05a05aaf23
git-svn-id: svn://kolibrios.org@8035 a494cfbc-eb01-0410-851d-a64ba20cac60
12100 lines
495 KiB
C
12100 lines
495 KiB
C
/*
|
|
FLAC audio decoder. Choice of public domain or MIT-0. See license statements at the end of this file.
|
|
dr_flac - v0.12.13 - 2020-05-16
|
|
|
|
David Reid - mackron@gmail.com
|
|
|
|
GitHub: https://github.com/mackron/dr_libs
|
|
*/
|
|
|
|
/*
|
|
RELEASE NOTES - v0.12.0
|
|
=======================
|
|
Version 0.12.0 has breaking API changes including changes to the existing API and the removal of deprecated APIs.
|
|
|
|
|
|
Improved Client-Defined Memory Allocation
|
|
-----------------------------------------
|
|
The main change with this release is the addition of a more flexible way of implementing custom memory allocation routines. The
|
|
existing system of DRFLAC_MALLOC, DRFLAC_REALLOC and DRFLAC_FREE are still in place and will be used by default when no custom
|
|
allocation callbacks are specified.
|
|
|
|
To use the new system, you pass in a pointer to a drflac_allocation_callbacks object to drflac_open() and family, like this:
|
|
|
|
void* my_malloc(size_t sz, void* pUserData)
|
|
{
|
|
return malloc(sz);
|
|
}
|
|
void* my_realloc(void* p, size_t sz, void* pUserData)
|
|
{
|
|
return realloc(p, sz);
|
|
}
|
|
void my_free(void* p, void* pUserData)
|
|
{
|
|
free(p);
|
|
}
|
|
|
|
...
|
|
|
|
drflac_allocation_callbacks allocationCallbacks;
|
|
allocationCallbacks.pUserData = &myData;
|
|
allocationCallbacks.onMalloc = my_malloc;
|
|
allocationCallbacks.onRealloc = my_realloc;
|
|
allocationCallbacks.onFree = my_free;
|
|
drflac* pFlac = drflac_open_file("my_file.flac", &allocationCallbacks);
|
|
|
|
The advantage of this new system is that it allows you to specify user data which will be passed in to the allocation routines.
|
|
|
|
Passing in null for the allocation callbacks object will cause dr_flac to use defaults which is the same as DRFLAC_MALLOC,
|
|
DRFLAC_REALLOC and DRFLAC_FREE and the equivalent of how it worked in previous versions.
|
|
|
|
Every API that opens a drflac object now takes this extra parameter. These include the following:
|
|
|
|
drflac_open()
|
|
drflac_open_relaxed()
|
|
drflac_open_with_metadata()
|
|
drflac_open_with_metadata_relaxed()
|
|
drflac_open_file()
|
|
drflac_open_file_with_metadata()
|
|
drflac_open_memory()
|
|
drflac_open_memory_with_metadata()
|
|
drflac_open_and_read_pcm_frames_s32()
|
|
drflac_open_and_read_pcm_frames_s16()
|
|
drflac_open_and_read_pcm_frames_f32()
|
|
drflac_open_file_and_read_pcm_frames_s32()
|
|
drflac_open_file_and_read_pcm_frames_s16()
|
|
drflac_open_file_and_read_pcm_frames_f32()
|
|
drflac_open_memory_and_read_pcm_frames_s32()
|
|
drflac_open_memory_and_read_pcm_frames_s16()
|
|
drflac_open_memory_and_read_pcm_frames_f32()
|
|
|
|
|
|
|
|
Optimizations
|
|
-------------
|
|
Seeking performance has been greatly improved. A new binary search based seeking algorithm has been introduced which significantly
|
|
improves performance over the brute force method which was used when no seek table was present. Seek table based seeking also takes
|
|
advantage of the new binary search seeking system to further improve performance there as well. Note that this depends on CRC which
|
|
means it will be disabled when DR_FLAC_NO_CRC is used.
|
|
|
|
The SSE4.1 pipeline has been cleaned up and optimized. You should see some improvements with decoding speed of 24-bit files in
|
|
particular. 16-bit streams should also see some improvement.
|
|
|
|
drflac_read_pcm_frames_s16() has been optimized. Previously this sat on top of drflac_read_pcm_frames_s32() and performed it's s32
|
|
to s16 conversion in a second pass. This is now all done in a single pass. This includes SSE2 and ARM NEON optimized paths.
|
|
|
|
A minor optimization has been implemented for drflac_read_pcm_frames_s32(). This will now use an SSE2 optimized pipeline for stereo
|
|
channel reconstruction which is the last part of the decoding process.
|
|
|
|
The ARM build has seen a few improvements. The CLZ (count leading zeroes) and REV (byte swap) instructions are now used when
|
|
compiling with GCC and Clang which is achieved using inline assembly. The CLZ instruction requires ARM architecture version 5 at
|
|
compile time and the REV instruction requires ARM architecture version 6.
|
|
|
|
An ARM NEON optimized pipeline has been implemented. To enable this you'll need to add -mfpu=neon to the command line when compiling.
|
|
|
|
|
|
Removed APIs
|
|
------------
|
|
The following APIs were deprecated in version 0.11.0 and have been completely removed in version 0.12.0:
|
|
|
|
drflac_read_s32() -> drflac_read_pcm_frames_s32()
|
|
drflac_read_s16() -> drflac_read_pcm_frames_s16()
|
|
drflac_read_f32() -> drflac_read_pcm_frames_f32()
|
|
drflac_seek_to_sample() -> drflac_seek_to_pcm_frame()
|
|
drflac_open_and_decode_s32() -> drflac_open_and_read_pcm_frames_s32()
|
|
drflac_open_and_decode_s16() -> drflac_open_and_read_pcm_frames_s16()
|
|
drflac_open_and_decode_f32() -> drflac_open_and_read_pcm_frames_f32()
|
|
drflac_open_and_decode_file_s32() -> drflac_open_file_and_read_pcm_frames_s32()
|
|
drflac_open_and_decode_file_s16() -> drflac_open_file_and_read_pcm_frames_s16()
|
|
drflac_open_and_decode_file_f32() -> drflac_open_file_and_read_pcm_frames_f32()
|
|
drflac_open_and_decode_memory_s32() -> drflac_open_memory_and_read_pcm_frames_s32()
|
|
drflac_open_and_decode_memory_s16() -> drflac_open_memory_and_read_pcm_frames_s16()
|
|
drflac_open_and_decode_memory_f32() -> drflac_open_memroy_and_read_pcm_frames_f32()
|
|
|
|
Prior versions of dr_flac operated on a per-sample basis whereas now it operates on PCM frames. The removed APIs all relate
|
|
to the old per-sample APIs. You now need to use the "pcm_frame" versions.
|
|
*/
|
|
|
|
|
|
/*
|
|
Introduction
|
|
============
|
|
dr_flac is a single file library. To use it, do something like the following in one .c file.
|
|
|
|
```c
|
|
#define DR_FLAC_IMPLEMENTATION
|
|
#include "dr_flac.h"
|
|
```
|
|
|
|
You can then #include this file in other parts of the program as you would with any other header file. To decode audio data, do something like the following:
|
|
|
|
```c
|
|
drflac* pFlac = drflac_open_file("MySong.flac", NULL);
|
|
if (pFlac == NULL) {
|
|
// Failed to open FLAC file
|
|
}
|
|
|
|
drflac_int32* pSamples = malloc(pFlac->totalPCMFrameCount * pFlac->channels * sizeof(drflac_int32));
|
|
drflac_uint64 numberOfInterleavedSamplesActuallyRead = drflac_read_pcm_frames_s32(pFlac, pFlac->totalPCMFrameCount, pSamples);
|
|
```
|
|
|
|
The drflac object represents the decoder. It is a transparent type so all the information you need, such as the number of channels and the bits per sample,
|
|
should be directly accessible - just make sure you don't change their values. Samples are always output as interleaved signed 32-bit PCM. In the example above
|
|
a native FLAC stream was opened, however dr_flac has seamless support for Ogg encapsulated FLAC streams as well.
