ddk: update
git-svn-id: svn://kolibrios.org@6295 a494cfbc-eb01-0410-851d-a64ba20cac60
This commit is contained in:
parent
5bae2399f4
commit
cae5fbcf75
@ -25,6 +25,8 @@ CORE_SRC= core.S
|
||||
NAME_SRCS:= \
|
||||
debug/dbglog.c \
|
||||
debug/chkstk.S \
|
||||
dma/dma_alloc.c \
|
||||
dma/fence.c \
|
||||
io/create.c \
|
||||
io/finfo.c \
|
||||
io/ssize.c \
|
||||
@ -33,6 +35,7 @@ NAME_SRCS:= \
|
||||
linux/ctype.c \
|
||||
linux/dmapool.c \
|
||||
linux/dmi.c \
|
||||
linux/fbsysfs.c \
|
||||
linux/find_next_bit.c \
|
||||
linux/firmware.c \
|
||||
linux/gcd.c \
|
||||
|
22
drivers/ddk/dma/dma_alloc.c
Normal file
22
drivers/ddk/dma/dma_alloc.c
Normal file
@ -0,0 +1,22 @@
|
||||
#include <linux/types.h>
|
||||
#include <linux/gfp.h>
|
||||
#include <linux/spinlock.h>
|
||||
#include <linux/dma-mapping.h>
|
||||
#include <linux/scatterlist.h>
|
||||
|
||||
void *dma_alloc_coherent(struct device *dev, size_t size,
|
||||
dma_addr_t *dma_handle, gfp_t gfp)
|
||||
{
|
||||
void *ret;
|
||||
|
||||
size = ALIGN(size,32768);
|
||||
ret = (void *)KernelAlloc(size);
|
||||
|
||||
if (ret) {
|
||||
__builtin_memset(ret, 0, size);
|
||||
*dma_handle = GetPgAddr(ret);
|
||||
}
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
370
drivers/ddk/dma/fence.c
Normal file
370
drivers/ddk/dma/fence.c
Normal file
@ -0,0 +1,370 @@
|
||||
/*
|
||||
* Fence mechanism for dma-buf and to allow for asynchronous dma access
|
||||
*
|
||||
* Copyright (C) 2012 Canonical Ltd
|
||||
* Copyright (C) 2012 Texas Instruments
|
||||
*
|
||||
* Authors:
|
||||
* Rob Clark <robdclark@gmail.com>
|
||||
* Maarten Lankhorst <maarten.lankhorst@canonical.com>
|
||||
*
|
||||
* This program is free software; you can redistribute it and/or modify it
|
||||
* under the terms of the GNU General Public License version 2 as published by
|
||||
* the Free Software Foundation.
|
||||
*
|
||||
* This program is distributed in the hope that it will be useful, but WITHOUT
|
||||
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
||||
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
|
||||
* more details.
|
||||
*/
|
||||
|
||||
#include <linux/slab.h>
|
||||
#include <linux/export.h>
|
||||
#include <linux/atomic.h>
|
||||
#include <linux/fence.h>
|
||||
|
||||
/*
|
||||
* fence context counter: each execution context should have its own
|
||||
* fence context, this allows checking if fences belong to the same
|
||||
* context or not. One device can have multiple separate contexts,
|
||||
* and they're used if some engine can run independently of another.
|
||||
*/
|
||||
static atomic_t fence_context_counter = ATOMIC_INIT(0);
|
||||
|
||||
/**
|
||||
* fence_context_alloc - allocate an array of fence contexts
|
||||
* @num: [in] amount of contexts to allocate
|
||||
*
|
||||
* This function will return the first index of the number of fences allocated.
|
||||
* The fence context is used for setting fence->context to a unique number.
|
||||
*/
|
||||
unsigned fence_context_alloc(unsigned num)
|
||||
{
|
||||
BUG_ON(!num);
|
||||
return atomic_add_return(num, &fence_context_counter) - num;
|
||||
}
|
||||
EXPORT_SYMBOL(fence_context_alloc);
|
||||
|
||||
/**
|
||||
* fence_signal_locked - signal completion of a fence
|
||||
* @fence: the fence to signal
|
||||
*
|
||||
* Signal completion for software callbacks on a fence, this will unblock
|
||||
* fence_wait() calls and run all the callbacks added with
|
||||
* fence_add_callback(). Can be called multiple times, but since a fence
|
||||
* can only go from unsignaled to signaled state, it will only be effective
|
||||
* the first time.
|
||||
*
|
||||
* Unlike fence_signal, this function must be called with fence->lock held.
|
||||
*/
|
||||
int fence_signal_locked(struct fence *fence)
|
||||
{
|
||||
struct fence_cb *cur, *tmp;
|
||||
int ret = 0;
|
||||
|
||||
if (WARN_ON(!fence))
|
||||
return -EINVAL;
|
||||
|
||||
if (!ktime_to_ns(fence->timestamp)) {
|
||||
fence->timestamp = ktime_get();
|
||||
smp_mb__before_atomic();
|
||||
}
|
||||
|
||||
if (test_and_set_bit(FENCE_FLAG_SIGNALED_BIT, &fence->flags)) {
|
||||
ret = -EINVAL;
|
||||
|
||||
/*
|
||||
* we might have raced with the unlocked fence_signal,
|
||||
* still run through all callbacks
|
||||
*/
|
||||
}
|
||||
|
||||
list_for_each_entry_safe(cur, tmp, &fence->cb_list, node) {
|
||||
list_del_init(&cur->node);
|
||||
cur->func(fence, cur);
|
||||
}
|
||||
return ret;
|
||||
}
|
||||
EXPORT_SYMBOL(fence_signal_locked);
|
||||
|
||||
/**
|
||||
* fence_signal - signal completion of a fence
|
||||
* @fence: the fence to signal
|
||||
*
|
||||
* Signal completion for software callbacks on a fence, this will unblock
|
||||
* fence_wait() calls and run all the callbacks added with
|
||||
* fence_add_callback(). Can be called multiple times, but since a fence
|
||||
* can only go from unsignaled to signaled state, it will only be effective
|
||||
* the first time.
