct _pool_chunk *
|
|
_pool_chunk_init(
|
|
struct _pool_chunk *p,
|
|
struct _pool_chunk *prev_chunk,
|
|
size_t capacity)
|
|
{
|
|
p->prev_chunk = prev_chunk;
|
|
p->size = 0;
|
|
p->capacity = capacity;
|
|
return p;
|
|
}
|
|
|
|
static struct _pool_chunk *
|
|
_pool_chunk_create(struct pool *pool, size_t size)
|
|
{
|
|
struct _pool_chunk *p;
|
|
|
|
p = malloc(size + sizeof(struct _pool_chunk));
|
|
if (unlikely (NULL == p))
|
|
longjmp (*pool->jmp, _cairo_error (CAIRO_STATUS_NO_MEMORY));
|
|
|
|
return _pool_chunk_init(p, pool->current, size);
|
|
}
|
|
|
|
static void
|
|
pool_init(struct pool *pool,
|
|
jmp_buf *jmp,
|
|
size_t default_capacity,
|
|
size_t embedded_capacity)
|
|
{
|
|
pool->jmp = jmp;
|
|
pool->current = pool->sentinel;
|
|
pool->first_free = NULL;
|
|
pool->default_capacity = default_capacity;
|
|
_pool_chunk_init(pool->sentinel, NULL, embedded_capacity);
|
|
}
|
|
|
|
static void
|
|
pool_fini(struct pool *pool)
|
|
{
|
|
struct _pool_chunk *p = pool->current;
|
|
do {
|
|
while (NULL != p) {
|
|
struct _pool_chunk *prev = p->prev_chunk;
|
|
if (p != pool->sentinel)
|
|
free(p);
|
|
p = prev;
|
|
}
|
|
p = pool->first_free;
|
|
pool->first_free = NULL;
|
|
} while (NULL != p);
|
|
}
|
|
|
|
/* Satisfy an allocation by first allocating a new large enough chunk
|
|
* and adding it to the head of the pool's chunk list. This function
|
|
* is called as a fallback if pool_alloc() couldn't do a quick
|
|
* allocation from the current chunk in the pool. */
|
|
static void *
|
|
_pool_alloc_from_new_chunk(
|
|
struct pool *pool,
|
|
size_t size)
|
|
{
|
|
struct _pool_chunk *chunk;
|
|
void *obj;
|
|
size_t capacity;
|
|
|
|
/* If the allocation is smaller than the default chunk size then
|
|
* try getting a chunk off the free list. Force alloc of a new
|
|
* chunk for large requests. */
|
|
capacity = size;
|
|
chunk = NULL;
|
|
if (size < pool->default_capacity) {
|
|
capacity = pool->default_capacity;
|
|
chunk = pool->first_free;
|
|
if (chunk) {
|
|
pool->first_free = chunk->prev_chunk;
|
|
_pool_chunk_init(chunk, pool->current, chunk->capacity);
|
|
}
|
|
}
|
|
|
|
if (NULL == chunk)
|
|
chunk = _pool_chunk_create (pool, capacity);
|
|
pool->current = chunk;
|
|
|
|
obj = ((unsigned char*)chunk + sizeof(*chunk) + chunk->size);
|
|
chunk->size += size;
|
|
return obj;
|
|
}
|
|
|
|
/* Allocate size bytes from the pool. The first allocated address
|
|
* returned from a pool is aligned to sizeof(void*). Subsequent
|
|
* addresses will maintain alignment as long as multiples of void* are
|
|
* allocated. Returns the address of a new memory area or %NULL on
|
|
* allocation failures. The pool retains ownership of the returned
|
|
* memory. */
|
|
inline static void *
|
|
pool_alloc (struct pool *pool, size_t size)
|
|
{
|
|
struct _pool_chunk *chunk = pool->current;
|
|
|
|
if (size <= chunk->capacity - chunk->size) {
|
|
void *obj = ((unsigned char*)chunk + sizeof(*chunk) + chunk->size);
|
|
chunk->size += size;
|
|
return obj;
|
|
} else {
|
|
return _pool_alloc_from_new_chunk(pool, size);
|
|
}
|
|
}
|
|
|
|
/* Relinquish all pool_alloced memory back to the pool. */
|
|
static void
|
|
pool_reset (struct pool *pool)
|
|
{
|
|
/* Transfer all used chunks to the chunk free list. */
|
|
struct _pool_chunk *chunk = pool->current;
|
|
if (chunk != pool->sentinel) {
|
|
while (chunk->prev_chunk != pool->sentinel) {
|
|
chunk = chunk->prev_chunk;
|
|
}
|
|
chunk->prev_chunk = pool->first_free;
|
|
pool->first_free = pool->current;
|
|
}
|
|
/* Reset the sentinel as the current chunk. */
|
|
pool->current = pool->sentinel;
|
|
pool->sentinel->size = 0;
|
|
}
|
|
|
|
/* Rewinds the cell list's cursor to the beginning. After rewinding
|
|
* we're good to cell_list_find() the cell any x coordinate. */
|
|
inline static void
|
|
cell_list_rewind (struct cell_list *cells)
|
|
{
|
|
cells->cursor = &cells->head;
|
|
}
|
|
|
|
inline static void
|
|
cell_list_maybe_rewind (struct cell_list *cells, int x)
|
|
{
|
|
if (x < cells->cursor->x) {
|
|
cells->cursor = cells->rewind;
|
|
if (x < cells->cursor->x)
|
|
cells->cursor = &cells->head;
|
|
}
|
|
}
|
|
|
|
inline static void
|
|
cell_list_set_rewind (struct cell_list *cells)
|
|
{
|
|
cells->rewind = cells->cursor;
|
|
}
|
|
|
|
static void
|
|
cell_list_init(struct cell_list *cells, jmp_buf *jmp)
|
|
{
|
|
pool_init(cells->cell_pool.base, jmp,
|
|
256*sizeof(struct cell),
|
|
sizeof(cells->cell_pool.embedded));
|
|
cells->tail.next = NULL;
|
|
cells->tail.x = INT_MAX;
|
|
cells->head.x = INT_MIN;
|
|
cells->head.next = &cells->tail;
|
|
cell_list_rewind (cells);
|
|
}
|
|
|
|
static void
|
|
cell_list_fini(struct cell_list *cells)
|
|
{
|
|
pool_fini (cells->cell_pool.base);
|
|
}
|
|
|
|
/* Empty the cell list. This is called at the start of every pixel
|
|
* row. */
|
|
inline static void
|
|
cell_list_reset (struct cell_list *cells)
|
|
{
|
|
cell_list_rewind (cells);
|
|
cells->head.next = &cells->tail;
|
|
pool_reset (cells->cell_pool.base);
