forked from KolibriOS/kolibrios
754f9336f0
git-svn-id: svn://kolibrios.org@4349 a494cfbc-eb01-0410-851d-a64ba20cac60
601 lines
16 KiB
C
601 lines
16 KiB
C
/*
|
|
* Copyright © 2004 Carl Worth
|
|
* Copyright © 2006 Red Hat, Inc.
|
|
* Copyright © 2008 Chris Wilson
|
|
*
|
|
* This library is free software; you can redistribute it and/or
|
|
* modify it either under the terms of the GNU Lesser General Public
|
|
* License version 2.1 as published by the Free Software Foundation
|
|
* (the "LGPL") or, at your option, under the terms of the Mozilla
|
|
* Public License Version 1.1 (the "MPL"). If you do not alter this
|
|
* notice, a recipient may use your version of this file under either
|
|
* the MPL or the LGPL.
|
|
*
|
|
* You should have received a copy of the LGPL along with this library
|
|
* in the file COPYING-LGPL-2.1; if not, write to the Free Software
|
|
* Foundation, Inc., 51 Franklin Street, Suite 500, Boston, MA 02110-1335, USA
|
|
* You should have received a copy of the MPL along with this library
|
|
* in the file COPYING-MPL-1.1
|
|
*
|
|
* The contents of this file are subject to the Mozilla Public License
|
|
* Version 1.1 (the "License"); you may not use this file except in
|
|
* compliance with the License. You may obtain a copy of the License at
|
|
* http://www.mozilla.org/MPL/
|
|
*
|
|
* This software is distributed on an "AS IS" basis, WITHOUT WARRANTY
|
|
* OF ANY KIND, either express or implied. See the LGPL or the MPL for
|
|
* the specific language governing rights and limitations.
|
|
*
|
|
* The Original Code is the cairo graphics library.
|
|
*
|
|
* The Initial Developer of the Original Code is Carl Worth
|
|
*
|
|
* Contributor(s):
|
|
* Carl D. Worth <cworth@cworth.org>
|
|
* Chris Wilson <chris@chris-wilson.co.uk>
|
|
*/
|
|
|
|
/* Provide definitions for standalone compilation */
|
|
#include "cairoint.h"
|
|
|
|
#include "cairo-boxes-private.h"
|
|
#include "cairo-combsort-inline.h"
|
|
#include "cairo-error-private.h"
|
|
#include "cairo-traps-private.h"
|
|
|
|
typedef struct _cairo_bo_edge cairo_bo_edge_t;
|
|
typedef struct _cairo_bo_trap cairo_bo_trap_t;
|
|
|
|
/* A deferred trapezoid of an edge */
|
|
struct _cairo_bo_trap {
|
|
cairo_bo_edge_t *right;
|
|
int32_t top;
|
|
};
|
|
|
|
struct _cairo_bo_edge {
|
|
cairo_edge_t edge;
|
|
cairo_bo_edge_t *prev;
|
|
cairo_bo_edge_t *next;
|
|
cairo_bo_trap_t deferred_trap;
|
|
};
|
|
|
|
typedef enum {
|
|
CAIRO_BO_EVENT_TYPE_START,
|
|
CAIRO_BO_EVENT_TYPE_STOP
|
|
} cairo_bo_event_type_t;
|
|
|
|
typedef struct _cairo_bo_event {
|
|
cairo_bo_event_type_t type;
|
|
cairo_point_t point;
|
|
cairo_bo_edge_t *edge;
|
|
} cairo_bo_event_t;
|
|
|
|
typedef struct _cairo_bo_sweep_line {
|
|
cairo_bo_event_t **events;
|
|
cairo_bo_edge_t *head;
|
|
cairo_bo_edge_t *stopped;
|
|
int32_t current_y;
|
|
cairo_bo_edge_t *current_edge;
|
|
} cairo_bo_sweep_line_t;
|
|
|
|
