32b4fcb9ab
git-svn-id: svn://kolibrios.org@3539 a494cfbc-eb01-0410-851d-a64ba20cac60
646 lines
20 KiB
PHP
646 lines
20 KiB
PHP
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
|
;; ;;
|
|
;; Copyright (C) KolibriOS team 2011-2012. All rights reserved. ;;
|
|
;; Distributed under terms of the GNU General Public License ;;
|
|
;; ;;
|
|
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
|
|
|
$Revision$
|
|
|
|
; This function is intended to replace the old 'hd_read' function when
|
|
; [hdd_appl_data] = 0, so its input/output parameters are the same, except
|
|
; that it can't use the global variables 'hd_error' and 'hdd_appl_data'.
|
|
; in: eax = sector, ebx = buffer, ebp = pointer to PARTITION structure
|
|
; eax is relative to partition start
|
|
; out: eax = error code; 0 = ok
|
|
fs_read32_sys:
|
|
; Compatibility hack: if PARTITION.Disk is 'old', there is no DISK structure,
|
|
; this request should be processed by hd_read.
|
|
cmp [ebp+PARTITION.Disk], 'old'
|
|
jnz @f
|
|
add eax, dword [ebp+PARTITION.FirstSector]
|
|
mov [hdd_appl_data], 0
|
|
call hd_read
|
|
mov [hdd_appl_data], 1 ; restore to default state
|
|
mov eax, [hd_error]
|
|
ret
|
|
@@:
|
|
; In the normal case, save ecx, set ecx to SysCache and let the common part
|
|
; do its work.
|
|
push ecx
|
|
mov ecx, [ebp+PARTITION.Disk]
|
|
add ecx, DISK.SysCache
|
|
jmp fs_read32_common
|
|
|
|
; This function is intended to replace the old 'hd_read' function when
|
|
; [hdd_appl_data] = 1, so its input/output parameters are the same, except
|
|
; that it can't use the global variables 'hd_error' and 'hdd_appl_data'.
|
|
; in: eax = sector, ebx = buffer, ebp = pointer to PARTITION structure
|
|
; eax is relative to partition start
|
|
; out: eax = error code; 0 = ok
|
|
fs_read32_app:
|
|
; Compatibility hack: if PARTITION.Disk is 'old', there is no DISK structure,
|
|
; this request should be processed by hd_read.
|
|
cmp [ebp+PARTITION.Disk], 'old'
|
|
jnz @f
|
|
add eax, dword [ebp+PARTITION.FirstSector]
|
|
mov [hdd_appl_data], 1
|
|
call hd_read
|
|
mov eax, [hd_error]
|
|
ret
|
|
@@:
|
|
; In the normal case, save ecx, set ecx to AppCache and let the common part
|
|
; do its work.
|
|
push ecx
|
|
mov ecx, [ebp+PARTITION.Disk]
|
|
add ecx, DISK.AppCache
|
|
|
|
; This label is the common part of fs_read32_sys and fs_read32_app.
|
|
fs_read32_common:
|
|
; 1. Check that the required sector is inside the partition. If no, return
|
|
; DISK_STATUS_END_OF_MEDIA.
|
|
cmp dword [ebp+PARTITION.Length+4], 0
|
|
jnz @f
|
|
cmp dword [ebp+PARTITION.Length], eax
|
|
ja @f
|
|
mov eax, DISK_STATUS_END_OF_MEDIA
|
|
pop ecx
|
|
ret
|
|
@@:
|
|
; 2. Get the absolute sector on the disk.
|
|
push edx esi
|
|
xor edx, edx
|
|
add eax, dword [ebp+PARTITION.FirstSector]
|
|
adc edx, dword [ebp+PARTITION.FirstSector+4]
|
|
; 3. If there is no cache for this disk, just pass the request to the driver.
|
|
cmp [ecx+DISKCACHE.pointer], 0
|
|
jnz .scancache
|
|
push 1
|
|
push esp ; numsectors
|
|
push edx ; startsector
|
|
push eax ; startsector
|
|
push ebx ; buffer
|
|
mov esi, [ebp+PARTITION.Disk]
|
|
mov al, DISKFUNC.read
|
|
call disk_call_driver
|
|
pop ecx
|
|
pop esi edx
|
|
pop ecx
|
|
ret
|
|
.scancache:
|
|
; 4. Scan the cache.