|
|
}
|
|
|
|
inline static struct cell *
|
|
cell_list_alloc (struct cell_list *cells,
|
|
struct cell *tail,
|
|
int x)
|
|
{
|
|
struct cell *cell;
|
|
|
|
cell = pool_alloc (cells->cell_pool.base, sizeof (struct cell));
|
|
cell->next = tail->next;
|
|
tail->next = cell;
|
|
cell->x = x;
|
|
*(uint32_t *)&cell->uncovered_area = 0;
|
|
|
|
return cell;
|
|
}
|
|
|
|
/* Find a cell at the given x-coordinate. Returns %NULL if a new cell
|
|
* needed to be allocated but couldn't be. Cells must be found with
|
|
* non-decreasing x-coordinate until the cell list is rewound using
|
|
* cell_list_rewind(). Ownership of the returned cell is retained by
|
|
* the cell list. */
|
|
inline static struct cell *
|
|
cell_list_find (struct cell_list *cells, int x)
|
|
{
|
|
struct cell *tail = cells->cursor;
|
|
|
|
if (tail->x == x)
|
|
return tail;
|
|
|
|
while (1) {
|
|
UNROLL3({
|
|
if (tail->next->x > x)
|
|
break;
|
|
tail = tail->next;
|
|
});
|
|
}
|
|
|
|
if (tail->x != x)
|
|
tail = cell_list_alloc (cells, tail, x);
|
|
return cells->cursor = tail;
|
|
|
|
}
|
|
|
|
/* Find two cells at x1 and x2. This is exactly equivalent
|
|
* to
|
|
*
|
|
* pair.cell1 = cell_list_find(cells, x1);
|
|
* pair.cell2 = cell_list_find(cells, x2);
|
|
*
|
|
* except with less function call overhead. */
|
|
inline static struct cell_pair
|
|
cell_list_find_pair(struct cell_list *cells, int x1, int x2)
|
|
{
|
|
struct cell_pair pair;
|
|
|
|
pair.cell1 = cells->cursor;
|
|
while (1) {
|
|
UNROLL3({
|
|
if (pair.cell1->next->x > x1)
|
|
break;
|
|
pair.cell1 = pair.cell1->next;
|
|
});
|
|
}
|
|
if (pair.cell1->x != x1)
|
|
pair.cell1 = cell_list_alloc (cells, pair.cell1, x1);
|
|
|
|
pair.cell2 = pair.cell1;
|
|
while (1) {
|
|
UNROLL3({
|
|
if (pair.cell2->next->x > x2)
|
|
break;
|
|
pair.cell2 = pair.cell2->next;
|
|
});
|
|
}
|
|
if (pair.cell2->x != x2)
|
|
pair.cell2 = cell_list_alloc (cells, pair.cell2, x2);
|
|
|
|
cells->cursor = pair.cell2;
|
|
return pair;
|
|
}
|
|
|
|
/* Add a subpixel span covering [x1, x2) to the coverage cells. */
|
|
inline static void
|
|
cell_list_add_subspan(struct cell_list *cells,
|
|
grid_scaled_x_t x1,
|
|
grid_scaled_x_t x2)
|
|
{
|
|
int ix1, fx1;
|
|
int ix2, fx2;
|
|
|
|
if (x1 == x2)
|
|
return;
|
|
|
|
GRID_X_TO_INT_FRAC(x1, ix1, fx1);
|
|
GRID_X_TO_INT_FRAC(x2, ix2, fx2);
|
|
|
|
if (ix1 != ix2) {
|
|
struct cell_pair p;
|
|
p = cell_list_find_pair(cells, ix1, ix2);
|
|
p.cell1->uncovered_area += 2*fx1;
|
|
++p.cell1->covered_height;
|
|
p.cell2->uncovered_area -= 2*fx2;
|
|
--p.cell2->covered_height;
|
|
} else {
|
|
struct cell *cell = cell_list_find(cells, ix1);
|
|
cell->uncovered_area += 2*(fx1-fx2);
|
|
}
|
|
}
|
|
|
|
/* Adds the analytical coverage of an edge crossing the current pixel
|
|
* row to the coverage cells and advances the edge's x position to the
|
|
* following row.
|
|
*
|
|
* This function is only called when we know that during this pixel row:
|
|
*
|
|
* 1) The relative order of all edges on the active list doesn't
|
|
* change. In particular, no edges intersect within this row to pixel
|
|
* precision.
|
|
*
|
|
* 2) No new edges start in this row.
|
|
*
|
|
* 3) No existing edges end mid-row.
|
|
*
|
|
* This function depends on being called with all edges from the
|
|
* active list in the order they appear on the list (i.e. with
|
|
* non-decreasing x-coordinate.) */
|
|
static void
|
|
cell_list_render_edge(struct cell_list *cells,
|
|
struct edge *edge,
|
|
int sign)
|
|
{
|
|
grid_scaled_y_t y1, y2, dy;
|
|
grid_scaled_x_t dx;
|
|
int ix1, ix2;
|
|
grid_scaled_x_t fx1, fx2;
|
|
|
|
struct quorem x1 = edge->x;
|
|
struct quorem x2 = x1;
|
|
|
|
if (! edge->vertical) {
|
|
x2.quo += edge->dxdy_full.quo;
|
|
x2.rem += edge->dxdy_full.rem;
|
|
if (x2.rem >= 0) {
|
|
++x2.quo;
|
|
x2.rem -= edge->dy;
|
|
}
|
|
|
|
edge->x = x2;
|
|
}
|
|
|
|
GRID_X_TO_INT_FRAC(x1.quo, ix1, fx1);
|
|
GRID_X_TO_INT_FRAC(x2.quo, ix2, fx2);
|
|
|
|
/* Edge is entirely within a column? */
|
|
if (ix1 == ix2) {
|
|
/* We always know that ix1 is >= the cell list cursor in this
|
|
* case due to the no-intersections precondition. */
|
|
struct cell *cell = cell_list_find(cells, ix1);
|
|
cell->covered_height += sign*GRID_Y;
|
|
cell->uncovered_area += sign*(fx1 + fx2)*GRID_Y;
|
|
return;
|
|
}
|
|
|
|
/* Orient the edge left-to-right. */
|
|
dx = x2.quo - x1.quo;
|
|
if (dx >= 0) {
|
|
y1 = 0;
|
|
y2 = GRID_Y;
|
|
} else {
|
|
int tmp;
|
|
tmp = ix1; ix1 = ix2; ix2 = tmp;
|
|
tmp = fx1; fx1 = fx2; fx2 = tmp;
|
|
dx = -dx;
|
|
sign = -sign;
|
|
y1 = GRID_Y;
|
|
y2 = 0;
|
|
}
|
|
dy = y2 - y1;
|
|
|
|
/* Add coverage for all pixels [ix1,ix2] on this row crossed
|
|
* by the edge. */
|
|
{
|
|
struct cell_pair pair;
|
|
struct quorem y = floored_divrem((GRID_X - fx1)*dy, dx);
|
|
|
|
/* When rendering a previous edge on the active list we may
|
|
* advance the cell list cursor past the leftmost pixel of the
|
|
* current edge even though the two edges don't intersect.
