kolibrios/contrib/media/updf/include/ext/stl_bvector.h

897 lines
27 KiB
C
Raw Normal View History

/*
*
* Copyright (c) 1994
* Hewlett-Packard Company
*
* Permission to use, copy, modify, distribute and sell this software
* and its documentation for any purpose is hereby granted without fee,
* provided that the above copyright notice appear in all copies and
* that both that copyright notice and this permission notice appear
* in supporting documentation. Hewlett-Packard Company makes no
* representations about the suitability of this software for any
* purpose. It is provided "as is" without express or implied warranty.
*
*
* Copyright (c) 1996-1999
* Silicon Graphics Computer Systems, Inc.
*
* Permission to use, copy, modify, distribute and sell this software
* and its documentation for any purpose is hereby granted without fee,
* provided that the above copyright notice appear in all copies and
* that both that copyright notice and this permission notice appear
* in supporting documentation. Silicon Graphics makes no
* representations about the suitability of this software for any
* purpose. It is provided "as is" without express or implied warranty.
*/
/* NOTE: This is an internal header file, included by other STL headers.
* You should not attempt to use it directly.
*/
#ifndef __SGI_STL_INTERNAL_BVECTOR_H
#define __SGI_STL_INTERNAL_BVECTOR_H
__STL_BEGIN_NAMESPACE
static const int __WORD_BIT = int(CHAR_BIT*sizeof(unsigned int));
#if defined(__sgi) && !defined(__GNUC__) && (_MIPS_SIM != _MIPS_SIM_ABI32)
#pragma set woff 1174
#pragma set woff 1375
#endif
struct _Bit_reference {
unsigned int* _M_p;
unsigned int _M_mask;
_Bit_reference(unsigned int* __x, unsigned int __y)
: _M_p(__x), _M_mask(__y) {}
public:
_Bit_reference() : _M_p(0), _M_mask(0) {}
operator bool() const { return !(!(*_M_p & _M_mask)); }
_Bit_reference& operator=(bool __x)
{
if (__x) *_M_p |= _M_mask;
else *_M_p &= ~_M_mask;
return *this;
}
_Bit_reference& operator=(const _Bit_reference& __x)
{ return *this = bool(__x); }
bool operator==(const _Bit_reference& __x) const
{ return bool(*this) == bool(__x); }
bool operator<(const _Bit_reference& __x) const {
return !bool(*this) && bool(__x);
}
void flip() { *_M_p ^= _M_mask; }
};
inline void swap(_Bit_reference __x, _Bit_reference __y)
{
bool __tmp = __x;
__x = __y;
__y = __tmp;
}
struct _Bit_iterator_base : public random_access_iterator<bool, ptrdiff_t>
{
unsigned int* _M_p;
unsigned int _M_offset;
_Bit_iterator_base(unsigned int* __x, unsigned int __y)
: _M_p(__x), _M_offset(__y) {}
void _M_bump_up() {
if (_M_offset++ == __WORD_BIT - 1) {
_M_offset = 0;
++_M_p;
}
}
void _M_bump_down() {
if (_M_offset-- == 0) {
_M_offset = __WORD_BIT - 1;
--_M_p;
}
}
void _M_incr(ptrdiff_t __i) {
difference_type __n = __i + _M_offset;
_M_p += __n / __WORD_BIT;
__n = __n % __WORD_BIT;
if (__n < 0) {
_M_offset = (unsigned int) __n + __WORD_BIT;
--_M_p;
} else
_M_offset = (unsigned int) __n;
}
bool operator==(const _Bit_iterator_base& __i) const {
return _M_p == __i._M_p && _M_offset == __i._M_offset;
}
bool operator<(const _Bit_iterator_base& __i) const {
return _M_p < __i._M_p || (_M_p == __i._M_p && _M_offset < __i._M_offset);
}
bool operator!=(const _Bit_iterator_base& __i) const {
return !(*this == __i);
}
bool operator>(const _Bit_iterator_base& __i) const {
return __i < *this;
}
bool operator<=(const _Bit_iterator_base& __i) const {
return !(__i < *this);
}
bool operator>=(const _Bit_iterator_base& __i) const {
return !(*this < __i);
}
};
inline ptrdiff_t
operator-(const _Bit_iterator_base& __x, const _Bit_iterator_base& __y) {