static inline int
|
|
_cairo_point_compare (const cairo_point_t *a,
|
|
const cairo_point_t *b)
|
|
{
|
|
int cmp;
|
|
|
|
cmp = a->y - b->y;
|
|
if (likely (cmp))
|
|
return cmp;
|
|
|
|
return a->x - b->x;
|
|
}
|
|
|
|
static inline int
|
|
_cairo_bo_edge_compare (const cairo_bo_edge_t *a,
|
|
const cairo_bo_edge_t *b)
|
|
{
|
|
int cmp;
|
|
|
|
cmp = a->edge.line.p1.x - b->edge.line.p1.x;
|
|
if (likely (cmp))
|
|
return cmp;
|
|
|
|
return b->edge.bottom - a->edge.bottom;
|
|
}
|
|
|
|
static inline int
|
|
cairo_bo_event_compare (const cairo_bo_event_t *a,
|
|
const cairo_bo_event_t *b)
|
|
{
|
|
int cmp;
|
|
|
|
cmp = _cairo_point_compare (&a->point, &b->point);
|
|
if (likely (cmp))
|
|
return cmp;
|
|
|
|
cmp = a->type - b->type;
|
|
if (cmp)
|
|
return cmp;
|
|
|
|
return a - b;
|
|
}
|
|
|
|
static inline cairo_bo_event_t *
|
|
_cairo_bo_event_dequeue (cairo_bo_sweep_line_t *sweep_line)
|
|
{
|
|
return *sweep_line->events++;
|
|
}
|
|
|
|
CAIRO_COMBSORT_DECLARE (_cairo_bo_event_queue_sort,
|
|
cairo_bo_event_t *,
|
|
cairo_bo_event_compare)
|
|
|
|
static void
|
|
_cairo_bo_sweep_line_init (cairo_bo_sweep_line_t *sweep_line,
|
|
cairo_bo_event_t **events,
|
|
int num_events)
|
|
{
|
|
_cairo_bo_event_queue_sort (events, num_events);
|
|
events[num_events] = NULL;
|
|
sweep_line->events = events;
|
|
|
|
sweep_line->head = NULL;
|
|
sweep_line->current_y = INT32_MIN;
|
|
sweep_line->current_edge = NULL;
|
|
}
|
|
|
|
static void
|
|
_cairo_bo_sweep_line_insert (cairo_bo_sweep_line_t *sweep_line,
|
|
cairo_bo_edge_t *edge)
|
|
{
|
|
if (sweep_line->current_edge != NULL) {
|
|
cairo_bo_edge_t *prev, *next;
|
|
int cmp;
|
|
|
|
cmp = _cairo_bo_edge_compare (sweep_line->current_edge, edge);
|
|
if (cmp < 0) {
|
|
prev = sweep_line->current_edge;
|
|
next = prev->next;
|
|
while (next != NULL && _cairo_bo_edge_compare (next, edge) < 0)
|
|
prev = next, next = prev->next;
|
|
|
|
prev->next = edge;
|
|
edge->prev = prev;
|
|
edge->next = next;
|
|
if (next != NULL)
|
|
next->prev = edge;
|
|
} else if (cmp > 0) {
|
|
next = sweep_line->current_edge;
|
|
prev = next->prev;
|
|
while (prev != NULL && _cairo_bo_edge_compare (prev, edge) > 0)
|
|
next = prev, prev = next->prev;
|
|
|
|
next->prev = edge;
|
|
edge->next = next;
|
|
edge->prev = prev;
|
|
if (prev != NULL)
|
|
prev->next = edge;
|
|
else
|
|
sweep_line->head = edge;
|
|
} else {
|
|
prev = sweep_line->current_edge;
|
|
edge->prev = prev;
|
|
edge->next = prev->next;
|
|
if (prev->next != NULL)
|
|
prev->next->prev = edge;
|
|
prev->next = edge;
|
|
}
|
|
} else {
|
|
sweep_line->head = edge;
|
|
}
|
|
|
|
sweep_line->current_edge = edge;
|
|
}
|
|
|
|
static void
|
|
_cairo_bo_sweep_line_delete (cairo_bo_sweep_line_t *sweep_line,
|
|
cairo_bo_edge_t *edge)
|
|
{
|
|
if (edge->prev != NULL)
|
|
edge->prev->next = edge->next;
|
|
else
|
|
sweep_line->head = edge->next;
|
|
|
|
if (edge->next != NULL)
