// 8086tiny: a tiny, highly functional, highly portable PC emulator/VM // Copyright 2013-14, Adrian Cable (adrian.cable@gmail.com) - http://www.megalith.co.uk/8086tiny // // Revision 1.25 // // This work is licensed under the MIT License. See included LICENSE.TXT. #include //#include struct timeb { time_t time; /* Seconds since the epoch */ unsigned short millitm; short timezone; short dstflag; }; static int ftime(struct timeb* tp) { unsigned counter = 0; __asm__ volatile("int $0x40" : "=a"(counter) : "a"(26), "b"(9)); tp->millitm = (counter % 100) * 10; return 0; } /* #include */ #ifndef _WIN32 #include #include #endif #ifndef NO_GRAPHICS #include #endif // Emulator system constants #define IO_PORT_COUNT 0x10000 #define RAM_SIZE 0x10FFF0 #define REGS_BASE 0xF0000 #define VIDEO_RAM_SIZE 0x10000 // Graphics/timer/keyboard update delays (explained later) #ifndef GRAPHICS_UPDATE_DELAY #define GRAPHICS_UPDATE_DELAY 36000 //1000 times #endif #define KEYBOARD_TIMER_UPDATE_DELAY 2000 //1000 times // 16-bit register decodes #define REG_AX 0 #define REG_CX 1 #define REG_DX 2 #define REG_BX 3 #define REG_SP 4 #define REG_BP 5 #define REG_SI 6 #define REG_DI 7 #define REG_ES 8 #define REG_CS 9 #define REG_SS 10 #define REG_DS 11 #define REG_ZERO 12 #define REG_SCRATCH 13 // 8-bit register decodes #define REG_AL 0 #define REG_AH 1 #define REG_CL 2 #define REG_CH 3 #define REG_DL 4 #define REG_DH 5 #define REG_BL 6 #define REG_BH 7 // FLAGS register decodes #define FLAG_CF 40 #define FLAG_PF 41 #define FLAG_AF 42 #define FLAG_ZF 43 #define FLAG_SF 44 #define FLAG_TF 45 #define FLAG_IF 46 #define FLAG_DF 47 #define FLAG_OF 48 // Lookup tables in the BIOS binary #define TABLE_XLAT_OPCODE 8 #define TABLE_XLAT_SUBFUNCTION 9 #define TABLE_STD_FLAGS 10 #define TABLE_PARITY_FLAG 11 #define TABLE_BASE_INST_SIZE 12 #define TABLE_I_W_SIZE 13 #define TABLE_I_MOD_SIZE 14 #define TABLE_COND_JUMP_DECODE_A 15 #define TABLE_COND_JUMP_DECODE_B 16 #define TABLE_COND_JUMP_DECODE_C 17 #define TABLE_COND_JUMP_DECODE_D 18 #define TABLE_FLAGS_BITFIELDS 19 // Bitfields for TABLE_STD_FLAGS values #define FLAGS_UPDATE_SZP 1 #define FLAGS_UPDATE_AO_ARITH 2 #define FLAGS_UPDATE_OC_LOGIC 4 // Helper macros // Decode mod, r_m and reg fields in instruction #define DECODE_RM_REG scratch2_uint = 4 * !i_mod, \ op_to_addr = rm_addr = i_mod < 3 ? SEGREG(seg_override_en ? seg_override : bios_table_lookup[scratch2_uint + 3][i_rm], bios_table_lookup[scratch2_uint][i_rm], regs16[bios_table_lookup[scratch2_uint + 1][i_rm]] + bios_table_lookup[scratch2_uint + 2][i_rm] * i_data1+) : GET_REG_ADDR(i_rm), \ op_from_addr = GET_REG_ADDR(i_reg), \ i_d && (scratch_uint = op_from_addr, op_from_addr = rm_addr, op_to_addr = scratch_uint) // Return memory-mapped register location (offset into mem array) for register #reg_id #define GET_REG_ADDR(reg_id) (REGS_BASE + (i_w ? 2 * reg_id : 2 * reg_id + reg_id / 4 & 7)) // Returns number of top bit in operand (i.e. 8 for 8-bit operands, 16 for 16-bit operands) #define TOP_BIT 8*(i_w + 1) // Opcode execution unit helpers #define OPCODE ;break; case #define OPCODE_CHAIN ; case // [I]MUL/[I]DIV/DAA/DAS/ADC/SBB helpers #define MUL_MACRO(op_data_type,out_regs) (set_opcode(0x10), \ out_regs[i_w + 1] = (op_result = CAST(op_data_type)mem[rm_addr] * (op_data_type)*out_regs) >> 16, \ regs16[REG_AX] = op_result, \ set_OF(set_CF(op_result - (op_data_type)op_result))) #define DIV_MACRO(out_data_type,in_data_type,out_regs) (scratch_int = CAST(out_data_type)mem[rm_addr]) && !