|
|
push edi ecx ; scan cache
|
|
push edx eax
|
|
virtual at esp
|
|
.sector_lo dd ?
|
|
.sector_hi dd ?
|
|
.cache dd ?
|
|
end virtual
|
|
; The following code is inherited from hd_read. The differences are:
|
|
; all code is protected by the cache lock; instead of static calls
|
|
; to hd_read_dma/hd_read_pio/bd_read the dynamic call to DISKFUNC.read is used;
|
|
; sector is 64-bit, not 32-bit.
|
|
call mutex_lock
|
|
mov eax, [.sector_lo]
|
|
mov edx, [.sector_hi]
|
|
mov esi, [ecx+DISKCACHE.pointer]
|
|
mov ecx, [ecx+DISKCACHE.sad_size]
|
|
add esi, 12
|
|
|
|
mov edi, 1
|
|
|
|
.hdreadcache:
|
|
|
|
cmp dword [esi+8], 0 ; empty
|
|
je .nohdcache
|
|
|
|
cmp [esi], eax ; correct sector
|
|
jne .nohdcache
|
|
cmp [esi+4], edx ; correct sector
|
|
je .yeshdcache
|
|
|
|
.nohdcache:
|
|
|
|
add esi, 12
|
|
inc edi
|
|
dec ecx
|
|
jnz .hdreadcache
|
|
|
|
mov esi, [.cache]
|
|
call find_empty_slot64 ; ret in edi
|
|
test eax, eax
|
|
jnz .read_done
|
|
|
|
push 1
|
|
push esp
|
|
push edx
|
|
push [.sector_lo+12]
|
|
mov ecx, [.cache+16]
|
|
mov eax, edi
|
|
shl eax, 9
|
|
add eax, [ecx+DISKCACHE.data]
|
|
push eax
|
|
mov esi, [ebp+PARTITION.Disk]
|
|
mov al, DISKFUNC.read
|
|
call disk_call_driver
|
|
pop ecx
|
|
dec ecx
|
|
jnz .read_done
|
|
|
|
mov ecx, [.cache]
|
|
lea eax, [edi*3]
|
|
mov esi, [ecx+DISKCACHE.pointer]
|
|
lea esi, [eax*4+esi]
|
|
|
|
mov eax, [.sector_lo]
|
|
mov edx, [.sector_hi]
|
|
mov [esi], eax ; sector number
|
|
mov [esi+4], edx ; sector number
|
|
mov dword [esi+8], 1; hd read - mark as same as in hd
|
|
|
|
.yeshdcache:
|
|
|
|
mov esi, edi
|
|
mov ecx, [.cache]
|
|
shl esi, 9
|
|
add esi, [ecx+DISKCACHE.data]
|
|
|
|
mov edi, ebx
|
|
mov ecx, 512/4
|
|
rep movsd ; move data
|
|
xor eax, eax ; successful read
|
|
.read_done:
|
|
mov ecx, [.cache]
|
|
push eax
|
|
call mutex_unlock
|
|
pop eax
|
|
add esp, 12
|
|
pop edi esi edx ecx
|
|
ret
|
|
|
|
; This function is intended to replace the old 'hd_write' function when
|
|
; [hdd_appl_data] = 0, so its input/output parameters are the same, except
|
|
; that it can't use the global variables 'hd_error' and 'hdd_appl_data'.
|
|
; in: eax = sector, ebx = buffer, ebp = pointer to PARTITION structure
|
|
; eax is relative to partition start
|
|
; out: eax = error code; 0 = ok
|
|
fs_write32_sys:
|
|
; Compatibility hack: if PARTITION.Disk is 'old', there is no DISK structure,
|
|
; this request should be processed by hd_write.
|
|
cmp [ebp+PARTITION.Disk], 'old'
|
|
jnz @f
|
|
add eax, dword [ebp+PARTITION.FirstSector]
|
|
mov [hdd_appl_data], 0
|
|
call hd_write
|
|
mov [hdd_appl_data], 1 ; restore to default state
|
|
mov eax, [hd_error]
|
|
ret
|
|
@@:
|
|
; In the normal case, save ecx, set ecx to SysCache and let the common part
|
|
; do its work.