|
|
edge->next->prev = edge->prev;
|
|
|
|
if (sweep_line->current_edge == edge)
|
|
sweep_line->current_edge = edge->prev ? edge->prev : edge->next;
|
|
}
|
|
|
|
static inline cairo_bool_t
|
|
edges_collinear (const cairo_bo_edge_t *a, const cairo_bo_edge_t *b)
|
|
{
|
|
return a->edge.line.p1.x == b->edge.line.p1.x;
|
|
}
|
|
|
|
static cairo_status_t
|
|
_cairo_bo_edge_end_trap (cairo_bo_edge_t *left,
|
|
int32_t bot,
|
|
cairo_bool_t do_traps,
|
|
void *container)
|
|
{
|
|
cairo_bo_trap_t *trap = &left->deferred_trap;
|
|
cairo_status_t status = CAIRO_STATUS_SUCCESS;
|
|
|
|
/* Only emit (trivial) non-degenerate trapezoids with positive height. */
|
|
if (likely (trap->top < bot)) {
|
|
if (do_traps) {
|
|
_cairo_traps_add_trap (container,
|
|
trap->top, bot,
|
|
&left->edge.line, &trap->right->edge.line);
|
|
status = _cairo_traps_status ((cairo_traps_t *) container);
|
|
} else {
|
|
cairo_box_t box;
|
|
|
|
box.p1.x = left->edge.line.p1.x;
|
|
box.p1.y = trap->top;
|
|
box.p2.x = trap->right->edge.line.p1.x;
|
|
box.p2.y = bot;
|
|
status = _cairo_boxes_add (container, CAIRO_ANTIALIAS_DEFAULT, &box);
|
|
}
|
|
}
|
|
|
|
trap->right = NULL;
|
|
|
|
return status;
|
|
}
|
|
|
|
/* Start a new trapezoid at the given top y coordinate, whose edges
|
|
* are `edge' and `edge->next'. If `edge' already has a trapezoid,
|
|
* then either add it to the traps in `traps', if the trapezoid's
|
|
* right edge differs from `edge->next', or do nothing if the new
|
|
* trapezoid would be a continuation of the existing one. */
|
|
static inline cairo_status_t
|
|
_cairo_bo_edge_start_or_continue_trap (cairo_bo_edge_t *left,
|
|
cairo_bo_edge_t *right,
|
|
int top,
|
|
cairo_bool_t do_traps,
|
|
void *container)
|
|
{
|
|
cairo_status_t status;
|
|
|
|
if (left->deferred_trap.right == right)
|
|
return CAIRO_STATUS_SUCCESS;
|
|
|
|
if (left->deferred_trap.right != NULL) {
|
|
if (right != NULL && edges_collinear (left->deferred_trap.right, right))
|
|
{
|
|
/* continuation on right, so just swap edges */
|
|
left->deferred_trap.right = right;
|
|
return CAIRO_STATUS_SUCCESS;
|
|
}
|
|
|
|
status = _cairo_bo_edge_end_trap (left, top, do_traps, container);
|
|
if (unlikely (status))
|
|
return status;
|
|
}
|
|
|
|
if (right != NULL && ! edges_collinear (left, right)) {
|
|
left->deferred_trap.top = top;
|
|
left->deferred_trap.right = right;
|
|
}
|
|
|
|
return CAIRO_STATUS_SUCCESS;
|
|
}
|
|
|
|
static inline cairo_status_t
|
|
_active_edges_to_traps (cairo_bo_edge_t *left,
|
|
int32_t top,
|
|
cairo_fill_rule_t fill_rule,
|
|
cairo_bool_t do_traps,
|
|
void *container)
|
|
{
|
|
cairo_bo_edge_t *right;
|
|
cairo_status_t status;
|
|
|
|
if (fill_rule == CAIRO_FILL_RULE_WINDING) {
|
|
while (left != NULL) {
|
|
int in_out;
|
|
|
|
/* Greedily search for the closing edge, so that we generate the
|
|
* maximal span width with the minimal number of trapezoids.