(scratch2_uint = (in_data_type)(scratch_uint = (out_regs[i_w+1] << 16) + regs16[REG_AX]) / scratch_int, scratch2_uint - (out_data_type)scratch2_uint) ? out_regs[i_w+1] = scratch_uint - scratch_int * (*out_regs = scratch2_uint) : pc_interrupt(0) #define DAA_DAS(op1,op2,mask,min) set_AF((((scratch2_uint = regs8[REG_AL]) & 0x0F) > 9) || regs8[FLAG_AF]) && (op_result = regs8[REG_AL] op1 6, set_CF(regs8[FLAG_CF] || (regs8[REG_AL] op2 scratch2_uint))), \ set_CF((((mask & 1 ? scratch2_uint : regs8[REG_AL]) & mask) > min) || regs8[FLAG_CF]) && (op_result = regs8[REG_AL] op1 0x60) #define ADC_SBB_MACRO(a) OP(a##= regs8[FLAG_CF] +), \ set_CF(regs8[FLAG_CF] && (op_result == op_dest) || (a op_result < a(int)op_dest)), \ set_AF_OF_arith() // Execute arithmetic/logic operations in emulator memory/registers #define R_M_OP(dest,op,src) (i_w ? op_dest = CAST(unsigned short)dest, op_result = CAST(unsigned short)dest op (op_source = CAST(unsigned short)src) \ : (op_dest = dest, op_result = dest op (op_source = CAST(unsigned char)src))) #define MEM_OP(dest,op,src) R_M_OP(mem[dest],op,mem[src]) #define OP(op) MEM_OP(op_to_addr,op,op_from_addr) // Increment or decrement a register #reg_id (usually SI or DI), depending on direction flag and operand size (given by i_w) #define INDEX_INC(reg_id) (regs16[reg_id] -= (2 * regs8[FLAG_DF] - 1)*(i_w + 1)) // Helpers for stack operations #define R_M_PUSH(a) (i_w = 1, R_M_OP(mem[SEGREG(REG_SS, REG_SP, --)], =, a)) #define R_M_POP(a) (i_w = 1, regs16[REG_SP] += 2, R_M_OP(a, =, mem[SEGREG(REG_SS, REG_SP, -2+)])) // Convert segment:offset to linear address in emulator memory space #define SEGREG(reg_seg,reg_ofs,op) 16 * regs16[reg_seg] + (unsigned short)(op regs16[reg_ofs]) // Returns sign bit of an 8-bit or 16-bit operand #define SIGN_OF(a) (1 & (i_w ? CAST(short)a : a) >> (TOP_BIT - 1)) // Reinterpretation cast #define CAST(a) *(a*)& // Keyboard driver for console. This may need changing for UNIX/non-UNIX platforms #ifdef _WIN32 #define KEYBOARD_DRIVER kbhit() && (mem[0x4A6] = getch(), pc_interrupt(7)) #else //#define KEYBOARD_DRIVER read(0, mem + 0x4A6, 1) && (int8_asap = (mem[0x4A6] == 0x1B), pc_interrupt(7)) #define KEYBOARD_DRIVER kbhit() && (mem[0x4A6] = getch(), pc_interrupt(7)) #endif // Keyboard driver for SDL #ifdef NO_GRAPHICS #define SDL_KEYBOARD_DRIVER KEYBOARD_DRIVER #else #define SDL_KEYBOARD_DRIVER sdl_screen ? SDL_PollEvent(&sdl_event) && (sdl_event.type == SDL_KEYDOWN || sdl_event.type == SDL_KEYUP) && (scratch_uint = sdl_event.key.keysym.unicode, scratch2_uint = sdl_event.key.keysym.mod, CAST(short)mem[0x4A6] = 0x400 + 0x800*!!(scratch2_uint & KMOD_ALT) + 0x1000*!!(scratch2_uint & KMOD_SHIFT) + 0x2000*!!(scratch2_uint & KMOD_CTRL) + 0x4000*(sdl_event.type == SDL_KEYUP) + ((!scratch_uint || scratch_uint > 0x7F) ? sdl_event.key.keysym.sym : scratch_uint), pc_interrupt(7)) : (KEYBOARD_DRIVER) #endif // Global variable definitions unsigned char mem[RAM_SIZE], io_ports[IO_PORT_COUNT], *opcode_stream, *regs8, i_rm, i_w, i_reg, i_mod, i_mod_size, i_d, i_reg4bit, raw_opcode_id, xlat_opcode_id, extra, rep_mode, seg_override_en, rep_override_en, trap_flag, int8_asap, scratch_uchar, io_hi_lo, *vid_mem_base, spkr_en, bios_table_lookup[20][256]; unsigned