return __WORD_BIT * (__x._M_p - __y._M_p) + __x._M_offset - __y._M_offset;
}
struct _Bit_iterator : public _Bit_iterator_base
{
typedef _Bit_reference reference;
typedef _Bit_reference* pointer;
typedef _Bit_iterator iterator;
_Bit_iterator() : _Bit_iterator_base(0, 0) {}
_Bit_iterator(unsigned int* __x, unsigned int __y)
: _Bit_iterator_base(__x, __y) {}
reference operator*() const { return reference(_M_p, 1U << _M_offset); }
iterator& operator++() {
_M_bump_up();
return *this;
}
iterator operator++(int) {
iterator __tmp = *this;
_M_bump_up();
return __tmp;
}
iterator& operator--() {
_M_bump_down();
return *this;
}
iterator operator--(int) {
iterator __tmp = *this;
_M_bump_down();
return __tmp;
}
iterator& operator+=(difference_type __i) {
_M_incr(__i);
return *this;
}
iterator& operator-=(difference_type __i) {
*this += -__i;
return *this;
}
iterator operator+(difference_type __i) const {
iterator __tmp = *this;
return __tmp += __i;
}
iterator operator-(difference_type __i) const {
iterator __tmp = *this;
return __tmp -= __i;
}
reference operator[](difference_type __i) { return *(*this + __i); }
};
inline _Bit_iterator
operator+(ptrdiff_t __n, const _Bit_iterator& __x) { return __x + __n; }
struct _Bit_const_iterator : public _Bit_iterator_base
{
typedef bool reference;
typedef bool const_reference;
typedef const bool* pointer;
typedef _Bit_const_iterator const_iterator;
_Bit_const_iterator() : _Bit_iterator_base(0, 0) {}
_Bit_const_iterator(unsigned int* __x, unsigned int __y)
: _Bit_iterator_base(__x, __y) {}
_Bit_const_iterator(const _Bit_iterator& __x)
: _Bit_iterator_base(__x._M_p, __x._M_offset) {}
const_reference operator*() const {
return _Bit_reference(_M_p, 1U << _M_offset);
}
const_iterator& operator++() {
_M_bump_up();
return *this;
}
const_iterator operator++(int) {
const_iterator __tmp = *this;
_M_bump_up();
return __tmp;
}
const_iterator& operator--() {
_M_bump_down();
return *this;
}
const_iterator operator--(int) {
const_iterator __tmp = *this;
_M_bump_down();
return __tmp;
}
const_iterator& operator+=(difference_type __i) {
_M_incr(__i);
return *this;
}
const_iterator& operator-=(difference_type __i) {
*this += -__i;
return *this;
}
const_iterator operator+(difference_type __i) const {
const_iterator __tmp = *this;
return __tmp += __i;
}
const_iterator operator-(difference_type __i) const {
const_iterator __tmp = *this;
return __tmp -= __i;
}
const_reference operator[](difference_type __i) {
return *(*this + __i);
}
};
inline _Bit_const_iterator
operator+(ptrdiff_t __n, const _Bit_const_iterator& __x) { return __x + __n; }
// Bit-vector base class, which encapsulates the difference between
// old SGI-style allocators and standard-conforming allocators.
#ifdef __STL_USE_STD_ALLOCATORS
// Base class for ordinary allocators.
template <class _Allocator, bool __is_static>
class _Bvector_alloc_base {
public:
typedef typename _Alloc_traits<bool, _Allocator>::allocator_type
allocator_type;
allocator_type get_allocator() const { return _M_data_allocator; }
_Bvector_alloc_base(const allocator_type& __a)
: _M_data_allocator(__a), _M_start(), _M_finish(), _M_end_of_storage(0) {}
protected:
unsigned int* _M_bit_alloc(size_t __n)
{ return _M_data_allocator.allocate((__n + __WORD_BIT - 1)/__WORD_BIT); }
void _M_deallocate() {
if (_M_start._M_p)
_M_data_allocator.deallocate(_M_start._M_p,
_M_end_of_storage - _M_start._M_p);
}
typename _Alloc_traits<unsigned int, _Allocator>::allocator_type
_M_data_allocator;
_Bit_iterator _M_start;
_Bit_iterator _M_finish;
unsigned int* _M_end_of_storage;
};
// Specialization for instanceless allocators.