|
|
push ecx
|
|
mov ecx, [ebp+PARTITION.Disk]
|
|
add ecx, DISK.SysCache
|
|
jmp fs_write32_common
|
|
|
|
; This function is intended to replace the old 'hd_write' function when
|
|
; [hdd_appl_data] = 1, so its input/output parameters are the same, except
|
|
; that it can't use the global variables 'hd_error' and 'hdd_appl_data'.
|
|
; in: eax = sector, ebx = buffer, ebp = pointer to PARTITION structure
|
|
; eax is relative to partition start
|
|
; out: eax = error code; 0 = ok
|
|
fs_write32_app:
|
|
; Compatibility hack: if PARTITION.Disk is 'old', there is no DISK structure,
|
|
; this request should be processed by hd_write.
|
|
cmp [ebp+PARTITION.Disk], 'old'
|
|
jnz @f
|
|
add eax, dword [ebp+PARTITION.FirstSector]
|
|
mov [hdd_appl_data], 1
|
|
call hd_write
|
|
mov eax, [hd_error]
|
|
ret
|
|
@@:
|
|
; In the normal case, save ecx, set ecx to AppCache and let the common part
|
|
; do its work.
|
|
push ecx
|
|
mov ecx, [ebp+PARTITION.Disk]
|
|
add ecx, DISK.AppCache
|
|
|
|
; This label is the common part of fs_read32_sys and fs_read32_app.
|
|
fs_write32_common:
|
|
; 1. Check that the required sector is inside the partition. If no, return
|
|
; DISK_STATUS_END_OF_MEDIA.
|
|
cmp dword [ebp+PARTITION.Length+4], 0
|
|
jnz @f
|
|
cmp dword [ebp+PARTITION.Length], eax
|
|
ja @f
|
|
mov eax, DISK_STATUS_END_OF_MEDIA
|
|
pop ecx
|
|
ret
|
|
@@:
|
|
push edx esi
|
|
; 2. Get the absolute sector on the disk.
|
|
xor edx, edx
|
|
add eax, dword [ebp+PARTITION.FirstSector]
|
|
adc edx, dword [ebp+PARTITION.FirstSector+4]
|
|
; 3. If there is no cache for this disk, just pass request to the driver.
|
|
cmp [ecx+DISKCACHE.pointer], 0
|
|
jnz .scancache
|
|
push 1
|
|
push esp ; numsectors
|
|
push edx ; startsector
|
|
push eax ; startsector
|
|
push ebx ; buffer
|
|
mov esi, [ebp+PARTITION.Disk]
|
|
mov al, DISKFUNC.write
|
|
call disk_call_driver
|
|
pop ecx
|
|
pop esi edx
|
|
pop ecx
|
|
ret
|
|
.scancache:
|
|
; 4. Scan the cache.
|
|
push edi ecx ; scan cache
|
|
push edx eax
|
|
virtual at esp
|
|
.sector_lo dd ?
|
|
.sector_hi dd ?
|
|
.cache dd ?
|
|
end virtual
|
|
; The following code is inherited from hd_write. The differences are:
|
|
; all code is protected by the cache lock;
|
|
; sector is 64-bit, not 32-bit.
|
|
call mutex_lock
|
|
|
|
; check if the cache already has the sector and overwrite it
|
|
mov eax, [.sector_lo]
|
|
mov edx, [.sector_hi]
|
|
mov esi, [ecx+DISKCACHE.pointer]
|
|
mov ecx, [ecx+DISKCACHE.sad_size]
|
|
add esi, 12
|
|
|
|
mov edi, 1
|
|
|
|
.hdwritecache:
|
|
cmp dword [esi+8], 0 ; if cache slot is empty
|
|
je .not_in_cache_write
|
|
|
|
cmp [esi], eax ; if the slot has the sector
|
|
jne .not_in_cache_write
|
|
cmp [esi+4], edx ; if the slot has the sector
|
|
je .yes_in_cache_write
|
|
|
|
.not_in_cache_write:
|
|
|
|
add esi, 12
|
|
inc edi
|
|
dec ecx
|
|
jnz .hdwritecache
|
|
|
|
; sector not found in cache
|
|
; write the block to a new location
|
|
|
|
mov esi, [.cache]
|
|
call find_empty_slot64 ; ret in edi
|
|
test eax, eax
|
|
jne .hd_write_access_denied
|
|
|
|
mov ecx, [.cache]
|
|
lea eax, [edi*3]
|
|
mov esi, [ecx+DISKCACHE.pointer]
|
|
lea esi, [eax*4+esi]
|
|
|
|
mov eax, [.sector_lo]
|
|
mov edx, [.sector_hi]
|
|
mov [esi], eax ; sector number
|
|
mov [esi+4], edx ; sector number
|
|
|
|
.yes_in_cache_write:
|
|
|
|
mov dword [esi+8], 2 ; write - differs from hd
|
|
|
|
shl edi, 9
|
|
mov ecx, [.cache]
|
|
add edi, [ecx+DISKCACHE.data]
|
|
|
|
mov esi, ebx
|
|
mov ecx, 512/4
|
|
rep movsd ; move data
|
|
xor eax, eax ; success
|
|
.hd_write_access_denied:
|
|
mov ecx, [.cache]
|
|
push eax
|
|
call mutex_unlock
|
|
pop eax
|
|
add esp, 12
|
|
pop edi esi edx ecx
|
|
ret
|
|
|
|
; This internal function is called from fs_read32_* and fs_write32_*. It is the
|
|
; analogue of find_empty_slot for 64-bit sectors.
|
|
find_empty_slot64:
|
|
;-----------------------------------------------------------
|
|
; find empty or read slot, flush cache if next 12.5% is used by write
|
|
; output : edi = cache slot
|
|
;-----------------------------------------------------------
|
|
.search_again:
|
|
mov ecx, [esi+DISKCACHE.sad_size]
|
|
mov edi, [esi+DISKCACHE.search_start]
|
|
shr ecx, 3
|
|
.search_for_empty:
|
|
inc edi
|
|
cmp edi, [esi+DISKCACHE.sad_size]
|
|
jbe .inside_cache
|
|
mov edi, 1
|
|
.inside_cache:
|
|
lea eax, [edi*3]
|
|
shl eax, 2
|
|
add eax, [esi+DISKCACHE.pointer]
|
|
cmp dword [eax+8], 2
|
|
jb .found_slot ; it's empty or read
|
|
dec ecx
|
|
jnz .search_for_empty
|
|
stdcall write_cache64, [ebp+PARTITION.Disk] ; no empty slots found, write all
|
|
test eax, eax
|
|
jne .found_slot_access_denied
|
|
jmp .search_again ; and start again
|
|
.found_slot:
|
|
mov [esi+DISKCACHE.search_start], edi
|
|
xor eax, eax ; success
|
|
.found_slot_access_denied:
|
|
ret
|
|
|
|
; This function is intended to replace the old 'write_cache' function.
|
|
proc write_cache64 uses ecx edx esi edi, disk:dword
|
|
locals
|
|
cache_chain_started dd 0
|
|
cache_chain_size dd ?
|
|
cache_chain_pos dd ?
|
|
cache_chain_ptr dd ?
|
|
endl
|
|
saved_esi_pos = 16+12 ; size of local variables + size of registers before esi
|
|
; If there is no cache for this disk, nothing to do.
|
|
cmp [esi+DISKCACHE.pointer], 0
|
|
jz .flush
|
|
;-----------------------------------------------------------
|
|
; write all changed sectors to disk
|
|
;-----------------------------------------------------------
|
|
|
|
; write difference ( 2 ) from cache to DISK
|
|
mov ecx, [esi+DISKCACHE.sad_size]
|
|
mov esi, [esi+DISKCACHE.pointer]
|
|
add esi, 12
|
|
mov edi, 1
|
|
.write_cache_more:
|
|
cmp dword [esi+8], 2 ; if cache slot is not different
|
|
jne .write_chain
|
|
mov dword [esi+8], 1 ; same as in hd
|
|
mov eax, [esi]
|
|
mov edx, [esi+4] ; edx:eax = sector to write
|
|
; Объединяем запись цепочки последовательных секторов в одно обращение к диску
|
|
cmp ecx, 1
|
|
jz .nonext
|
|
cmp dword [esi+12+8], 2
|
|
jnz .nonext
|
|
push eax edx
|
|
add eax, 1
|
|
adc edx, 0
|
|
cmp eax, [esi+12]
|
|
jnz @f
|
|
cmp edx, [esi+12+4]
|
|
@@:
|
|
pop edx eax
|
|
jnz .nonext
|
|
cmp [cache_chain_started], 1
|
|
jz @f
|
|
mov [cache_chain_started], 1
|
|
mov [cache_chain_size], 0
|
|
mov [cache_chain_pos], edi
|
|
mov [cache_chain_ptr], esi
|
|
@@:
|
|
inc [cache_chain_size]
|
|
cmp [cache_chain_size], 16
|
|
jnz .continue
|
|
jmp .write_chain
|
|
.nonext:
|
|
call .flush_cache_chain
|
|
test eax, eax
|
|
jnz .nothing
|
|
mov [cache_chain_size], 1
|
|
mov [cache_chain_ptr], esi
|
|
call .write_cache_sector
|
|