|
||||
*/
|
||||
int fence_signal(struct fence *fence)
|
||||
{
|
||||
unsigned long flags;
|
||||
|
||||
if (!fence)
|
||||
return -EINVAL;
|
||||
|
||||
if (!ktime_to_ns(fence->timestamp)) {
|
||||
fence->timestamp = ktime_get();
|
||||
smp_mb__before_atomic();
|
||||
}
|
||||
|
||||
if (test_and_set_bit(FENCE_FLAG_SIGNALED_BIT, &fence->flags))
|
||||
return -EINVAL;
|
||||
|
||||
if (test_bit(FENCE_FLAG_ENABLE_SIGNAL_BIT, &fence->flags)) {
|
||||
struct fence_cb *cur, *tmp;
|
||||
|
||||
spin_lock_irqsave(fence->lock, flags);
|
||||
list_for_each_entry_safe(cur, tmp, &fence->cb_list, node) {
|
||||
list_del_init(&cur->node);
|
||||
cur->func(fence, cur);
|
||||
}
|
||||
spin_unlock_irqrestore(fence->lock, flags);
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
EXPORT_SYMBOL(fence_signal);
|
||||
|
||||
/**
|
||||
* fence_wait_timeout - sleep until the fence gets signaled
|
||||
* or until timeout elapses
|
||||
* @fence: [in] the fence to wait on
|
||||
* @intr: [in] if true, do an interruptible wait
|
||||
* @timeout: [in] timeout value in jiffies, or MAX_SCHEDULE_TIMEOUT
|
||||
*
|
||||
* Returns -ERESTARTSYS if interrupted, 0 if the wait timed out, or the
|
||||
* remaining timeout in jiffies on success. Other error values may be
|
||||
* returned on custom implementations.
|
||||
*
|
||||
* Performs a synchronous wait on this fence. It is assumed the caller
|
||||
* directly or indirectly (buf-mgr between reservation and committing)
|
||||
* holds a reference to the fence, otherwise the fence might be
|
||||
* freed before return, resulting in undefined behavior.
|
||||
*/
|
||||
signed long
|
||||
fence_wait_timeout(struct fence *fence, bool intr, signed long timeout)
|
||||
{
|
||||
signed long ret;
|
||||
|
||||
if (WARN_ON(timeout < 0))
|
||||
return -EINVAL;
|
||||
|
||||
if (timeout == 0)
|
||||
return fence_is_signaled(fence);
|
||||
|
||||
ret = fence->ops->wait(fence, intr, timeout);
|
||||
return ret;
|
||||
}
|
||||
EXPORT_SYMBOL(fence_wait_timeout);
|
||||
|
||||
void fence_release(struct kref *kref)
|
||||
{
|
||||
struct fence *fence =
|
||||
container_of(kref, struct fence, refcount);
|
||||
|
||||
BUG_ON(!list_empty(&fence->cb_list));
|
||||
|
||||
if (fence->ops->release)
|
||||
fence->ops->release(fence);
|
||||
else
|
||||
fence_free(fence);
|
||||
}
|
||||
EXPORT_SYMBOL(fence_release);
|
||||
|
||||
void fence_free(struct fence *fence)
|
||||
{
|
||||
kfree_rcu(fence, rcu);
|
||||
}
|
||||
EXPORT_SYMBOL(fence_free);
|
||||
|
||||
/**
|
||||
* fence_enable_sw_signaling - enable signaling on fence
|
||||
* @fence: [in] the fence to enable
|
||||
*
|
||||
* this will request for sw signaling to be enabled, to make the fence
|
||||
* complete as soon as possible
|
||||
*/
|
||||
void fence_enable_sw_signaling(struct fence *fence)
|
||||
{
|
||||
unsigned long flags;
|
||||
|
||||
if (!test_and_set_bit(FENCE_FLAG_ENABLE_SIGNAL_BIT, &fence->flags) &&
|
||||
!test_bit(FENCE_FLAG_SIGNALED_BIT, &fence->flags)) {
|
||||
|
||||
spin_lock_irqsave(fence->lock, flags);
|
||||
|
||||
if (!fence->ops->enable_signaling(fence))
|
||||
fence_signal_locked(fence);
|
||||
|
||||
spin_unlock_irqrestore(fence->lock, flags);
|
||||
}
|
||||
}
|
||||
EXPORT_SYMBOL(fence_enable_sw_signaling);
|
||||
|
||||
/**
|
||||
* fence_add_callback - add a callback to be called when the fence
|
||||
* is signaled
|
||||
* @fence: [in] the fence to wait on
|
||||
* @cb: [in] the callback to register
|
||||
* @func: [in] the function to call
|
||||
*
|
||||
* cb will be initialized by fence_add_callback, no initialization
|
||||
* by the caller is required. Any number of callbacks can be registered
|
||||
* to a fence, but a callback can only be registered to one fence at a time.
|
||||
*
|
||||
* Note that the callback can be called from an atomic context. If
|
||||
* fence is already signaled, this function will return -ENOENT (and
|
||||
* *not* call the callback)
|
||||
*
|
||||
* Add a software callback to the fence. Same restrictions apply to
|
||||
* refcount as it does to fence_wait, however the caller doesn't need to
|
||||
* keep a refcount to fence afterwards: when software access is enabled,
|
||||
* the creator of the fence is required to keep the fence alive until
|
||||
* after it signals with fence_signal. The callback itself can be called
|
||||
* from irq context.
|
||||
*
|
||||
*/
|
||||
int fence_add_callback(struct fence *fence, struct fence_cb *cb,
|
||||
fence_func_t func)
|
||||
{
|
||||
unsigned long flags;
|
||||
int ret = 0;
|
||||
bool was_set;
|
||||
|
||||
if (WARN_ON(!fence || !func))
|
||||
return -EINVAL;
|
||||
|
||||
if (test_bit(FENCE_FLAG_SIGNALED_BIT, &fence->flags)) {
|
||||
INIT_LIST_HEAD(&cb->node);
|
||||
return -ENOENT;
|
||||
}
|
||||
|
||||
spin_lock_irqsave(fence->lock, flags);
|
||||
|
||||
was_set = test_and_set_bit(FENCE_FLAG_ENABLE_SIGNAL_BIT, &fence->flags);
|
||||
|
||||
if (test_bit(FENCE_FLAG_SIGNALED_BIT, &fence->flags))
|
||||
ret = -ENOENT;
|
||||
else if (!was_set) {
|
||||
|
||||
if (!fence->ops->enable_signaling(fence)) {
|
||||
fence_signal_locked(fence);
|
||||
ret = -ENOENT;
|
||||
}
|
||||
}
|
||||
|
||||
if (!ret) {
|
||||
cb->func = func;
|
||||
list_add_tail(&cb->node, &fence->cb_list);
|
||||
} else
|
||||
INIT_LIST_HEAD(&cb->node);
|
||||
spin_unlock_irqrestore(fence->lock, flags);
|
||||
|
||||
return ret;
|
||||
}
|
||||
EXPORT_SYMBOL(fence_add_callback);
|
||||
|
||||
/**
|
||||
* fence_remove_callback - remove a callback from the signaling list
|
||||
* @fence: [in] the fence to wait on
|
||||
* @cb: [in] the callback to remove
|
||||
*
|
||||
* Remove a previously queued callback from the fence. This function returns
|
||||
* true if the callback is successfully removed, or false if the fence has
|
||||
* already been signaled.