template <class _Allocator>
class _Bvector_alloc_base<_Allocator, true> {
public:
typedef typename _Alloc_traits<bool, _Allocator>::allocator_type
allocator_type;
allocator_type get_allocator() const { return allocator_type(); }
_Bvector_alloc_base(const allocator_type&)
: _M_start(), _M_finish(), _M_end_of_storage(0) {}
protected:
typedef typename _Alloc_traits<unsigned int, _Allocator>::_Alloc_type
_Alloc_type;
unsigned int* _M_bit_alloc(size_t __n)
{ return _Alloc_type::allocate((__n + __WORD_BIT - 1)/__WORD_BIT); }
void _M_deallocate() {
if (_M_start._M_p)
_Alloc_type::deallocate(_M_start._M_p,
_M_end_of_storage - _M_start._M_p);
}
_Bit_iterator _M_start;
_Bit_iterator _M_finish;
unsigned int* _M_end_of_storage;
};
template <class _Alloc>
class _Bvector_base
: public _Bvector_alloc_base<_Alloc,
_Alloc_traits<bool, _Alloc>::_S_instanceless>
{
typedef _Bvector_alloc_base<_Alloc,
_Alloc_traits<bool, _Alloc>::_S_instanceless>
_Base;
public:
typedef typename _Base::allocator_type allocator_type;
_Bvector_base(const allocator_type& __a) : _Base(__a) {}
~_Bvector_base() { _Base::_M_deallocate(); }
};
#else /* __STL_USE_STD_ALLOCATORS */
template <class _Alloc>
class _Bvector_base
{
public:
typedef _Alloc allocator_type;
allocator_type get_allocator() const { return allocator_type(); }
_Bvector_base(const allocator_type&)
: _M_start(), _M_finish(), _M_end_of_storage(0) {}
~_Bvector_base() { _M_deallocate(); }
protected:
typedef simple_alloc<unsigned int, _Alloc> _Alloc_type;
unsigned int* _M_bit_alloc(size_t __n)
{ return _Alloc_type::allocate((__n + __WORD_BIT - 1)/__WORD_BIT); }
void _M_deallocate() {
if (_M_start._M_p)
_Alloc_type::deallocate(_M_start._M_p,
_M_end_of_storage - _M_start._M_p);
}
_Bit_iterator _M_start;
_Bit_iterator _M_finish;
unsigned int* _M_end_of_storage;
};
#endif /* __STL_USE_STD_ALLOCATORS */
// The next few lines are confusing. What we're doing is declaring a
// partial specialization of vector<T, Alloc> if we have the necessary
// compiler support. Otherwise, we define a class bit_vector which uses
// the default allocator.
#if defined(__STL_CLASS_PARTIAL_SPECIALIZATION) && !defined(__STL_NO_BOOL)
# define __SGI_STL_VECBOOL_TEMPLATE
# define __BVECTOR vector<bool, _Alloc>
# define __VECTOR vector
# define __BVECTOR_BASE _Bvector_base<_Alloc>
# define __BVECTOR_TMPL_LIST template <class _Alloc>
__STL_END_NAMESPACE
# include <bits/stl_vector.h>
__STL_BEGIN_NAMESPACE
#else /* __STL_CLASS_PARTIAL_SPECIALIZATION && !__STL_NO_BOOL */
# undef __SGI_STL_VECBOOL_TEMPLATE
# define __BVECTOR bit_vector
# define __VECTOR bit_vector
# define __BVECTOR_BASE _Bvector_base<__STL_DEFAULT_ALLOCATOR(bool) >
# define __BVECTOR_TMPL_LIST
#endif /* __STL_CLASS_PARTIAL_SPECIALIZATION && !__STL_NO_BOOL */
__BVECTOR_TMPL_LIST
class __BVECTOR : public __BVECTOR_BASE
{
public:
typedef bool value_type;
typedef size_t size_type;
typedef ptrdiff_t difference_type;
typedef _Bit_reference reference;
typedef bool const_reference;
typedef _Bit_reference* pointer;
typedef const bool* const_pointer;
typedef _Bit_iterator iterator;
typedef _Bit_const_iterator const_iterator;
#ifdef __STL_CLASS_PARTIAL_SPECIALIZATION
typedef reverse_iterator<const_iterator> const_reverse_iterator;