|
|
* e.g. consider two edges going down and rightwards:
|
|
*
|
|
* --\_+---\_+-----+-----+----
|
|
* \_ \_ | |
|
|
* | \_ | \_ | |
|
|
* | \_| \_| |
|
|
* | \_ \_ |
|
|
* ----+-----+-\---+-\---+----
|
|
*
|
|
* The left edge touches cells past the starting cell of the
|
|
* right edge. Fortunately such cases are rare.
|
|
*
|
|
* The rewinding is never necessary if the current edge stays
|
|
* within a single column because we've checked before calling
|
|
* this function that the active list order won't change. */
|
|
cell_list_maybe_rewind(cells, ix1);
|
|
|
|
pair = cell_list_find_pair(cells, ix1, ix1+1);
|
|
pair.cell1->uncovered_area += sign*y.quo*(GRID_X + fx1);
|
|
pair.cell1->covered_height += sign*y.quo;
|
|
y.quo += y1;
|
|
|
|
if (ix1+1 < ix2) {
|
|
struct quorem dydx_full = floored_divrem(GRID_X*dy, dx);
|
|
struct cell *cell = pair.cell2;
|
|
|
|
++ix1;
|
|
do {
|
|
grid_scaled_y_t y_skip = dydx_full.quo;
|
|
y.rem += dydx_full.rem;
|
|
if (y.rem >= dx) {
|
|
++y_skip;
|
|
y.rem -= dx;
|
|
}
|
|
|
|
y.quo += y_skip;
|
|
|
|
y_skip *= sign;
|
|
cell->uncovered_area += y_skip*GRID_X;
|
|
cell->covered_height += y_skip;
|
|
|
|
++ix1;
|
|
cell = cell_list_find(cells, ix1);
|
|
} while (ix1 != ix2);
|
|
|
|
pair.cell2 = cell;
|
|
}
|
|
pair.cell2->uncovered_area += sign*(y2 - y.quo)*fx2;
|
|
pair.cell2->covered_height += sign*(y2 - y.quo);
|
|
}
|
|
}
|
|
|
|
static void
|
|
polygon_init (struct polygon *polygon, jmp_buf *jmp)
|
|
{
|
|
polygon->ymin = polygon->ymax = 0;
|
|
polygon->y_buckets = polygon->y_buckets_embedded;
|
|
pool_init (polygon->edge_pool.base, jmp,
|
|
8192 - sizeof (struct _pool_chunk),
|
|
sizeof (polygon->edge_pool.embedded));
|
|
}
|
|
|
|
static void
|
|
polygon_fini (struct polygon *polygon)
|
|
{
|
|
if (polygon->y_buckets != polygon->y_buckets_embedded)
|
|
free (polygon->y_buckets);
|
|
|
|
pool_fini (polygon->edge_pool.base);
|
|
}
|
|
|
|
/* Empties the polygon of all edges. The polygon is then prepared to
|
|
* receive new edges and clip them to the vertical range
|
|
* [ymin,ymax). */
|
|
static glitter_status_t
|
|
polygon_reset (struct polygon *polygon,
|
|
grid_scaled_y_t ymin,
|
|
grid_scaled_y_t ymax)
|
|
{
|
|
unsigned h = ymax - ymin;
|
|
unsigned num_buckets = EDGE_Y_BUCKET_INDEX(ymax + GRID_Y-1, ymin);
|
|
|
|
pool_reset(polygon->edge_pool.base);
|
|
|
|
if (unlikely (h > 0x7FFFFFFFU - GRID_Y))
|
|
goto bail_no_mem; /* even if you could, you wouldn't want to. */
|
|
|
|
if (polygon->y_buckets != polygon->y_buckets_embedded)
|
|
free (polygon->y_buckets);
|
|
|
|
polygon->y_buckets = polygon->y_buckets_embedded;
|
|
if (num_buckets > ARRAY_LENGTH (polygon->y_buckets_embedded)) {
|
|
polygon->y_buckets = _cairo_malloc_ab (num_buckets,
|
|
sizeof (struct edge *));
|
|
if (unlikely (NULL == polygon->y_buckets))
|
|
goto bail_no_mem;
|
|
}
|
|
memset (polygon->y_buckets, 0, num_buckets * sizeof (struct edge *));
|
|
|
|
polygon->ymin = ymin;
|
|
polygon->ymax = ymax;
|
|
return GLITTER_STATUS_SUCCESS;
|
|
|
|
bail_no_mem:
|
|
polygon->ymin = 0;
|
|
polygon->ymax = 0;
|
|
return GLITTER_STATUS_NO_MEMORY;
|
|
}
|
|
|
|
static void
|
|
_polygon_insert_edge_into_its_y_bucket(struct polygon *polygon,
|
|
struct edge *e)
|
|
{
|
|
unsigned ix = EDGE_Y_BUCKET_INDEX(e->ytop, polygon->ymin);
|
|
struct edge **ptail = &polygon->y_buckets[ix];
|
|
e->next = *ptail;
|
|
*ptail = e;
|
|
}
|
|
|
|
inline static void
|
|
polygon_add_edge (struct polygon *polygon,
|
|
const cairo_edge_t *edge)
|
|
{
|
|
struct edge *e;
|
|
grid_scaled_x_t dx;
|
|
grid_scaled_y_t dy;
|
|
grid_scaled_y_t ytop, ybot;
|
|
grid_scaled_y_t ymin = polygon->ymin;
|
|
grid_scaled_y_t ymax = polygon->ymax;
|
|
|
|
if (unlikely (edge->top >= ymax || edge->bottom <= ymin))
|
|
return;
|
|
|
|
e = pool_alloc (polygon->edge_pool.base, sizeof (struct edge));
|
|
|
|
dx = edge->line.p2.x - edge->line.p1.x;
|
|
dy = edge->line.p2.y - edge->line.p1.y;
|
|
e->dy = dy;
|
|
e->dir = edge->dir;
|
|
|
|
ytop = edge->top >= ymin ? edge->top : ymin;
|
|