|
||||
*
|
||||
* *WARNING*:
|
||||
* Cancelling a callback should only be done if you really know what you're
|
||||
* doing, since deadlocks and race conditions could occur all too easily. For
|
||||
* this reason, it should only ever be done on hardware lockup recovery,
|
||||
* with a reference held to the fence.
|
||||
*/
|
||||
bool
|
||||
fence_remove_callback(struct fence *fence, struct fence_cb *cb)
|
||||
{
|
||||
unsigned long flags;
|
||||
bool ret;
|
||||
|
||||
spin_lock_irqsave(fence->lock, flags);
|
||||
|
||||
ret = !list_empty(&cb->node);
|
||||
if (ret)
|
||||
list_del_init(&cb->node);
|
||||
|
||||
spin_unlock_irqrestore(fence->lock, flags);
|
||||
|
||||
return ret;
|
||||
}
|
||||
EXPORT_SYMBOL(fence_remove_callback);
|
||||
|
||||
struct default_wait_cb {
|
||||
struct fence_cb base;
|
||||
struct task_struct *task;
|
||||
};
|
||||
|
||||
|
||||
static bool
|
||||
fence_test_signaled_any(struct fence **fences, uint32_t count)
|
||||
{
|
||||
int i;
|
||||
|
||||
for (i = 0; i < count; ++i) {
|
||||
struct fence *fence = fences[i];
|
||||
if (test_bit(FENCE_FLAG_SIGNALED_BIT, &fence->flags))
|
||||
return true;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
/**
|
||||
* fence_wait_any_timeout - sleep until any fence gets signaled
|
||||
* or until timeout elapses
|
||||
* @fences: [in] array of fences to wait on
|
||||
* @count: [in] number of fences to wait on
|
||||
* @intr: [in] if true, do an interruptible wait
|
||||
* @timeout: [in] timeout value in jiffies, or MAX_SCHEDULE_TIMEOUT
|
||||
*
|
||||
* Returns -EINVAL on custom fence wait implementation, -ERESTARTSYS if
|
||||
* interrupted, 0 if the wait timed out, or the remaining timeout in jiffies
|
||||
* on success.
|
||||
*
|
||||
* Synchronous waits for the first fence in the array to be signaled. The
|
||||
* caller needs to hold a reference to all fences in the array, otherwise a
|
||||
* fence might be freed before return, resulting in undefined behavior.
|
||||
*/
|
||||
|
||||
/**
|
||||
* fence_init - Initialize a custom fence.
|
||||
* @fence: [in] the fence to initialize
|
||||
* @ops: [in] the fence_ops for operations on this fence
|
||||
* @lock: [in] the irqsafe spinlock to use for locking this fence
|
||||
* @context: [in] the execution context this fence is run on
|
||||
* @seqno: [in] a linear increasing sequence number for this context
|
||||
*
|
||||
* Initializes an allocated fence, the caller doesn't have to keep its
|
||||
* refcount after committing with this fence, but it will need to hold a
|
||||
* refcount again if fence_ops.enable_signaling gets called. This can
|
||||
* be used for other implementing other types of fence.
|
||||
*
|
||||
* context and seqno are used for easy comparison between fences, allowing
|
||||
* to check which fence is later by simply using fence_later.
|
||||
*/
|
||||
void
|
||||
fence_init(struct fence *fence, const struct fence_ops *ops,
|
||||
spinlock_t *lock, unsigned context, unsigned seqno)
|
||||
{
|
||||
BUG_ON(!lock);
|
||||
BUG_ON(!ops || !ops->wait || !ops->enable_signaling ||
|
||||
!ops->get_driver_name || !ops->get_timeline_name);
|
||||
|
||||
kref_init(&fence->refcount);
|
||||
fence->ops = ops;
|
||||
INIT_LIST_HEAD(&fence->cb_list);
|
||||
fence->lock = lock;
|
||||
fence->context = context;
|
||||
fence->seqno = seqno;
|
||||
fence->flags = 0UL;
|
||||
|
||||
}
|
||||
EXPORT_SYMBOL(fence_init);
|
@ -22,22 +22,29 @@
|
||||
* keep a count of how many are currently allocated from each page.