typedef reverse_iterator<iterator> reverse_iterator;
#else /* __STL_CLASS_PARTIAL_SPECIALIZATION */
typedef reverse_iterator<const_iterator, value_type, const_reference,
difference_type> const_reverse_iterator;
typedef reverse_iterator<iterator, value_type, reference, difference_type>
reverse_iterator;
#endif /* __STL_CLASS_PARTIAL_SPECIALIZATION */
typedef typename __BVECTOR_BASE::allocator_type allocator_type;
allocator_type get_allocator() const {
return __BVECTOR_BASE::get_allocator();
}
protected:
#ifdef __STL_USE_NAMESPACES
using __BVECTOR_BASE::_M_bit_alloc;
using __BVECTOR_BASE::_M_deallocate;
using __BVECTOR_BASE::_M_start;
using __BVECTOR_BASE::_M_finish;
using __BVECTOR_BASE::_M_end_of_storage;
#endif /* __STL_USE_NAMESPACES */
protected:
void _M_initialize(size_type __n) {
unsigned int* __q = _M_bit_alloc(__n);
_M_end_of_storage = __q + (__n + __WORD_BIT - 1)/__WORD_BIT;
_M_start = iterator(__q, 0);
_M_finish = _M_start + difference_type(__n);
}
void _M_insert_aux(iterator __position, bool __x) {
if (_M_finish._M_p != _M_end_of_storage) {
copy_backward(__position, _M_finish, _M_finish + 1);
*__position = __x;
++_M_finish;
}
else {
size_type __len = size() ? 2 * size() : __WORD_BIT;
unsigned int* __q = _M_bit_alloc(__len);
iterator __i = copy(begin(), __position, iterator(__q, 0));
*__i++ = __x;
_M_finish = copy(__position, end(), __i);
_M_deallocate();
_M_end_of_storage = __q + (__len + __WORD_BIT - 1)/__WORD_BIT;
_M_start = iterator(__q, 0);
}
}
#ifdef __STL_MEMBER_TEMPLATES
template <class _InputIterator>
void _M_initialize_range(_InputIterator __first, _InputIterator __last,
input_iterator_tag) {
_M_start = iterator();
_M_finish = iterator();
_M_end_of_storage = 0;
for ( ; __first != __last; ++__first)
push_back(*__first);
}
template <class _ForwardIterator>
void _M_initialize_range(_ForwardIterator __first, _ForwardIterator __last,
forward_iterator_tag) {
size_type __n = 0;
distance(__first, __last, __n);
_M_initialize(__n);
copy(__first, __last, _M_start);
}
template <class _InputIterator>
void _M_insert_range(iterator __pos,
_InputIterator __first, _InputIterator __last,
input_iterator_tag) {
for ( ; __first != __last; ++__first) {
__pos = insert(__pos, *__first);
++__pos;
}
}
template <class _ForwardIterator>
void _M_insert_range(iterator __position,
_ForwardIterator __first, _ForwardIterator __last,
forward_iterator_tag) {
if (__first != __last) {
size_type __n = 0;
distance(__first, __last, __n);
if (capacity() - size() >= __n) {
copy_backward(__position, end(), _M_finish + difference_type(__n));
copy(__first, __last, __position);
_M_finish += difference_type(__n);
}
else {
size_type __len = size() + max(size(), __n);
unsigned int* __q = _M_bit_alloc(__len);
iterator __i = copy(begin(), __position, iterator(__q, 0));
__i = copy(__first, __last, __i);
_M_finish = copy(__position, end(), __i);
_M_deallocate();
_M_end_of_storage = __q + (__len + __WORD_BIT - 1)/__WORD_BIT;
_M_start = iterator(__q, 0);
}
}
}
#endif /* __STL_MEMBER_TEMPLATES */
public:
iterator begin() { return _M_start; }
const_iterator begin() const { return _M_start; }
iterator end() { return _M_finish; }
const_iterator end() const { return _M_finish; }
reverse_iterator rbegin() { return reverse_iterator(end()); }