|
|
|
|
You do not need to decode the entire stream in one go - you just specify how many samples you'd like at any given time and the decoder will give you as many
|
|
samples as it can, up to the amount requested. Later on when you need the next batch of samples, just call it again. Example:
|
|
|
|
```c
|
|
while (drflac_read_pcm_frames_s32(pFlac, chunkSizeInPCMFrames, pChunkSamples) > 0) {
|
|
do_something();
|
|
}
|
|
```
|
|
|
|
You can seek to a specific PCM frame with `drflac_seek_to_pcm_frame()`.
|
|
|
|
If you just want to quickly decode an entire FLAC file in one go you can do something like this:
|
|
|
|
```c
|
|
unsigned int channels;
|
|
unsigned int sampleRate;
|
|
drflac_uint64 totalPCMFrameCount;
|
|
drflac_int32* pSampleData = drflac_open_file_and_read_pcm_frames_s32("MySong.flac", &channels, &sampleRate, &totalPCMFrameCount, NULL);
|
|
if (pSampleData == NULL) {
|
|
// Failed to open and decode FLAC file.
|
|
}
|
|
|
|
...
|
|
|
|
drflac_free(pSampleData);
|
|
```
|
|
|
|
You can read samples as signed 16-bit integer and 32-bit floating-point PCM with the *_s16() and *_f32() family of APIs respectively, but note that these
|
|
should be considered lossy.
|
|
|
|
|
|
If you need access to metadata (album art, etc.), use `drflac_open_with_metadata()`, `drflac_open_file_with_metdata()` or `drflac_open_memory_with_metadata()`.
|
|
The rationale for keeping these APIs separate is that they're slightly slower than the normal versions and also just a little bit harder to use. dr_flac
|
|
reports metadata to the application through the use of a callback, and every metadata block is reported before `drflac_open_with_metdata()` returns.
|
|
|
|
The main opening APIs (`drflac_open()`, etc.) will fail if the header is not present. The presents a problem in certain scenarios such as broadcast style
|
|
streams or internet radio where the header may not be present because the user has started playback mid-stream. To handle this, use the relaxed APIs:
|
|
|
|
`drflac_open_relaxed()`
|
|
`drflac_open_with_metadata_relaxed()`
|
|
|
|
It is not recommended to use these APIs for file based streams because a missing header would usually indicate a corrupt or perverse file. In addition, these
|
|
APIs can take a long time to initialize because they may need to spend a lot of time finding the first frame.
|
|
|
|
|
|
|
|
Build Options
|
|
=============
|
|
#define these options before including this file.
|
|
|
|
#define DR_FLAC_NO_STDIO
|
|
Disable `drflac_open_file()` and family.
|
|
|
|
#define DR_FLAC_NO_OGG
|
|
Disables support for Ogg/FLAC streams.
|
|
|
|
#define DR_FLAC_BUFFER_SIZE <number>
|
|
Defines the size of the internal buffer to store data from onRead(). This buffer is used to reduce the number of calls back to the client for more data.
|
|
Larger values means more memory, but better performance. My tests show diminishing returns after about 4KB (which is the default). Consider reducing this if
|
|
you have a very efficient implementation of onRead(), or increase it if it's very inefficient. Must be a multiple of 8.
|
|
|
|
#define DR_FLAC_NO_CRC
|
|
Disables CRC checks. This will offer a performance boost when CRC is unnecessary. This will disable binary search seeking. When seeking, the seek table will
|
|
be used if available. Otherwise the seek will be performed using brute force.
|
|
|
|
#define DR_FLAC_NO_SIMD
|
|
Disables SIMD optimizations (SSE on x86/x64 architectures, NEON on ARM architectures). Use this if you are having compatibility issues with your compiler.
|
|
|
|
|
|
|
|
Notes
|
|
=====
|
|
- dr_flac does not support changing the sample rate nor channel count mid stream.
|
|
- dr_flac is not thread-safe, but its APIs can be called from any thread so long as you do your own synchronization.
|
|
- When using Ogg encapsulation, a corrupted metadata block will result in `drflac_open_with_metadata()` and `drflac_open()` returning inconsistent samples due
|
|
to differences in corrupted stream recorvery logic between the two APIs.
|
|
*/
|
|
|
|
#ifndef dr_flac_h
|
|
#define dr_flac_h
|
|
|
|
#ifdef __cplusplus
|
|
extern "C" {
|
|
#endif
|
|
|
|
#define DRFLAC_STRINGIFY(x) #x
|
|
#define DRFLAC_XSTRINGIFY(x) DRFLAC_STRINGIFY(x)
|
|
|
|
#define DRFLAC_VERSION_MAJOR 0
|
|
#define DRFLAC_VERSION_MINOR 12
|
|
#define DRFLAC_VERSION_REVISION 13
|
|
#define DRFLAC_VERSION_STRING DRFLAC_XSTRINGIFY(DRFLAC_VERSION_MAJOR) "." DRFLAC_XSTRINGIFY(DRFLAC_VERSION_MINOR) "." DRFLAC_XSTRINGIFY(DRFLAC_VERSION_REVISION)
|
|
|
|
#include <stddef.h> /* For size_t. */
|
|
|
|
/* Sized types. Prefer built-in types. Fall back to stdint. */
|
|
#ifdef _MSC_VER
|
|
#if defined(__clang__)
|
|
#pragma GCC diagnostic push
|
|
#pragma GCC diagnostic ignored "-Wlanguage-extension-token"
|
|
#pragma GCC diagnostic ignored "-Wlong-long"
|
|
#pragma GCC diagnostic ignored "-Wc++11-long-long"
|
|
#endif
|
|
typedef signed __int8 drflac_int8;
|
|
typedef unsigned __int8 drflac_uint8;
|
|
typedef signed __int16 drflac_int16;
|
|
typedef unsigned __int16 drflac_uint16;
|
|
typedef signed __int32 drflac_int32;
|
|
typedef unsigned __int32 drflac_uint32;
|
|
typedef signed __int64 drflac_int64;
|
|
typedef unsigned __int64 drflac_uint64;
|
|
#if defined(__clang__)
|
|
#pragma GCC diagnostic pop
|
|
#endif
|
|
#else
|
|
#include <stdint.h>
|
|
typedef int8_t drflac_int8;
|
|
typedef uint8_t drflac_uint8;
|
|
typedef int16_t drflac_int16;
|
|
typedef uint16_t drflac_uint16;
|
|
typedef int32_t drflac_int32;
|
|
