b2cc525b46
git-svn-id: svn://kolibrios.org@3031 a494cfbc-eb01-0410-851d-a64ba20cac60
912 lines
26 KiB
C
912 lines
26 KiB
C
/*
|
|
* Copyright 2009 Jerome Glisse.
|
|
* All Rights Reserved.
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a
|
|
* copy of this software and associated documentation files (the
|
|
* "Software"), to deal in the Software without restriction, including
|
|
* without limitation the rights to use, copy, modify, merge, publish,
|
|
* distribute, sub license, and/or sell copies of the Software, and to
|
|
* permit persons to whom the Software is furnished to do so, subject to
|
|
* the following conditions:
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
|
|
* THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
|
|
* DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
|
|
* OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
|
|
* USE OR OTHER DEALINGS IN THE SOFTWARE.
|
|
*
|
|
* The above copyright notice and this permission notice (including the
|
|
* next paragraph) shall be included in all copies or substantial portions
|
|
* of the Software.
|
|
*
|
|
*/
|
|
/*
|
|
* Authors:
|
|
* Jerome Glisse <glisse@freedesktop.org>
|
|
* Dave Airlie
|
|
*/
|
|
#include <linux/seq_file.h>
|
|
#include <asm/atomic.h>
|
|
//#include <linux/wait.h>
|
|
#include <linux/list.h>
|
|
#include <linux/kref.h>
|
|
#include <linux/slab.h>
|
|
#include <drm/drmP.h>
|
|
#include "radeon_reg.h"
|
|
#include "radeon.h"
|
|
|
|
/*
|
|
* Fences
|
|
* Fences mark an event in the GPUs pipeline and are used
|
|
* for GPU/CPU synchronization. When the fence is written,
|
|
* it is expected that all buffers associated with that fence
|
|
* are no longer in use by the associated ring on the GPU and
|
|
* that the the relevant GPU caches have been flushed. Whether
|
|
* we use a scratch register or memory location depends on the asic
|
|
* and whether writeback is enabled.
|
|
*/
|
|
|
|
/**
|
|
* radeon_fence_write - write a fence value
|
|
*
|
|
* @rdev: radeon_device pointer
|
|
* @seq: sequence number to write
|
|
* @ring: ring index the fence is associated with
|
|
*
|
|
* Writes a fence value to memory or a scratch register (all asics).
|
|
*/
|
|
static void radeon_fence_write(struct radeon_device *rdev, u32 seq, int ring)
|
|
{
|
|
struct radeon_fence_driver *drv = &rdev->fence_drv[ring];
|
|
if (likely(rdev->wb.enabled || !drv->scratch_reg)) {
|
|
*drv->cpu_addr = cpu_to_le32(seq);
|
|
} else {
|
|
WREG32(drv->scratch_reg, seq);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* radeon_fence_read - read a fence value
|
|
*
|
|
* @rdev: radeon_device pointer
|
|
* @ring: ring index the fence is associated with
|
|
*
|
|
* Reads a fence value from memory or a scratch register (all asics).
|
|
* Returns the value of the fence read from memory or register.
|
|
*/
|
|
static u32 radeon_fence_read(struct radeon_device *rdev, int ring)
|
|
{
|
|
struct radeon_fence_driver *drv = &rdev->fence_drv[ring];
|
|
u32 seq = 0;
|
|
|
|
if (likely(rdev->wb.enabled || !drv->scratch_reg)) {
|
|
seq = le32_to_cpu(*drv->cpu_addr);
|
|
} else {
|
|
seq = RREG32(drv->scratch_reg);
|
|
}
|
|
return seq;
|
|
}
|
|
|
|
/**
|
|
* radeon_fence_emit - emit a fence on the requested ring
|
|
*
|
|
* @rdev: radeon_device pointer
|
|
* @fence: radeon fence object
|
|
* @ring: ring index the fence is associated with
|
|
*
|
|
* Emits a fence command on the requested ring (all asics).
|
|
* Returns 0 on success, -ENOMEM on failure.