ybot = edge->bottom <= ymax ? edge->bottom : ymax;
|
|
e->ytop = ytop;
|
|
e->height_left = ybot - ytop;
|
|
|
|
if (dx == 0) {
|
|
e->vertical = TRUE;
|
|
e->x.quo = edge->line.p1.x;
|
|
e->x.rem = 0;
|
|
e->dxdy.quo = 0;
|
|
e->dxdy.rem = 0;
|
|
e->dxdy_full.quo = 0;
|
|
e->dxdy_full.rem = 0;
|
|
} else {
|
|
e->vertical = FALSE;
|
|
e->dxdy = floored_divrem (dx, dy);
|
|
if (ytop == edge->line.p1.y) {
|
|
e->x.quo = edge->line.p1.x;
|
|
e->x.rem = 0;
|
|
} else {
|
|
e->x = floored_muldivrem (ytop - edge->line.p1.y, dx, dy);
|
|
e->x.quo += edge->line.p1.x;
|
|
}
|
|
|
|
if (e->height_left >= GRID_Y) {
|
|
e->dxdy_full = floored_muldivrem (GRID_Y, dx, dy);
|
|
} else {
|
|
e->dxdy_full.quo = 0;
|
|
e->dxdy_full.rem = 0;
|
|
}
|
|
}
|
|
|
|
_polygon_insert_edge_into_its_y_bucket (polygon, e);
|
|
|
|
e->x.rem -= dy; /* Bias the remainder for faster
|
|
* edge advancement. */
|
|
}
|
|
|
|
static void
|
|
active_list_reset (struct active_list *active)
|
|
{
|
|
active->head.vertical = 1;
|
|
active->head.height_left = INT_MAX;
|
|
active->head.x.quo = INT_MIN;
|
|
active->head.prev = NULL;
|
|
active->head.next = &active->tail;
|
|
active->tail.prev = &active->head;
|
|
active->tail.next = NULL;
|
|
active->tail.x.quo = INT_MAX;
|
|
active->tail.height_left = INT_MAX;
|
|
active->tail.vertical = 1;
|
|
active->min_height = 0;
|
|
active->is_vertical = 1;
|
|
}
|
|
|
|
static void
|
|
active_list_init(struct active_list *active)
|
|
{
|
|
active_list_reset(active);
|
|
}
|
|
|
|
/*
|
|
* Merge two sorted edge lists.
|
|
* Input:
|
|
* - head_a: The head of the first list.
|
|
* - head_b: The head of the second list; head_b cannot be NULL.
|
|
* Output:
|
|
* Returns the head of the merged list.
|
|
*
|
|
* Implementation notes:
|
|
* To make it fast (in particular, to reduce to an insertion sort whenever
|
|
* one of the two input lists only has a single element) we iterate through
|
|
* a list until its head becomes greater than the head of the other list,
|
|
* then we switch their roles. As soon as one of the two lists is empty, we
|
|
* just attach the other one to the current list and exit.
|
|
* Writes to memory are only needed to "switch" lists (as it also requires
|
|
* attaching to the output list the list which we will be iterating next) and
|
|
* to attach the last non-empty list.
|
|
*/
|
|
static struct edge *
|
|
merge_sorted_edges (struct edge *head_a, struct edge *head_b)
|
|
{
|
|
struct edge *head, **next, *prev;
|
|
int32_t x;
|
|
|
|
prev = head_a->prev;
|
|
next = &head;
|
|
if (head_a->x.quo <= head_b->x.quo) {
|
|
head = head_a;
|
|
} else {
|
|
head = head_b;
|
|
head_b->prev = prev;
|
|
goto start_with_b;
|
|
}
|
|
|
|
do {
|
|
x = head_b->x.quo;
|
|
while (head_a != NULL && head_a->x.quo <= x) {
|
|
prev = head_a;
|
|
next = &head_a->next;
|
|
head_a = head_a->next;
|
|
}
|
|
|
|
head_b->prev = prev;
|
|
*next = head_b;
|
|
if (head_a == NULL)
|
|
return head;
|
|
|
|
start_with_b:
|
|
x = head_a->x.quo;
|
|
while (head_b != NULL && head_b->x.quo <= x) {
|
|
prev = head_b;
|
|
next = &head_b->next;
|
|
head_b = head_b->next;
|
|
}
|
|
|
|
head_a->prev = prev;
|
|
*next = head_a;
|
|
if (head_b == NULL)
|
|
return head;
|
|
} while (1);
|
|
}
|
|
|
|
/*
|
|
* Sort (part of) a list.
|
|
* Input:
|
|
* - list: The list to be sorted; list cannot be NULL.
|
|
* - limit: Recursion limit.
|
|
* Output:
|
|
* - head_out: The head of the sorted list containing the first 2^(level+1) elements of the
|
|
* input list; if the input list has fewer elements, head_out be a sorted list
|
|
* containing all the elements of the input list.
|
|
* Returns the head of the list of unprocessed elements (NULL if the sorted list contains
|
|
* all the elements of the input list).
|
|
*
|
|
* Implementation notes:
|
|
* Special case single element list, unroll/inline the sorting of the first two elements.
|
|
* Some tail recursion is used since we iterate on the bottom-up solution of the problem
|
|
* (we start with a small sorted list and keep merging other lists of the same size to it).