const_reverse_iterator rbegin() const {
return const_reverse_iterator(end());
}
reverse_iterator rend() { return reverse_iterator(begin()); }
const_reverse_iterator rend() const {
return const_reverse_iterator(begin());
}
size_type size() const { return size_type(end() - begin()); }
size_type max_size() const { return size_type(-1); }
size_type capacity() const {
return size_type(const_iterator(_M_end_of_storage, 0) - begin());
}
bool empty() const { return begin() == end(); }
reference operator[](size_type __n)
{ return *(begin() + difference_type(__n)); }
const_reference operator[](size_type __n) const
{ return *(begin() + difference_type(__n)); }
#ifdef __STL_THROW_RANGE_ERRORS
void _M_range_check(size_type __n) const {
if (__n >= this->size())
__throw_range_error("vector<bool>");
}
reference at(size_type __n)
{ _M_range_check(__n); return (*this)[__n]; }
const_reference at(size_type __n) const
{ _M_range_check(__n); return (*this)[__n]; }
#endif /* __STL_THROW_RANGE_ERRORS */
explicit __VECTOR(const allocator_type& __a = allocator_type())
: __BVECTOR_BASE(__a) {}
__VECTOR(size_type __n, bool __value,
const allocator_type& __a = allocator_type())
: __BVECTOR_BASE(__a)
{
_M_initialize(__n);
fill(_M_start._M_p, _M_end_of_storage, __value ? ~0 : 0);
}
explicit __VECTOR(size_type __n)
: __BVECTOR_BASE(allocator_type())
{
_M_initialize(__n);
fill(_M_start._M_p, _M_end_of_storage, 0);
}
__VECTOR(const __VECTOR& __x) : __BVECTOR_BASE(__x.get_allocator()) {
_M_initialize(__x.size());
copy(__x.begin(), __x.end(), _M_start);
}
#ifdef __STL_MEMBER_TEMPLATES
// Check whether it's an integral type. If so, it's not an iterator.
template <class _Integer>
void _M_initialize_dispatch(_Integer __n, _Integer __x, __true_type) {
_M_initialize(__n);
fill(_M_start._M_p, _M_end_of_storage, __x ? ~0 : 0);
}
template <class _InputIterator>
void _M_initialize_dispatch(_InputIterator __first, _InputIterator __last,
__false_type) {
_M_initialize_range(__first, __last, __ITERATOR_CATEGORY(__first));
}
template <class _InputIterator>
__VECTOR(_InputIterator __first, _InputIterator __last,
const allocator_type& __a = allocator_type())
: __BVECTOR_BASE(__a)
{
typedef typename _Is_integer<_InputIterator>::_Integral _Integral;
_M_initialize_dispatch(__first, __last, _Integral());
}
#else /* __STL_MEMBER_TEMPLATES */
__VECTOR(const_iterator __first, const_iterator __last,
const allocator_type& __a = allocator_type())
: __BVECTOR_BASE(__a)
{
size_type __n = 0;
distance(__first, __last, __n);
_M_initialize(__n);
copy(__first, __last, _M_start);
}
__VECTOR(const bool* __first, const bool* __last,
const allocator_type& __a = allocator_type())
: __BVECTOR_BASE(__a)
{
size_type __n = 0;
distance(__first, __last, __n);
_M_initialize(__n);
copy(__first, __last, _M_start);
}
#endif /* __STL_MEMBER_TEMPLATES */
~__VECTOR() { }
__VECTOR& operator=(const __VECTOR& __x) {
if (&__x == this) return *this;
if (__x.size() > capacity()) {
_M_deallocate();
_M_initialize(__x.size());
}
copy(__x.begin(), __x.end(), begin());
_M_finish = begin() + difference_type(__x.size());
return *this;
}
// assign(), a generalized assignment member function. Two
// versions: one that takes a count, and one that takes a range.