|
|
*/
|
|
int radeon_fence_emit(struct radeon_device *rdev,
|
|
struct radeon_fence **fence,
|
|
int ring)
|
|
{
|
|
/* we are protected by the ring emission mutex */
|
|
*fence = kmalloc(sizeof(struct radeon_fence), GFP_KERNEL);
|
|
if ((*fence) == NULL) {
|
|
return -ENOMEM;
|
|
}
|
|
kref_init(&((*fence)->kref));
|
|
(*fence)->rdev = rdev;
|
|
(*fence)->seq = ++rdev->fence_drv[ring].sync_seq[ring];
|
|
(*fence)->ring = ring;
|
|
radeon_fence_ring_emit(rdev, ring, *fence);
|
|
// trace_radeon_fence_emit(rdev->ddev, (*fence)->seq);
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* radeon_fence_process - process a fence
|
|
*
|
|
* @rdev: radeon_device pointer
|
|
* @ring: ring index the fence is associated with
|
|
*
|
|
* Checks the current fence value and wakes the fence queue
|
|
* if the sequence number has increased (all asics).
|
|
*/
|
|
void radeon_fence_process(struct radeon_device *rdev, int ring)
|
|
{
|
|
uint64_t seq, last_seq, last_emitted;
|
|
unsigned count_loop = 0;
|
|
bool wake = false;
|
|
|
|
/* Note there is a scenario here for an infinite loop but it's
|
|
* very unlikely to happen. For it to happen, the current polling
|
|
* process need to be interrupted by another process and another
|
|
* process needs to update the last_seq btw the atomic read and
|
|
* xchg of the current process.
|
|
*
|
|
* More over for this to go in infinite loop there need to be
|
|
* continuously new fence signaled ie radeon_fence_read needs
|
|
* to return a different value each time for both the currently
|
|
* polling process and the other process that xchg the last_seq
|
|
* btw atomic read and xchg of the current process. And the
|
|
* value the other process set as last seq must be higher than
|
|
* the seq value we just read. Which means that current process
|
|
* need to be interrupted after radeon_fence_read and before
|
|
* atomic xchg.
|
|
*
|
|
* To be even more safe we count the number of time we loop and
|
|
* we bail after 10 loop just accepting the fact that we might
|
|
* have temporarly set the last_seq not to the true real last
|
|
* seq but to an older one.
|
|
*/
|
|
last_seq = atomic64_read(&rdev->fence_drv[ring].last_seq);
|
|
do {
|
|
last_emitted = rdev->fence_drv[ring].sync_seq[ring];
|
|
seq = radeon_fence_read(rdev, ring);
|
|
seq |= last_seq & 0xffffffff00000000LL;
|
|
if (seq < last_seq) {
|
|
seq &= 0xffffffff;
|
|
seq |= last_emitted & 0xffffffff00000000LL;
|
|
}
|
|
|
|
if (seq <= last_seq || seq > last_emitted) {
|
|
break;
|
|
}
|
|
/* If we loop over we don't want to return without
|
|
* checking if a fence is signaled as it means that the
|
|
* seq we just read is different from the previous on.
|
|
*/
|
|
wake = true;
|
|
last_seq = seq;
|
|
if ((count_loop++) > 10) {
|
|
/* We looped over too many time leave with the
|
|
* fact that we might have set an older fence
|
|
* seq then the current real last seq as signaled
|
|
* by the hw.
|
|
*/
|
|
break;
|
|
}
|
|
} while (atomic64_xchg(&rdev->fence_drv[ring].last_seq, seq) > seq);
|
|
|
|
if (wake) {
|
|
rdev->fence_drv[ring].last_activity = GetTimerTicks();
|
|
wake_up_all(&rdev->fence_queue);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* radeon_fence_destroy - destroy a fence
|
|
*
|
|
* @kref: fence kref
|
|
*
|
|
* Frees the fence object (all asics).
|
|
*/
|
|
static void radeon_fence_destroy(struct kref *kref)
|
|
{
|
|
struct radeon_fence *fence;
|
|
|
|
fence = container_of(kref, struct radeon_fence, kref);
|
|
kfree(fence);
|
|
}
|
|
|
|
/**
|
|
* radeon_fence_seq_signaled - check if a fence sequeuce number has signaled
|
|
*
|
|
* @rdev: radeon device pointer
|
|
* @seq: sequence number
|
|
* @ring: ring index the fence is associated with
|
|
*
|
|
* Check if the last singled fence sequnce number is >= the requested
|
|
* sequence number (all asics).
|
|
* Returns true if the fence has signaled (current fence value
|
|
* is >= requested value) or false if it has not (current fence
|
|
* value is < the requested value. Helper function for
|
|
* radeon_fence_signaled().