|
|
*/
|
|
in_out = left->edge.dir;
|
|
|
|
/* Check if there is a co-linear edge with an existing trap */
|
|
right = left->next;
|
|
if (left->deferred_trap.right == NULL) {
|
|
while (right != NULL && right->deferred_trap.right == NULL)
|
|
right = right->next;
|
|
|
|
if (right != NULL && edges_collinear (left, right)) {
|
|
/* continuation on left */
|
|
left->deferred_trap = right->deferred_trap;
|
|
right->deferred_trap.right = NULL;
|
|
}
|
|
}
|
|
|
|
/* End all subsumed traps */
|
|
right = left->next;
|
|
while (right != NULL) {
|
|
if (right->deferred_trap.right != NULL) {
|
|
status = _cairo_bo_edge_end_trap (right, top, do_traps, container);
|
|
if (unlikely (status))
|
|
return status;
|
|
}
|
|
|
|
in_out += right->edge.dir;
|
|
if (in_out == 0) {
|
|
/* skip co-linear edges */
|
|
if (right->next == NULL ||
|
|
! edges_collinear (right, right->next))
|
|
{
|
|
break;
|
|
}
|
|
}
|
|
|
|
right = right->next;
|
|
}
|
|
|
|
status = _cairo_bo_edge_start_or_continue_trap (left, right, top,
|
|
do_traps, container);
|
|
if (unlikely (status))
|
|
return status;
|
|
|
|
left = right;
|
|
if (left != NULL)
|
|
left = left->next;
|
|
}
|
|
} else {
|
|
while (left != NULL) {
|
|
int in_out = 0;
|
|
|
|
right = left->next;
|
|
while (right != NULL) {
|
|
if (right->deferred_trap.right != NULL) {
|
|
status = _cairo_bo_edge_end_trap (right, top, do_traps, container);
|
|
if (unlikely (status))
|
|
return status;
|
|
}
|
|
|
|
if ((in_out++ & 1) == 0) {
|
|
cairo_bo_edge_t *next;
|
|
cairo_bool_t skip = FALSE;
|
|
|
|
/* skip co-linear edges */
|
|
next = right->next;
|
|
if (next != NULL)
|
|
skip = edges_collinear (right, next);
|
|
|
|
if (! skip)
|
|
break;
|
|
}
|
|
|
|
right = right->next;
|
|
}
|
|
|
|
status = _cairo_bo_edge_start_or_continue_trap (left, right, top,
|
|
do_traps, container);
|
|
if (unlikely (status))
|
|
return status;
|
|
|
|
left = right;
|
|
if (left != NULL)
|
|
left = left->next;
|
|
}
|
|
}
|
|
|
|
return CAIRO_STATUS_SUCCESS;
|
|
}
|
|
|
|
static cairo_status_t
|
|
_cairo_bentley_ottmann_tessellate_rectilinear (cairo_bo_event_t **start_events,
|
|
int num_events,
|
|
cairo_fill_rule_t fill_rule,
|
|
cairo_bool_t do_traps,
|
|
void *container)
|
|
{
|
|
cairo_bo_sweep_line_t sweep_line;
|
|
cairo_bo_event_t *event;
|
|
cairo_status_t status;
|
|
|
|
_cairo_bo_sweep_line_init (&sweep_line, start_events, num_events);
|
|
|
|
while ((event = _cairo_bo_event_dequeue (&sweep_line))) {
|
|
if (event->point.y != sweep_line.current_y) {
|
|
status = _active_edges_to_traps (sweep_line.head,
|
|
sweep_line.current_y,
|
|
fill_rule, do_traps, container);
|
|
if (unlikely (status))
|
|
return status;
|
|
|
|
sweep_line.current_y = event->point.y;
|
|
}
|
|
|
|