// The range version is a member template, so we dispatch on whether
// or not the type is an integer.
void _M_fill_assign(size_t __n, bool __x) {
if (__n > size()) {
fill(_M_start._M_p, _M_end_of_storage, __x ? ~0 : 0);
insert(end(), __n - size(), __x);
}
else {
erase(begin() + __n, end());
fill(_M_start._M_p, _M_end_of_storage, __x ? ~0 : 0);
}
}
void assign(size_t __n, bool __x) { _M_fill_assign(__n, __x); }
#ifdef __STL_MEMBER_TEMPLATES
template <class _InputIterator>
void assign(_InputIterator __first, _InputIterator __last) {
typedef typename _Is_integer<_InputIterator>::_Integral _Integral;
_M_assign_dispatch(__first, __last, _Integral());
}
template <class _Integer>
void _M_assign_dispatch(_Integer __n, _Integer __val, __true_type)
{ _M_fill_assign((size_t) __n, (bool) __val); }
template <class _InputIter>
void _M_assign_dispatch(_InputIter __first, _InputIter __last, __false_type)
{ _M_assign_aux(__first, __last, __ITERATOR_CATEGORY(__first)); }
template <class _InputIterator>
void _M_assign_aux(_InputIterator __first, _InputIterator __last,
input_iterator_tag) {
iterator __cur = begin();
for ( ; __first != __last && __cur != end(); ++__cur, ++__first)
*__cur = *__first;
if (__first == __last)
erase(__cur, end());
else
insert(end(), __first, __last);
}
template <class _ForwardIterator>
void _M_assign_aux(_ForwardIterator __first, _ForwardIterator __last,
forward_iterator_tag) {
size_type __len = 0;
distance(__first, __last, __len);
if (__len < size())
erase(copy(__first, __last, begin()), end());
else {
_ForwardIterator __mid = __first;
advance(__mid, size());
copy(__first, __mid, begin());
insert(end(), __mid, __last);
}
}
#endif /* __STL_MEMBER_TEMPLATES */
void reserve(size_type __n) {
if (capacity() < __n) {
unsigned int* __q = _M_bit_alloc(__n);
_M_finish = copy(begin(), end(), iterator(__q, 0));
_M_deallocate();
_M_start = iterator(__q, 0);
_M_end_of_storage = __q + (__n + __WORD_BIT - 1)/__WORD_BIT;
}
}
reference front() { return *begin(); }
const_reference front() const { return *begin(); }
reference back() { return *(end() - 1); }
const_reference back() const { return *(end() - 1); }
void push_back(bool __x) {
if (_M_finish._M_p != _M_end_of_storage)
*_M_finish++ = __x;
else
_M_insert_aux(end(), __x);
}
void swap(__BVECTOR& __x) {
__STD::swap(_M_start, __x._M_start);
__STD::swap(_M_finish, __x._M_finish);
__STD::swap(_M_end_of_storage, __x._M_end_of_storage);
}
iterator insert(iterator __position, bool __x = bool()) {
difference_type __n = __position - begin();
if (_M_finish._M_p != _M_end_of_storage && __position == end())
*_M_finish++ = __x;
else
_M_insert_aux(__position, __x);
return begin() + __n;
}
#ifdef __STL_MEMBER_TEMPLATES
// Check whether it's an integral type. If so, it's not an iterator.
template <class _Integer>
void _M_insert_dispatch(iterator __pos, _Integer __n, _Integer __x,
__true_type) {
_M_fill_insert(__pos, __n, __x);
}
template <class _InputIterator>
void _M_insert_dispatch(iterator __pos,
_InputIterator __first, _InputIterator __last,
__false_type) {
_M_insert_range(__pos, __first, __last, __ITERATOR_CATEGORY(__first));
}
template <class _InputIterator>
void insert(iterator __position,
_InputIterator __first, _InputIterator __last) {
typedef typename _Is_integer<_InputIterator>::_Integral _Integral;
_M_insert_dispatch(__position, __first, __last, _Integral());
}
#else /* __STL_MEMBER_TEMPLATES */
void insert(iterator __position,
const_iterator __first, const_iterator __last) {
if (__first == __last) return;
size_type __n = 0;
distance(__first, __last, __n);
if (capacity() - size() >= __n) {
copy_backward(__position, end(), _M_finish + __n);
copy(__first, __last, __position);
_M_finish += __n;