|
|
*/
|
|
static bool radeon_fence_seq_signaled(struct radeon_device *rdev,
|
|
u64 seq, unsigned ring)
|
|
{
|
|
if (atomic64_read(&rdev->fence_drv[ring].last_seq) >= seq) {
|
|
return true;
|
|
}
|
|
/* poll new last sequence at least once */
|
|
radeon_fence_process(rdev, ring);
|
|
if (atomic64_read(&rdev->fence_drv[ring].last_seq) >= seq) {
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/**
|
|
* radeon_fence_signaled - check if a fence has signaled
|
|
*
|
|
* @fence: radeon fence object
|
|
*
|
|
* Check if the requested fence has signaled (all asics).
|
|
* Returns true if the fence has signaled or false if it has not.
|
|
*/
|
|
bool radeon_fence_signaled(struct radeon_fence *fence)
|
|
{
|
|
if (!fence) {
|
|
return true;
|
|
}
|
|
if (fence->seq == RADEON_FENCE_SIGNALED_SEQ) {
|
|
return true;
|
|
}
|
|
if (radeon_fence_seq_signaled(fence->rdev, fence->seq, fence->ring)) {
|
|
fence->seq = RADEON_FENCE_SIGNALED_SEQ;
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/**
|
|
* radeon_fence_wait_seq - wait for a specific sequence number
|
|
*
|
|
* @rdev: radeon device pointer
|
|
* @target_seq: sequence number we want to wait for
|
|
* @ring: ring index the fence is associated with
|
|
* @intr: use interruptable sleep
|
|
* @lock_ring: whether the ring should be locked or not
|
|
*
|
|
* Wait for the requested sequence number to be written (all asics).
|
|
* @intr selects whether to use interruptable (true) or non-interruptable
|
|
* (false) sleep when waiting for the sequence number. Helper function
|
|
* for radeon_fence_wait(), et al.
|
|
* Returns 0 if the sequence number has passed, error for all other cases.
|
|
* -EDEADLK is returned when a GPU lockup has been detected and the ring is
|
|
* marked as not ready so no further jobs get scheduled until a successful
|
|
* reset.
|
|
*/
|
|
static int radeon_fence_wait_seq(struct radeon_device *rdev, u64 target_seq,
|
|
unsigned ring, bool intr, bool lock_ring)
|
|
{
|
|
unsigned long timeout, last_activity;
|
|
uint64_t seq;
|
|
unsigned i;
|
|
bool signaled;
|
|
int r;
|
|
|
|
while (target_seq > atomic64_read(&rdev->fence_drv[ring].last_seq)) {
|
|
if (!rdev->ring[ring].ready) {
|
|
return -EBUSY;
|
|
}
|
|
|
|
timeout = GetTimerTicks() - RADEON_FENCE_JIFFIES_TIMEOUT;
|
|
if (time_after(rdev->fence_drv[ring].last_activity, timeout)) {
|
|
/* the normal case, timeout is somewhere before last_activity */
|
|
timeout = rdev->fence_drv[ring].last_activity - timeout;
|
|
} else {
|
|
/* either jiffies wrapped around, or no fence was signaled in the last 500ms
|
|
* anyway we will just wait for the minimum amount and then check for a lockup
|
|
*/
|
|
timeout = 1;
|
|
}
|
|
seq = atomic64_read(&rdev->fence_drv[ring].last_seq);
|
|
/* Save current last activity valuee, used to check for GPU lockups */
|
|
last_activity = rdev->fence_drv[ring].last_activity;
|
|
|
|
// trace_radeon_fence_wait_begin(rdev->ddev, seq);
|
|
radeon_irq_kms_sw_irq_get(rdev, ring);
|
|
// if (intr) {
|
|
// r = wait_event_interruptible_timeout(rdev->fence_queue,
|
|
// (signaled = radeon_fence_seq_signaled(rdev, target_seq, ring)),
|
|
// timeout);
|
|
// } else {
|
|
// r = wait_event_timeout(rdev->fence_queue,
|
|
