1
0
kolibrios/drivers/video/drm/i915/i915_gem_gtt.c
Sergey Semyonov (Serge) 082fd6ba1d i915 RC 10
git-svn-id: svn://kolibrios.org@3243 a494cfbc-eb01-0410-851d-a64ba20cac60
2013-02-13 08:23:54 +00:00

850 lines
23 KiB
C

/*
* Copyright © 2010 Daniel Vetter
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*
*/
#define iowrite32(v, addr) writel((v), (addr))
#include <drm/drmP.h>
#include <drm/i915_drm.h>
#include "i915_drv.h"
#include "i915_trace.h"
#include "intel_drv.h"
#define AGP_USER_TYPES (1 << 16)
#define AGP_USER_MEMORY (AGP_USER_TYPES)
#define AGP_USER_CACHED_MEMORY (AGP_USER_TYPES + 1)
typedef uint32_t gtt_pte_t;
/* PPGTT stuff */
#define GEN6_GTT_ADDR_ENCODE(addr) ((addr) | (((addr) >> 28) & 0xff0))
#define GEN6_PDE_VALID (1 << 0)
/* gen6+ has bit 11-4 for physical addr bit 39-32 */
#define GEN6_PDE_ADDR_ENCODE(addr) GEN6_GTT_ADDR_ENCODE(addr)
#define GEN6_PTE_VALID (1 << 0)
#define GEN6_PTE_UNCACHED (1 << 1)
#define HSW_PTE_UNCACHED (0)
#define GEN6_PTE_CACHE_LLC (2 << 1)
#define GEN6_PTE_CACHE_LLC_MLC (3 << 1)
#define GEN6_PTE_ADDR_ENCODE(addr) GEN6_GTT_ADDR_ENCODE(addr)
static inline gtt_pte_t pte_encode(struct drm_device *dev,
dma_addr_t addr,
enum i915_cache_level level)
{
gtt_pte_t pte = GEN6_PTE_VALID;
pte |= GEN6_PTE_ADDR_ENCODE(addr);
switch (level) {
case I915_CACHE_LLC_MLC:
/* Haswell doesn't set L3 this way */
if (IS_HASWELL(dev))
pte |= GEN6_PTE_CACHE_LLC;
else
pte |= GEN6_PTE_CACHE_LLC_MLC;
break;
case I915_CACHE_LLC:
pte |= GEN6_PTE_CACHE_LLC;
break;
case I915_CACHE_NONE:
if (IS_HASWELL(dev))
pte |= HSW_PTE_UNCACHED;
else
pte |= GEN6_PTE_UNCACHED;
break;
default:
BUG();
}
return pte;
}
/* PPGTT support for Sandybdrige/Gen6 and later */
static void i915_ppgtt_clear_range(struct i915_hw_ppgtt *ppgtt,
unsigned first_entry,
unsigned num_entries)
{
gtt_pte_t *pt_vaddr;
gtt_pte_t scratch_pte;
unsigned act_pd = first_entry / I915_PPGTT_PT_ENTRIES;
unsigned first_pte = first_entry % I915_PPGTT_PT_ENTRIES;
unsigned last_pte, i;
scratch_pte = pte_encode(ppgtt->dev, ppgtt->scratch_page_dma_addr,
I915_CACHE_LLC);
pt_vaddr = AllocKernelSpace(4096);
if(pt_vaddr != NULL)
{
while (num_entries)
{
last_pte = first_pte + num_entries;
if (last_pte > I915_PPGTT_PT_ENTRIES)
last_pte = I915_PPGTT_PT_ENTRIES;
MapPage(pt_vaddr,(addr_t)(ppgtt->pt_pages[act_pd]), 3);
for (i = first_pte; i < last_pte; i++)
pt_vaddr[i] = scratch_pte;
num_entries -= last_pte - first_pte;
first_pte = 0;
act_pd++;
}
FreeKernelSpace(pt_vaddr);
};
}
int i915_gem_init_aliasing_ppgtt(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
struct i915_hw_ppgtt *ppgtt;
unsigned first_pd_entry_in_global_pt;
int i;
int ret = -ENOMEM;
/* ppgtt PDEs reside in the global gtt pagetable, which has 512*1024
* entries. For aliasing ppgtt support we just steal them at the end for
* now. */