short *regs16, reg_ip, seg_override, file_index, wave_counter; unsigned int op_source, op_dest, rm_addr, op_to_addr, op_from_addr, i_data0, i_data1, i_data2, scratch_uint, scratch2_uint, inst_counter, set_flags_type, GRAPHICS_X, GRAPHICS_Y, pixel_colors[16], vmem_ctr; int op_result, disk[3], scratch_int; time_t clock_buf; struct timeb ms_clock; #ifndef NO_GRAPHICS SDL_AudioSpec sdl_audio = {44100, AUDIO_U8, 1, 0, 128}; SDL_AudioSpec sdl_audio_obt = {44100, AUDIO_U8, 1, 0, 128}; SDL_Surface *sdl_screen; SDL_Event sdl_event; unsigned short vid_addr_lookup[VIDEO_RAM_SIZE], cga_colors[4] = {0 /* Black */, 0x1F1F /* Cyan */, 0xE3E3 /* Magenta */, 0xFFFF /* White */}; #endif // Helper functions // Set carry flag char set_CF(int new_CF) { return regs8[FLAG_CF] = !!new_CF; } // Set auxiliary flag char set_AF(int new_AF) { return regs8[FLAG_AF] = !!new_AF; } // Set overflow flag char set_OF(int new_OF) { return regs8[FLAG_OF] = !!new_OF; } // Set auxiliary and overflow flag after arithmetic operations char set_AF_OF_arith() { set_AF((op_source ^= op_dest ^ op_result) & 0x10); if (op_result == op_dest) return set_OF(0); else return set_OF(1 & (regs8[FLAG_CF] ^ op_source >> (TOP_BIT - 1))); } // Assemble and return emulated CPU FLAGS register in scratch_uint void make_flags() { scratch_uint = 0xF002; // 8086 has reserved and unused flags set to 1 for (int i = 9; i--;) scratch_uint += regs8[FLAG_CF + i] << bios_table_lookup[TABLE_FLAGS_BITFIELDS][i]; } // Set emulated CPU FLAGS register from regs8[FLAG_xx] values void set_flags(int new_flags) { for (int i = 9; i--;) regs8[FLAG_CF + i] = !!(1 << bios_table_lookup[TABLE_FLAGS_BITFIELDS][i] & new_flags); } // Convert raw opcode to translated opcode index. This condenses a large number of different encodings of similar // instructions into a much smaller number of distinct functions, which we then execute void set_opcode(unsigned char opcode) { xlat_opcode_id = bios_table_lookup[TABLE_XLAT_OPCODE][raw_opcode_id = opcode]; extra = bios_table_lookup[TABLE_XLAT_SUBFUNCTION][opcode]; i_mod_size = bios_table_lookup[TABLE_I_MOD_SIZE][opcode]; set_flags_type = bios_table_lookup[TABLE_STD_FLAGS][opcode]; } // Execute INT #interrupt_num on the emulated machine char pc_interrupt(unsigned char interrupt_num) { set_opcode(0xCD); // Decode like INT make_flags(); R_M_PUSH(scratch_uint); R_M_PUSH(regs16[REG_CS]); R_M_PUSH(reg_ip); MEM_OP(REGS_BASE + 2 * REG_CS, =, 4 * interrupt_num + 2); R_M_OP(reg_ip, =, mem[4 * interrupt_num]); return regs8[FLAG_TF] = regs8[FLAG_IF] = 0; } // AAA and AAS instructions - which_operation is +1 for AAA, and -1 for AAS int AAA_AAS(char which_operation) { return (regs16[REG_AX] += 262 * which_operation*set_AF(set_CF(((regs8[REG_AL] & 0x0F) > 9) || regs8[FLAG_AF])), regs8[REG_AL] &= 0x0F); } #ifndef NO_GRAPHICS void audio_callback(void *data, unsigned char *stream, int len) { for (int i = 0; i < len; i++) stream[i] = (spkr_en == 3) && CAST(unsigned short)mem[0x4AA] ? -((54 * wave_counter++ / CAST(unsigned short)mem[0x4AA]) & 1) : sdl_audio.silence; spkr_en = io_ports[0x61] & 3; } #endif #include #define kbhit con_kbhit #define getch con_getch // Emulator entry point int main(int argc, char **argv) { con_set_title("8086tiny"); //freopen("OUT", "w" ,stdout); #ifndef NO_GRAPHICS // Initialise SDL