// (signaled = radeon_fence_seq_signaled(rdev, target_seq, ring)),
|
|
// timeout);
|
|
// }
|
|
delay(1);
|
|
|
|
radeon_irq_kms_sw_irq_put(rdev, ring);
|
|
// if (unlikely(r < 0)) {
|
|
// return r;
|
|
// }
|
|
// trace_radeon_fence_wait_end(rdev->ddev, seq);
|
|
|
|
if (unlikely(!signaled)) {
|
|
/* we were interrupted for some reason and fence
|
|
* isn't signaled yet, resume waiting */
|
|
if (r) {
|
|
continue;
|
|
}
|
|
|
|
/* check if sequence value has changed since last_activity */
|
|
if (seq != atomic64_read(&rdev->fence_drv[ring].last_seq)) {
|
|
continue;
|
|
}
|
|
|
|
if (lock_ring) {
|
|
mutex_lock(&rdev->ring_lock);
|
|
}
|
|
|
|
/* test if somebody else has already decided that this is a lockup */
|
|
if (last_activity != rdev->fence_drv[ring].last_activity) {
|
|
if (lock_ring) {
|
|
mutex_unlock(&rdev->ring_lock);
|
|
}
|
|
continue;
|
|
}
|
|
|
|
if (radeon_ring_is_lockup(rdev, ring, &rdev->ring[ring])) {
|
|
/* good news we believe it's a lockup */
|
|
dev_warn(rdev->dev, "GPU lockup (waiting for 0x%016llx last fence id 0x%016llx)\n",
|
|
target_seq, seq);
|
|
|
|
/* change last activity so nobody else think there is a lockup */
|
|
for (i = 0; i < RADEON_NUM_RINGS; ++i) {
|
|
rdev->fence_drv[i].last_activity = GetTimerTicks();
|
|
}
|
|
|
|
/* mark the ring as not ready any more */
|
|
rdev->ring[ring].ready = false;
|
|
if (lock_ring) {
|
|
mutex_unlock(&rdev->ring_lock);
|
|
}
|
|
return -EDEADLK;
|
|
}
|
|
|
|
if (lock_ring) {
|
|
mutex_unlock(&rdev->ring_lock);
|
|
}
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* radeon_fence_wait - wait for a fence to signal
|
|
*
|
|
* @fence: radeon fence object
|
|
* @intr: use interruptable sleep
|
|
*
|
|
* Wait for the requested fence to signal (all asics).
|
|
* @intr selects whether to use interruptable (true) or non-interruptable
|
|
* (false) sleep when waiting for the fence.
|
|
* Returns 0 if the fence has passed, error for all other cases.
|
|
*/
|
|
int radeon_fence_wait(struct radeon_fence *fence, bool intr)
|
|
{
|
|
int r;
|
|
|
|
if (fence == NULL) {
|
|
WARN(1, "Querying an invalid fence : %p !\n", fence);
|
|
return -EINVAL;
|
|
}
|
|
|
|
r = radeon_fence_wait_seq(fence->rdev, fence->seq,
|
|
fence->ring, intr, true);
|
|
if (r) {
|
|
return r;
|
|
}
|
|
fence->seq = RADEON_FENCE_SIGNALED_SEQ;
|
|
return 0;
|
|
}
|
|
|
|
static bool radeon_fence_any_seq_signaled(struct radeon_device *rdev, u64 *seq)
|
|
{
|
|
unsigned i;
|
|
|
|
for (i = 0; i < RADEON_NUM_RINGS; ++i) {
|
|
if (seq[i] && radeon_fence_seq_signaled(rdev, seq[i], i)) {
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/**
|
|
* radeon_fence_wait_any_seq - wait for a sequence number on any ring
|
|
*
|
|
* @rdev: radeon device pointer
|
|
* @target_seq: sequence number(s) we want to wait for
|
|
* @intr: use interruptable sleep
|
|
*
|
|
* Wait for the requested sequence number(s) to be written by any ring
|
|
* (all asics). Sequnce number array is indexed by ring id.
|
|
* @intr selects whether to use interruptable (true) or non-interruptable
|
|
* (false) sleep when waiting for the sequence number. Helper function
|
|
* for radeon_fence_wait_any(), et al.
|
|
* Returns 0 if the sequence number has passed, error for all other cases.