|
||||
*/
|
||||
|
||||
|
||||
#include <ddk.h>
|
||||
#include <linux/slab.h>
|
||||
#include <linux/errno.h>
|
||||
#include <linux/device.h>
|
||||
#include <linux/dmapool.h>
|
||||
#include <linux/kernel.h>
|
||||
#include <linux/list.h>
|
||||
#include <linux/mutex.h>
|
||||
|
||||
#include <linux/slab.h>
|
||||
#include <linux/spinlock.h>
|
||||
#include <linux/types.h>
|
||||
|
||||
#include <linux/mutex.h>
|
||||
#include <linux/pci.h>
|
||||
#include <linux/gfp.h>
|
||||
#include <syscall.h>
|
||||
|
||||
|
||||
struct dma_pool { /* the pool */
|
||||
struct list_head page_list;
|
||||
struct mutex lock;
|
||||
spinlock_t lock;
|
||||
size_t size;
|
||||
struct device *dev;
|
||||
size_t allocation;
|
||||
size_t boundary;
|
||||
char name[32];
|
||||
struct list_head pools;
|
||||
};
|
||||
|
||||
@ -49,8 +56,10 @@ struct dma_page { /* cacheable header for 'allocation' bytes */
|
||||
unsigned int offset;
|
||||
};
|
||||
|
||||
|
||||
static DEFINE_MUTEX(pools_lock);
|
||||
static DEFINE_MUTEX(pools_reg_lock);
|
||||
|
||||
|
||||
|
||||
|
||||
/**
|
||||
@ -79,18 +88,17 @@ struct dma_pool *dma_pool_create(const char *name, struct device *dev,
|
||||
{
|
||||
struct dma_pool *retval;
|
||||
size_t allocation;
|
||||
bool empty = false;
|
||||
|
||||
if (align == 0) {
|
||||
if (align == 0)
|
||||
align = 1;
|
||||
} else if (align & (align - 1)) {
|
||||
else if (align & (align - 1))
|
||||
return NULL;
|
||||
}
|
||||
|
||||
if (size == 0) {
|
||||
if (size == 0)
|
||||
return NULL;
|
||||
} else if (size < 4) {
|
||||
else if (size < 4)
|
||||
size = 4;
|
||||
}
|
||||
|
||||
if ((size % align) != 0)
|
||||
size = ALIGN(size, align);
|
||||
@ -99,21 +107,22 @@ struct dma_pool *dma_pool_create(const char *name, struct device *dev,
|
||||
|
||||
allocation = (allocation+0x7FFF) & ~0x7FFF;
|
||||
|
||||
if (!boundary) {
|
||||
if (!boundary)
|
||||
boundary = allocation;
|
||||
} else if ((boundary < size) || (boundary & (boundary - 1))) {
|
||||
else if ((boundary < size) || (boundary & (boundary - 1)))
|
||||
return NULL;
|
||||
}
|
||||
|
||||
retval = kmalloc(sizeof(*retval), GFP_KERNEL);
|
||||
|
||||
if (!retval)
|
||||
return retval;
|
||||
|
||||
strlcpy(retval->name, name, sizeof(retval->name));
|
||||
|
||||
retval->dev = dev;
|
||||
|
||||
INIT_LIST_HEAD(&retval->page_list);
|
||||
|
||||
// spin_lock_init(&retval->lock);
|
||||
|
||||
spin_lock_init(&retval->lock);
|
||||
retval->size = size;
|
||||
retval->boundary = boundary;
|
||||
retval->allocation = allocation;
|
||||
@ -139,51 +148,54 @@ static void pool_initialise_page(struct dma_pool *pool, struct dma_page *page)
|
||||
} while (offset < pool->allocation);
|
||||
}
|
||||
|
||||
|
||||
static struct dma_page *pool_alloc_page(struct dma_pool *pool)
|
||||
static struct dma_page *pool_alloc_page(struct dma_pool *pool, gfp_t mem_flags)
|
||||
{
|
||||
struct dma_page *page;
|
||||
|
||||
page = __builtin_malloc(sizeof(*page));
|
||||
page = kmalloc(sizeof(*page), mem_flags);
|
||||
if (!page)
|
||||
return NULL;
|
||||
page->vaddr = (void*)KernelAlloc(pool->allocation);
|
||||
|
||||
dbgprintf("%s 0x%0x ",__FUNCTION__, page->vaddr);
|
||||
|
||||
if (page->vaddr)
|
||||
{
|
||||
if (page->vaddr) {
|
||||
#ifdef DMAPOOL_DEBUG
|
||||
memset(page->vaddr, POOL_POISON_FREED, pool->allocation);
|
||||
#endif
|
||||
|
||||
page->dma = GetPgAddr(page->vaddr);
|
||||
|
||||
dbgprintf("dma 0x%0x\n", page->dma);
|
||||
|
||||
pool_initialise_page(pool, page);
|
||||
list_add(&page->page_list, &pool->page_list);
|
||||
page->in_use = 0;
|
||||
page->offset = 0;
|
||||
} else {
|
||||
free(page);
|
||||
kfree(page);
|
||||
page = NULL;
|
||||
}
|
||||
return page;
|
||||
}
|
||||
|
||||
static inline int is_page_busy(struct dma_page *page)
|
||||
static inline bool is_page_busy(struct dma_page *page)
|
||||
{
|
||||
return page->in_use != 0;
|
||||
}
|
||||
|
||||
|
||||
static void pool_free_page(struct dma_pool *pool, struct dma_page *page)
|
||||
{
|
||||
dma_addr_t dma = page->dma;
|
||||
|
||||
#ifdef DMAPOOL_DEBUG
|
||||
memset(page->vaddr, POOL_POISON_FREED, pool->allocation);
|
||||
#endif
|
||||
|
||||
KernelFree(page->vaddr);
|
||||
list_del(&page->page_list);
|
||||
free(page);
|
||||
kfree(page);
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
* dma_pool_destroy - destroys a pool of dma memory blocks.
|
||||
* @pool: dma pool that will be destroyed
|
||||
@ -194,16 +206,23 @@ static void pool_free_page(struct dma_pool *pool, struct dma_page *page)
|
||||
*/
|
||||
void dma_pool_destroy(struct dma_pool *pool)
|
||||
{
|
||||
bool empty = false;
|
||||
|
||||
if (unlikely(!pool))
|
||||
return;
|
||||
|
||||
mutex_lock(&pools_reg_lock);
|
||||
mutex_lock(&pools_lock);
|
||||
list_del(&pool->pools);
|
||||
mutex_unlock(&pools_lock);
|
||||
|
||||
mutex_unlock(&pools_reg_lock);
|
||||
|
||||
while (!list_empty(&pool->page_list)) {
|
||||
struct dma_page *page;
|
||||
page = list_entry(pool->page_list.next,
|
||||
struct dma_page, page_list);
|
||||
if (is_page_busy(page))
|
||||
{
|
||||
if (is_page_busy(page)) {
|
||||
printk(KERN_ERR "dma_pool_destroy %p busy\n",
|
||||
page->vaddr);
|
||||
/* leak the still-in-use consistent memory */
|
||||
@ -215,7 +234,7 @@ void dma_pool_destroy(struct dma_pool *pool)
|
||||
|
||||
kfree(pool);
|
||||
}
|
||||
|
||||
EXPORT_SYMBOL(dma_pool_destroy);
|
||||
|
||||
/**
|
||||
* dma_pool_alloc - get a block of consistent memory
|
||||
@ -230,55 +249,82 @@ void dma_pool_destroy(struct dma_pool *pool)
|
||||
void *dma_pool_alloc(struct dma_pool *pool, gfp_t mem_flags,
|
||||
dma_addr_t *handle)
|
||||
{
|
||||
u32 efl;
|
||||
unsigned long flags;
|
||||
struct dma_page *page;
|
||||
size_t offset;
|
||||
void *retval;
|
||||
|
||||
efl = safe_cli();
|
||||
restart:
|
||||
|
||||
spin_lock_irqsave(&pool->lock, flags);
|
||||
list_for_each_entry(page, &pool->page_list, page_list) {
|
||||
if (page->offset < pool->allocation)
|
||||
goto ready;
|
||||
}
|
||||
page = pool_alloc_page(pool);
|
||||
if (!page)
|
||||
{
|
||||
retval = NULL;
|
||||
goto done;
|
||||
}
|
||||
|
||||
/* pool_alloc_page() might sleep, so temporarily drop &pool->lock */
|
||||
spin_unlock_irqrestore(&pool->lock, flags);
|
||||
|
||||
page = pool_alloc_page(pool, mem_flags & (~__GFP_ZERO));
|
||||
if (!page)
|
||||
return NULL;
|
||||
|
||||
spin_lock_irqsave(&pool->lock, flags);
|
||||
|
||||
list_add(&page->page_list, &pool->page_list);
|
||||
ready:
|
||||
page->in_use++;
|
||||
offset = page->offset;
|
||||
page->offset = *(int *)(page->vaddr + offset);
|
||||
retval = offset + page->vaddr;
|
||||
*handle = offset + page->dma;
|
||||
done:
|
||||
safe_sti(efl);
|
||||
#ifdef DMAPOOL_DEBUG
|
||||
{
|
||||
int i;
|
||||
u8 *data = retval;
|
||||
/* page->offset is stored in first 4 bytes */
|
||||
for (i = sizeof(page->offset); i < pool->size; i++) {
|
||||
if (data[i] == POOL_POISON_FREED)
|
||||
continue;
|
||||
if (pool->dev)
|
||||
dev_err(pool->dev,
|
||||
"dma_pool_alloc %s, %p (corrupted)\n",
|
||||
pool->name, retval);
|
||||
else
|
||||
pr_err("dma_pool_alloc %s, %p (corrupted)\n",
|
||||
pool->name, retval);
|
||||
|
||||
/*
|
||||
* Dump the first 4 bytes even if they are not
|
||||
* POOL_POISON_FREED
|
||||
*/
|
||||
print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 16, 1,
|
||||
data, pool->size, 1);
|
||||
break;
|
||||
}
|
||||
}
|
||||
if (!(mem_flags & __GFP_ZERO))
|
||||
memset(retval, POOL_POISON_ALLOCATED, pool->size);
|
||||
#endif
|
||||
spin_unlock_irqrestore(&pool->lock, flags);
|
||||
|
||||
if (mem_flags & __GFP_ZERO)
|
||||
memset(retval, 0, pool->size);
|
||||
|
||||
return retval;
|
||||
}
|
||||
|
||||
|
||||
EXPORT_SYMBOL(dma_pool_alloc);
|
||||
|
||||
static struct dma_page *pool_find_page(struct dma_pool *pool, dma_addr_t dma)
|
||||
{
|
||||
struct dma_page *page;
|
||||
u32 efl;
|
||||
|
||||
efl = safe_cli();
|
||||
|
||||
list_for_each_entry(page, &pool->page_list, page_list) {
|
||||
if (dma < page->dma)
|
||||
continue;
|
||||
if (dma < (page->dma + pool->allocation))
|
||||
goto done;
|
||||
}
|
||||
page = NULL;
|
||||
done:
|
||||
safe_sti(efl);
|
||||
|
||||
if ((dma - page->dma) < pool->allocation)
|
||||
return page;
|
||||
}
|
||||
return NULL;
|
||||
}
|
||||
|
||||
/**
|
||||
@ -296,19 +342,51 @@ void dma_pool_free(struct dma_pool *pool, void *vaddr, dma_addr_t dma)
|
||||
unsigned long flags;
|
||||
unsigned int offset;
|
||||
|
||||
u32 efl;
|
||||
|
||||
spin_lock_irqsave(&pool->lock, flags);
|
||||
page = pool_find_page(pool, dma);
|
||||
if (!page) {
|
||||
printk(KERN_ERR "dma_pool_free %p/%lx (bad dma)\n",
|
||||
vaddr, (unsigned long)dma);
|
||||
spin_unlock_irqrestore(&pool->lock, flags);
|
||||
printk(KERN_ERR "dma_pool_free %s, %p/%lx (bad dma)\n",
|
||||
pool->name, vaddr, (unsigned long)dma);
|
||||
return;
|
||||
}
|
||||
|
||||
offset = vaddr - page->vaddr;
|
||||
|
||||
efl = safe_cli();
|
||||
#ifdef DMAPOOL_DEBUG
|
||||
if ((dma - page->dma) != offset) {
|
||||
spin_unlock_irqrestore(&pool->lock, flags);
|
||||
if (pool->dev)
|
||||
dev_err(pool->dev,
|
||||
"dma_pool_free %s, %p (bad vaddr)/%Lx\n",
|
||||
pool->name, vaddr, (unsigned long long)dma);
|
||||
else
|
||||
printk(KERN_ERR
|
||||
"dma_pool_free %s, %p (bad vaddr)/%Lx\n",
|
||||
pool->name, vaddr, (unsigned long long)dma);
|
||||
return;
|
||||
}
|
||||
{
|
||||
unsigned int chain = page->offset;
|
||||
while (chain < pool->allocation) {
|
||||
if (chain != offset) {
|
||||
chain = *(int *)(page->vaddr + chain);
|
||||
continue;
|
||||
}
|
||||
spin_unlock_irqrestore(&pool->lock, flags);
|
||||
if (pool->dev)
|
||||
dev_err(pool->dev, "dma_pool_free %s, dma %Lx "
|
||||
"already free\n", pool->name,
|
||||
(unsigned long long)dma);
|
||||
else
|
||||
printk(KERN_ERR "dma_pool_free %s, dma %Lx "
|
||||
"already free\n", pool->name,
|
||||
(unsigned long long)dma);
|
||||
return;
|
||||
}
|
||||
}
|
||||
memset(vaddr, POOL_POISON_FREED, pool->size);
|
||||
#endif
|
||||
|
||||
page->in_use--;
|
||||
*(int *)vaddr = page->offset;
|
||||
page->offset = offset;
|
||||
@ -317,6 +395,22 @@ void dma_pool_free(struct dma_pool *pool, void *vaddr, dma_addr_t dma)
|
||||
* if (!is_page_busy(page)) pool_free_page(pool, page);
|
||||
* Better have a few empty pages hang around.