SDL_Init(SDL_INIT_AUDIO); sdl_audio.callback = audio_callback; #ifdef _WIN32 sdl_audio.samples = 512; #endif SDL_OpenAudio(&sdl_audio, &sdl_audio_obt); #endif // regs16 and reg8 point to F000:0, the start of memory-mapped registers. CS is initialised to F000 regs16 = (unsigned short *)(regs8 = mem + REGS_BASE); regs16[REG_CS] = 0xF000; // Trap flag off regs8[FLAG_TF] = 0; // Set DL equal to the boot device: 0 for the FD, or 0x80 for the HD. Normally, boot from the FD. // But, if the HD image file is prefixed with @, then boot from the HD regs8[REG_DL] = ((argc > 3) && (*argv[3] == '@')) ? argv[3]++, 0x80 : 0; // Open BIOS (file id disk[2]), floppy disk image (disk[1]), and hard disk image (disk[0]) if specified for (file_index = 3; file_index;) disk[--file_index] = *++argv ? open(*argv, 32898) : 0; // Set CX:AX equal to the hard disk image size, if present CAST(unsigned)regs16[REG_AX] = *disk ? lseek(*disk, 0, 2) >> 9 : 0; // Load BIOS image into F000:0100, and set IP to 0100 read(disk[2], regs8 + (reg_ip = 0x100), 0xFF00); // Load instruction decoding helper table for (int i = 0; i < 20; i++) for (int j = 0; j < 256; j++) bios_table_lookup[i][j] = regs8[regs16[0x81 + i] + j]; // Instruction execution loop. Terminates if CS:IP = 0:0 for (; opcode_stream = mem + 16 * regs16[REG_CS] + reg_ip, opcode_stream != mem;) { // Set up variables to prepare for decoding an opcode set_opcode(*opcode_stream); // Extract i_w and i_d fields from instruction i_w = (i_reg4bit = raw_opcode_id & 7) & 1; i_d = i_reg4bit / 2 & 1; // Extract instruction data fields i_data0 = CAST(short)opcode_stream[1]; i_data1 = CAST(short)opcode_stream[2]; i_data2 = CAST(short)opcode_stream[3]; // seg_override_en and rep_override_en contain number of instructions to hold segment override and REP prefix respectively if (seg_override_en) seg_override_en--; if (rep_override_en) rep_override_en--; // i_mod_size > 0 indicates that opcode uses i_mod/i_rm/i_reg, so decode them if (i_mod_size) { i_mod = (i_data0 & 0xFF) >> 6; i_rm = i_data0 & 7; i_reg = i_data0 / 8 & 7; if ((!i_mod && i_rm == 6) || (i_mod == 2)) i_data2 = CAST(short)opcode_stream[4]; else if (i_mod != 1) i_data2 = i_data1; else // If i_mod is 1, operand is (usually) 8 bits rather than 16 bits i_data1 = (char)i_data1; DECODE_RM_REG; } // Instruction execution unit switch (xlat_opcode_id) { OPCODE_CHAIN 0: // Conditional jump (JAE, JNAE, etc.) // i_w is the invert flag, e.g. i_w == 1 means JNAE, whereas i_w == 0 means JAE scratch_uchar = raw_opcode_id / 2 & 7; reg_ip += (char)i_data0 * (i_w ^ (regs8[bios_table_lookup[TABLE_COND_JUMP_DECODE_A][scratch_uchar]] || regs8[bios_table_lookup[TABLE_COND_JUMP_DECODE_B][scratch_uchar]] || regs8[bios_table_lookup[TABLE_COND_JUMP_DECODE_C][scratch_uchar]] ^ regs8[bios_table_lookup[TABLE_COND_JUMP_DECODE_D][scratch_uchar]])) OPCODE 1: // MOV reg, imm i_w = !!