|
|
*/
|
|
static int radeon_fence_wait_any_seq(struct radeon_device *rdev,
|
|
u64 *target_seq, bool intr)
|
|
{
|
|
unsigned long timeout, last_activity, tmp;
|
|
unsigned i, ring = RADEON_NUM_RINGS;
|
|
bool signaled;
|
|
int r;
|
|
|
|
for (i = 0, last_activity = 0; i < RADEON_NUM_RINGS; ++i) {
|
|
if (!target_seq[i]) {
|
|
continue;
|
|
}
|
|
|
|
/* use the most recent one as indicator */
|
|
if (time_after(rdev->fence_drv[i].last_activity, last_activity)) {
|
|
last_activity = rdev->fence_drv[i].last_activity;
|
|
}
|
|
|
|
/* For lockup detection just pick the lowest ring we are
|
|
* actively waiting for
|
|
*/
|
|
if (i < ring) {
|
|
ring = i;
|
|
}
|
|
}
|
|
|
|
/* nothing to wait for ? */
|
|
if (ring == RADEON_NUM_RINGS) {
|
|
return -ENOENT;
|
|
}
|
|
|
|
while (!radeon_fence_any_seq_signaled(rdev, target_seq)) {
|
|
timeout = GetTimerTicks() - RADEON_FENCE_JIFFIES_TIMEOUT;
|
|
if (time_after(last_activity, timeout)) {
|
|
/* the normal case, timeout is somewhere before last_activity */
|
|
timeout = last_activity - timeout;
|
|
} else {
|
|
/* either jiffies wrapped around, or no fence was signaled in the last 500ms
|
|
* anyway we will just wait for the minimum amount and then check for a lockup
|
|
*/
|
|
timeout = 1;
|
|
}
|
|
|
|
// trace_radeon_fence_wait_begin(rdev->ddev, target_seq[ring]);
|
|
for (i = 0; i < RADEON_NUM_RINGS; ++i) {
|
|
if (target_seq[i]) {
|
|
radeon_irq_kms_sw_irq_get(rdev, i);
|
|
}
|
|
}
|
|
|
|
// WaitEvent(fence->evnt);
|
|
|
|
r = 1;
|
|
|
|
for (i = 0; i < RADEON_NUM_RINGS; ++i) {
|
|
if (target_seq[i]) {
|
|
radeon_irq_kms_sw_irq_put(rdev, i);
|
|
}
|
|
}
|
|
if (unlikely(r < 0)) {
|
|
return r;
|
|
}
|
|
// trace_radeon_fence_wait_end(rdev->ddev, seq);
|
|
|
|
if (unlikely(!signaled)) {
|
|
/* we were interrupted for some reason and fence
|
|
* isn't signaled yet, resume waiting */
|
|
if (r) {
|
|
continue;
|
|
}
|
|
|
|
mutex_lock(&rdev->ring_lock);
|
|
for (i = 0, tmp = 0; i < RADEON_NUM_RINGS; ++i) {
|
|
if (time_after(rdev->fence_drv[i].last_activity, tmp)) {
|
|
tmp = rdev->fence_drv[i].last_activity;
|
|
}
|
|
}
|
|
/* test if somebody else has already decided that this is a lockup */
|
|
if (last_activity != tmp) {
|
|
last_activity = tmp;
|
|
mutex_unlock(&rdev->ring_lock);
|
|
continue;
|
|
}
|
|
|
|
if (radeon_ring_is_lockup(rdev, ring, &rdev->ring[ring])) {
|
|
/* good news we believe it's a lockup */
|
|
dev_warn(rdev->dev, "GPU lockup (waiting for 0x%016llx)\n",
|
|
target_seq[ring]);
|
|
|
|
/* change last activity so nobody else think there is a lockup */
|
|
for (i = 0; i < RADEON_NUM_RINGS; ++i) {
|
|
rdev->fence_drv[i].last_activity = GetTimerTicks();
|
|
}
|
|
|
|
/* mark the ring as not ready any more */
|
|
rdev->ring[ring].ready = false;
|
|
mutex_unlock(&rdev->ring_lock);
|
|
return -EDEADLK;
|
|
}
|
|
mutex_unlock(&rdev->ring_lock);
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* radeon_fence_wait_any - wait for a fence to signal on any ring
|
|
*
|
|
* @rdev: radeon device pointer
|
|
* @fences: radeon fence object(s)
|
|
* @intr: use interruptable sleep
|
|
*
|
|
* Wait for any requested fence to signal (all asics). Fence
|
|
* array is indexed by ring id. @intr selects whether to use
|
|
* interruptable (true) or non-interruptable (false) sleep when
|
|
* waiting for the fences. Used by the suballocator.
|
|
* Returns 0 if any fence has passed, error for all other cases.
|
|
*/
|
|
int radeon_fence_wait_any(struct radeon_device *rdev,
|
|
struct radeon_fence **fences,
|
|
bool intr)
|
|
{
|
|
uint64_t seq[RADEON_NUM_RINGS];
|
|
unsigned i;
|
|
int r;
|
|
|
|
for (i = 0; i < RADEON_NUM_RINGS; ++i) {
|
|
seq[i] = 0;
|
|
|
|
if (!fences[i]) {
|
|
continue;
|
|
}
|
|
|
|
if (fences[i]->seq == RADEON_FENCE_SIGNALED_SEQ) {
|
|
/* something was allready signaled */
|
|
return 0;
|
|
}
|
|
|
|
seq[i] = fences[i]->seq;
|
|
}
|
|
|
|
r = radeon_fence_wait_any_seq(rdev, seq, intr);
|
|
if (r) {
|
|
return r;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* radeon_fence_wait_next_locked - wait for the next fence to signal
|
|
*
|
|
* @rdev: radeon device pointer
|
|
* @ring: ring index the fence is associated with
|
|
*
|
|
* Wait for the next fence on the requested ring to signal (all asics).