}
else {
size_type __len = size() + max(size(), __n);
unsigned int* __q = _M_bit_alloc(__len);
iterator __i = copy(begin(), __position, iterator(__q, 0));
__i = copy(__first, __last, __i);
_M_finish = copy(__position, end(), __i);
_M_deallocate();
_M_end_of_storage = __q + (__len + __WORD_BIT - 1)/__WORD_BIT;
_M_start = iterator(__q, 0);
}
}
void insert(iterator __position, const bool* __first, const bool* __last) {
if (__first == __last) return;
size_type __n = 0;
distance(__first, __last, __n);
if (capacity() - size() >= __n) {
copy_backward(__position, end(), _M_finish + __n);
copy(__first, __last, __position);
_M_finish += __n;
}
else {
size_type __len = size() + max(size(), __n);
unsigned int* __q = _M_bit_alloc(__len);
iterator __i = copy(begin(), __position, iterator(__q, 0));
__i = copy(__first, __last, __i);
_M_finish = copy(__position, end(), __i);
_M_deallocate();
_M_end_of_storage = __q + (__len + __WORD_BIT - 1)/__WORD_BIT;
_M_start = iterator(__q, 0);
}
}
#endif /* __STL_MEMBER_TEMPLATES */
void _M_fill_insert(iterator __position, size_type __n, bool __x) {
if (__n == 0) return;
if (capacity() - size() >= __n) {
copy_backward(__position, end(), _M_finish + difference_type(__n));
fill(__position, __position + difference_type(__n), __x);
_M_finish += difference_type(__n);
}
else {
size_type __len = size() + max(size(), __n);
unsigned int* __q = _M_bit_alloc(__len);
iterator __i = copy(begin(), __position, iterator(__q, 0));
fill_n(__i, __n, __x);
_M_finish = copy(__position, end(), __i + difference_type(__n));
_M_deallocate();
_M_end_of_storage = __q + (__len + __WORD_BIT - 1)/__WORD_BIT;
_M_start = iterator(__q, 0);
}
}
void insert(iterator __position, size_type __n, bool __x) {
_M_fill_insert(__position, __n, __x);
}
void pop_back() { --_M_finish; }
iterator erase(iterator __position) {
if (__position + 1 != end())
copy(__position + 1, end(), __position);
--_M_finish;
return __position;
}
iterator erase(iterator __first, iterator __last) {
_M_finish = copy(__last, end(), __first);
return __first;
}
void resize(size_type __new_size, bool __x = bool()) {
if (__new_size < size())
erase(begin() + difference_type(__new_size), end());
else
insert(end(), __new_size - size(), __x);
}
void flip() {
for (unsigned int* __p = _M_start._M_p; __p != _M_end_of_storage; ++__p)
*__p = ~*__p;
}
void clear() { erase(begin(), end()); }
};
#ifdef __SGI_STL_VECBOOL_TEMPLATE
// This typedef is non-standard. It is provided for backward compatibility.
typedef vector<bool, alloc> bit_vector;
#else /* __SGI_STL_VECBOOL_TEMPLATE */
inline void swap(bit_vector& __x, bit_vector& __y) {
__x.swap(__y);
}
inline bool
operator==(const bit_vector& __x, const bit_vector& __y)
{
return (__x.size() == __y.size() &&
equal(__x.begin(), __x.end(), __y.begin()));
}
inline bool
operator!=(const bit_vector& __x, const bit_vector& __y)
{
return !(__x == __y);
}
inline bool
operator<(const bit_vector& __x, const bit_vector& __y)
{
return lexicographical_compare(__x.begin(), __x.end(),
__y.begin(), __y.end());
}
inline bool operator>(const bit_vector& __x, const bit_vector& __y)
{
return __y < __x;
}
inline bool operator<=(const bit_vector& __x, const bit_vector& __y)
{
return !(__y < __x);
}
inline bool operator>=(const bit_vector& __x, const bit_vector& __y)
{
return !(__x < __y);
}
#endif /* __SGI_STL_VECBOOL_TEMPLATE */
#undef __SGI_STL_VECBOOL_TEMPLATE
#undef __BVECTOR
#undef __VECTOR
#undef __BVECTOR_BASE
#undef __BVECTOR_TMPL_LIST
#if defined(__sgi) && !defined(__GNUC__) && (_MIPS_SIM != _MIPS_SIM_ABI32)
#pragma reset woff 1174
#pragma reset woff 1375
#endif
__STL_END_NAMESPACE
#endif /* __SGI_STL_INTERNAL_BVECTOR_H */
// Local Variables:
// mode:C++
// End: