9fd32b8cdf
git-svn-id: svn://kolibrios.org@1913 a494cfbc-eb01-0410-851d-a64ba20cac60
366 lines
7.6 KiB
C
366 lines
7.6 KiB
C
#include <math.h>
|
|
#ifndef M_E
|
|
#define M_E 2.7182818284590452354
|
|
#endif
|
|
#ifndef M_PI
|
|
#define M_PI 3.14159265358979323846
|
|
#endif
|
|
|
|
#include <errno.h>
|
|
|
|
/*
|
|
* template for tinypy math functions
|
|
* with one parameter.
|
|
*
|
|
* @cfunc is the coresponding function name in C
|
|
* math library.
|
|
*/
|
|
#define TP_MATH_FUNC1(cfunc) \
|
|
static tp_obj math_##cfunc(TP) { \
|
|
double x = TP_NUM(); \
|
|
double r = 0.0; \
|
|
\
|
|
errno = 0; \
|
|
r = cfunc(x); \
|
|
if (errno == EDOM || errno == ERANGE) { \
|
|
tp_raise(tp_None, "%s(x): x=%f, " \
|
|
"out of range", __func__, x); \
|
|
} \
|
|
\
|
|
return (tp_number(r)); \
|
|
}
|
|
|
|
/*
|
|
* template for tinypy math functions
|
|
* with two parameters.
|
|
*
|
|
* @cfunc is the coresponding function name in C
|
|
* math library.
|
|
*/
|
|
#define TP_MATH_FUNC2(cfunc) \
|
|
static tp_obj math_##cfunc(TP) { \
|
|
double x = TP_NUM(); \
|
|
double y = TP_NUM(); \
|
|
double r = 0.0; \
|
|
\
|
|
errno = 0; \
|
|
r = cfunc(x, y); \
|
|
if (errno == EDOM || errno == ERANGE) { \
|
|
tp_raise(tp_None, "%s(x, y): x=%f,y=%f " \
|
|
"out of range", __func__, x, y);\
|
|
} \
|
|
\
|
|
return (tp_number(r)); \
|
|
}
|
|
|
|
|
|
/*
|
|
* PI definition: 3.1415926535897931
|
|
*/
|
|
static tp_obj math_pi;
|
|
|
|
/*
|
|
* E definition: 2.7182818284590451
|
|
*/
|
|
static tp_obj math_e;
|
|
|
|
/*
|
|
* acos(x)
|
|
*
|
|
* return arc cosine of x, return value is measured in radians.
|
|
* if x falls out -1 to 1, raise out-of-range exception.
|
|
*/
|
|
TP_MATH_FUNC1(acos)
|
|
|
|
/*
|
|
* asin(x)
|
|
*
|
|
* return arc sine of x, measured in radians, actually [-PI/2, PI/2]
|
|
* if x falls out of -1 to 1, raise out-of-range exception
|
|
*/
|
|
TP_MATH_FUNC1(asin)
|
|
|
|
/*
|
|
* atan(x)
|
|
*
|
|
* return arc tangent of x, measured in radians,
|
|
*/
|
|
TP_MATH_FUNC1(atan)
|
|
|
|
/*
|
|
* atan2(x, y)
|
|
*
|
|
* return arc tangent of x/y, measured in radians.
|
|
* unlike atan(x/y), both the signs of x and y
|
|
* are considered to determine the quaderant of
|
|
* the result.
|
|
*/
|
|
TP_MATH_FUNC2(atan2)
|
|
|
|
/*
|
|
* ceil(x)
|
|
*
|
|
* return the ceiling of x, i.e, the smallest
|
|
* integer >= x.
|
|
*/
|
|
TP_MATH_FUNC1(ceil)
|
|
|
|
/*
|
|
* cos(x)
|
|
*
|
|
* return cosine of x. x is measured in radians.
|
|
*/
|
|
TP_MATH_FUNC1(cos)
|
|
|
|
/*
|
|
* cosh(x)
|
|
*
|
|
* return hyperbolic cosine of x.
|
|
*/
|
|
TP_MATH_FUNC1(cosh)
|
|
|
|
/*
|
|
* degrees(x)
|
|
*
|
|
* converts angle x from radians to degrees.
|
|
* NOTE: this function is introduced by python,
|
|
* so we cannot wrap it directly in TP_MATH_FUNC1(),
|
|
* here the solution is defining a new
|
|
* C function - degrees().
|
|
*/
|
|
static const double degToRad =
|
|
3.141592653589793238462643383 / 180.0;
|
|
static double degrees(double x)
|
|
{
|
|
return (x / degToRad);
|
|
}
|
|
|
|
TP_MATH_FUNC1(degrees)
|
|
|
|
/*
|
|
* exp(x)
|
|
*
|
|
* return the value e raised to power of x.
|
|
* e is the base of natural logarithms.
|
|
*/
|
|
TP_MATH_FUNC1(exp)
|
|
|
|
/*
|
|
* fabs(x)
|
|
*
|
|
* return the absolute value of x.
|
|
*/
|
|
TP_MATH_FUNC1(fabs)
|
|
|
|
/*
|
|
* floor(x)
|
|
*
|
|
* return the floor of x, i.e, the largest integer <= x
|
|
*/
|
|
TP_MATH_FUNC1(floor)
|
|
|
|
/*
|
|
* fmod(x, y)
|
|
*
|
|
* return the remainder of dividing x by y. that is,
|
|
* return x - n * y, where n is the quotient of x/y.
|
|
* NOTE: this function relies on the underlying platform.
|
|
*/
|
|
TP_MATH_FUNC2(fmod)
|
|
|
|
/*
|
|
* frexp(x)
|
|
*
|
|
* return a pair (r, y), which satisfies:
|
|
* x = r * (2 ** y), and r is normalized fraction
|
|
* which is laid between 1/2 <= abs(r) < 1.
|
|
* if x = 0, the (r, y) = (0, 0).
|
|
*/
|
|
static tp_obj math_frexp(TP) {
|
|
double x = TP_NUM();
|
|
int y = 0;
|
|
double r = 0.0;
|
|
tp_obj rList = tp_list(tp);
|
|
|
|
errno = 0;
|
|
r = frexp(x, &y);
|
|
if (errno == EDOM || errno == ERANGE) {
|
|
tp_raise(tp_None, "%s(x): x=%f, "
|
|
"out of range", __func__, x);
|
|
}
|
|
|
|
_tp_list_append(tp, rList.list.val, tp_number(r));
|
|
_tp_list_append(tp, rList.list.val, tp_number((tp_num)y));
|
|
return (rList);
|
|
}
|
|
|
|
|
|
/*
|
|
* hypot(x, y)
|
|
*
|
|
* return Euclidean distance, namely,
|
|
* sqrt(x*x + y*y)
|
|
*/
|
|
TP_MATH_FUNC2(hypot)
|
|
|
|
|
|
/*
|
|
* ldexp(x, y)
|
|
*
|
|
* return the result of multiplying x by 2
|
|
* raised to y.
|
|
*/
|
|
TP_MATH_FUNC2(ldexp)
|
|
|
|
/*
|
|
* log(x, [base])
|
|
*
|
|
* return logarithm of x to given base. If base is
|
|
* not given, return the natural logarithm of x.
|
|
* Note: common logarithm(log10) is used to compute
|
|
* the denominator and numerator. based on fomula:
|
|
* log(x, base) = log10(x) / log10(base).
|
|
*/
|
|
static tp_obj math_log(TP) {
|
|
double x = TP_NUM();
|
|
tp_obj b = TP_DEFAULT(tp_None);
|
|
double y = 0.0;
|
|
double den = 0.0; /* denominator */
|
|
double num = 0.0; /* numinator */
|
|
double r = 0.0; /* result */
|
|
|
|
if (b.type == TP_NONE)
|
|
y = M_E;
|
|
else if (b.type == TP_NUMBER)
|
|
y = (double)b.number.val;
|
|
else
|
|
tp_raise(tp_None, "%s(x, [base]): base invalid", __func__);
|
|
|
|
errno = 0;
|
|
num = log10(x);
|
|
if (errno == EDOM || errno == ERANGE)
|
|
goto excep;
|
|
|
|
errno = 0;
|
|
den = log10(y);
|
|
if (errno == EDOM || errno == ERANGE)
|
|
goto excep;
|
|
|
|
r = num / den;
|
|
|
|
return (tp_number(r));
|
|
|
|
excep:
|
|
tp_raise(tp_None, "%s(x, y): x=%f,y=%f "
|
|
"out of range", __func__, x, y);
|
|
}
|
|
|
|
/*
|
|
* log10(x)
|
|
*
|
|
* return 10-based logarithm of x.
|
|
*/
|
|
TP_MATH_FUNC1(log10)
|
|
|
|
/*
|
|
* modf(x)
|
|
*
|
|
* return a pair (r, y). r is the integral part of
|
|
* x and y is the fractional part of x, both holds
|
|
* the same sign as x.
|
|
*/
|
|
static tp_obj math_modf(TP) {
|
|
double x = TP_NUM();
|
|
double y = 0.0;
|
|
double r = 0.0;
|
|
tp_obj rList = tp_list(tp);
|
|
|
|
errno = 0;
|
|
r = modf(x, &y);
|
|
if (errno == EDOM || errno == ERANGE) {
|
|
tp_raise(tp_None, "%s(x): x=%f, "
|
|
"out of range", __func__, x);
|
|
}
|
|
|
|
_tp_list_append(tp, rList.list.val, tp_number(r));
|
|
_tp_list_append(tp, rList.list.val, tp_number(y));
|
|
return (rList);
|
|
}
|
|
|
|
/*
|
|
* pow(x, y)
|
|
*
|
|
* return value of x raised to y. equivalence of x ** y.
|
|
* NOTE: conventionally, tp_pow() is the implementation
|
|
* of builtin function pow(); whilst, math_pow() is an
|
|
* alternative in math module.
|
|
*/
|
|
static tp_obj math_pow(TP) {
|
|
double x = TP_NUM();
|
|
double y = TP_NUM();
|
|
double r = 0.0;
|
|
|
|
errno = 0;
|
|
r = pow(x, y);
|
|
if (errno == EDOM || errno == ERANGE) {
|
|
tp_raise(tp_None, "%s(x, y): x=%f,y=%f "
|
|
"out of range", __func__, x, y);
|
|
}
|
|
|
|
return (tp_number(r));
|
|
}
|
|
|
|
|
|
/*
|
|
* radians(x)
|
|
*
|
|
* converts angle x from degrees to radians.
|
|
* NOTE: this function is introduced by python,
|
|
* adopt same solution as degrees(x).
|
|
*/
|
|
static double radians(double x)
|
|
{
|
|
return (x * degToRad);
|
|
}
|
|
|
|
TP_MATH_FUNC1(radians)
|
|
|
|
/*
|
|
* sin(x)
|
|
*
|
|
* return sine of x, x is measured in radians.
|
|
*/
|
|
TP_MATH_FUNC1(sin)
|
|
|
|
/*
|
|
* sinh(x)
|
|
*
|
|
* return hyperbolic sine of x.
|
|
* mathematically, sinh(x) = (exp(x) - exp(-x)) / 2.
|
|
*/
|
|
TP_MATH_FUNC1(sinh)
|
|
|
|
/*
|
|
* sqrt(x)
|
|
*
|
|
* return square root of x.
|
|
* if x is negtive, raise out-of-range exception.
|
|
*/
|
|
TP_MATH_FUNC1(sqrt)
|
|
|
|
/*
|
|
* tan(x)
|
|
*
|
|
* return tangent of x, x is measured in radians.
|
|
*/
|
|
TP_MATH_FUNC1(tan)
|
|
|
|
/*
|
|
* tanh(x)
|
|
*
|
|
* return hyperbolic tangent of x.
|
|
* mathematically, tanh(x) = sinh(x) / cosh(x).
|
|
*/
|
|
TP_MATH_FUNC1(tanh)
|
|
|