|
|
* Returns 0 if the next fence has passed, error for all other cases.
|
|
* Caller must hold ring lock.
|
|
*/
|
|
int radeon_fence_wait_next_locked(struct radeon_device *rdev, int ring)
|
|
{
|
|
uint64_t seq;
|
|
|
|
seq = atomic64_read(&rdev->fence_drv[ring].last_seq) + 1ULL;
|
|
if (seq >= rdev->fence_drv[ring].sync_seq[ring]) {
|
|
/* nothing to wait for, last_seq is
|
|
already the last emited fence */
|
|
return -ENOENT;
|
|
}
|
|
return radeon_fence_wait_seq(rdev, seq, ring, false, false);
|
|
}
|
|
|
|
/**
|
|
* radeon_fence_wait_empty_locked - wait for all fences to signal
|
|
*
|
|
* @rdev: radeon device pointer
|
|
* @ring: ring index the fence is associated with
|
|
*
|
|
* Wait for all fences on the requested ring to signal (all asics).
|
|
* Returns 0 if the fences have passed, error for all other cases.
|
|
* Caller must hold ring lock.
|
|
*/
|
|
void radeon_fence_wait_empty_locked(struct radeon_device *rdev, int ring)
|
|
{
|
|
uint64_t seq = rdev->fence_drv[ring].sync_seq[ring];
|
|
|
|
while(1) {
|
|
int r;
|
|
r = radeon_fence_wait_seq(rdev, seq, ring, false, false);
|
|
if (r == -EDEADLK) {
|
|
mutex_unlock(&rdev->ring_lock);
|
|
r = radeon_gpu_reset(rdev);
|
|
mutex_lock(&rdev->ring_lock);
|
|
if (!r)
|
|
continue;
|
|
}
|
|
if (r) {
|
|
dev_err(rdev->dev, "error waiting for ring to become"
|
|
" idle (%d)\n", r);
|
|
}
|
|
return;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* radeon_fence_ref - take a ref on a fence
|
|
*
|
|
* @fence: radeon fence object
|
|
*
|
|
* Take a reference on a fence (all asics).
|
|
* Returns the fence.
|
|
*/
|
|
struct radeon_fence *radeon_fence_ref(struct radeon_fence *fence)
|
|
{
|
|
kref_get(&fence->kref);
|
|
return fence;
|
|
}
|
|
|
|
/**
|
|
* radeon_fence_unref - remove a ref on a fence
|
|
*
|
|
* @fence: radeon fence object
|
|
*
|
|
* Remove a reference on a fence (all asics).
|
|
*/
|
|
void radeon_fence_unref(struct radeon_fence **fence)
|
|
{
|
|
struct radeon_fence *tmp = *fence;
|
|
|
|
*fence = NULL;
|
|
if (tmp) {
|
|
kref_put(&tmp->kref, radeon_fence_destroy);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* radeon_fence_count_emitted - get the count of emitted fences
|
|
*
|
|
* @rdev: radeon device pointer
|
|
* @ring: ring index the fence is associated with
|
|
*
|
|
* Get the number of fences emitted on the requested ring (all asics).
|
|
* Returns the number of emitted fences on the ring. Used by the
|
|
* dynpm code to ring track activity.
|
|
*/
|
|
unsigned radeon_fence_count_emitted(struct radeon_device *rdev, int ring)
|
|
{
|
|
uint64_t emitted;
|
|
|
|
/* We are not protected by ring lock when reading the last sequence
|
|
* but it's ok to report slightly wrong fence count here.
|
|
*/
|
|
radeon_fence_process(rdev, ring);
|
|
emitted = rdev->fence_drv[ring].sync_seq[ring]
|
|
- atomic64_read(&rdev->fence_drv[ring].last_seq);
|
|
/* to avoid 32bits warp around */
|
|
if (emitted > 0x10000000) {
|
|
emitted = 0x10000000;
|
|
}
|
|
return (unsigned)emitted;
|
|
}
|
|
|
|
/**
|
|
* radeon_fence_need_sync - do we need a semaphore
|
|
*
|
|
* @fence: radeon fence object
|
|
* @dst_ring: which ring to check against
|
|
*
|
|
* Check if the fence needs to be synced against another ring
|
|
* (all asics). If so, we need to emit a semaphore.