|
||||
*/
|
||||
}safe_sti(efl);
|
||||
spin_unlock_irqrestore(&pool->lock, flags);
|
||||
}
|
||||
EXPORT_SYMBOL(dma_pool_free);
|
||||
|
||||
/*
|
||||
* Managed DMA pool
|
||||
*/
|
||||
static void dmam_pool_release(struct device *dev, void *res)
|
||||
{
|
||||
struct dma_pool *pool = *(struct dma_pool **)res;
|
||||
|
||||
dma_pool_destroy(pool);
|
||||
}
|
||||
|
||||
static int dmam_pool_match(struct device *dev, void *res, void *match_data)
|
||||
{
|
||||
return *(struct dma_pool **)res == match_data;
|
||||
}
|
||||
|
||||
|
87
drivers/ddk/linux/fbsysfs.c
Normal file
87
drivers/ddk/linux/fbsysfs.c
Normal file
@ -0,0 +1,87 @@
|
||||
/*
|
||||
* fbsysfs.c - framebuffer device class and attributes
|
||||
*
|
||||
* Copyright (c) 2004 James Simmons <jsimmons@infradead.org>
|
||||
*
|
||||
* This program is free software you can redistribute it and/or
|
||||
* modify it under the terms of the GNU General Public License
|
||||
* as published by the Free Software Foundation; either version
|
||||
* 2 of the License, or (at your option) any later version.
|
||||
*/
|
||||
|
||||
/*
|
||||
* Note: currently there's only stubs for framebuffer_alloc and
|
||||
* framebuffer_release here. The reson for that is that until all drivers
|
||||
* are converted to use it a sysfsification will open OOPSable races.
|
||||
*/
|
||||
|
||||
#include <linux/kernel.h>
|
||||
#include <linux/slab.h>
|
||||
#include <linux/fb.h>
|
||||
#include <linux/module.h>
|
||||
|
||||
#define FB_SYSFS_FLAG_ATTR 1
|
||||
|
||||
/**
|
||||
* framebuffer_alloc - creates a new frame buffer info structure
|
||||
*
|
||||
* @size: size of driver private data, can be zero
|
||||
* @dev: pointer to the device for this fb, this can be NULL
|
||||
*
|
||||
* Creates a new frame buffer info structure. Also reserves @size bytes
|
||||
* for driver private data (info->par). info->par (if any) will be
|
||||
* aligned to sizeof(long).
|
||||
*
|
||||
* Returns the new structure, or NULL if an error occurred.
|
||||
*
|
||||
*/
|
||||
struct fb_info *framebuffer_alloc(size_t size, struct device *dev)
|
||||
{
|
||||
#define BYTES_PER_LONG (BITS_PER_LONG/8)
|
||||
#define PADDING (BYTES_PER_LONG - (sizeof(struct fb_info) % BYTES_PER_LONG))
|
||||
int fb_info_size = sizeof(struct fb_info);
|
||||
struct fb_info *info;
|
||||
char *p;
|
||||
|
||||
if (size)
|
||||
fb_info_size += PADDING;
|
||||
|
||||
p = kzalloc(fb_info_size + size, GFP_KERNEL);
|
||||
|
||||
if (!p)
|
||||
return NULL;
|
||||
|
||||
info = (struct fb_info *) p;
|
||||
|
||||
if (size)
|
||||
info->par = p + fb_info_size;
|
||||
|
||||
info->device = dev;
|
||||
|
||||
#ifdef CONFIG_FB_BACKLIGHT
|
||||
mutex_init(&info->bl_curve_mutex);
|
||||
#endif
|
||||
|
||||
return info;
|
||||
#undef PADDING
|
||||
#undef BYTES_PER_LONG
|
||||
}
|
||||
EXPORT_SYMBOL(framebuffer_alloc);
|
||||
|
||||
/**
|
||||
* framebuffer_release - marks the structure available for freeing
|
||||
*
|
||||
* @info: frame buffer info structure
|
||||
*
|
||||
* Drop the reference count of the device embedded in the
|
||||
* framebuffer info structure.
|
||||
*
|
||||
*/
|
||||
void framebuffer_release(struct fb_info *info)
|
||||
{
|
||||
if (!info)
|
||||
return;
|
||||
kfree(info->apertures);
|
||||
kfree(info);
|
||||
}
|
||||
EXPORT_SYMBOL(framebuffer_release);
|
@ -465,7 +465,7 @@ struct ttm_bo_global {
|
||||
* Constant after init.
|
||||
*/
|
||||
|
||||
// struct kobject kobj;
|
||||
struct kobject kobj;
|
||||
struct ttm_mem_global *mem_glob;
|
||||
struct page *dummy_read_page;
|
||||
struct ttm_mem_shrink shrink;
|
||||
|
@ -40,7 +40,7 @@
|
||||
#include <linux/list.h>
|
||||
#include <drm/drm_hashtab.h>
|
||||
#include <linux/kref.h>
|
||||
//#include <linux/rcupdate.h>
|
||||
#include <linux/rcupdate.h>
|
||||
#include <linux/dma-buf.h>
|
||||
#include <ttm/ttm_memory.h>
|
||||
|
||||
@ -345,6 +345,6 @@ extern int ttm_prime_handle_to_fd(struct ttm_object_file *tfile,
|
||||
uint32_t handle, uint32_t flags,
|
||||
int *prime_fd);
|
||||
|
||||
//#define ttm_prime_object_kfree(__obj, __prime) \
|
||||
// kfree_rcu(__obj, __prime.base.rhead)
|
||||
#define ttm_prime_object_kfree(__obj, __prime) \
|
||||
kfree_rcu(__obj, __prime.base.rhead)
|
||||
#endif
|
||||
|
@ -144,7 +144,7 @@ void ftrace_likely_update(struct ftrace_branch_data *f, int val, int expect);
|
||||
*/
|
||||
#define if(cond, ...) __trace_if( (cond , ## __VA_ARGS__) )
|
||||
#define __trace_if(cond) \
|
||||
if (__builtin_constant_p((cond)) ? !!(cond) : \
|
||||
if (__builtin_constant_p(!!(cond)) ? !!(cond) : \
|
||||
({ \
|
||||
int ______r; \
|
||||
static struct ftrace_branch_data \
|
||||
|
@ -62,4 +62,8 @@ struct vm_operations_struct {
|
||||
};
|
||||
#define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
|
||||
|
||||
|
||||
static inline int set_page_dirty(struct page *page)
|
||||
{ return 0; };
|
||||
|
||||
#endif
|
||||
|
@ -458,46 +458,10 @@ int rcu_read_lock_bh_held(void);
|
||||
* If CONFIG_DEBUG_LOCK_ALLOC is selected, returns nonzero iff in an
|
||||
* RCU-sched read-side critical section. In absence of
|
||||
* CONFIG_DEBUG_LOCK_ALLOC, this assumes we are in an RCU-sched read-side
|
||||
* critical section unless it can prove otherwise. Note that disabling
|
||||
* of preemption (including disabling irqs) counts as an RCU-sched
|
||||
* read-side critical section. This is useful for debug checks in functions
|
||||
* that required that they be called within an RCU-sched read-side
|
||||
* critical section.