typedef uint32_t drflac_uint32;
|
|
typedef int64_t drflac_int64;
|
|
typedef uint64_t drflac_uint64;
|
|
#endif
|
|
typedef drflac_uint8 drflac_bool8;
|
|
typedef drflac_uint32 drflac_bool32;
|
|
#define DRFLAC_TRUE 1
|
|
#define DRFLAC_FALSE 0
|
|
|
|
#if !defined(DRFLAC_API)
|
|
#if defined(DRFLAC_DLL)
|
|
#if defined(_WIN32)
|
|
#define DRFLAC_DLL_IMPORT __declspec(dllimport)
|
|
#define DRFLAC_DLL_EXPORT __declspec(dllexport)
|
|
#define DRFLAC_DLL_PRIVATE static
|
|
#else
|
|
#if defined(__GNUC__) && __GNUC__ >= 4
|
|
#define DRFLAC_DLL_IMPORT __attribute__((visibility("default")))
|
|
#define DRFLAC_DLL_EXPORT __attribute__((visibility("default")))
|
|
#define DRFLAC_DLL_PRIVATE __attribute__((visibility("hidden")))
|
|
#else
|
|
#define DRFLAC_DLL_IMPORT
|
|
#define DRFLAC_DLL_EXPORT
|
|
#define DRFLAC_DLL_PRIVATE static
|
|
#endif
|
|
#endif
|
|
|
|
#if defined(DR_FLAC_IMPLEMENTATION) || defined(DRFLAC_IMPLEMENTATION)
|
|
#define DRFLAC_API DRFLAC_DLL_EXPORT
|
|
#else
|
|
#define DRFLAC_API DRFLAC_DLL_IMPORT
|
|
#endif
|
|
#define DRFLAC_PRIVATE DRFLAC_DLL_PRIVATE
|
|
#else
|
|
#define DRFLAC_API extern
|
|
#define DRFLAC_PRIVATE static
|
|
#endif
|
|
#endif
|
|
|
|
#if defined(_MSC_VER) && _MSC_VER >= 1700 /* Visual Studio 2012 */
|
|
#define DRFLAC_DEPRECATED __declspec(deprecated)
|
|
#elif (defined(__GNUC__) && __GNUC__ >= 4) /* GCC 4 */
|
|
#define DRFLAC_DEPRECATED __attribute__((deprecated))
|
|
#elif defined(__has_feature) /* Clang */
|
|
#if __has_feature(attribute_deprecated)
|
|
#define DRFLAC_DEPRECATED __attribute__((deprecated))
|
|
#else
|
|
#define DRFLAC_DEPRECATED
|
|
#endif
|
|
#else
|
|
#define DRFLAC_DEPRECATED
|
|
#endif
|
|
|
|
DRFLAC_API void drflac_version(drflac_uint32* pMajor, drflac_uint32* pMinor, drflac_uint32* pRevision);
|
|
DRFLAC_API const char* drflac_version_string();
|
|
|
|
/*
|
|
As data is read from the client it is placed into an internal buffer for fast access. This controls the size of that buffer. Larger values means more speed,
|
|
but also more memory. In my testing there is diminishing returns after about 4KB, but you can fiddle with this to suit your own needs. Must be a multiple of 8.
|
|
*/
|
|
#ifndef DR_FLAC_BUFFER_SIZE
|
|
#define DR_FLAC_BUFFER_SIZE 4096
|
|
#endif
|
|
|
|
/* Check if we can enable 64-bit optimizations. */
|
|
#if defined(_WIN64) || defined(_LP64) || defined(__LP64__)
|
|
#define DRFLAC_64BIT
|
|
#endif
|
|
|
|
#ifdef DRFLAC_64BIT
|
|
typedef drflac_uint64 drflac_cache_t;
|
|
#else
|
|
typedef drflac_uint32 drflac_cache_t;
|
|
#endif
|
|
|
|
/* The various metadata block types. */
|
|
#define DRFLAC_METADATA_BLOCK_TYPE_STREAMINFO 0
|
|
#define DRFLAC_METADATA_BLOCK_TYPE_PADDING 1
|
|
#define DRFLAC_METADATA_BLOCK_TYPE_APPLICATION 2
|
|
#define DRFLAC_METADATA_BLOCK_TYPE_SEEKTABLE 3
|
|
#define DRFLAC_METADATA_BLOCK_TYPE_VORBIS_COMMENT 4
|
|
#define DRFLAC_METADATA_BLOCK_TYPE_CUESHEET 5
|
|
#define DRFLAC_METADATA_BLOCK_TYPE_PICTURE 6
|
|
#define DRFLAC_METADATA_BLOCK_TYPE_INVALID 127
|
|
|
|
/* The various picture types specified in the PICTURE block. */
|
|
#define DRFLAC_PICTURE_TYPE_OTHER 0
|
|
#define DRFLAC_PICTURE_TYPE_FILE_ICON 1
|
|
#define DRFLAC_PICTURE_TYPE_OTHER_FILE_ICON 2
|
|
#define DRFLAC_PICTURE_TYPE_COVER_FRONT 3
|
|
#define DRFLAC_PICTURE_TYPE_COVER_BACK 4
|
|
#define DRFLAC_PICTURE_TYPE_LEAFLET_PAGE 5
|
|
#define DRFLAC_PICTURE_TYPE_MEDIA 6
|
|
#define DRFLAC_PICTURE_TYPE_LEAD_ARTIST 7
|
|
#define DRFLAC_PICTURE_TYPE_ARTIST 8
|
|
#define DRFLAC_PICTURE_TYPE_CONDUCTOR 9
|
|
#define DRFLAC_PICTURE_TYPE_BAND 10
|
|
#define DRFLAC_PICTURE_TYPE_COMPOSER 11
|
|
#define DRFLAC_PICTURE_TYPE_LYRICIST 12
|
|
#define DRFLAC_PICTURE_TYPE_RECORDING_LOCATION 13
|
|
#define DRFLAC_PICTURE_TYPE_DURING_RECORDING 14
|
|
#define DRFLAC_PICTURE_TYPE_DURING_PERFORMANCE 15
|
|
#define DRFLAC_PICTURE_TYPE_SCREEN_CAPTURE 16
|
|
#define DRFLAC_PICTURE_TYPE_BRIGHT_COLORED_FISH 17
|
|
#define DRFLAC_PICTURE_TYPE_ILLUSTRATION 18
|
|
#define DRFLAC_PICTURE_TYPE_BAND_LOGOTYPE 19
|
|
#define DRFLAC_PICTURE_TYPE_PUBLISHER_LOGOTYPE 20
|
|
|
|
typedef enum
|
|
{
|
|
drflac_container_native,
|
|
drflac_container_ogg,
|
|
drflac_container_unknown
|
|
} drflac_container;
|
|
|
|
typedef enum
|
|
{
|
|
drflac_seek_origin_start,
|
|
drflac_seek_origin_current
|
|
} drflac_seek_origin;
|
|
|
|
/* Packing is important on this structure because we map this directly to the raw data within the SEEKTABLE metadata block. */
|
|
#pragma pack(2)
|
|
typedef struct
|
|
{
|
|
drflac_uint64 firstPCMFrame;
|
|
drflac_uint64 flacFrameOffset; /* The offset from the first byte of the header of the first frame. */
|
|
drflac_uint16 pcmFrameCount;
|
|
} drflac_seekpoint;
|
|
#pragma pack()
|
|
|
|
typedef struct
|
|
{
|
|
drflac_uint16 minBlockSizeInPCMFrames;
|
|
drflac_uint16 maxBlockSizeInPCMFrames;
|
|
drflac_uint32 minFrameSizeInPCMFrames;
|
|
drflac_uint32 maxFrameSizeInPCMFrames;
|
|
drflac_uint32 sampleRate;
|
|
drflac_uint8 channels;
|
|
drflac_uint8 bitsPerSample;
|
|
drflac_uint64 totalPCMFrameCount;
|
|
drflac_uint8 md5[16];
|
|
} drflac_streaminfo;
|
|
|
|
typedef struct
|
|
{
|
|
/* The metadata type. Use this to know how to interpret the data below. */
|
|
drflac_uint32 type;
|
|
|
|
/*
|
|
A pointer to the raw data. This points to a temporary buffer so don't hold on to it. It's best to
|
|
not modify the contents of this buffer. Use the structures below for more meaningful and structured
|
|
information about the metadata. It's possible for this to be null.