|
|
* Returns true if we need to sync with another ring, false if
|
|
* not.
|
|
*/
|
|
bool radeon_fence_need_sync(struct radeon_fence *fence, int dst_ring)
|
|
{
|
|
struct radeon_fence_driver *fdrv;
|
|
|
|
if (!fence) {
|
|
return false;
|
|
}
|
|
|
|
if (fence->ring == dst_ring) {
|
|
return false;
|
|
}
|
|
|
|
/* we are protected by the ring mutex */
|
|
fdrv = &fence->rdev->fence_drv[dst_ring];
|
|
if (fence->seq <= fdrv->sync_seq[fence->ring]) {
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/**
|
|
* radeon_fence_note_sync - record the sync point
|
|
*
|
|
* @fence: radeon fence object
|
|
* @dst_ring: which ring to check against
|
|
*
|
|
* Note the sequence number at which point the fence will
|
|
* be synced with the requested ring (all asics).
|
|
*/
|
|
void radeon_fence_note_sync(struct radeon_fence *fence, int dst_ring)
|
|
{
|
|
struct radeon_fence_driver *dst, *src;
|
|
unsigned i;
|
|
|
|
if (!fence) {
|
|
return;
|
|
}
|
|
|
|
if (fence->ring == dst_ring) {
|
|
return;
|
|
}
|
|
|
|
/* we are protected by the ring mutex */
|
|
src = &fence->rdev->fence_drv[fence->ring];
|
|
dst = &fence->rdev->fence_drv[dst_ring];
|
|
for (i = 0; i < RADEON_NUM_RINGS; ++i) {
|
|
if (i == dst_ring) {
|
|
continue;
|
|
}
|
|
dst->sync_seq[i] = max(dst->sync_seq[i], src->sync_seq[i]);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* radeon_fence_driver_start_ring - make the fence driver
|
|
* ready for use on the requested ring.
|
|
*
|
|
* @rdev: radeon device pointer
|
|
* @ring: ring index to start the fence driver on
|
|
*
|
|
* Make the fence driver ready for processing (all asics).
|
|
* Not all asics have all rings, so each asic will only
|
|
* start the fence driver on the rings it has.
|
|
* Returns 0 for success, errors for failure.
|
|
*/
|
|
int radeon_fence_driver_start_ring(struct radeon_device *rdev, int ring)
|
|
{
|
|
uint64_t index;
|
|
int r;
|
|
|
|
radeon_scratch_free(rdev, rdev->fence_drv[ring].scratch_reg);
|
|
if (rdev->wb.use_event) {
|
|
rdev->fence_drv[ring].scratch_reg = 0;
|
|
index = R600_WB_EVENT_OFFSET + ring * 4;
|
|
} else {
|
|
r = radeon_scratch_get(rdev, &rdev->fence_drv[ring].scratch_reg);
|
|
if (r) {
|
|
dev_err(rdev->dev, "fence failed to get scratch register\n");
|
|
return r;
|
|
}
|
|
index = RADEON_WB_SCRATCH_OFFSET +
|
|
rdev->fence_drv[ring].scratch_reg -
|
|
rdev->scratch.reg_base;
|
|
}
|
|
rdev->fence_drv[ring].cpu_addr = &rdev->wb.wb[index/4];
|
|
rdev->fence_drv[ring].gpu_addr = rdev->wb.gpu_addr + index;
|
|
radeon_fence_write(rdev, atomic64_read(&rdev->fence_drv[ring].last_seq), ring);
|
|
rdev->fence_drv[ring].initialized = true;
|
|
dev_info(rdev->dev, "fence driver on ring %d use gpu addr 0x%016llx and cpu addr 0x%p\n",
|
|
ring, rdev->fence_drv[ring].gpu_addr, rdev->fence_drv[ring].cpu_addr);
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* radeon_fence_driver_init_ring - init the fence driver
|
|
* for the requested ring.
|
|
*
|
|
* @rdev: radeon device pointer
|
|
* @ring: ring index to start the fence driver on
|
|
*
|
|
* Init the fence driver for the requested ring (all asics).
|
|
* Helper function for radeon_fence_driver_init().