switch (event->type) {
|
|
case CAIRO_BO_EVENT_TYPE_START:
|
|
_cairo_bo_sweep_line_insert (&sweep_line, event->edge);
|
|
break;
|
|
|
|
case CAIRO_BO_EVENT_TYPE_STOP:
|
|
_cairo_bo_sweep_line_delete (&sweep_line, event->edge);
|
|
|
|
if (event->edge->deferred_trap.right != NULL) {
|
|
status = _cairo_bo_edge_end_trap (event->edge,
|
|
sweep_line.current_y,
|
|
do_traps, container);
|
|
if (unlikely (status))
|
|
return status;
|
|
}
|
|
|
|
break;
|
|
}
|
|
}
|
|
|
|
return CAIRO_STATUS_SUCCESS;
|
|
}
|
|
|
|
cairo_status_t
|
|
_cairo_bentley_ottmann_tessellate_rectilinear_polygon_to_boxes (const cairo_polygon_t *polygon,
|
|
cairo_fill_rule_t fill_rule,
|
|
cairo_boxes_t *boxes)
|
|
{
|
|
cairo_status_t status;
|
|
cairo_bo_event_t stack_events[CAIRO_STACK_ARRAY_LENGTH (cairo_bo_event_t)];
|
|
cairo_bo_event_t *events;
|
|
cairo_bo_event_t *stack_event_ptrs[ARRAY_LENGTH (stack_events) + 1];
|
|
cairo_bo_event_t **event_ptrs;
|
|
cairo_bo_edge_t stack_edges[ARRAY_LENGTH (stack_events)];
|
|
cairo_bo_edge_t *edges;
|
|
int num_events;
|
|
int i, j;
|
|
|
|
if (unlikely (polygon->num_edges == 0))
|
|
return CAIRO_STATUS_SUCCESS;
|
|
|
|
num_events = 2 * polygon->num_edges;
|
|
|
|
events = stack_events;
|
|
event_ptrs = stack_event_ptrs;
|
|
edges = stack_edges;
|
|
if (num_events > ARRAY_LENGTH (stack_events)) {
|
|
events = _cairo_malloc_ab_plus_c (num_events,
|
|
sizeof (cairo_bo_event_t) +
|
|
sizeof (cairo_bo_edge_t) +
|
|
sizeof (cairo_bo_event_t *),
|
|
sizeof (cairo_bo_event_t *));
|
|
if (unlikely (events == NULL))
|
|
return _cairo_error (CAIRO_STATUS_NO_MEMORY);
|
|
|
|
event_ptrs = (cairo_bo_event_t **) (events + num_events);
|
|
edges = (cairo_bo_edge_t *) (event_ptrs + num_events + 1);
|
|
}
|
|
|
|
for (i = j = 0; i < polygon->num_edges; i++) {
|
|
edges[i].edge = polygon->edges[i];
|
|
edges[i].deferred_trap.right = NULL;
|
|
edges[i].prev = NULL;
|
|
edges[i].next = NULL;
|
|
|
|
event_ptrs[j] = &events[j];
|
|
events[j].type = CAIRO_BO_EVENT_TYPE_START;
|
|
events[j].point.y = polygon->edges[i].top;
|
|
events[j].point.x = polygon->edges[i].line.p1.x;
|
|
events[j].edge = &edges[i];
|
|
j++;
|
|
|
|
event_ptrs[j] = &events[j];
|
|
events[j].type = CAIRO_BO_EVENT_TYPE_STOP;
|
|
events[j].point.y = polygon->edges[i].bottom;
|
|
events[j].point.x = polygon->edges[i].line.p1.x;
|
|
events[j].edge = &edges[i];
|
|
j++;
|
|
}
|
|
|
|
status = _cairo_bentley_ottmann_tessellate_rectilinear (event_ptrs, j,
|
|
fill_rule,
|
|
FALSE, boxes);
|
|
if (events != stack_events)
|
|
free (events);
|
|
|
|
return status;
|
|
}
|
|
|
|
cairo_status_t
|
|
_cairo_bentley_ottmann_tessellate_rectilinear_traps (cairo_traps_t *traps,
|
|
cairo_fill_rule_t fill_rule)
|
|
{
|
|