first_pd_entry_in_global_pt = dev_priv->mm.gtt->gtt_total_entries - I915_PPGTT_PD_ENTRIES;
ppgtt = kzalloc(sizeof(*ppgtt), GFP_KERNEL);
if (!ppgtt)
return ret;
ppgtt->num_pd_entries = I915_PPGTT_PD_ENTRIES;
ppgtt->pt_pages = kzalloc(sizeof(struct page *)*ppgtt->num_pd_entries,
GFP_KERNEL);
if (!ppgtt->pt_pages)
goto err_ppgtt;
for (i = 0; i < ppgtt->num_pd_entries; i++) {
ppgtt->pt_pages[i] = alloc_page(GFP_KERNEL);
if (!ppgtt->pt_pages[i])
goto err_pt_alloc;
}
/*
if (dev_priv->mm.gtt->needs_dmar) {
ppgtt->pt_dma_addr = kzalloc(sizeof(dma_addr_t)
*ppgtt->num_pd_entries,
GFP_KERNEL);
if (!ppgtt->pt_dma_addr)
goto err_pt_alloc;
for (i = 0; i < ppgtt->num_pd_entries; i++) {
dma_addr_t pt_addr;
pt_addr = pci_map_page(dev->pdev, ppgtt->pt_pages[i],
0, 4096,
PCI_DMA_BIDIRECTIONAL);
if (pci_dma_mapping_error(dev->pdev,
pt_addr)) {
ret = -EIO;
goto err_pd_pin;
}
ppgtt->pt_dma_addr[i] = pt_addr;
}
}
*/
ppgtt->scratch_page_dma_addr = dev_priv->mm.gtt->scratch_page_dma;
i915_ppgtt_clear_range(ppgtt, 0,
ppgtt->num_pd_entries*I915_PPGTT_PT_ENTRIES);
ppgtt->pd_offset = (first_pd_entry_in_global_pt)*sizeof(gtt_pte_t);
dev_priv->mm.aliasing_ppgtt = ppgtt;
return 0;
err_pd_pin:
// if (ppgtt->pt_dma_addr) {
// for (i--; i >= 0; i--)
// pci_unmap_page(dev->pdev, ppgtt->pt_dma_addr[i],
// 4096, PCI_DMA_BIDIRECTIONAL);
// }
err_pt_alloc:
// kfree(ppgtt->pt_dma_addr);
for (i = 0; i < ppgtt->num_pd_entries; i++) {
if (ppgtt->pt_pages[i])
FreePage((addr_t)(ppgtt->pt_pages[i]));
}
kfree(ppgtt->pt_pages);
err_ppgtt:
kfree(ppgtt);
return ret;
}
void i915_gem_cleanup_aliasing_ppgtt(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
int i;
if (!ppgtt)
return;
// if (ppgtt->pt_dma_addr) {
// for (i = 0; i < ppgtt->num_pd_entries; i++)
// pci_unmap_page(dev->pdev, ppgtt->pt_dma_addr[i],
// 4096, PCI_DMA_BIDIRECTIONAL);
// }
// kfree(ppgtt->pt_dma_addr);
for (i = 0; i < ppgtt->num_pd_entries; i++)
FreePage((addr_t)(ppgtt->pt_pages[i]));
kfree(ppgtt->pt_pages);
kfree(ppgtt);
}
static void i915_ppgtt_insert_sg_entries(struct i915_hw_ppgtt *ppgtt,
const struct sg_table *pages,
unsigned first_entry,
enum i915_cache_level cache_level)
{
gtt_pte_t *pt_vaddr;
unsigned act_pd = first_entry / I915_PPGTT_PT_ENTRIES;
unsigned first_pte = first_entry % I915_PPGTT_PT_ENTRIES;
unsigned i, j, m, segment_len;
dma_addr_t page_addr;
struct scatterlist *sg;
/* init sg walking */
sg = pages->sgl;
i = 0;
segment_len = sg_dma_len(sg) >> PAGE_SHIFT;
m = 0;
pt_vaddr = AllocKernelSpace(4096);
if( pt_vaddr == NULL)
return;
while (i < pages->nents) {
MapPage(pt_vaddr,(addr_t)ppgtt->pt_pages[act_pd], 3);
for (j = first_pte; j < I915_PPGTT_PT_ENTRIES; j++) {
page_addr = sg_dma_address(sg) + (m << PAGE_SHIFT);
pt_vaddr[j] = pte_encode(ppgtt->dev, page_addr,
cache_level);
/* grab the next page */
if (++m == segment_len) {
if (++i == pages->nents)
break;
sg = sg_next(sg);