(raw_opcode_id & 8); R_M_OP(mem[GET_REG_ADDR(i_reg4bit)], =, i_data0) OPCODE 3: // PUSH regs16 R_M_PUSH(regs16[i_reg4bit]) OPCODE 4: // POP regs16 R_M_POP(regs16[i_reg4bit]) OPCODE 2: // INC|DEC regs16 i_w = 1; i_d = 0; i_reg = i_reg4bit; DECODE_RM_REG; i_reg = extra OPCODE_CHAIN 5: // INC|DEC|JMP|CALL|PUSH if (i_reg < 2) // INC|DEC MEM_OP(op_from_addr, += 1 - 2 * i_reg +, REGS_BASE + 2 * REG_ZERO), op_source = 1, set_AF_OF_arith(), set_OF(op_dest + 1 - i_reg == 1 << (TOP_BIT - 1)), (xlat_opcode_id == 5) && (set_opcode(0x10), 0); // Decode like ADC else if (i_reg != 6) // JMP|CALL i_reg - 3 || R_M_PUSH(regs16[REG_CS]), // CALL (far) i_reg & 2 && R_M_PUSH(reg_ip + 2 + i_mod*(i_mod != 3) + 2*(!i_mod && i_rm == 6)), // CALL (near or far) i_reg & 1 && (regs16[REG_CS] = CAST(short)mem[op_from_addr + 2]), // JMP|CALL (far) R_M_OP(reg_ip, =, mem[op_from_addr]), set_opcode(0x9A); // Decode like CALL else // PUSH R_M_PUSH(mem[rm_addr]) OPCODE 6: // TEST r/m, imm16 / NOT|NEG|MUL|IMUL|DIV|IDIV reg op_to_addr = op_from_addr; switch (i_reg) { OPCODE_CHAIN 0: // TEST set_opcode(0x20); // Decode like AND reg_ip += i_w + 1; R_M_OP(mem[op_to_addr], &, i_data2) OPCODE 2: // NOT OP(=~) OPCODE 3: // NEG OP(=-); op_dest = 0; set_opcode(0x28); // Decode like SUB set_CF(op_result > op_dest) OPCODE 4: // MUL i_w ? MUL_MACRO(unsigned short, regs16) : MUL_MACRO(unsigned char, regs8) OPCODE 5: // IMUL i_w ? MUL_MACRO(short, regs16) : MUL_MACRO(char, regs8) OPCODE 6: // DIV i_w ? DIV_MACRO(unsigned short, unsigned, regs16) : DIV_MACRO(unsigned char, unsigned short, regs8) OPCODE 7: // IDIV i_w ? DIV_MACRO(short, int, regs16) : DIV_MACRO(char, short, regs8); } OPCODE 7: // ADD|OR|ADC|SBB|AND|SUB|XOR|CMP AL/AX, immed rm_addr = REGS_BASE; i_data2 = i_data0; i_mod = 3; i_reg = extra; reg_ip--; OPCODE_CHAIN 8: // ADD|OR|ADC|SBB|AND|SUB|XOR|CMP reg, immed op_to_addr = rm_addr; regs16[REG_SCRATCH] = (i_d |= !i_w) ? (char)i_data2 : i_data2; op_from_addr = REGS_BASE + 2 * REG_SCRATCH; reg_ip += !i_d + 1; set_opcode(0x08 * (extra = i_reg)); OPCODE_CHAIN 9: // ADD|OR|ADC|SBB|AND|SUB|XOR|CMP|MOV reg, r/m switch (extra) { OPCODE_CHAIN 0: // ADD OP(+=), set_CF(op_result < op_dest) OPCODE 1: // OR OP(|=) OPCODE 2: // ADC ADC_SBB_MACRO(+) OPCODE 3: // SBB ADC_SBB_MACRO(-) OPCODE 4: // AND OP(&=) OPCODE 5: // SUB OP(-=), set_CF(op_result > op_dest) OPCODE 6: // XOR OP(^=) OPCODE 7: // CMP OP(-), set_CF(op_result > op_dest) OPCODE 8: // MOV OP(=); } OPCODE 10: // MOV sreg, r/m | POP r/m | LEA reg, r/m if (!i_w) // MOV i_w = 1, i_reg += 8, DECODE_RM_REG, OP(=); else if (!i_d) // LEA seg_override_en = 1, seg_override = REG_ZERO, DECODE_RM_REG, R_M_OP(mem[op_from_addr], =, rm_addr); else // POP R_M_POP(mem[rm_addr]) OPCODE 11: // MOV AL/AX, [loc] i_mod = i_reg = 0; i_rm = 6; i_data1 = i_data0; DECODE_RM_REG; MEM_OP(op_from_addr, =, op_to_addr) OPCODE 12: // ROL|ROR|RCL|RCR|SHL|SHR|???|SAR reg/mem, 1/CL/imm (80186) scratch2_uint = SIGN_OF(mem[rm_addr]), scratch_uint = extra ? // xxx reg/mem, imm ++reg_ip, (char)i_data1 : // xxx reg/mem, CL i_d ? 31 & regs8[REG_CL] : // xxx reg/mem, 1 1; if (scratch_uint) { if (i_reg < 4) // Rotate operations scratch_uint %= i_reg / 2 + TOP_BIT, R_M_OP(scratch2_uint, =, mem[rm_addr]); if (i_reg & 1) // Rotate/shift right operations R_M_OP(mem[rm_addr], >>=, scratch_uint); else // Rotate/shift left operations R_M_OP(mem[rm_addr], <<=, scratch_uint); if (i_reg > 3) // Shift operations set_opcode(0x10); // Decode like ADC if (i_reg > 4) // SHR or SAR set_CF(op_dest >> (scratch_uint - 1) & 1); } switch (i_reg) { OPCODE_CHAIN 0: // ROL R_M_OP(mem[rm_addr], += , scratch2_uint >> (TOP_BIT - scratch_uint)); set_OF(SIGN_OF(op_result) ^ set_CF(op_result & 1)) OPCODE 1: // ROR scratch2_uint &= (1 << scratch_uint) - 1, R_M_OP(mem[rm_addr], += , scratch2_uint << (TOP_BIT - scratch_uint)); set_OF(SIGN_OF(op_result * 2) ^ set_CF(SIGN_OF(op_result))) OPCODE 2: // RCL R_M_OP(mem[rm_addr], += (regs8[FLAG_CF] << (scratch_uint - 1)) + , scratch2_uint >> (1 + TOP_BIT - scratch_uint)); set_OF(SIGN_OF(op_result) ^ set_CF(scratch2_uint & 1 << (TOP_BIT - scratch_uint))) OPCODE 3: // RCR R_M_OP(mem[rm_addr], += (regs8[FLAG_CF] << (TOP_BIT - scratch_uint)) + , scratch2_uint << (1 + TOP_BIT - scratch_uint)); set_CF(scratch2_uint & 1 << (scratch_uint - 1)); set_OF(SIGN_OF(op_result) ^ SIGN_OF(op_result * 2)) OPCODE 4: // SHL set_OF(SIGN_OF(op_result) ^ set_CF(SIGN_OF(op_dest << (scratch_uint - 1)))) OPCODE 5: // SHR set_OF(SIGN_OF(op_dest)) OPCODE 7: // SAR scratch_uint < TOP_BIT || set_CF(scratch2_uint); set_OF(0); R_M_OP(mem[rm_addr], +=, scratch2_uint *= ~(((1 << TOP_BIT) - 1) >> scratch_uint)); } OPCODE 13: // LOOPxx|JCZX scratch_uint = !!--regs16[REG_CX]; switch(i_reg4bit) { OPCODE_CHAIN 0: // LOOPNZ scratch_uint &= !regs8[FLAG_ZF] OPCODE 1: // LOOPZ scratch_uint &= regs8[FLAG_ZF] OPCODE 3: // JCXXZ scratch_uint = !++regs16[REG_CX]; } reg_ip += scratch_uint*(char)i_data0 OPCODE 14: // JMP | CALL short/near reg_ip += 3 - i_d; if (!i_w) { if (i_d) // JMP far reg_ip = 0, regs16[REG_CS] = i_data2; else // CALL R_M_PUSH(reg_ip); } reg_ip += i_d && i_w ? (char)i_data0 : i_data0 OPCODE 15: // TEST reg, r/m MEM_OP(op_from_addr, &, op_to_addr) OPCODE 16: // XCHG AX, regs16 i_w = 1; op_to_addr = REGS_BASE; op_from_addr = GET_REG_ADDR(i_reg4bit); OPCODE_CHAIN 24: // NOP|XCHG reg, r/m if (op_to_addr != op_from_addr) OP(^=), MEM_OP(op_from_addr, ^=, op_to_addr), OP(^=) OPCODE 17: // MOVSx (extra=0)|STOSx (extra=1)|LODSx (extra=2) scratch2_uint = seg_override_en ? seg_override : REG_DS; for (scratch_uint = rep_override_en ? regs16[REG_CX] : 1; scratch_uint; scratch_uint--) { MEM_OP(extra < 2 ? SEGREG(REG_ES, REG_DI,) : REGS_BASE, =, extra & 1 ? REGS_BASE : SEGREG(scratch2_uint, REG_SI,)), extra & 1 || INDEX_INC(REG_SI), extra & 2 || INDEX_INC(REG_DI); } if (rep_override_en) regs16[REG_CX] = 0 OPCODE 18: // CMPSx (extra=0)|SCASx (extra=1) scratch2_uint = seg_override_en ? seg_override : REG_DS; if ((scratch_uint = rep_override_en ? regs16[REG_CX] : 1)) { for (; scratch_uint; rep_override_en || scratch_uint--) { MEM_OP(extra ? REGS_BASE : SEGREG(scratch2_uint, REG_SI,), -, SEGREG(REG_ES, REG_DI,)), extra || INDEX_INC(REG_SI), INDEX_INC(REG_DI), rep_override_en && !(--regs16[REG_CX] && (!op_result == rep_mode)) && (scratch_uint = 0); } set_flags_type = FLAGS_UPDATE_SZP | FLAGS_UPDATE_AO_ARITH; // Funge to set SZP/AO flags set_CF(op_result > op_dest); } OPCODE 19: // RET|RETF|IRET i_d = i_w; R_M_POP(reg_ip); if (extra) // IRET|RETF|RETF imm16 R_M_POP(regs16[REG_CS]); if (extra & 2) // IRET set_flags(R_M_POP(scratch_uint)); else if (!i_d) // RET|RETF imm16 regs16[REG_SP] += i_data0 OPCODE 20: // MOV r/m, immed R_M_OP(mem[op_from_addr], =, i_data2) OPCODE 21: // IN AL/AX, DX/imm8 io_ports[0x20] = 0; // PIC EOI io_ports[0x42] = --io_ports[0x40]; // PIT channel 0/2 read placeholder io_ports[0x3DA] ^= 9; // CGA refresh scratch_uint = extra ? regs16[REG_DX] : (unsigned char)i_data0; scratch_uint == 0x60 && (io_ports[0x64] = 0); // Scancode read flag scratch_uint == 0x3D5 && (io_ports[0x3D4] >> 1 == 7) && (io_ports[0x3D5] = ((mem[0x49E]*80 + mem[0x49D] + CAST(short)mem[0x4AD]) & (io_ports[0x3D4] & 1 ? 