|
|
*/
|
|
const void* pRawData;
|
|
|
|
/* The size in bytes of the block and the buffer pointed to by pRawData if it's non-NULL. */
|
|
drflac_uint32 rawDataSize;
|
|
|
|
union
|
|
{
|
|
drflac_streaminfo streaminfo;
|
|
|
|
struct
|
|
{
|
|
int unused;
|
|
} padding;
|
|
|
|
struct
|
|
{
|
|
drflac_uint32 id;
|
|
const void* pData;
|
|
drflac_uint32 dataSize;
|
|
} application;
|
|
|
|
struct
|
|
{
|
|
drflac_uint32 seekpointCount;
|
|
const drflac_seekpoint* pSeekpoints;
|
|
} seektable;
|
|
|
|
struct
|
|
{
|
|
drflac_uint32 vendorLength;
|
|
const char* vendor;
|
|
drflac_uint32 commentCount;
|
|
const void* pComments;
|
|
} vorbis_comment;
|
|
|
|
struct
|
|
{
|
|
char catalog[128];
|
|
drflac_uint64 leadInSampleCount;
|
|
drflac_bool32 isCD;
|
|
drflac_uint8 trackCount;
|
|
const void* pTrackData;
|
|
} cuesheet;
|
|
|
|
struct
|
|
{
|
|
drflac_uint32 type;
|
|
drflac_uint32 mimeLength;
|
|
const char* mime;
|
|
drflac_uint32 descriptionLength;
|
|
const char* description;
|
|
drflac_uint32 width;
|
|
drflac_uint32 height;
|
|
drflac_uint32 colorDepth;
|
|
drflac_uint32 indexColorCount;
|
|
drflac_uint32 pictureDataSize;
|
|
const drflac_uint8* pPictureData;
|
|
} picture;
|
|
} data;
|
|
} drflac_metadata;
|
|
|
|
|
|
/*
|
|
Callback for when data needs to be read from the client.
|
|
|
|
|
|
Parameters
|
|
----------
|
|
pUserData (in)
|
|
The user data that was passed to drflac_open() and family.
|
|
|
|
pBufferOut (out)
|
|
The output buffer.
|
|
|
|
bytesToRead (in)
|
|
The number of bytes to read.
|
|
|
|
|
|
Return Value
|
|
------------
|
|
The number of bytes actually read.
|
|
|
|
|
|
Remarks
|
|
-------
|
|
A return value of less than bytesToRead indicates the end of the stream. Do _not_ return from this callback until either the entire bytesToRead is filled or
|
|
you have reached the end of the stream.
|
|
*/
|
|
typedef size_t (* drflac_read_proc)(void* pUserData, void* pBufferOut, size_t bytesToRead);
|
|
|
|
/*
|
|
Callback for when data needs to be seeked.
|
|
|
|
|
|
Parameters
|
|
----------
|
|
pUserData (in)
|
|
The user data that was passed to drflac_open() and family.
|
|
|
|
offset (in)
|
|
The number of bytes to move, relative to the origin. Will never be negative.
|
|
|
|
origin (in)
|
|
The origin of the seek - the current position or the start of the stream.
|
|
|
|
|
|
Return Value
|
|
------------
|
|
Whether or not the seek was successful.
|
|
|
|
|
|
Remarks
|
|
-------
|
|
The offset will never be negative. Whether or not it is relative to the beginning or current position is determined by the "origin" parameter which will be
|
|
either drflac_seek_origin_start or drflac_seek_origin_current.
|
|
|
|
When seeking to a PCM frame using drflac_seek_to_pcm_frame(), dr_flac may call this with an offset beyond the end of the FLAC stream. This needs to be detected
|
|
and handled by returning DRFLAC_FALSE.
|
|
*/
|
|
typedef drflac_bool32 (* drflac_seek_proc)(void* pUserData, int offset, drflac_seek_origin origin);
|
|
|
|
/*
|
|
Callback for when a metadata block is read.
|
|
|
|
|
|
Parameters
|
|
----------
|
|
pUserData (in)
|
|
The user data that was passed to drflac_open() and family.
|
|
|
|
pMetadata (in)
|
|
A pointer to a structure containing the data of the metadata block.
|
|
|
|
|
|
Remarks
|
|
-------
|
|
Use pMetadata->type to determine which metadata block is being handled and how to read the data.
|
|
*/
|
|
typedef void (* drflac_meta_proc)(void* pUserData, drflac_metadata* pMetadata);
|
|
|
|
|
|
typedef struct
|
|
{
|
|
void* pUserData;
|
|
void* (* onMalloc)(size_t sz, void* pUserData);
|
|
void* (* onRealloc)(void* p, size_t sz, void* pUserData);
|
|
void (* onFree)(void* p, void* pUserData);
|
|
} drflac_allocation_callbacks;
|
|
|
|
/* Structure for internal use. Only used for decoders opened with drflac_open_memory. */
|
|
typedef struct
|
|
{
|
|
const drflac_uint8* data;
|
|
size_t dataSize;
|
|
size_t currentReadPos;
|
|
} drflac__memory_stream;
|
|
|
|
/* Structure for internal use. Used for bit streaming. */
|
|
typedef struct
|
|
{
|
|
/* The function to call when more data needs to be read. */
|
|
drflac_read_proc onRead;
|
|
|
|
/* The function to call when the current read position needs to be moved. */
|
|
drflac_seek_proc onSeek;
|
|
|
|
/* The user data to pass around to onRead and onSeek. */
|
|
void* pUserData;
|
|
|
|
|
|
/*
|
|
The number of unaligned bytes in the L2 cache. This will always be 0 until the end of the stream is hit. At the end of the
|
|
stream there will be a number of bytes that don't cleanly fit in an L1 cache line, so we use this variable to know whether
|
|
or not the bistreamer needs to run on a slower path to read those last bytes. This will never be more than sizeof(drflac_cache_t).
|
|
*/
|
|
size_t unalignedByteCount;
|
|
|
|
/* The content of the unaligned bytes. */
|
|
drflac_cache_t unalignedCache;
|
|
|
|
/* The index of the next valid cache line in the "L2" cache. */
|
|
drflac_uint32 nextL2Line;
|
|
|
|
/* The number of bits that have been consumed by the cache. This is used to determine how many valid bits are remaining. */
|
|
drflac_uint32 consumedBits;
|
|
|
|
/*
|
|
The cached data which was most recently read from the client. There are two levels of cache. Data flows as such:
|
|
Client -> L2 -> L1. The L2 -> L1 movement is aligned and runs on a fast path in just a few instructions.
|
|
*/
|
|
drflac_cache_t cacheL2[DR_FLAC_BUFFER_SIZE/sizeof(drflac_cache_t)];
|
|
drflac_cache_t cache;
|
|
|
|
/*
|
|
CRC-16. This is updated whenever bits are read from the bit stream. Manually set this to 0 to reset the CRC. For FLAC, this
|
|
is reset to 0 at the beginning of each frame.