|
|
*/
|
|
static void radeon_fence_driver_init_ring(struct radeon_device *rdev, int ring)
|
|
{
|
|
int i;
|
|
|
|
rdev->fence_drv[ring].scratch_reg = -1;
|
|
rdev->fence_drv[ring].cpu_addr = NULL;
|
|
rdev->fence_drv[ring].gpu_addr = 0;
|
|
for (i = 0; i < RADEON_NUM_RINGS; ++i)
|
|
rdev->fence_drv[ring].sync_seq[i] = 0;
|
|
atomic64_set(&rdev->fence_drv[ring].last_seq, 0);
|
|
rdev->fence_drv[ring].last_activity = GetTimerTicks();
|
|
rdev->fence_drv[ring].initialized = false;
|
|
}
|
|
|
|
/**
|
|
* radeon_fence_driver_init - init the fence driver
|
|
* for all possible rings.
|
|
*
|
|
* @rdev: radeon device pointer
|
|
*
|
|
* Init the fence driver for all possible rings (all asics).
|
|
* Not all asics have all rings, so each asic will only
|
|
* start the fence driver on the rings it has using
|
|
* radeon_fence_driver_start_ring().
|
|
* Returns 0 for success.
|
|
*/
|
|
int radeon_fence_driver_init(struct radeon_device *rdev)
|
|
{
|
|
int ring;
|
|
|
|
init_waitqueue_head(&rdev->fence_queue);
|
|
for (ring = 0; ring < RADEON_NUM_RINGS; ring++) {
|
|
radeon_fence_driver_init_ring(rdev, ring);
|
|
}
|
|
if (radeon_debugfs_fence_init(rdev)) {
|
|
dev_err(rdev->dev, "fence debugfs file creation failed\n");
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* radeon_fence_driver_fini - tear down the fence driver
|
|
* for all possible rings.
|
|
*
|
|
* @rdev: radeon device pointer
|
|
*
|
|
* Tear down the fence driver for all possible rings (all asics).
|
|
*/
|
|
void radeon_fence_driver_fini(struct radeon_device *rdev)
|
|
{
|
|
int ring;
|
|
|
|
mutex_lock(&rdev->ring_lock);
|
|
for (ring = 0; ring < RADEON_NUM_RINGS; ring++) {
|
|
if (!rdev->fence_drv[ring].initialized)
|
|
continue;
|
|
radeon_fence_wait_empty_locked(rdev, ring);
|
|
wake_up_all(&rdev->fence_queue);
|
|
radeon_scratch_free(rdev, rdev->fence_drv[ring].scratch_reg);
|
|
rdev->fence_drv[ring].initialized = false;
|
|
}
|
|
mutex_unlock(&rdev->ring_lock);
|
|
}
|
|
|
|
|
|
/*
|
|
* Fence debugfs
|
|
*/
|
|
#if defined(CONFIG_DEBUG_FS)
|
|
static int radeon_debugfs_fence_info(struct seq_file *m, void *data)
|
|
{
|
|
struct drm_info_node *node = (struct drm_info_node *)m->private;
|
|
struct drm_device *dev = node->minor->dev;
|
|
struct radeon_device *rdev = dev->dev_private;
|
|
int i, j;
|
|
|
|
for (i = 0; i < RADEON_NUM_RINGS; ++i) {
|
|
if (!rdev->fence_drv[i].initialized)
|
|
continue;
|
|
|
|
seq_printf(m, "--- ring %d ---\n", i);
|
|
seq_printf(m, "Last signaled fence 0x%016llx\n",
|
|
(unsigned long long)atomic64_read(&rdev->fence_drv[i].last_seq));
|
|
seq_printf(m, "Last emitted 0x%016llx\n",
|
|
rdev->fence_drv[i].sync_seq[i]);
|
|
|
|
for (j = 0; j < RADEON_NUM_RINGS; ++j) {
|
|
if (i != j && rdev->fence_drv[j].initialized)
|
|
seq_printf(m, "Last sync to ring %d 0x%016llx\n",
|
|
j, rdev->fence_drv[i].sync_seq[j]);
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static struct drm_info_list radeon_debugfs_fence_list[] = {
|
|
{"radeon_fence_info", &radeon_debugfs_fence_info, 0, NULL},
|
|
};
|
|
#endif
|
|
|
|
int radeon_debugfs_fence_init(struct radeon_device *rdev)
|
|
{
|
|
#if defined(CONFIG_DEBUG_FS)
|
|
return radeon_debugfs_add_files(rdev, radeon_debugfs_fence_list, 1);
|
|
#else
|
|
return 0;
|
|
#endif
|
|
}
|