cairo_bo_event_t stack_events[CAIRO_STACK_ARRAY_LENGTH (cairo_bo_event_t)];
|
|
cairo_bo_event_t *events;
|
|
cairo_bo_event_t *stack_event_ptrs[ARRAY_LENGTH (stack_events) + 1];
|
|
cairo_bo_event_t **event_ptrs;
|
|
cairo_bo_edge_t stack_edges[ARRAY_LENGTH (stack_events)];
|
|
cairo_bo_edge_t *edges;
|
|
cairo_status_t status;
|
|
int i, j, k;
|
|
|
|
if (unlikely (traps->num_traps == 0))
|
|
return CAIRO_STATUS_SUCCESS;
|
|
|
|
assert (traps->is_rectilinear);
|
|
|
|
i = 4 * traps->num_traps;
|
|
|
|
events = stack_events;
|
|
event_ptrs = stack_event_ptrs;
|
|
edges = stack_edges;
|
|
if (i > ARRAY_LENGTH (stack_events)) {
|
|
events = _cairo_malloc_ab_plus_c (i,
|
|
sizeof (cairo_bo_event_t) +
|
|
sizeof (cairo_bo_edge_t) +
|
|
sizeof (cairo_bo_event_t *),
|
|
sizeof (cairo_bo_event_t *));
|
|
if (unlikely (events == NULL))
|
|
return _cairo_error (CAIRO_STATUS_NO_MEMORY);
|
|
|
|
event_ptrs = (cairo_bo_event_t **) (events + i);
|
|
edges = (cairo_bo_edge_t *) (event_ptrs + i + 1);
|
|
}
|
|
|
|
for (i = j = k = 0; i < traps->num_traps; i++) {
|
|
edges[k].edge.top = traps->traps[i].top;
|
|
edges[k].edge.bottom = traps->traps[i].bottom;
|
|
edges[k].edge.line = traps->traps[i].left;
|
|
edges[k].edge.dir = 1;
|
|
edges[k].deferred_trap.right = NULL;
|
|
edges[k].prev = NULL;
|
|
edges[k].next = NULL;
|
|
|
|
event_ptrs[j] = &events[j];
|
|
events[j].type = CAIRO_BO_EVENT_TYPE_START;
|
|
events[j].point.y = traps->traps[i].top;
|
|
events[j].point.x = traps->traps[i].left.p1.x;
|
|
events[j].edge = &edges[k];
|
|
j++;
|
|
|
|
event_ptrs[j] = &events[j];
|
|
events[j].type = CAIRO_BO_EVENT_TYPE_STOP;
|
|
events[j].point.y = traps->traps[i].bottom;
|
|
events[j].point.x = traps->traps[i].left.p1.x;
|
|
events[j].edge = &edges[k];
|
|
j++;
|
|
k++;
|
|
|
|
edges[k].edge.top = traps->traps[i].top;
|
|
edges[k].edge.bottom = traps->traps[i].bottom;
|
|
edges[k].edge.line = traps->traps[i].right;
|
|
edges[k].edge.dir = -1;
|
|
edges[k].deferred_trap.right = NULL;
|
|
edges[k].prev = NULL;
|
|
edges[k].next = NULL;
|
|
|
|
event_ptrs[j] = &events[j];
|
|
events[j].type = CAIRO_BO_EVENT_TYPE_START;
|
|
events[j].point.y = traps->traps[i].top;
|
|
events[j].point.x = traps->traps[i].right.p1.x;
|
|
events[j].edge = &edges[k];
|
|
j++;
|
|
|
|
event_ptrs[j] = &events[j];
|
|
events[j].type = CAIRO_BO_EVENT_TYPE_STOP;
|
|
events[j].point.y = traps->traps[i].bottom;
|
|
events[j].point.x = traps->traps[i].right.p1.x;
|
|
events[j].edge = &edges[k];
|
|
j++;
|
|
k++;
|
|
}
|
|
|
|
_cairo_traps_clear (traps);
|
|
status = _cairo_bentley_ottmann_tessellate_rectilinear (event_ptrs, j,
|
|
fill_rule,
|
|
TRUE, traps);
|
|
traps->is_rectilinear = TRUE;
|
|
|
|
if (events != stack_events)
|
|
free (events);
|
|
|
|
return status;
|
|
}
|