|
|
*/
|
|
drflac_uint16 crc16;
|
|
drflac_cache_t crc16Cache; /* A cache for optimizing CRC calculations. This is filled when when the L1 cache is reloaded. */
|
|
drflac_uint32 crc16CacheIgnoredBytes; /* The number of bytes to ignore when updating the CRC-16 from the CRC-16 cache. */
|
|
} drflac_bs;
|
|
|
|
typedef struct
|
|
{
|
|
/* The type of the subframe: SUBFRAME_CONSTANT, SUBFRAME_VERBATIM, SUBFRAME_FIXED or SUBFRAME_LPC. */
|
|
drflac_uint8 subframeType;
|
|
|
|
/* The number of wasted bits per sample as specified by the sub-frame header. */
|
|
drflac_uint8 wastedBitsPerSample;
|
|
|
|
/* The order to use for the prediction stage for SUBFRAME_FIXED and SUBFRAME_LPC. */
|
|
drflac_uint8 lpcOrder;
|
|
|
|
/* A pointer to the buffer containing the decoded samples in the subframe. This pointer is an offset from drflac::pExtraData. */
|
|
drflac_int32* pSamplesS32;
|
|
} drflac_subframe;
|
|
|
|
typedef struct
|
|
{
|
|
/*
|
|
If the stream uses variable block sizes, this will be set to the index of the first PCM frame. If fixed block sizes are used, this will
|
|
always be set to 0. This is 64-bit because the decoded PCM frame number will be 36 bits.
|
|
*/
|
|
drflac_uint64 pcmFrameNumber;
|
|
|
|
/*
|
|
If the stream uses fixed block sizes, this will be set to the frame number. If variable block sizes are used, this will always be 0. This
|
|
is 32-bit because in fixed block sizes, the maximum frame number will be 31 bits.
|
|
*/
|
|
drflac_uint32 flacFrameNumber;
|
|
|
|
/* The sample rate of this frame. */
|
|
drflac_uint32 sampleRate;
|
|
|
|
/* The number of PCM frames in each sub-frame within this frame. */
|
|
drflac_uint16 blockSizeInPCMFrames;
|
|
|
|
/*
|
|
The channel assignment of this frame. This is not always set to the channel count. If interchannel decorrelation is being used this
|
|
will be set to DRFLAC_CHANNEL_ASSIGNMENT_LEFT_SIDE, DRFLAC_CHANNEL_ASSIGNMENT_RIGHT_SIDE or DRFLAC_CHANNEL_ASSIGNMENT_MID_SIDE.
|
|
*/
|
|
drflac_uint8 channelAssignment;
|
|
|
|
/* The number of bits per sample within this frame. */
|
|
drflac_uint8 bitsPerSample;
|
|
|
|
/* The frame's CRC. */
|
|
drflac_uint8 crc8;
|
|
} drflac_frame_header;
|
|
|
|
typedef struct
|
|
{
|
|
/* The header. */
|
|
drflac_frame_header header;
|
|
|
|
/*
|
|
The number of PCM frames left to be read in this FLAC frame. This is initially set to the block size. As PCM frames are read,
|
|
this will be decremented. When it reaches 0, the decoder will see this frame as fully consumed and load the next frame.
|
|
*/
|
|
drflac_uint32 pcmFramesRemaining;
|
|
|
|
/* The list of sub-frames within the frame. There is one sub-frame for each channel, and there's a maximum of 8 channels. */
|
|
drflac_subframe subframes[8];
|
|
} drflac_frame;
|
|
|
|
typedef struct
|
|
{
|
|
/* The function to call when a metadata block is read. */
|
|
drflac_meta_proc onMeta;
|
|
|
|
/* The user data posted to the metadata callback function. */
|
|
void* pUserDataMD;
|
|
|
|
/* Memory allocation callbacks. */
|
|
drflac_allocation_callbacks allocationCallbacks;
|
|
|
|
|
|
/* The sample rate. Will be set to something like 44100. */
|
|
drflac_uint32 sampleRate;
|
|
|
|
/*
|
|
The number of channels. This will be set to 1 for monaural streams, 2 for stereo, etc. Maximum 8. This is set based on the
|
|
value specified in the STREAMINFO block.
|
|
*/
|
|
drflac_uint8 channels;
|
|
|
|
/* The bits per sample. Will be set to something like 16, 24, etc. */
|
|
drflac_uint8 bitsPerSample;
|
|
|
|
/* The maximum block size, in samples. This number represents the number of samples in each channel (not combined). */
|
|
drflac_uint16 maxBlockSizeInPCMFrames;
|
|
|
|
/*
|
|
The total number of PCM Frames making up the stream. Can be 0 in which case it's still a valid stream, but just means
|
|
the total PCM frame count is unknown. Likely the case with streams like internet radio.
|
|
*/
|
|
drflac_uint64 totalPCMFrameCount;
|
|
|
|
|
|
/* The container type. This is set based on whether or not the decoder was opened from a native or Ogg stream. */
|
|
drflac_container container;
|
|
|
|
/* The number of seekpoints in the seektable. */
|
|
drflac_uint32 seekpointCount;
|
|
|
|
|
|
/* Information about the frame the decoder is currently sitting on. */
|
|
drflac_frame currentFLACFrame;
|
|
|
|
|
|
/* The index of the PCM frame the decoder is currently sitting on. This is only used for seeking. */
|
|
drflac_uint64 currentPCMFrame;
|
|
|
|
/* The position of the first FLAC frame in the stream. This is only ever used for seeking. */
|
|
drflac_uint64 firstFLACFramePosInBytes;
|
|
|
|
|
|
/* A hack to avoid a malloc() when opening a decoder with drflac_open_memory(). */
|
|
drflac__memory_stream memoryStream;
|
|
|
|
|
|
/* A pointer to the decoded sample data. This is an offset of pExtraData. */
|
|
drflac_int32* pDecodedSamples;
|
|
|
|
/* A pointer to the seek table. This is an offset of pExtraData, or NULL if there is no seek table. */
|
|
drflac_seekpoint* pSeekpoints;
|
|
|
|
/* Internal use only. Only used with Ogg containers. Points to a drflac_oggbs object. This is an offset of pExtraData. */
|
|
void* _oggbs;
|
|
|
|
/* Internal use only. Used for profiling and testing different seeking modes. */
|
|
drflac_bool32 _noSeekTableSeek : 1;
|
|
drflac_bool32 _noBinarySearchSeek : 1;
|
|
drflac_bool32 _noBruteForceSeek : 1;
|
|
|
|
/* The bit streamer. The raw FLAC data is fed through this object. */
|
|
drflac_bs bs;
|
|
|
|
/* Variable length extra data. We attach this to the end of the object so we can avoid unnecessary mallocs. */
|
|
drflac_uint8 pExtraData[1];
|
|
} drflac;
|
|
|
|
|
|
/*
|
|
Opens a FLAC decoder.
|
|
|
|
|
|
Parameters
|
|
----------
|
|
onRead (in)
|
|
The function to call when data needs to be read from the client.
|
|
|
|
onSeek (in)
|
|
The function to call when the read position of the client data needs to move.
|
|
|
|
pUserData (in, optional)
|
|
A pointer to application defined data that will be passed to onRead and onSeek.
|
|
|
|
pAllocationCallbacks (in, optional)
|
|
A pointer to application defined callbacks for managing memory allocations.
|
|
|
|
|
|
Return Value
|
|
------------
|
|
Returns a pointer to an object representing the decoder.
|
|
|
|
|
|
Remarks
|
|
-------
|
|
Close the decoder with `drflac_close()`.
|
|
|
|
`pAllocationCallbacks` can be NULL in which case it will use `DRFLAC_MALLOC`, `DRFLAC_REALLOC` and `DRFLAC_FREE`.
|
|
|
|
This function will automatically detect whether or not you are attempting to open a native or Ogg encapsulated FLAC, both of which should work seamlessly
|
|
without any manual intervention. Ogg encapsulation also works with multiplexed streams which basically means it can play FLAC encoded audio tracks in videos.
|
|
|
|
This is the lowest level function for opening a FLAC stream. You can also use `drflac_open_file()` and `drflac_open_memory()` to open the stream from a file or
|
|
from a block of memory respectively.