|
|
*/
|
|
static struct edge *
|
|
sort_edges (struct edge *list,
|
|
unsigned int level,
|
|
struct edge **head_out)
|
|
{
|
|
struct edge *head_other, *remaining;
|
|
unsigned int i;
|
|
|
|
head_other = list->next;
|
|
|
|
if (head_other == NULL) {
|
|
*head_out = list;
|
|
return NULL;
|
|
}
|
|
|
|
remaining = head_other->next;
|
|
if (list->x.quo <= head_other->x.quo) {
|
|
*head_out = list;
|
|
head_other->next = NULL;
|
|
} else {
|
|
*head_out = head_other;
|
|
head_other->prev = list->prev;
|
|
head_other->next = list;
|
|
list->prev = head_other;
|
|
list->next = NULL;
|
|
}
|
|
|
|
for (i = 0; i < level && remaining; i++) {
|
|
remaining = sort_edges (remaining, i, &head_other);
|
|
*head_out = merge_sorted_edges (*head_out, head_other);
|
|
}
|
|
|
|
return remaining;
|
|
}
|
|
|
|
static struct edge *
|
|
merge_unsorted_edges (struct edge *head, struct edge *unsorted)
|
|
{
|
|
sort_edges (unsorted, UINT_MAX, &unsorted);
|
|
return merge_sorted_edges (head, unsorted);
|
|
}
|
|
|
|
/* Test if the edges on the active list can be safely advanced by a
|
|
* full row without intersections or any edges ending. */
|
|
inline static int
|
|
can_do_full_row (struct active_list *active)
|
|
{
|
|
const struct edge *e;
|
|
int prev_x = INT_MIN;
|
|
|
|
/* Recomputes the minimum height of all edges on the active
|
|
* list if we have been dropping edges. */
|
|
if (active->min_height <= 0) {
|
|
int min_height = INT_MAX;
|
|
int is_vertical = 1;
|
|
|
|
e = active->head.next;
|
|
while (NULL != e) {
|
|
if (e->height_left < min_height)
|
|
min_height = e->height_left;
|
|
is_vertical &= e->vertical;
|
|
e = e->next;
|
|
}
|
|
|
|
active->is_vertical = is_vertical;
|
|
active->min_height = min_height;
|
|
}
|
|
|
|
if (active->min_height < GRID_Y)
|
|
return 0;
|
|
|
|
/* Check for intersections as no edges end during the next row. */
|
|
for (e = active->head.next; e != &active->tail; e = e->next) {
|
|
struct quorem x = e->x;
|
|
|
|
if (! e->vertical) {
|
|
x.quo += e->dxdy_full.quo;
|
|
x.rem += e->dxdy_full.rem;
|
|
if (x.rem >= 0)
|
|
++x.quo;
|
|
}
|
|
|
|
if (x.quo < prev_x)
|
|
return 0;
|
|
|
|
prev_x = x.quo;
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
/* Merges edges on the given subpixel row from the polygon to the
|
|
* active_list. */
|
|
inline static void
|
|
active_list_merge_edges_from_bucket(struct active_list *active,
|
|
struct edge *edges)
|
|
{
|
|
active->head.next = merge_unsorted_edges (active->head.next, edges);
|
|
}
|
|
|
|
inline static void
|
|
polygon_fill_buckets (struct active_list *active,
|
|
struct edge *edge,
|
|
int y,
|
|
struct edge **buckets)
|
|
{
|
|
grid_scaled_y_t min_height = active->min_height;
|
|
int is_vertical = active->is_vertical;
|
|
|
|
while (edge) {
|
|
struct edge *next = edge->next;
|
|
int suby = edge->ytop - y;
|
|
if (buckets[suby])
|
|
buckets[suby]->prev = edge;
|
|
edge->next = buckets[suby];
|
|
edge->prev = NULL;
|
|
buckets[suby] = edge;
|
|
if (edge->height_left < min_height)
|
|
min_height = edge->height_left;
|
|
is_vertical &= edge->vertical;
|
|
edge = next;
|
|
}
|
|
|
|
active->is_vertical = is_vertical;
|
|
active->min_height = min_height;
|
|
}
|
|
|
|
inline static void
|
|
sub_row (struct active_list *active,
|
|
struct cell_list *coverages,
|
|
unsigned int mask)
|
|
{
|
|
struct edge *edge = active->head.next;
|
|
int xstart = INT_MIN, prev_x = INT_MIN;
|
|
int winding = 0;
|
|
|
|
cell_list_rewind (coverages);
|
|
|
|
while (&active->tail != edge) {
|
|
struct edge *next = edge->next;
|
|
int xend = edge->x.quo;
|
|
|
|
if (--edge->height_left) {
|
|
edge->x.quo += edge->dxdy.quo;
|
|
edge->x.rem += edge->dxdy.rem;
|
|
if (edge->x.rem >= 0) {
|
|
++edge->x.quo;
|
|
edge->x.rem -= edge->dy;
|
|
}
|
|
|
|
if (edge->x.quo < prev_x) {
|
|
struct edge *pos = edge->prev;
|
|
pos->next = next;
|
|
next->prev = pos;
|
|
do {
|
|
pos = pos->prev;
|
|
} while (edge->x.quo < pos->x.quo);
|
|
pos->next->prev = edge;
|
|
edge->next = pos->next;
|
|
edge->prev = pos;
|
|
pos->next = edge;
|
|
} else
|
|
prev_x = edge->x.quo;
|
|
active->min_height = -1;
|
|
} else {
|
|
edge->prev->next = next;
|
|
next->prev = edge->prev;
|
|
}
|
|
|
|
winding += edge->dir;
|
|
if ((winding & mask) == 0) {
|
|
if (next->x.quo != xend) {
|
|
cell_list_add_subspan (coverages, xstart, xend);
|
|
xstart = INT_MIN;
|
|
}
|
|
} else if (xstart == INT_MIN)
|
|
xstart = xend;
|
|
|
|
edge = next;
|
|
}
|
|
}
|
|
|
|
inline static void dec (struct active_list *a, struct edge *e, int h)
|
|
{
|
|
e->height_left -= h;
|
|
if (e->height_left == 0) {
|
|
e->prev->next = e->next;
|
|
e->next->prev = e->prev;
|
|
a->min_height = -1;
|
|
}
|
|
}
|
|
|
|