|
||||
*
|
||||
* Check debug_lockdep_rcu_enabled() to prevent false positives during boot
|
||||
* and while lockdep is disabled.
|
||||
*
|
||||
* Note that if the CPU is in the idle loop from an RCU point of
|
||||
* view (ie: that we are in the section between rcu_idle_enter() and
|
||||
* rcu_idle_exit()) then rcu_read_lock_held() returns false even if the CPU
|
||||
* did an rcu_read_lock(). The reason for this is that RCU ignores CPUs
|
||||
* that are in such a section, considering these as in extended quiescent
|
||||
* state, so such a CPU is effectively never in an RCU read-side critical
|
||||
* section regardless of what RCU primitives it invokes. This state of
|
||||
* affairs is required --- we need to keep an RCU-free window in idle
|
||||
* where the CPU may possibly enter into low power mode. This way we can
|
||||
* notice an extended quiescent state to other CPUs that started a grace
|
||||
* period. Otherwise we would delay any grace period as long as we run in
|
||||
* the idle task.
|
||||
*
|
||||
* Similarly, we avoid claiming an SRCU read lock held if the current
|
||||
* CPU is offline.
|
||||
* critical section unless it can prove otherwise.
|
||||
*/
|
||||
#ifdef CONFIG_PREEMPT_COUNT
|
||||
static inline int rcu_read_lock_sched_held(void)
|
||||
{
|
||||
int lockdep_opinion = 0;
|
||||
|
||||
if (!debug_lockdep_rcu_enabled())
|
||||
return 1;
|
||||
if (!rcu_is_watching())
|
||||
return 0;
|
||||
if (!rcu_lockdep_current_cpu_online())
|
||||
return 0;
|
||||
if (debug_locks)
|
||||
lockdep_opinion = lock_is_held(&rcu_sched_lock_map);
|
||||
return lockdep_opinion || preempt_count() != 0 || irqs_disabled();
|
||||
}
|
||||
int rcu_read_lock_sched_held(void);
|
||||
#else /* #ifdef CONFIG_PREEMPT_COUNT */
|
||||
static inline int rcu_read_lock_sched_held(void)
|
||||
{
|
||||
@ -537,14 +501,14 @@ static inline int rcu_read_lock_sched_held(void)
|
||||
#ifdef CONFIG_PROVE_RCU
|
||||
|
||||
/**
|
||||
* rcu_lockdep_assert - emit lockdep splat if specified condition not met
|
||||
* RCU_LOCKDEP_WARN - emit lockdep splat if specified condition is met
|
||||
* @c: condition to check
|
||||
* @s: informative message
|
||||
*/
|
||||
#define rcu_lockdep_assert(c, s) \
|
||||
#define RCU_LOCKDEP_WARN(c, s) \
|
||||
do { \
|
||||
static bool __section(.data.unlikely) __warned; \
|
||||
if (debug_lockdep_rcu_enabled() && !__warned && !(c)) { \
|
||||
if (debug_lockdep_rcu_enabled() && !__warned && (c)) { \
|
||||
__warned = true; \
|
||||
lockdep_rcu_suspicious(__FILE__, __LINE__, s); \
|
||||
} \
|
||||
@ -553,7 +517,7 @@ static inline int rcu_read_lock_sched_held(void)
|
||||
#if defined(CONFIG_PROVE_RCU) && !defined(CONFIG_PREEMPT_RCU)
|
||||
static inline void rcu_preempt_sleep_check(void)
|
||||
{
|
||||
rcu_lockdep_assert(!lock_is_held(&rcu_lock_map),
|
||||
RCU_LOCKDEP_WARN(lock_is_held(&rcu_lock_map),
|
||||
"Illegal context switch in RCU read-side critical section");
|
||||
}
|
||||
#else /* #ifdef CONFIG_PROVE_RCU */
|
||||
@ -565,15 +529,15 @@ static inline void rcu_preempt_sleep_check(void)
|
||||
#define rcu_sleep_check() \
|
||||
do { \
|
||||
rcu_preempt_sleep_check(); \
|
||||
rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map), \
|
||||
RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map), \
|
||||
"Illegal context switch in RCU-bh read-side critical section"); \
|
||||
rcu_lockdep_assert(!lock_is_held(&rcu_sched_lock_map), \
|
||||
RCU_LOCKDEP_WARN(lock_is_held(&rcu_sched_lock_map), \
|
||||
"Illegal context switch in RCU-sched read-side critical section"); \
|
||||
} while (0)
|
||||
|
||||
#else /* #ifdef CONFIG_PROVE_RCU */
|
||||
|
||||
#define rcu_lockdep_assert(c, s) do { } while (0)
|
||||
#define RCU_LOCKDEP_WARN(c, s) do { } while (0)
|
||||
#define rcu_sleep_check() do { } while (0)
|
||||
|
||||
#endif /* #else #ifdef CONFIG_PROVE_RCU */
|
||||
@ -604,13 +568,13 @@ static inline void rcu_preempt_sleep_check(void)
|
||||
({ \
|
||||
/* Dependency order vs. p above. */ \
|
||||
typeof(*p) *________p1 = (typeof(*p) *__force)lockless_dereference(p); \
|
||||
rcu_lockdep_assert(c, "suspicious rcu_dereference_check() usage"); \
|
||||
RCU_LOCKDEP_WARN(!(c), "suspicious rcu_dereference_check() usage"); \
|
||||
rcu_dereference_sparse(p, space); \
|
||||
((typeof(*p) __force __kernel *)(________p1)); \
|
||||
})
|
||||
#define __rcu_dereference_protected(p, c, space) \
|
||||
({ \
|
||||
rcu_lockdep_assert(c, "suspicious rcu_dereference_protected() usage"); \
|
||||
RCU_LOCKDEP_WARN(!(c), "suspicious rcu_dereference_protected() usage"); \
|
||||