|
|
|
|
The STREAMINFO block must be present for this to succeed. Use `drflac_open_relaxed()` to open a FLAC stream where the header may not be present.
|
|
|
|
|
|
Seek Also
|
|
---------
|
|
drflac_open_file()
|
|
drflac_open_memory()
|
|
drflac_open_with_metadata()
|
|
drflac_close()
|
|
*/
|
|
DRFLAC_API drflac* drflac_open(drflac_read_proc onRead, drflac_seek_proc onSeek, void* pUserData, const drflac_allocation_callbacks* pAllocationCallbacks);
|
|
|
|
/*
|
|
Opens a FLAC stream with relaxed validation of the header block.
|
|
|
|
|
|
Parameters
|
|
----------
|
|
onRead (in)
|
|
The function to call when data needs to be read from the client.
|
|
|
|
onSeek (in)
|
|
The function to call when the read position of the client data needs to move.
|
|
|
|
container (in)
|
|
Whether or not the FLAC stream is encapsulated using standard FLAC encapsulation or Ogg encapsulation.
|
|
|
|
pUserData (in, optional)
|
|
A pointer to application defined data that will be passed to onRead and onSeek.
|
|
|
|
pAllocationCallbacks (in, optional)
|
|
A pointer to application defined callbacks for managing memory allocations.
|
|
|
|
|
|
Return Value
|
|
------------
|
|
A pointer to an object representing the decoder.
|
|
|
|
|
|
Remarks
|
|
-------
|
|
The same as drflac_open(), except attempts to open the stream even when a header block is not present.
|
|
|
|
Because the header is not necessarily available, the caller must explicitly define the container (Native or Ogg). Do not set this to `drflac_container_unknown`
|
|
as that is for internal use only.
|
|
|
|
Opening in relaxed mode will continue reading data from onRead until it finds a valid frame. If a frame is never found it will continue forever. To abort,
|
|
force your `onRead` callback to return 0, which dr_flac will use as an indicator that the end of the stream was found.
|
|
*/
|
|
DRFLAC_API drflac* drflac_open_relaxed(drflac_read_proc onRead, drflac_seek_proc onSeek, drflac_container container, void* pUserData, const drflac_allocation_callbacks* pAllocationCallbacks);
|
|
|
|
/*
|
|
Opens a FLAC decoder and notifies the caller of the metadata chunks (album art, etc.).
|
|
|
|
|
|
Parameters
|
|
----------
|
|
onRead (in)
|
|
The function to call when data needs to be read from the client.
|
|
|
|
onSeek (in)
|
|
The function to call when the read position of the client data needs to move.
|
|
|
|
onMeta (in)
|
|
The function to call for every metadata block.
|
|
|
|
pUserData (in, optional)
|
|
A pointer to application defined data that will be passed to onRead, onSeek and onMeta.
|
|
|
|
pAllocationCallbacks (in, optional)
|
|
A pointer to application defined callbacks for managing memory allocations.
|
|
|
|
|
|
Return Value
|
|
------------
|
|
A pointer to an object representing the decoder.
|
|
|
|
|
|
Remarks
|
|
-------
|
|
Close the decoder with `drflac_close()`.
|
|
|
|
`pAllocationCallbacks` can be NULL in which case it will use `DRFLAC_MALLOC`, `DRFLAC_REALLOC` and `DRFLAC_FREE`.
|
|
|
|
This is slower than `drflac_open()`, so avoid this one if you don't need metadata. Internally, this will allocate and free memory on the heap for every
|
|
metadata block except for STREAMINFO and PADDING blocks.
|
|
|
|
The caller is notified of the metadata via the `onMeta` callback. All metadata blocks will be handled before the function returns.
|
|
|
|
The STREAMINFO block must be present for this to succeed. Use `drflac_open_with_metadata_relaxed()` to open a FLAC stream where the header may not be present.
|
|
|
|
Note that this will behave inconsistently with `drflac_open()` if the stream is an Ogg encapsulated stream and a metadata block is corrupted. This is due to
|
|
the way the Ogg stream recovers from corrupted pages. When `drflac_open_with_metadata()` is being used, the open routine will try to read the contents of the
|
|
metadata block, whereas `drflac_open()` will simply seek past it (for the sake of efficiency). This inconsistency can result in different samples being
|
|
returned depending on whether or not the stream is being opened with metadata.
|
|
|
|
|
|
Seek Also
|
|
---------
|
|
drflac_open_file_with_metadata()
|
|
drflac_open_memory_with_metadata()
|
|
drflac_open()
|
|
drflac_close()
|
|
*/
|
|
DRFLAC_API drflac* drflac_open_with_metadata(drflac_read_proc onRead, drflac_seek_proc onSeek, drflac_meta_proc onMeta, void* pUserData, const drflac_allocation_callbacks* pAllocationCallbacks);
|
|
|
|
/*
|
|
The same as drflac_open_with_metadata(), except attempts to open the stream even when a header block is not present.
|
|
|
|
See Also
|
|
--------
|
|
drflac_open_with_metadata()
|
|
drflac_open_relaxed()
|
|
*/
|
|
DRFLAC_API drflac* drflac_open_with_metadata_relaxed(drflac_read_proc onRead, drflac_seek_proc onSeek, drflac_meta_proc onMeta, drflac_container container, void* pUserData, const drflac_allocation_callbacks* pAllocationCallbacks);
|
|
|
|
/*
|
|
Closes the given FLAC decoder.
|
|
|
|
|
|
Parameters
|
|
----------
|
|
pFlac (in)
|
|
The decoder to close.
|
|
|
|
|
|
Remarks
|
|
-------
|
|
This will destroy the decoder object.
|
|
|
|
|
|
See Also
|
|
--------
|
|
drflac_open()
|
|
drflac_open_with_metadata()
|
|
drflac_open_file()
|
|
drflac_open_file_w()
|
|
drflac_open_file_with_metadata()
|
|
drflac_open_file_with_metadata_w()
|
|
drflac_open_memory()
|
|
drflac_open_memory_with_metadata()
|
|
*/
|
|
DRFLAC_API void drflac_close(drflac* pFlac);
|
|
|
|
|
|
/*
|
|
Reads sample data from the given FLAC decoder, output as interleaved signed 32-bit PCM.
|
|
|
|
|
|
Parameters
|
|
----------
|
|
pFlac (in)
|
|
The decoder.
|
|
|
|
framesToRead (in)
|
|
The number of PCM frames to read.
|
|
|
|
pBufferOut (out, optional)
|
|
A pointer to the buffer that will receive the decoded samples.
|
|
|
|
|
|
Return Value
|
|
------------
|
|
Returns the number of PCM frames actually read. If the return value is less than `framesToRead` it has reached the end.
|
|
|
|
|
|
Remarks
|
|
-------
|
|
pBufferOut can be null, in which case the call will act as a seek, and the return value will be the number of frames seeked.
|
|
*/
|
|
DRFLAC_API drflac_uint64 drflac_read_pcm_frames_s32(drflac* pFlac, drflac_uint64 framesToRead, drflac_int32* pBufferOut);
|
|
|
|
|
|
/*
|
|
Reads sample data from the given FLAC decoder, output as interleaved signed 16-bit PCM.
|
|
|
|
|
|
Parameters
|
|
----------
|
|
pFlac (in)
|
|
The decoder.
|
|
|
|
framesToRead (in)
|
|
The number of PCM frames to read.
|
|
|
|
pBufferOut (out, optional)
|
|
A pointer to the buffer that will receive the decoded samples.
|
|
|
|
|
|
Return Value
|
|
------------
|
|
Returns the number of PCM frames actually read. If the return value is less than `framesToRead` it has reached the end.