0xFF : 0xFF00)) >> (io_ports[0x3D4] & 1 ? 0 : 8)); // CRT cursor position R_M_OP(regs8[REG_AL], =, io_ports[scratch_uint]); OPCODE 22: // OUT DX/imm8, AL/AX scratch_uint = extra ? regs16[REG_DX] : (unsigned char)i_data0; R_M_OP(io_ports[scratch_uint], =, regs8[REG_AL]); scratch_uint == 0x61 && (io_hi_lo = 0, spkr_en |= regs8[REG_AL] & 3); // Speaker control (scratch_uint == 0x40 || scratch_uint == 0x42) && (io_ports[0x43] & 6) && (mem[0x469 + scratch_uint - (io_hi_lo ^= 1)] = regs8[REG_AL]); // PIT rate programming #ifndef NO_GRAPHICS scratch_uint == 0x43 && (io_hi_lo = 0, regs8[REG_AL] >> 6 == 2) && (SDL_PauseAudio((regs8[REG_AL] & 0xF7) != 0xB6), 0); // Speaker enable #endif scratch_uint == 0x3D5 && (io_ports[0x3D4] >> 1 == 6) && (mem[0x4AD + !(io_ports[0x3D4] & 1)] = regs8[REG_AL]); // CRT video RAM start offset scratch_uint == 0x3D5 && (io_ports[0x3D4] >> 1 == 7) && (scratch2_uint = ((mem[0x49E]*80 + mem[0x49D] + CAST(short)mem[0x4AD]) & (io_ports[0x3D4] & 1 ? 0xFF00 : 0xFF)) + (regs8[REG_AL] << (io_ports[0x3D4] & 1 ? 0 : 8)) - CAST(short)mem[0x4AD], mem[0x49D] = scratch2_uint % 80, mem[0x49E] = scratch2_uint / 80); // CRT cursor position scratch_uint == 0x3B5 && io_ports[0x3B4] == 1 && (GRAPHICS_X = regs8[REG_AL] * 16); // Hercules resolution reprogramming. Defaults are set in the BIOS scratch_uint == 0x3B5 && io_ports[0x3B4] == 6 && (GRAPHICS_Y = regs8[REG_AL] * 4); OPCODE 23: // REPxx rep_override_en = 2; rep_mode = i_w; seg_override_en && seg_override_en++ OPCODE 25: // PUSH reg R_M_PUSH(regs16[extra]) OPCODE 26: // POP reg R_M_POP(regs16[extra]) OPCODE 27: // xS: segment overrides seg_override_en = 2; seg_override = extra; rep_override_en && rep_override_en++ OPCODE 28: // DAA/DAS i_w = 0; extra ? DAA_DAS(-=, >=, 0xFF, 0x99) : DAA_DAS(+=, <, 0xF0, 0x90) // extra = 0 for DAA, 1 for DAS OPCODE 29: // AAA/AAS op_result = AAA_AAS(extra - 1) OPCODE 30: // CBW regs8[REG_AH] = -SIGN_OF(regs8[REG_AL]) OPCODE 31: // CWD regs16[REG_DX] = -SIGN_OF(regs16[REG_AX]) OPCODE 32: // CALL FAR imm16:imm16 R_M_PUSH(regs16[REG_CS]); R_M_PUSH(reg_ip + 5); regs16[REG_CS] = i_data2; reg_ip = i_data0 OPCODE 33: // PUSHF make_flags(); R_M_PUSH(scratch_uint) OPCODE 34: // POPF set_flags(R_M_POP(scratch_uint)) OPCODE 35: // SAHF make_flags(); set_flags((scratch_uint & 0xFF00) + regs8[REG_AH]) OPCODE 36: // LAHF make_flags(), regs8[REG_AH] = scratch_uint OPCODE 37: // LES|LDS reg, r/m i_w = i_d = 1; DECODE_RM_REG; OP(=); MEM_OP(REGS_BASE + extra, =, rm_addr + 2) OPCODE 38: // INT 3 ++reg_ip; pc_interrupt(3) OPCODE 39: // INT imm8 reg_ip += 2; pc_interrupt(i_data0) OPCODE 40: // INTO ++reg_ip; regs8[FLAG_OF] && pc_interrupt(4) OPCODE 41: // AAM if (i_data0 &= 0xFF) regs8[REG_AH] = regs8[REG_AL] / i_data0, op_result = regs8[REG_AL] %= i_data0; else // Divide by zero pc_interrupt(0) OPCODE 42: // AAD i_w = 0; regs16[REG_AX] = op_result = 0xFF & regs8[REG_AL] + i_data0 * regs8[REG_AH] OPCODE 43: // SALC regs8[REG_AL] = -regs8[FLAG_CF] OPCODE 44: // XLAT regs8[REG_AL] = mem[SEGREG(seg_override_en ? seg_override : REG_DS, REG_BX, regs8[REG_AL] +)] OPCODE 45: // CMC regs8[FLAG_CF] ^= 1 OPCODE 46: // CLC|STC|CLI|STI|CLD|STD regs8[extra / 2] = extra & 1 OPCODE 47: // TEST AL/AX, immed R_M_OP(regs8[REG_AL], &, i_data0) OPCODE 48: // Emulator-specific 0F xx opcodes switch ((char)i_data0) { OPCODE_CHAIN 0: // PUTCHAR_AL write(1, regs8, 