inline static void full_step (struct edge *e)
|
|
{
|
|
if (! e->vertical) {
|
|
e->x.quo += e->dxdy_full.quo;
|
|
e->x.rem += e->dxdy_full.rem;
|
|
if (e->x.rem >= 0) {
|
|
++e->x.quo;
|
|
e->x.rem -= e->dy;
|
|
}
|
|
}
|
|
}
|
|
|
|
static void
|
|
full_row (struct active_list *active,
|
|
struct cell_list *coverages,
|
|
unsigned int mask)
|
|
{
|
|
struct edge *left = active->head.next;
|
|
|
|
while (&active->tail != left) {
|
|
struct edge *right;
|
|
int winding;
|
|
|
|
dec (active, left, GRID_Y);
|
|
|
|
winding = left->dir;
|
|
right = left->next;
|
|
do {
|
|
dec (active, right, GRID_Y);
|
|
|
|
winding += right->dir;
|
|
if ((winding & mask) == 0 && right->next->x.quo != right->x.quo)
|
|
break;
|
|
|
|
full_step (right);
|
|
|
|
right = right->next;
|
|
} while (1);
|
|
|
|
cell_list_set_rewind (coverages);
|
|
cell_list_render_edge (coverages, left, +1);
|
|
cell_list_render_edge (coverages, right, -1);
|
|
|
|
left = right->next;
|
|
}
|
|
}
|
|
|
|
static void
|
|
_glitter_scan_converter_init(glitter_scan_converter_t *converter, jmp_buf *jmp)
|
|
{
|
|
polygon_init(converter->polygon, jmp);
|
|
active_list_init(converter->active);
|
|
cell_list_init(converter->coverages, jmp);
|
|
converter->xmin=0;
|
|
converter->ymin=0;
|
|
converter->xmax=0;
|
|
converter->ymax=0;
|
|
}
|
|
|
|
static void
|
|
_glitter_scan_converter_fini(glitter_scan_converter_t *self)
|
|
{
|
|
if (self->spans != self->spans_embedded)
|
|
free (self->spans);
|
|
|
|
polygon_fini(self->polygon);
|
|
cell_list_fini(self->coverages);
|
|
|
|
self->xmin=0;
|
|
self->ymin=0;
|
|
self->xmax=0;
|
|
self->ymax=0;
|
|
}
|
|
|
|
static grid_scaled_t
|
|
int_to_grid_scaled(int i, int scale)
|
|
{
|
|
/* Clamp to max/min representable scaled number. */
|
|
if (i >= 0) {
|
|
if (i >= INT_MAX/scale)
|
|
i = INT_MAX/scale;
|
|
}
|
|
else {
|
|
if (i <= INT_MIN/scale)
|
|
i = INT_MIN/scale;
|
|
}
|
|
return i*scale;
|
|
}
|
|
|
|
#define int_to_grid_scaled_x(x) int_to_grid_scaled((x), GRID_X)
|
|
#define int_to_grid_scaled_y(x) int_to_grid_scaled((x), GRID_Y)
|
|
|
|
I glitter_status_t
|
|
glitter_scan_converter_reset(
|
|
glitter_scan_converter_t *converter,
|
|
int xmin, int ymin,
|
|
int xmax, int ymax)
|
|
{
|
|
glitter_status_t status;
|
|
int max_num_spans;
|
|
|
|
converter->xmin = 0; converter->xmax = 0;
|
|
converter->ymin = 0; converter->ymax = 0;
|
|
|
|
max_num_spans = xmax - xmin + 1;
|
|
|
|
if (max_num_spans > ARRAY_LENGTH(converter->spans_embedded)) {
|
|
converter->spans = _cairo_malloc_ab (max_num_spans,
|
|
sizeof (cairo_half_open_span_t));
|
|
if (unlikely (converter->spans == NULL))
|
|
return _cairo_error (CAIRO_STATUS_NO_MEMORY);
|
|
} else
|
|
converter->spans = converter->spans_embedded;
|
|
|
|
xmin = int_to_grid_scaled_x(xmin);
|
|
ymin = int_to_grid_scaled_y(ymin);
|
|
xmax = int_to_grid_scaled_x(xmax);
|
|
ymax = int_to_grid_scaled_y(ymax);
|
|
|
|
active_list_reset(converter->active);
|
|
cell_list_reset(converter->coverages);
|
|
status = polygon_reset(converter->polygon, ymin, ymax);
|
|
if (status)
|
|
return status;
|
|
|
|
converter->xmin = xmin;
|
|
converter->xmax = xmax;
|
|
converter->ymin = ymin;
|
|
converter->ymax = ymax;
|
|
return GLITTER_STATUS_SUCCESS;
|
|
}
|
|
|
|
/* INPUT_TO_GRID_X/Y (in_coord, out_grid_scaled, grid_scale)
|
|
* These macros convert an input coordinate in the client's
|
|
* device space to the rasterisation grid.
|
|
*/
|
|
/* Gah.. this bit of ugly defines INPUT_TO_GRID_X/Y so as to use
|
|
* shifts if possible, and something saneish if not.
|
|
*/
|
|
#if !defined(INPUT_TO_GRID_Y) && defined(GRID_Y_BITS) && GRID_Y_BITS <= GLITTER_INPUT_BITS
|
|
# define INPUT_TO_GRID_Y(in, out) (out) = (in) >> (GLITTER_INPUT_BITS - GRID_Y_BITS)
|
|
#else
|
|
# define INPUT_TO_GRID_Y(in, out) INPUT_TO_GRID_general(in, out, GRID_Y)
|
|
#endif
|
|
|
|
#if !defined(INPUT_TO_GRID_X) && defined(GRID_X_BITS) && GRID_X_BITS <= GLITTER_INPUT_BITS
|
|
# define INPUT_TO_GRID_X(in, out) (out) = (in) >> (GLITTER_INPUT_BITS - GRID_X_BITS)
|
|
#else
|
|
# define INPUT_TO_GRID_X(in, out) INPUT_TO_GRID_general(in, out, GRID_X)
|
|
#endif
|
|
|
|
#define INPUT_TO_GRID_general(in, out, grid_scale) do { \
|
|
long long tmp__ = (long long)(grid_scale) * (in); \
|
|
tmp__ >>= GLITTER_INPUT_BITS; \
|
|
(out) = tmp__; \
|
|
} while (0)
|
|
|
|
/* Add a new polygon edge from pixel (x1,y1) to (x2,y2) to the scan
|
|
* converter. The coordinates represent pixel positions scaled by
|
|
* 2**GLITTER_PIXEL_BITS. If this function fails then the scan
|
|
* converter should be reset or destroyed. Dir must be +1 or -1,
|
|
* with the latter reversing the orientation of the edge. */
|
|
I void
|
|
glitter_scan_converter_add_edge (glitter_scan_converter_t *converter,