|
|
|
|
|
|
Remarks
|
|
-------
|
|
pBufferOut can be null, in which case the call will act as a seek, and the return value will be the number of frames seeked.
|
|
|
|
Note that this is lossy for streams where the bits per sample is larger than 16.
|
|
*/
|
|
DRFLAC_API drflac_uint64 drflac_read_pcm_frames_s16(drflac* pFlac, drflac_uint64 framesToRead, drflac_int16* pBufferOut);
|
|
|
|
/*
|
|
Reads sample data from the given FLAC decoder, output as interleaved 32-bit floating point PCM.
|
|
|
|
|
|
Parameters
|
|
----------
|
|
pFlac (in)
|
|
The decoder.
|
|
|
|
framesToRead (in)
|
|
The number of PCM frames to read.
|
|
|
|
pBufferOut (out, optional)
|
|
A pointer to the buffer that will receive the decoded samples.
|
|
|
|
|
|
Return Value
|
|
------------
|
|
Returns the number of PCM frames actually read. If the return value is less than `framesToRead` it has reached the end.
|
|
|
|
|
|
Remarks
|
|
-------
|
|
pBufferOut can be null, in which case the call will act as a seek, and the return value will be the number of frames seeked.
|
|
|
|
Note that this should be considered lossy due to the nature of floating point numbers not being able to exactly represent every possible number.
|
|
*/
|
|
DRFLAC_API drflac_uint64 drflac_read_pcm_frames_f32(drflac* pFlac, drflac_uint64 framesToRead, float* pBufferOut);
|
|
|
|
/*
|
|
Seeks to the PCM frame at the given index.
|
|
|
|
|
|
Parameters
|
|
----------
|
|
pFlac (in)
|
|
The decoder.
|
|
|
|
pcmFrameIndex (in)
|
|
The index of the PCM frame to seek to. See notes below.
|
|
|
|
|
|
Return Value
|
|
-------------
|
|
`DRFLAC_TRUE` if successful; `DRFLAC_FALSE` otherwise.
|
|
*/
|
|
DRFLAC_API drflac_bool32 drflac_seek_to_pcm_frame(drflac* pFlac, drflac_uint64 pcmFrameIndex);
|
|
|
|
|
|
|
|
#ifndef DR_FLAC_NO_STDIO
|
|
/*
|
|
Opens a FLAC decoder from the file at the given path.
|
|
|
|
|
|
Parameters
|
|
----------
|
|
pFileName (in)
|
|
The path of the file to open, either absolute or relative to the current directory.
|
|
|
|
pAllocationCallbacks (in, optional)
|
|
A pointer to application defined callbacks for managing memory allocations.
|
|
|
|
|
|
Return Value
|
|
------------
|
|
A pointer to an object representing the decoder.
|
|
|
|
|
|
Remarks
|
|
-------
|
|
Close the decoder with drflac_close().
|
|
|
|
|
|
Remarks
|
|
-------
|
|
This will hold a handle to the file until the decoder is closed with drflac_close(). Some platforms will restrict the number of files a process can have open
|
|
at any given time, so keep this mind if you have many decoders open at the same time.
|
|
|
|
|
|
See Also
|
|
--------
|
|
drflac_open_file_with_metadata()
|
|
drflac_open()
|
|
drflac_close()
|
|
*/
|
|
DRFLAC_API drflac* drflac_open_file(const char* pFileName, const drflac_allocation_callbacks* pAllocationCallbacks);
|
|
DRFLAC_API drflac* drflac_open_file_w(const wchar_t* pFileName, const drflac_allocation_callbacks* pAllocationCallbacks);
|
|
|
|
/*
|
|
Opens a FLAC decoder from the file at the given path and notifies the caller of the metadata chunks (album art, etc.)
|
|
|
|
|
|
Parameters
|
|
----------
|
|
pFileName (in)
|
|
The path of the file to open, either absolute or relative to the current directory.
|
|
|
|
pAllocationCallbacks (in, optional)
|
|
A pointer to application defined callbacks for managing memory allocations.
|
|
|
|
onMeta (in)
|
|
The callback to fire for each metadata block.
|
|
|
|
pUserData (in)
|
|
A pointer to the user data to pass to the metadata callback.
|
|
|
|
pAllocationCallbacks (in)
|
|
A pointer to application defined callbacks for managing memory allocations.
|
|
|
|
|
|
Remarks
|
|
-------
|
|
Look at the documentation for drflac_open_with_metadata() for more information on how metadata is handled.
|
|
|
|
|
|
See Also
|
|
--------
|
|
drflac_open_with_metadata()
|
|
drflac_open()
|
|
drflac_close()
|
|
*/
|
|
DRFLAC_API drflac* drflac_open_file_with_metadata(const char* pFileName, drflac_meta_proc onMeta, void* pUserData, const drflac_allocation_callbacks* pAllocationCallbacks);
|
|
DRFLAC_API drflac* drflac_open_file_with_metadata_w(const wchar_t* pFileName, drflac_meta_proc onMeta, void* pUserData, const drflac_allocation_callbacks* pAllocationCallbacks);
|
|
#endif
|
|
|
|
/*
|
|
Opens a FLAC decoder from a pre-allocated block of memory
|
|
|
|
|
|
Parameters
|
|
----------
|
|
pData (in)
|
|
A pointer to the raw encoded FLAC data.
|
|
|
|
dataSize (in)
|
|
The size in bytes of `data`.
|
|
|
|
pAllocationCallbacks (in)
|
|
A pointer to application defined callbacks for managing memory allocations.
|
|
|
|
|
|
Return Value
|
|
------------
|
|
A pointer to an object representing the decoder.
|
|
|
|
|
|
Remarks
|
|
-------
|
|
This does not create a copy of the data. It is up to the application to ensure the buffer remains valid for the lifetime of the decoder.
|
|
|
|
|
|
See Also
|
|
--------
|
|
drflac_open()
|
|
drflac_close()
|
|
*/
|
|
DRFLAC_API drflac* drflac_open_memory(const void* pData, size_t dataSize, const drflac_allocation_callbacks* pAllocationCallbacks);
|
|
|
|
/*
|
|
Opens a FLAC decoder from a pre-allocated block of memory and notifies the caller of the metadata chunks (album art, etc.)
|
|
|
|
|
|
Parameters
|
|
----------
|
|
pData (in)
|
|
A pointer to the raw encoded FLAC data.
|
|
|
|
dataSize (in)
|
|
The size in bytes of `data`.
|
|
|
|
onMeta (in)
|
|
The callback to fire for each metadata block.
|
|
|
|
pUserData (in)
|
|
A pointer to the user data to pass to the metadata callback.
|
|
|
|
pAllocationCallbacks (in)
|
|
A pointer to application defined callbacks for managing memory allocations.
|
|
|
|
|
|
Remarks
|
|
-------
|
|
Look at the documentation for drflac_open_with_metadata() for more information on how metadata is handled.
|
|
|
|
|
|
See Also
|
|
-------
|
|
drflac_open_with_metadata()
|
|
drflac_open()
|
|
drflac_close()
|
|
*/
|
|
DRFLAC_API drflac* drflac_open_memory_with_metadata(const void* pData, size_t dataSize, drflac_meta_proc onMeta, void* pUserData, const drflac_allocation_callbacks* pAllocationCallbacks);
|
|
|
|
|
|
|
|
/* High Level APIs */
|
|
|
|
/*
|
|
Opens a FLAC stream from the given callbacks and fully decodes it in a single operation. The return value is a
|
|
pointer to the sample data as interleaved signed 32-bit PCM. The returned data must be freed with drflac_free().