test eax, eax
|
|
jnz .nothing
|
|
jmp .continue
|
|
.write_chain:
|
|
call .flush_cache_chain
|
|
test eax, eax
|
|
jnz .nothing
|
|
.continue:
|
|
add esi, 12
|
|
inc edi
|
|
dec ecx
|
|
jnz .write_cache_more
|
|
call .flush_cache_chain
|
|
test eax, eax
|
|
jnz .nothing
|
|
.flush:
|
|
mov esi, [disk]
|
|
mov al, DISKFUNC.flush
|
|
call disk_call_driver
|
|
.nothing:
|
|
ret
|
|
|
|
.flush_cache_chain:
|
|
xor eax, eax
|
|
cmp [cache_chain_started], eax
|
|
jz @f
|
|
call .write_cache_chain
|
|
mov [cache_chain_started], 0
|
|
@@:
|
|
retn
|
|
|
|
.write_cache_sector:
|
|
mov [cache_chain_size], 1
|
|
mov [cache_chain_pos], edi
|
|
.write_cache_chain:
|
|
pusha
|
|
mov edi, [cache_chain_pos]
|
|
mov ecx, [ebp-saved_esi_pos]
|
|
shl edi, 9
|
|
add edi, [ecx+DISKCACHE.data]
|
|
mov ecx, [cache_chain_size]
|
|
push ecx
|
|
push esp ; numsectors
|
|
mov eax, [cache_chain_ptr]
|
|
pushd [eax+4]
|
|
pushd [eax] ; startsector
|
|
push edi ; buffer
|
|
mov esi, [ebp]
|
|
mov esi, [esi+PARTITION.Disk]
|
|
mov al, DISKFUNC.write
|
|
call disk_call_driver
|
|
pop ecx
|
|
mov [esp+28], eax
|
|
popa
|
|
retn
|
|
endp
|
|
|
|
; This internal function is called from disk_add to initialize the caching for
|
|
; a new DISK.
|
|
; The algorithm is inherited from getcache.inc: take 1/32 part of the available
|
|
; physical memory, round down to 8 pages, limit by 128K from below and by 1M
|
|
; from above. Reserve 1/8 part of the cache for system data and 7/8 for app
|
|
; data.
|
|
; After the size is calculated, but before the cache is allocated, the device
|
|
; driver can adjust the size. In particular, setting size to zero disables
|
|
; caching: there is no sense in a cache for a ramdisk. In fact, such action
|
|
; is most useful example of a non-trivial adjustment.
|
|
; esi = pointer to DISK structure
|
|
disk_init_cache:
|
|
; 1. Calculate the suggested cache size.
|
|
; 1a. Get the size of free physical memory in pages.
|
|
mov eax, [pg_data.pages_free]
|
|
; 1b. Use the value to calculate the size.
|
|
shl eax, 12 - 5 ; 1/32 of it in bytes
|
|
and eax, -8*4096 ; round down to the multiple of 8 pages
|
|
; 1c. Force lower and upper limits.
|
|
cmp eax, 1024*1024
|
|
jb @f
|
|
mov eax, 1024*1024
|
|
@@:
|
|
cmp eax, 128*1024
|
|
ja @f
|
|
mov eax, 128*1024
|
|
@@:
|
|
; 1d. Give a chance to the driver to adjust the size.
|
|
push eax
|
|
mov al, DISKFUNC.adjust_cache_size
|
|
call disk_call_driver
|
|
; Cache size calculated.
|
|
mov [esi+DISK.cache_size], eax
|
|
test eax, eax
|
|
jz .nocache
|
|
; 2. Allocate memory for the cache.
|
|
; 2a. Call the allocator.
|
|
stdcall kernel_alloc, eax
|
|
test eax, eax
|
|
jnz @f
|
|
; 2b. If it failed, say a message and return with eax = 0.