rcu_dereference_sparse(p, space); \
|
||||
((typeof(*p) __force __kernel *)(p)); \
|
||||
})
|
||||
@ -834,7 +798,7 @@ static inline void rcu_read_lock(void)
|
||||
__rcu_read_lock();
|
||||
__acquire(RCU);
|
||||
rcu_lock_acquire(&rcu_lock_map);
|
||||
rcu_lockdep_assert(rcu_is_watching(),
|
||||
RCU_LOCKDEP_WARN(!rcu_is_watching(),
|
||||
"rcu_read_lock() used illegally while idle");
|
||||
}
|
||||
|
||||
@ -885,7 +849,7 @@ static inline void rcu_read_lock(void)
|
||||
*/
|
||||
static inline void rcu_read_unlock(void)
|
||||
{
|
||||
rcu_lockdep_assert(rcu_is_watching(),
|
||||
RCU_LOCKDEP_WARN(!rcu_is_watching(),
|
||||
"rcu_read_unlock() used illegally while idle");
|
||||
__release(RCU);
|
||||
__rcu_read_unlock();
|
||||
@ -914,7 +878,7 @@ static inline void rcu_read_lock_bh(void)
|
||||
local_bh_disable();
|
||||
__acquire(RCU_BH);
|
||||
rcu_lock_acquire(&rcu_bh_lock_map);
|
||||
rcu_lockdep_assert(rcu_is_watching(),
|
||||
RCU_LOCKDEP_WARN(!rcu_is_watching(),
|
||||
"rcu_read_lock_bh() used illegally while idle");
|
||||
}
|
||||
|
||||
@ -925,7 +889,7 @@ static inline void rcu_read_lock_bh(void)
|
||||
*/
|
||||
static inline void rcu_read_unlock_bh(void)
|
||||
{
|
||||
rcu_lockdep_assert(rcu_is_watching(),
|
||||
RCU_LOCKDEP_WARN(!rcu_is_watching(),
|
||||
"rcu_read_unlock_bh() used illegally while idle");
|
||||
rcu_lock_release(&rcu_bh_lock_map);
|
||||
__release(RCU_BH);
|
||||
@ -950,7 +914,7 @@ static inline void rcu_read_lock_sched(void)
|
||||
preempt_disable();
|
||||
__acquire(RCU_SCHED);
|
||||
rcu_lock_acquire(&rcu_sched_lock_map);
|
||||
rcu_lockdep_assert(rcu_is_watching(),
|
||||
RCU_LOCKDEP_WARN(!rcu_is_watching(),
|
||||
"rcu_read_lock_sched() used illegally while idle");
|
||||
}
|
||||
|
||||
@ -968,7 +932,7 @@ static inline notrace void rcu_read_lock_sched_notrace(void)
|
||||
*/
|
||||
static inline void rcu_read_unlock_sched(void)
|
||||
{
|
||||
rcu_lockdep_assert(rcu_is_watching(),
|
||||
RCU_LOCKDEP_WARN(!rcu_is_watching(),
|
||||
"rcu_read_unlock_sched() used illegally while idle");
|
||||
rcu_lock_release(&rcu_sched_lock_map);
|
||||
__release(RCU_SCHED);
|
||||
|
@ -1,3 +1,35 @@
|
||||
#ifndef _LINUX_VMALLOC_H
|
||||
#define _LINUX_VMALLOC_H
|
||||
|
||||
#include <linux/spinlock.h>
|
||||
#include <linux/init.h>
|
||||
#include <linux/list.h>
|
||||
struct vm_area_struct; /* vma defining user mapping in mm_types.h */
|
||||
|
||||
/* bits in flags of vmalloc's vm_struct below */
|
||||
#define VM_IOREMAP 0x00000001 /* ioremap() and friends */
|
||||
#define VM_ALLOC 0x00000002 /* vmalloc() */
|
||||
#define VM_MAP 0x00000004 /* vmap()ed pages */
|
||||
#define VM_USERMAP 0x00000008 /* suitable for remap_vmalloc_range */
|
||||
#define VM_VPAGES 0x00000010 /* buffer for pages was vmalloc'ed */
|
||||
#define VM_UNINITIALIZED 0x00000020 /* vm_struct is not fully initialized */
|
||||
#define VM_NO_GUARD 0x00000040 /* don't add guard page */
|
||||
#define VM_KASAN 0x00000080 /* has allocated kasan shadow memory */
|
||||
/* bits [20..32] reserved for arch specific ioremap internals */
|
||||
|
||||
/*
|
||||
* Maximum alignment for ioremap() regions.
|
||||
* Can be overriden by arch-specific value.
|
||||
*/
|
||||
#ifndef IOREMAP_MAX_ORDER
|
||||
#define IOREMAP_MAX_ORDER (7 + PAGE_SHIFT) /* 128 pages */
|
||||
#endif
|
||||
extern void *vmalloc(unsigned long size);
|
||||
extern void *vzalloc(unsigned long size);
|
||||
extern void vfree(const void *addr);
|
||||
|
||||
extern void *vmap(struct page **pages, unsigned int count,
|
||||
unsigned long flags, pgprot_t prot);
|
||||
extern void vunmap(const void *addr);
|
||||
|
||||
#endif /* _LINUX_VMALLOC_H */
|
||||
|
@ -49,7 +49,7 @@ void* STDCALL AllocKernelSpace(size_t size)__asm__("AllocKernelSpace");
|
||||
void STDCALL FreeKernelSpace(void *mem)__asm__("FreeKernelSpace");
|
||||
addr_t STDCALL MapIoMem(addr_t base, size_t size, u32 flags)__asm__("MapIoMem");
|
||||
void* STDCALL KernelAlloc(size_t size)__asm__("KernelAlloc");
|
||||
void* STDCALL KernelFree(void *mem)__asm__("KernelFree");
|
||||
void* STDCALL KernelFree(const void *mem)__asm__("KernelFree");
|
||||
void* STDCALL UserAlloc(size_t size)__asm__("UserAlloc");
|
||||
int STDCALL UserFree(void *mem)__asm__("UserFree");
|
||||
|
||||
@ -527,10 +527,6 @@ static inline void *vzalloc(unsigned long size)
|
||||
return mem;
|
||||
};
|
||||
|
||||
static inline void vfree(void *addr)
|
||||
{
|
||||
KernelFree(addr);
|
||||
}
|
||||
|
||||
static inline int power_supply_is_system_supplied(void) { return -1; };
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user