|
|
const cairo_edge_t *edge)
|
|
{
|
|
cairo_edge_t e;
|
|
|
|
INPUT_TO_GRID_Y (edge->top, e.top);
|
|
INPUT_TO_GRID_Y (edge->bottom, e.bottom);
|
|
if (e.top >= e.bottom)
|
|
return;
|
|
|
|
/* XXX: possible overflows if GRID_X/Y > 2**GLITTER_INPUT_BITS */
|
|
INPUT_TO_GRID_Y (edge->line.p1.y, e.line.p1.y);
|
|
INPUT_TO_GRID_Y (edge->line.p2.y, e.line.p2.y);
|
|
if (e.line.p1.y == e.line.p2.y)
|
|
e.line.p2.y++; /* little fudge to prevent a div-by-zero */
|
|
|
|
INPUT_TO_GRID_X (edge->line.p1.x, e.line.p1.x);
|
|
INPUT_TO_GRID_X (edge->line.p2.x, e.line.p2.x);
|
|
|
|
e.dir = edge->dir;
|
|
|
|
polygon_add_edge (converter->polygon, &e);
|
|
}
|
|
|
|
static void
|
|
step_edges (struct active_list *active, int count)
|
|
{
|
|
struct edge *edge;
|
|
|
|
count *= GRID_Y;
|
|
for (edge = active->head.next; edge != &active->tail; edge = edge->next) {
|
|
edge->height_left -= count;
|
|
if (! edge->height_left) {
|
|
edge->prev->next = edge->next;
|
|
edge->next->prev = edge->prev;
|
|
active->min_height = -1;
|
|
}
|
|
}
|
|
}
|
|
|
|
static glitter_status_t
|
|
blit_a8 (struct cell_list *cells,
|
|
cairo_span_renderer_t *renderer,
|
|
cairo_half_open_span_t *spans,
|
|
int y, int height,
|
|
int xmin, int xmax)
|
|
{
|
|
struct cell *cell = cells->head.next;
|
|
int prev_x = xmin, last_x = -1;
|
|
int16_t cover = 0, last_cover = 0;
|
|
unsigned num_spans;
|
|
|
|
if (cell == &cells->tail)
|
|
return CAIRO_STATUS_SUCCESS;
|
|
|
|
/* Skip cells to the left of the clip region. */
|
|
while (cell->x < xmin) {
|
|
cover += cell->covered_height;
|
|
cell = cell->next;
|
|
}
|
|
cover *= GRID_X*2;
|
|
|
|
/* Form the spans from the coverages and areas. */
|
|
num_spans = 0;
|
|
for (; cell->x < xmax; cell = cell->next) {
|
|
int x = cell->x;
|
|
int16_t area;
|
|
|
|
if (x > prev_x && cover != last_cover) {
|
|
spans[num_spans].x = prev_x;
|
|
spans[num_spans].coverage = GRID_AREA_TO_ALPHA (cover);
|
|
last_cover = cover;
|
|
last_x = prev_x;
|
|
++num_spans;
|
|
}
|
|
|
|
cover += cell->covered_height*GRID_X*2;
|
|
area = cover - cell->uncovered_area;
|
|
|
|
if (area != last_cover) {
|
|
spans[num_spans].x = x;
|
|
spans[num_spans].coverage = GRID_AREA_TO_ALPHA (area);
|
|
last_cover = area;
|
|
last_x = x;
|
|
++num_spans;
|
|
}
|
|
|
|
prev_x = x+1;
|
|
}
|
|
|
|
if (prev_x <= xmax && cover != last_cover) {
|
|
spans[num_spans].x = prev_x;
|
|
spans[num_spans].coverage = GRID_AREA_TO_ALPHA (cover);
|
|
last_cover = cover;
|
|
last_x = prev_x;
|
|
++num_spans;
|
|
}
|
|
|
|
if (last_x < xmax && last_cover) {
|
|
spans[num_spans].x = xmax;
|
|
spans[num_spans].coverage = 0;
|
|
++num_spans;
|
|
}
|
|
|
|
/* Dump them into the renderer. */
|
|
return renderer->render_rows (renderer, y, height, spans, num_spans);
|
|
}
|
|
|
|
#define GRID_AREA_TO_A1(A) ((GRID_AREA_TO_ALPHA (A) > 127) ? 255 : 0)
|
|
static glitter_status_t
|
|
blit_a1 (struct cell_list *cells,
|
|
cairo_span_renderer_t *renderer,
|
|
cairo_half_open_span_t *spans,
|
|
int y, int height,
|
|
int xmin, int xmax)
|
|
{
|
|
struct cell *cell = cells->head.next;
|
|
int prev_x = xmin, last_x = -1;
|
|
int16_t cover = 0;
|
|
uint8_t coverage, last_cover = 0;
|
|
unsigned num_spans;
|
|
|
|
if (cell == &cells->tail)
|
|
return CAIRO_STATUS_SUCCESS;
|
|
|
|
/* Skip cells to the left of the clip region. */
|
|
while (cell->x < xmin) {
|
|
cover += cell->covered_height;
|
|
cell = cell->next;
|
|
}
|
|
cover *= GRID_X*2;
|
|
|
|
/* Form the spans from the coverages and areas. */
|
|
num_spans = 0;
|
|
for (; cell->x < xmax; cell = cell->next) {
|
|
int x = cell->x;
|
|
int16_t area;
|
|
|
|
coverage = GRID_AREA_TO_A1 (cover);
|
|
if (x > prev_x && coverage != last_cover) {
|
|
last_x = spans[num_spans].x = prev_x;
|
|
last_cover = spans[num_spans].coverage = coverage;
|
|
++num_spans;
|
|
}
|
|
|
|
cover += cell->covered_height*GRID_X*2;
|
|
area = cover - cell->uncovered_area;
|
|
|
|
coverage = GRID_AREA_TO_A1 (area);
|
|
if (coverage != last_cover) {
|
|
last_x = spans[num_spans].x = x;
|
|
last_cover = spans[num_spans].coverage = coverage;
|
|
++num_spans;
|
|
}
|
|
|
|
prev_x = x+1;
|
|
}
|
|
|
|
coverage = GRID_AREA_TO_A1 (cover);
|
|
if (prev_x <= xmax && coverage != last_cover) {
|
|
last_x = spans[num_spans].x = prev_x;
|
|
last_cover = spans[num_spans].coverage = coverage;
|
|
++num_spans;
|
|
}
|
|
|
|
if (last_x < xmax && last_cover) {
|
|
spans[num_spans].x = xmax;
|
|
spans[num_spans].coverage = 0;
|
|
++num_spans;
|
|
}
|
|
if (num_spans == 1)
|
|
return CAIRO_STATUS_SUCCESS;
|
|
|
|
/* Dump them into the renderer. */
|
|
return renderer->render_rows (renderer, y, height, spans, num_spans);
|
|
}
|
|
|
|
|
|
I void
|
|