|
|
dbgstr 'no memory for disk cache'
|
|
jmp .nothing
|
|
@@:
|
|
; 3. Fill two DISKCACHE structures.
|
|
mov [esi+DISK.SysCache.pointer], eax
|
|
lea ecx, [esi+DISK.SysCache.mutex]
|
|
call mutex_init
|
|
lea ecx, [esi+DISK.AppCache.mutex]
|
|
call mutex_init
|
|
; The following code is inherited from getcache.inc.
|
|
mov edx, [esi+DISK.SysCache.pointer]
|
|
and [esi+DISK.SysCache.search_start], 0
|
|
and [esi+DISK.AppCache.search_start], 0
|
|
mov eax, [esi+DISK.cache_size]
|
|
shr eax, 3
|
|
mov [esi+DISK.SysCache.data_size], eax
|
|
add edx, eax
|
|
imul eax, 7
|
|
mov [esi+DISK.AppCache.data_size], eax
|
|
mov [esi+DISK.AppCache.pointer], edx
|
|
|
|
mov eax, [esi+DISK.SysCache.data_size]
|
|
push ebx
|
|
call calculate_for_hd64
|
|
pop ebx
|
|
add eax, [esi+DISK.SysCache.pointer]
|
|
mov [esi+DISK.SysCache.data], eax
|
|
mov [esi+DISK.SysCache.sad_size], ecx
|
|
|
|
push edi
|
|
mov edi, [esi+DISK.SysCache.pointer]
|
|
lea ecx, [ecx*3]
|
|
xor eax, eax
|
|
rep stosd
|
|
pop edi
|
|
|
|
mov eax, [esi+DISK.AppCache.data_size]
|
|
push ebx
|
|
call calculate_for_hd64
|
|
pop ebx
|
|
add eax, [esi+DISK.AppCache.pointer]
|
|
mov [esi+DISK.AppCache.data], eax
|
|
mov [esi+DISK.AppCache.sad_size], ecx
|
|
|
|
push edi
|
|
mov edi, [esi+DISK.AppCache.pointer]
|
|
lea ecx, [ecx*3]
|
|
xor eax, eax
|
|
rep stosd
|
|
pop edi
|
|
|
|
; 4. Return with nonzero al.
|
|
mov al, 1
|
|
; 5. Return.
|
|
.nothing:
|
|
ret
|
|
; No caching is required for this driver. Zero cache pointers and return with
|
|
; nonzero al.
|
|
.nocache:
|
|
mov [esi+DISK.SysCache.pointer], eax
|
|
mov [esi+DISK.AppCache.pointer], eax
|
|
mov al, 1
|
|
ret
|
|
|
|
calculate_for_hd64:
|
|
push eax
|
|
mov ebx, eax
|
|
shr eax, 9
|
|
lea eax, [eax*3]
|
|
shl eax, 2
|
|
sub ebx, eax
|
|
shr ebx, 9
|
|
mov ecx, ebx
|
|
shl ebx, 9
|
|
pop eax
|
|
sub eax, ebx
|
|
dec ecx
|
|
ret
|
|
|
|
|
|
; This internal function is called from disk_media_dereference to free the
|
|
; allocated cache, if there is one.
|
|
; esi = pointer to DISK structure
|
|
disk_free_cache:
|
|
; The algorithm is straightforward.
|
|
mov eax, [esi+DISK.SysCache.pointer]
|
|
test eax, eax
|
|
jz .nothing
|
|
stdcall kernel_free, eax
|
|
.nothing:
|
|
ret
|
|
|
|
; This function flushes all modified data from both caches for the given DISK.
|
|
; esi = pointer to DISK
|
|
disk_sync:
|
|
; Compatibility hack: if PARTITION.Disk is 'old', there is no DISK structure,
|
|
; this request should be processed by write_cache.
|
|
cmp esi, 'old'
|
|
jnz @f
|
|
mov [hdd_appl_data], 0
|
|
call write_cache
|
|
mov [hdd_appl_data], 1
|
|
call write_cache
|
|
mov eax, [hd_error]
|
|
ret
|
|
@@:
|
|
; The algorithm is straightforward.
|
|
push esi
|
|
push esi ; for second write_cache64
|
|
push esi ; for first write_cache64
|
|
add esi, DISK.SysCache
|
|
call write_cache64
|
|
add esi, DISK.AppCache - DISK.SysCache
|
|
call write_cache64
|
|
pop esi
|
|
ret
|