segment_len = sg_dma_len(sg) >> PAGE_SHIFT;
m = 0;
}
}
first_pte = 0;
act_pd++;
}
FreeKernelSpace(pt_vaddr);
}
void i915_ppgtt_bind_object(struct i915_hw_ppgtt *ppgtt,
struct drm_i915_gem_object *obj,
enum i915_cache_level cache_level)
{
i915_ppgtt_insert_sg_entries(ppgtt,
obj->pages,
obj->gtt_space->start >> PAGE_SHIFT,
cache_level);
}
void i915_ppgtt_unbind_object(struct i915_hw_ppgtt *ppgtt,
struct drm_i915_gem_object *obj)
{
i915_ppgtt_clear_range(ppgtt,
obj->gtt_space->start >> PAGE_SHIFT,
obj->base.size >> PAGE_SHIFT);
}
void i915_gem_init_ppgtt(struct drm_device *dev)
{
drm_i915_private_t *dev_priv = dev->dev_private;
uint32_t pd_offset;
struct intel_ring_buffer *ring;
struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
uint32_t __iomem *pd_addr;
uint32_t pd_entry;
int i;
if (!dev_priv->mm.aliasing_ppgtt)
return;
pd_addr = dev_priv->mm.gtt->gtt + ppgtt->pd_offset/sizeof(uint32_t);
for (i = 0; i < ppgtt->num_pd_entries; i++) {
dma_addr_t pt_addr;
if (dev_priv->mm.gtt->needs_dmar)
pt_addr = ppgtt->pt_dma_addr[i];
else
pt_addr = page_to_phys(ppgtt->pt_pages[i]);
pd_entry = GEN6_PDE_ADDR_ENCODE(pt_addr);
pd_entry |= GEN6_PDE_VALID;
writel(pd_entry, pd_addr + i);
}
readl(pd_addr);
pd_offset = ppgtt->pd_offset;
pd_offset /= 64; /* in cachelines, */
pd_offset <<= 16;
if (INTEL_INFO(dev)->gen == 6) {
uint32_t ecochk, gab_ctl, ecobits;
ecobits = I915_READ(GAC_ECO_BITS);
I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_PPGTT_CACHE64B);
gab_ctl = I915_READ(GAB_CTL);
I915_WRITE(GAB_CTL, gab_ctl | GAB_CTL_CONT_AFTER_PAGEFAULT);
ecochk = I915_READ(GAM_ECOCHK);
I915_WRITE(GAM_ECOCHK, ecochk | ECOCHK_SNB_BIT |
ECOCHK_PPGTT_CACHE64B);
I915_WRITE(GFX_MODE, _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
} else if (INTEL_INFO(dev)->gen >= 7) {
I915_WRITE(GAM_ECOCHK, ECOCHK_PPGTT_CACHE64B);
/* GFX_MODE is per-ring on gen7+ */
}
for_each_ring(ring, dev_priv, i) {
if (INTEL_INFO(dev)->gen >= 7)
I915_WRITE(RING_MODE_GEN7(ring),
_MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
I915_WRITE(RING_PP_DIR_DCLV(ring), PP_DIR_DCLV_2G);
I915_WRITE(RING_PP_DIR_BASE(ring), pd_offset);
}
}
static bool do_idling(struct drm_i915_private *dev_priv)
{
bool ret = dev_priv->mm.interruptible;
if (unlikely(dev_priv->mm.gtt->do_idle_maps)) {
dev_priv->mm.interruptible = false;
if (i915_gpu_idle(dev_priv->dev)) {
DRM_ERROR("Couldn't idle GPU\n");
/* Wait a bit, in hopes it avoids the hang */
udelay(10);
}
}
return ret;
}
static void undo_idling(struct drm_i915_private *dev_priv, bool interruptible)
{
if (unlikely(dev_priv->mm.gtt->do_idle_maps))
dev_priv->mm.interruptible = interruptible;
}
static void i915_ggtt_clear_range(struct drm_device *dev,
unsigned first_entry,
unsigned num_entries)
{
struct drm_i915_private *dev_priv = dev->dev_private;
gtt_pte_t scratch_pte;
gtt_pte_t __iomem *gtt_base = dev_priv->mm.gtt->gtt + first_entry;