glitter_scan_converter_render(glitter_scan_converter_t *converter,
|
|
unsigned int winding_mask,
|
|
int antialias,
|
|
cairo_span_renderer_t *renderer)
|
|
{
|
|
int i, j;
|
|
int ymax_i = converter->ymax / GRID_Y;
|
|
int ymin_i = converter->ymin / GRID_Y;
|
|
int xmin_i, xmax_i;
|
|
int h = ymax_i - ymin_i;
|
|
struct polygon *polygon = converter->polygon;
|
|
struct cell_list *coverages = converter->coverages;
|
|
struct active_list *active = converter->active;
|
|
struct edge *buckets[GRID_Y] = { 0 };
|
|
|
|
xmin_i = converter->xmin / GRID_X;
|
|
xmax_i = converter->xmax / GRID_X;
|
|
if (xmin_i >= xmax_i)
|
|
return;
|
|
|
|
/* Render each pixel row. */
|
|
for (i = 0; i < h; i = j) {
|
|
int do_full_row = 0;
|
|
|
|
j = i + 1;
|
|
|
|
/* Determine if we can ignore this row or use the full pixel
|
|
* stepper. */
|
|
if (! polygon->y_buckets[i]) {
|
|
if (active->head.next == &active->tail) {
|
|
active->min_height = INT_MAX;
|
|
active->is_vertical = 1;
|
|
for (; j < h && ! polygon->y_buckets[j]; j++)
|
|
;
|
|
continue;
|
|
}
|
|
|
|
do_full_row = can_do_full_row (active);
|
|
}
|
|
|
|
if (do_full_row) {
|
|
/* Step by a full pixel row's worth. */
|
|
full_row (active, coverages, winding_mask);
|
|
|
|
if (active->is_vertical) {
|
|
while (j < h &&
|
|
polygon->y_buckets[j] == NULL &&
|
|
active->min_height >= 2*GRID_Y)
|
|
{
|
|
active->min_height -= GRID_Y;
|
|
j++;
|
|
}
|
|
if (j != i + 1)
|
|
step_edges (active, j - (i + 1));
|
|
}
|
|
} else {
|
|
int sub;
|
|
|
|
polygon_fill_buckets (active,
|
|
polygon->y_buckets[i],
|
|
(i+ymin_i)*GRID_Y,
|
|
buckets);
|
|
|
|
/* Subsample this row. */
|
|
for (sub = 0; sub < GRID_Y; sub++) {
|
|
if (buckets[sub]) {
|
|
active_list_merge_edges_from_bucket (active, buckets[sub]);
|
|
buckets[sub] = NULL;
|
|
}
|
|
|
|
sub_row (active, coverages, winding_mask);
|
|
}
|
|
}
|
|
|
|
if (antialias)
|
|
blit_a8 (coverages, renderer, converter->spans,
|
|
i+ymin_i, j-i, xmin_i, xmax_i);
|
|
else
|
|
blit_a1 (coverages, renderer, converter->spans,
|
|
i+ymin_i, j-i, xmin_i, xmax_i);
|
|
cell_list_reset (coverages);
|
|
|
|
active->min_height -= GRID_Y;
|
|
}
|
|
}
|
|
|
|
struct _cairo_tor_scan_converter {
|
|
cairo_scan_converter_t base;
|
|
|
|
glitter_scan_converter_t converter[1];
|
|
cairo_fill_rule_t fill_rule;
|
|
cairo_antialias_t antialias;
|
|
|
|
jmp_buf jmp;
|
|
};
|
|
|
|
typedef struct _cairo_tor_scan_converter cairo_tor_scan_converter_t;
|
|
|
|
static void
|
|
_cairo_tor_scan_converter_destroy (void *converter)
|
|
{
|
|
cairo_tor_scan_converter_t *self = converter;
|
|
if (self == NULL) {
|
|
return;
|
|
}
|
|
_glitter_scan_converter_fini (self->converter);
|
|
free(self);
|
|
}
|
|
|
|
cairo_status_t
|
|
_cairo_tor_scan_converter_add_polygon (void *converter,
|
|
const cairo_polygon_t *polygon)
|
|
{
|
|
cairo_tor_scan_converter_t *self = converter;
|
|
int i;
|
|
|
|
#if 0
|
|
FILE *file = fopen ("polygon.txt", "w");
|
|
_cairo_debug_print_polygon (file, polygon);
|
|
fclose (file);
|
|
#endif
|
|
|
|
for (i = 0; i < polygon->num_edges; i++)
|
|
glitter_scan_converter_add_edge (self->converter, &polygon->edges[i]);
|
|
|
|
return CAIRO_STATUS_SUCCESS;
|
|
}
|
|
|
|
static cairo_status_t
|
|
_cairo_tor_scan_converter_generate (void *converter,
|
|
cairo_span_renderer_t *renderer)
|
|
{
|
|
cairo_tor_scan_converter_t *self = converter;
|
|
cairo_status_t status;
|
|
|
|
if ((status = setjmp (self->jmp)))
|
|
return _cairo_scan_converter_set_error (self, _cairo_error (status));
|
|
|
|
glitter_scan_converter_render (self->converter,
|
|
self->fill_rule == CAIRO_FILL_RULE_WINDING ? ~0 : 1,
|
|
self->antialias != CAIRO_ANTIALIAS_NONE,
|
|
renderer);
|
|
return CAIRO_STATUS_SUCCESS;
|
|
}
|
|
|
|
cairo_scan_converter_t *
|
|
_cairo_tor_scan_converter_create (int xmin,
|
|
int ymin,
|
|
int xmax,
|
|
int ymax,
|
|
cairo_fill_rule_t fill_rule,
|
|
cairo_antialias_t antialias)
|
|
{
|
|
cairo_tor_scan_converter_t *self;
|
|
cairo_status_t status;
|
|
|
|
self = malloc (sizeof(struct _cairo_tor_scan_converter));
|
|
if (unlikely (self == NULL)) {
|
|
status = _cairo_error (CAIRO_STATUS_NO_MEMORY);
|
|
goto bail_nomem;
|
|
}
|
|
|
|
self->base.destroy = _cairo_tor_scan_converter_destroy;
|
|
self->base.generate = _cairo_tor_scan_converter_generate;
|
|
|
|
_glitter_scan_converter_init (self->converter, &self->jmp);
|
|
status = glitter_scan_converter_reset (self->converter,
|
|
xmin, ymin, xmax, ymax);
|
|
if (unlikely (status))
|
|
goto bail;
|
|
|
|
self->fill_rule = fill_rule;
|
|
self->antialias = antialias;
|
|
|
|
return &self->base;
|
|
|
|
bail:
|
|
self->base.destroy(&self->base);
|
|
bail_nomem:
|
|
return _cairo_scan_converter_create_in_error (status);
|
|
}
|