1); // printf("%c", regs8[0]); OPCODE 1: // GET_RTC time(&clock_buf); ftime(&ms_clock); memcpy(mem + SEGREG(REG_ES, REG_BX,), localtime(&clock_buf), sizeof(struct tm)); CAST(short)mem[SEGREG(REG_ES, REG_BX, 36+)] = ms_clock.millitm; OPCODE 2: // DISK_READ OPCODE_CHAIN 3: // DISK_WRITE regs8[REG_AL] = ~lseek(disk[regs8[REG_DL]], CAST(unsigned)regs16[REG_BP] << 9, 0) ? ((char)i_data0 == 3 ? (int(*)())write : (int(*)())read)(disk[regs8[REG_DL]], mem + SEGREG(REG_ES, REG_BX,), regs16[REG_AX]) : 0; } } // Increment instruction pointer by computed instruction length. Tables in the BIOS binary // help us here. reg_ip += (i_mod*(i_mod != 3) + 2*(!i_mod && i_rm == 6))*i_mod_size + bios_table_lookup[TABLE_BASE_INST_SIZE][raw_opcode_id] + bios_table_lookup[TABLE_I_W_SIZE][raw_opcode_id]*(i_w + 1); // If instruction needs to update SF, ZF and PF, set them as appropriate if (set_flags_type & FLAGS_UPDATE_SZP) { regs8[FLAG_SF] = SIGN_OF(op_result); regs8[FLAG_ZF] = !op_result; regs8[FLAG_PF] = bios_table_lookup[TABLE_PARITY_FLAG][(unsigned char)op_result]; // If instruction is an arithmetic or logic operation, also set AF/OF/CF as appropriate. if (set_flags_type & FLAGS_UPDATE_AO_ARITH) set_AF_OF_arith(); if (set_flags_type & FLAGS_UPDATE_OC_LOGIC) set_CF(0), set_OF(0); } // Poll timer/keyboard every KEYBOARD_TIMER_UPDATE_DELAY instructions if (!(++inst_counter % KEYBOARD_TIMER_UPDATE_DELAY)) int8_asap = 1; #ifndef NO_GRAPHICS // Update the video graphics display every GRAPHICS_UPDATE_DELAY instructions if (!(inst_counter % GRAPHICS_UPDATE_DELAY)) { // Video card in graphics mode? if (io_ports[0x3B8] & 2) { // If we don't already have an SDL window open, set it up and compute color and video memory translation tables if (!sdl_screen) { for (int i = 0; i < 16; i++) pixel_colors[i] = mem[0x4AC] ? // CGA? cga_colors[(i & 12) >> 2] + (cga_colors[i & 3] << 16) // CGA -> RGB332 : 0xFF*(((i & 1) << 24) + ((i & 2) << 15) + ((i & 4) << 6) + ((i & 8) >> 3)); // Hercules -> RGB332 for (int i = 0; i < GRAPHICS_X * GRAPHICS_Y / 4; i++) vid_addr_lookup[i] = i / GRAPHICS_X * (GRAPHICS_X / 8) + (i / 2) % (GRAPHICS_X / 8) + 0x2000*(mem[0x4AC] ? (2 * i / GRAPHICS_X) % 2 : (4 * i / GRAPHICS_X) % 4); SDL_Init(SDL_INIT_VIDEO); sdl_screen = SDL_SetVideoMode(GRAPHICS_X, GRAPHICS_Y, 8, 0); SDL_EnableUNICODE(1); SDL_EnableKeyRepeat(500, 30); } // Refresh SDL display from emulated graphics card video RAM vid_mem_base = mem + 0xB0000 + 0x8000*(mem[0x4AC] ? 1 : io_ports[0x3B8] >> 7); // B800:0 for CGA/Hercules bank 2, B000:0 for Hercules bank 1 for (int i = 0; i < GRAPHICS_X * GRAPHICS_Y / 4; i++) ((unsigned *)sdl_screen->pixels)[i] = pixel_colors[15 & (vid_mem_base[vid_addr_lookup[i]] >> 4*!(i & 1))]; SDL_Flip(sdl_screen); } else if (sdl_screen) // Application has gone back to text mode, so close the SDL window { SDL_QuitSubSystem(SDL_INIT_VIDEO); sdl_screen = 0; } SDL_PumpEvents(); } #endif // Application has set trap flag, so fire INT 1 if (trap_flag) pc_interrupt(1); trap_flag = regs8[FLAG_TF]; // If a timer tick is pending, interrupts are enabled, and no overrides/REP are active, // then process the tick and check for new keystrokes if (int8_asap && !seg_override_en && !rep_override_en && regs8[FLAG_IF] && !regs8[FLAG_TF]) pc_interrupt(0xA), int8_asap = 0, SDL_KEYBOARD_DRIVER; } #ifndef NO_GRAPHICS SDL_Quit(); #endif return 0; }