103 lines
3.2 KiB
C
103 lines
3.2 KiB
C
|
#ifndef __GENERIC_IO_H
|
||
|
#define __GENERIC_IO_H
|
||
|
|
||
|
#include <linux/linkage.h>
|
||
|
#include <asm/byteorder.h>
|
||
|
|
||
|
/*
|
||
|
* These are the "generic" interfaces for doing new-style
|
||
|
* memory-mapped or PIO accesses. Architectures may do
|
||
|
* their own arch-optimized versions, these just act as
|
||
|
* wrappers around the old-style IO register access functions:
|
||
|
* read[bwl]/write[bwl]/in[bwl]/out[bwl]
|
||
|
*
|
||
|
* Don't include this directly, include it from <asm/io.h>.
|
||
|
*/
|
||
|
|
||
|
/*
|
||
|
* Read/write from/to an (offsettable) iomem cookie. It might be a PIO
|
||
|
* access or a MMIO access, these functions don't care. The info is
|
||
|
* encoded in the hardware mapping set up by the mapping functions
|
||
|
* (or the cookie itself, depending on implementation and hw).
|
||
|
*
|
||
|
* The generic routines just encode the PIO/MMIO as part of the
|
||
|
* cookie, and coldly assume that the MMIO IO mappings are not
|
||
|
* in the low address range. Architectures for which this is not
|
||
|
* true can't use this generic implementation.
|
||
|
*/
|
||
|
extern unsigned int ioread8(void __iomem *);
|
||
|
extern unsigned int ioread16(void __iomem *);
|
||
|
extern unsigned int ioread16be(void __iomem *);
|
||
|
//extern unsigned int ioread32(void __iomem *);
|
||
|
|
||
|
#ifndef ioread32
|
||
|
#define ioread32 ioread32
|
||
|
static inline u32 ioread32(const volatile void __iomem *addr)
|
||
|
{
|
||
|
return readl(addr);
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
extern unsigned int ioread32be(void __iomem *);
|
||
|
|
||
|
extern void iowrite8(u8, void __iomem *);
|
||
|
extern void iowrite16(u16, void __iomem *);
|
||
|
extern void iowrite16be(u16, void __iomem *);
|
||
|
//extern void iowrite32(u32, void __iomem *);
|
||
|
#ifndef iowrite32
|
||
|
//#define iowrite32 iowrite32
|
||
|
static inline void iowrite32(u32 value, volatile void __iomem *addr)
|
||
|
{
|
||
|
writel(value, addr);
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
extern void iowrite32be(u32, void __iomem *);
|
||
|
|
||
|
/*
|
||
|
* "string" versions of the above. Note that they
|
||
|
* use native byte ordering for the accesses (on
|
||
|
* the assumption that IO and memory agree on a
|
||
|
* byte order, and CPU byteorder is irrelevant).
|
||
|
*
|
||
|
* They do _not_ update the port address. If you
|
||
|
* want MMIO that copies stuff laid out in MMIO
|
||
|
* memory across multiple ports, use "memcpy_toio()"
|
||
|
* and friends.
|
||
|
*/
|
||
|
extern void ioread8_rep(void __iomem *port, void *buf, unsigned long count);
|
||
|
extern void ioread16_rep(void __iomem *port, void *buf, unsigned long count);
|
||
|
extern void ioread32_rep(void __iomem *port, void *buf, unsigned long count);
|
||
|
|
||
|
extern void iowrite8_rep(void __iomem *port, const void *buf, unsigned long count);
|
||
|
extern void iowrite16_rep(void __iomem *port, const void *buf, unsigned long count);
|
||
|
extern void iowrite32_rep(void __iomem *port, const void *buf, unsigned long count);
|
||
|
|
||
|
#ifdef CONFIG_HAS_IOPORT_MAP
|
||
|
/* Create a virtual mapping cookie for an IO port range */
|
||
|
extern void __iomem *ioport_map(unsigned long port, unsigned int nr);
|
||
|
extern void ioport_unmap(void __iomem *);
|
||
|
#endif
|
||
|
|
||
|
#ifndef ARCH_HAS_IOREMAP_WC
|
||
|
#define ioremap_wc ioremap_nocache
|
||
|
#endif
|
||
|
|
||
|
#ifndef ARCH_HAS_IOREMAP_WT
|
||
|
#define ioremap_wt ioremap_nocache
|
||
|
#endif
|
||
|
|
||
|
#ifdef CONFIG_PCI
|
||
|
/* Destroy a virtual mapping cookie for a PCI BAR (memory or IO) */
|
||
|
struct pci_dev;
|
||
|
extern void pci_iounmap(struct pci_dev *dev, void __iomem *);
|
||
|
#elif defined(CONFIG_GENERIC_IOMAP)
|
||
|
struct pci_dev;
|
||
|
static inline void pci_iounmap(struct pci_dev *dev, void __iomem *addr)
|
||
|
{ }
|
||
|
#endif
|
||
|
|
||
|
#include <asm-generic/pci_iomap.h>
|
||
|
|
||
|
#endif
|