const int max_entries = dev_priv->mm.gtt->gtt_total_entries - first_entry;
int i;
if (INTEL_INFO(dev)->gen < 6) {
intel_gtt_clear_range(first_entry, num_entries);
return;
}
if (WARN(num_entries > max_entries,
"First entry = %d; Num entries = %d (max=%d)\n",
first_entry, num_entries, max_entries))
num_entries = max_entries;
scratch_pte = pte_encode(dev, dev_priv->mm.gtt->scratch_page_dma, I915_CACHE_LLC);
for (i = 0; i < num_entries; i++)
iowrite32(scratch_pte, &gtt_base[i]);
readl(gtt_base);
}
#if 0
void i915_gem_restore_gtt_mappings(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
struct drm_i915_gem_object *obj;
/* First fill our portion of the GTT with scratch pages */
i915_ggtt_clear_range(dev, dev_priv->mm.gtt_start / PAGE_SIZE,
(dev_priv->mm.gtt_end - dev_priv->mm.gtt_start) / PAGE_SIZE);
list_for_each_entry(obj, &dev_priv->mm.bound_list, gtt_list) {
i915_gem_clflush_object(obj);
i915_gem_gtt_bind_object(obj, obj->cache_level);
}
i915_gem_chipset_flush(dev);
}
#endif
int i915_gem_gtt_prepare_object(struct drm_i915_gem_object *obj)
{
struct scatterlist *sg, *s;
unsigned int nents ;
int i;
if (obj->has_dma_mapping)
return 0;
sg = obj->pages->sgl;
nents = obj->pages->nents;
WARN_ON(nents == 0 || sg[0].length == 0);
for_each_sg(sg, s, nents, i) {
BUG_ON(!sg_page(s));
s->dma_address = sg_phys(s);
}
asm volatile("lock; addl $0,0(%%esp)": : :"memory");
return 0;
}
/*
* Binds an object into the global gtt with the specified cache level. The object
* will be accessible to the GPU via commands whose operands reference offsets
* within the global GTT as well as accessible by the GPU through the GMADR
* mapped BAR (dev_priv->mm.gtt->gtt).
*/
static void gen6_ggtt_bind_object(struct drm_i915_gem_object *obj,
enum i915_cache_level level)
{
struct drm_device *dev = obj->base.dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct sg_table *st = obj->pages;
struct scatterlist *sg = st->sgl;
const int first_entry = obj->gtt_space->start >> PAGE_SHIFT;
const int max_entries = dev_priv->mm.gtt->gtt_total_entries - first_entry;
gtt_pte_t __iomem *gtt_entries = dev_priv->mm.gtt->gtt + first_entry;
int unused, i = 0;
unsigned int len, m = 0;
dma_addr_t addr;
for_each_sg(st->sgl, sg, st->nents, unused) {
len = sg_dma_len(sg) >> PAGE_SHIFT;
for (m = 0; m < len; m++) {
addr = sg_dma_address(sg) + (m << PAGE_SHIFT);
iowrite32(pte_encode(dev, addr, level), &gtt_entries[i]);
i++;
}
}
BUG_ON(i > max_entries);
BUG_ON(i != obj->base.size / PAGE_SIZE);
/* XXX: This serves as a posting read to make sure that the PTE has
* actually been updated. There is some concern that even though
* registers and PTEs are within the same BAR that they are potentially
* of NUMA access patterns. Therefore, even with the way we assume
* hardware should work, we must keep this posting read for paranoia.
*/
if (i != 0)
WARN_ON(readl(&gtt_entries[i-1]) != pte_encode(dev, addr, level));
/* This next bit makes the above posting read even more important. We
* want to flush the TLBs only after we're certain all the PTE updates
* have finished.
*/
I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
POSTING_READ(GFX_FLSH_CNTL_GEN6);
}
void i915_gem_gtt_bind_object(struct drm_i915_gem_object *obj,
enum i915_cache_level cache_level)
{
struct drm_device *dev = obj->base.dev;
if (INTEL_INFO(dev)->gen < 6) {
unsigned int flags = (cache_level == I915_CACHE_NONE) ?
AGP_USER_MEMORY : AGP_USER_CACHED_MEMORY;
intel_gtt_insert_sg_entries(obj->pages,
obj->gtt_space->start >> PAGE_SHIFT,
flags);
} else {
gen6_ggtt_bind_object(obj, cache_level);
}
obj->has_global_gtt_mapping = 1;
}
void i915_gem_gtt_unbind_object(struct drm_i915_gem_object *obj)
{
i915_ggtt_clear_range(obj->base.dev,
obj->gtt_space->start >> PAGE_SHIFT,
obj->base.size >> PAGE_SHIFT);
obj->has_global_gtt_mapping = 0;
}
void i915_gem_gtt_finish_object(struct drm_i915_gem_object *obj)
{
struct drm_device *dev = obj->base.dev;
struct drm_i915_private *dev_priv = dev->dev_private;
bool interruptible;
interruptible = do_idling(dev_priv);
// if (!obj->has_dma_mapping)
// dma_unmap_sg(&dev->pdev->dev,
// obj->pages->sgl, obj->pages->nents,
// PCI_DMA_BIDIRECTIONAL);
undo_idling(dev_priv, interruptible);
}
static void i915_gtt_color_adjust(struct drm_mm_node *node,
unsigned long color,
unsigned long *start,
unsigned long *end)
{
if (node->color != color)
*start += 4096;
if (!list_empty(&node->node_list)) {
node = list_entry(node->node_list.next,
struct drm_mm_node,
node_list);
if (node->allocated && node->color != color)
*end -= 4096;
}
}
void i915_gem_init_global_gtt(struct drm_device *dev,
unsigned long start,
unsigned long mappable_end,
unsigned long end)
{
drm_i915_private_t *dev_priv = dev->dev_private;
/* Substract the guard page ... */
drm_mm_init(&dev_priv->mm.gtt_space, start, end - start - PAGE_SIZE);
if (!HAS_LLC(dev))
dev_priv->mm.gtt_space.color_adjust = i915_gtt_color_adjust;
dev_priv->mm.gtt_start = start;
dev_priv->mm.gtt_mappable_end = mappable_end;
dev_priv->mm.gtt_end = end;
dev_priv->mm.gtt_total = end - start;
dev_priv->mm.mappable_gtt_total = min(end, mappable_end) - start;
/* ... but ensure that we clear the entire range. */
i915_ggtt_clear_range(dev, start / PAGE_SIZE, (end-start) / PAGE_SIZE);
}
static int setup_scratch_page(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
struct page *page;
dma_addr_t dma_addr;
page = alloc_page(GFP_KERNEL | GFP_DMA32 | __GFP_ZERO);
if (page == NULL)
return -ENOMEM;
#ifdef CONFIG_INTEL_IOMMU
dma_addr = pci_map_page(dev->pdev, page, 0, PAGE_SIZE,
PCI_DMA_BIDIRECTIONAL);
if (pci_dma_mapping_error(dev->pdev, dma_addr))
return -EINVAL;
#else
dma_addr = page_to_phys(page);
#endif
dev_priv->mm.gtt->scratch_page = page;
dev_priv->mm.gtt->scratch_page_dma = dma_addr;
return 0;
}
static inline unsigned int gen6_get_total_gtt_size(u16 snb_gmch_ctl)
{
snb_gmch_ctl >>= SNB_GMCH_GGMS_SHIFT;
snb_gmch_ctl &= SNB_GMCH_GGMS_MASK;
return snb_gmch_ctl << 20;
}
static inline unsigned int gen6_get_stolen_size(u16 snb_gmch_ctl)
{
snb_gmch_ctl >>= SNB_GMCH_GMS_SHIFT;
snb_gmch_ctl &= SNB_GMCH_GMS_MASK;
return snb_gmch_ctl << 25; /* 32 MB units */
}
static inline unsigned int gen7_get_stolen_size(u16 snb_gmch_ctl)
{
static const int stolen_decoder[] = {
0, 0, 0, 0, 0, 32, 48, 64, 128, 256, 96, 160, 224, 352};
snb_gmch_ctl >>= IVB_GMCH_GMS_SHIFT;
snb_gmch_ctl &= IVB_GMCH_GMS_MASK;
return stolen_decoder[snb_gmch_ctl] << 20;
}
int i915_gem_gtt_init(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
phys_addr_t gtt_bus_addr;
u16 snb_gmch_ctl;
int ret;
/* On modern platforms we need not worry ourself with the legacy
* hostbridge query stuff. Skip it entirely
*/
if (INTEL_INFO(dev)->gen < 6) {
ret = intel_gmch_probe(dev_priv->bridge_dev, dev->pdev, NULL);
if (!ret) {
DRM_ERROR("failed to set up gmch\n");
return -EIO;
}
dev_priv->mm.gtt = intel_gtt_get();
if (!dev_priv->mm.gtt) {
DRM_ERROR("Failed to initialize GTT\n");
return -ENODEV;
}
return 0;
}
dev_priv->mm.gtt = kzalloc(sizeof(*dev_priv->mm.gtt), GFP_KERNEL);
if (!dev_priv->mm.gtt)
return -ENOMEM;
#ifdef CONFIG_INTEL_IOMMU
dev_priv->mm.gtt->needs_dmar = 1;
#endif
/* For GEN6+ the PTEs for the ggtt live at 2MB + BAR0 */
gtt_bus_addr = pci_resource_start(dev->pdev, 0) + (2<<20);
dev_priv->mm.gtt->gma_bus_addr = pci_resource_start(dev->pdev, 2);
/* i9xx_setup */
pci_read_config_word(dev->pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
dev_priv->mm.gtt->gtt_total_entries =
gen6_get_total_gtt_size(snb_gmch_ctl) / sizeof(gtt_pte_t);
if (INTEL_INFO(dev)->gen < 7)
dev_priv->mm.gtt->stolen_size = gen6_get_stolen_size(snb_gmch_ctl);
else
dev_priv->mm.gtt->stolen_size = gen7_get_stolen_size(snb_gmch_ctl);
dev_priv->mm.gtt->gtt_mappable_entries = pci_resource_len(dev->pdev, 2) >> PAGE_SHIFT;
/* 64/512MB is the current min/max we actually know of, but this is just a
* coarse sanity check.
*/
if ((dev_priv->mm.gtt->gtt_mappable_entries >> 8) < 64 ||
dev_priv->mm.gtt->gtt_mappable_entries > dev_priv->mm.gtt->gtt_total_entries) {
DRM_ERROR("Unknown GMADR entries (%d)\n",
dev_priv->mm.gtt->gtt_mappable_entries);
ret = -ENXIO;
goto err_out;
}
ret = setup_scratch_page(dev);
if (ret) {
DRM_ERROR("Scratch setup failed\n");
goto err_out;
}
dev_priv->mm.gtt->gtt = ioremap(gtt_bus_addr,
dev_priv->mm.gtt->gtt_total_entries * sizeof(gtt_pte_t));
if (!dev_priv->mm.gtt->gtt) {
DRM_ERROR("Failed to map the gtt page table\n");
ret = -ENOMEM;
goto err_out;
}
/* GMADR is the PCI aperture used by SW to access tiled GFX surfaces in a linear fashion. */
DRM_INFO("Memory usable by graphics device = %dM\n", dev_priv->mm.gtt->gtt_total_entries >> 8);
DRM_DEBUG_DRIVER("GMADR size = %dM\n", dev_priv->mm.gtt->gtt_mappable_entries >> 8);
DRM_DEBUG_DRIVER("GTT stolen size = %dM\n", dev_priv->mm.gtt->stolen_size >> 20);
return 0;
err_out:
kfree(dev_priv->mm.gtt);
return ret;
}
struct scatterlist *sg_next(struct scatterlist *sg)
{
if (sg_is_last(sg))
return NULL;
sg++;
if (unlikely(sg_is_chain(sg)))
sg = sg_chain_ptr(sg);
return sg;
}
void __sg_free_table(struct sg_table *table, unsigned int max_ents,
sg_free_fn *free_fn)
{
struct scatterlist *sgl, *next;
if (unlikely(!table->sgl))
return;
sgl = table->sgl;
while (table->orig_nents) {
unsigned int alloc_size = table->orig_nents;
unsigned int sg_size;
/*
* If we have more than max_ents segments left,
* then assign 'next' to the sg table after the current one.
* sg_size is then one less than alloc size, since the last
* element is the chain pointer.
*/
if (alloc_size > max_ents) {
next = sg_chain_ptr(&sgl[max_ents - 1]);
alloc_size = max_ents;
sg_size = alloc_size - 1;
} else {
sg_size = alloc_size;
next = NULL;
}
table->orig_nents -= sg_size;
kfree(sgl);
sgl = next;
}
table->sgl = NULL;
}
void sg_free_table(struct sg_table *table)
{
__sg_free_table(table, SG_MAX_SINGLE_ALLOC, NULL);
}
int sg_alloc_table(struct sg_table *table, unsigned int nents, gfp_t gfp_mask)
{
struct scatterlist *sg, *prv;
unsigned int left;
unsigned int max_ents = SG_MAX_SINGLE_ALLOC;
#ifndef ARCH_HAS_SG_CHAIN
BUG_ON(nents > max_ents);
#endif
memset(table, 0, sizeof(*table));
left = nents;
prv = NULL;
do {
unsigned int sg_size, alloc_size = left;
if (alloc_size > max_ents) {
alloc_size = max_ents;
sg_size = alloc_size - 1;
} else
sg_size = alloc_size;
left -= sg_size;
sg = kmalloc(alloc_size * sizeof(struct scatterlist), gfp_mask);
if (unlikely(!sg)) {
/*
* Adjust entry count to reflect that the last
* entry of the previous table won't be used for
* linkage. Without this, sg_kfree() may get
* confused.
*/
if (prv)
table->nents = ++table->orig_nents;
goto err;
}
sg_init_table(sg, alloc_size);
table->nents = table->orig_nents += sg_size;
/*
* If this is the first mapping, assign the sg table header.
* If this is not the first mapping, chain previous part.
*/
if (prv)
sg_chain(prv, max_ents, sg);
else
table->sgl = sg;
/*
* If no more entries after this one, mark the end
*/
if (!left)
sg_mark_end(&sg[sg_size - 1]);
prv = sg;
} while (left);
return 0;
err:
__sg_free_table(table, SG_MAX_SINGLE_ALLOC, NULL);
return -ENOMEM;
}
void sg_init_table(struct scatterlist *sgl, unsigned int nents)
{
memset(sgl, 0, sizeof(*sgl) * nents);
#ifdef CONFIG_DEBUG_SG
{
unsigned int i;
for (i = 0; i < nents; i++)
sgl[i].sg_magic = SG_MAGIC;
}
#endif
sg_mark_end(&sgl[nents - 1]);
}