|
|
|
|
You can pass in custom memory allocation callbacks via the pAllocationCallbacks parameter. This can be NULL in which
|
|
case it will use DRFLAC_MALLOC, DRFLAC_REALLOC and DRFLAC_FREE.
|
|
|
|
Sometimes a FLAC file won't keep track of the total sample count. In this situation the function will continuously
|
|
read samples into a dynamically sized buffer on the heap until no samples are left.
|
|
|
|
Do not call this function on a broadcast type of stream (like internet radio streams and whatnot).
|
|
*/
|
|
DRFLAC_API drflac_int32* drflac_open_and_read_pcm_frames_s32(drflac_read_proc onRead, drflac_seek_proc onSeek, void* pUserData, unsigned int* channels, unsigned int* sampleRate, drflac_uint64* totalPCMFrameCount, const drflac_allocation_callbacks* pAllocationCallbacks);
|
|
|
|
/* Same as drflac_open_and_read_pcm_frames_s32(), except returns signed 16-bit integer samples. */
|
|
DRFLAC_API drflac_int16* drflac_open_and_read_pcm_frames_s16(drflac_read_proc onRead, drflac_seek_proc onSeek, void* pUserData, unsigned int* channels, unsigned int* sampleRate, drflac_uint64* totalPCMFrameCount, const drflac_allocation_callbacks* pAllocationCallbacks);
|
|
|
|
/* Same as drflac_open_and_read_pcm_frames_s32(), except returns 32-bit floating-point samples. */
|
|
DRFLAC_API float* drflac_open_and_read_pcm_frames_f32(drflac_read_proc onRead, drflac_seek_proc onSeek, void* pUserData, unsigned int* channels, unsigned int* sampleRate, drflac_uint64* totalPCMFrameCount, const drflac_allocation_callbacks* pAllocationCallbacks);
|
|
|
|
#ifndef DR_FLAC_NO_STDIO
|
|
/* Same as drflac_open_and_read_pcm_frames_s32() except opens the decoder from a file. */
|
|
DRFLAC_API drflac_int32* drflac_open_file_and_read_pcm_frames_s32(const char* filename, unsigned int* channels, unsigned int* sampleRate, drflac_uint64* totalPCMFrameCount, const drflac_allocation_callbacks* pAllocationCallbacks);
|
|
|
|
/* Same as drflac_open_file_and_read_pcm_frames_s32(), except returns signed 16-bit integer samples. */
|
|
DRFLAC_API drflac_int16* drflac_open_file_and_read_pcm_frames_s16(const char* filename, unsigned int* channels, unsigned int* sampleRate, drflac_uint64* totalPCMFrameCount, const drflac_allocation_callbacks* pAllocationCallbacks);
|
|
|
|
/* Same as drflac_open_file_and_read_pcm_frames_s32(), except returns 32-bit floating-point samples. */
|
|
DRFLAC_API float* drflac_open_file_and_read_pcm_frames_f32(const char* filename, unsigned int* channels, unsigned int* sampleRate, drflac_uint64* totalPCMFrameCount, const drflac_allocation_callbacks* pAllocationCallbacks);
|
|
#endif
|
|
|
|
/* Same as drflac_open_and_read_pcm_frames_s32() except opens the decoder from a block of memory. */
|
|
DRFLAC_API drflac_int32* drflac_open_memory_and_read_pcm_frames_s32(const void* data, size_t dataSize, unsigned int* channels, unsigned int* sampleRate, drflac_uint64* totalPCMFrameCount, const drflac_allocation_callbacks* pAllocationCallbacks);
|
|
|
|
/* Same as drflac_open_memory_and_read_pcm_frames_s32(), except returns signed 16-bit integer samples. */
|
|
DRFLAC_API drflac_int16* drflac_open_memory_and_read_pcm_frames_s16(const void* data, size_t dataSize, unsigned int* channels, unsigned int* sampleRate, drflac_uint64* totalPCMFrameCount, const drflac_allocation_callbacks* pAllocationCallbacks);
|
|
|
|
/* Same as drflac_open_memory_and_read_pcm_frames_s32(), except returns 32-bit floating-point samples. */
|
|
DRFLAC_API float* drflac_open_memory_and_read_pcm_frames_f32(const void* data, size_t dataSize, unsigned int* channels, unsigned int* sampleRate, drflac_uint64* totalPCMFrameCount, const drflac_allocation_callbacks* pAllocationCallbacks);
|
|
|
|
/*
|
|
Frees memory that was allocated internally by dr_flac.
|
|
|
|
Set pAllocationCallbacks to the same object that was passed to drflac_open_*_and_read_pcm_frames_*(). If you originally passed in NULL, pass in NULL for this.
|
|
*/
|
|
DRFLAC_API void drflac_free(void* p, const drflac_allocation_callbacks* pAllocationCallbacks);
|
|
|
|
|
|
/* Structure representing an iterator for vorbis comments in a VORBIS_COMMENT metadata block. */
|
|
typedef struct
|
|
{
|
|
drflac_uint32 countRemaining;
|
|
const char* pRunningData;
|
|
} drflac_vorbis_comment_iterator;
|
|
|
|
/*
|
|
Initializes a vorbis comment iterator. This can be used for iterating over the vorbis comments in a VORBIS_COMMENT
|
|
metadata block.
|
|
*/
|
|
DRFLAC_API void drflac_init_vorbis_comment_iterator(drflac_vorbis_comment_iterator* pIter, drflac_uint32 commentCount, const void* pComments);
|
|
|
|
/*
|
|
Goes to the next vorbis comment in the given iterator. If null is returned it means there are no more comments. The
|
|
returned string is NOT null terminated.
|
|
*/
|
|
DRFLAC_API const char* drflac_next_vorbis_comment(drflac_vorbis_comment_iterator* pIter, drflac_uint32* pCommentLengthOut);
|
|
|
|
|
|
/* Structure representing an iterator for cuesheet tracks in a CUESHEET metadata block. */
|
|
typedef struct
|
|
{
|
|
drflac_uint32 countRemaining;
|
|
const char* pRunningData;
|
|
} drflac_cuesheet_track_iterator;
|
|
|
|
/* Packing is important on this structure because we map this directly to the raw data within the CUESHEET metadata block. */
|
|
#pragma pack(4)
|
|
typedef struct
|
|
{
|
|
drflac_uint64 offset;
|
|
drflac_uint8 index;
|
|
drflac_uint8 reserved[3];
|
|
} drflac_cuesheet_track_index;
|
|
#pragma pack()
|
|
|
|
typedef struct
|
|
{
|
|
drflac_uint64 offset;
|
|
drflac_uint8 trackNumber;
|
|
char ISRC[12];
|
|
drflac_bool8 isAudio;
|
|
drflac_bool8 preEmphasis;
|
|
drflac_uint8 indexCount;
|
|
const drflac_cuesheet_track_index* pIndexPoints;
|
|
} drflac_cuesheet_track;
|
|
|
|
/*
|
|
Initializes a cuesheet track iterator. This can be used for iterating over the cuesheet tracks in a CUESHEET metadata
|
|
block.
|
|
*/
|
|
DRFLAC_API void drflac_init_cuesheet_track_iterator(drflac_cuesheet_track_iterator* pIter, drflac_uint32 trackCount, const void* pTrackData);
|
|
|
|
/* Goes to the next cuesheet track in the given iterator. If DRFLAC_FALSE is returned it means there are no more comments. */
|
|
DRFLAC_API drflac_bool32 drflac_next_cuesheet_track(drflac_cuesheet_track_iterator* pIter, drflac_cuesheet_track* pCuesheetTrack);
|
|
|
|
|
|
#ifdef __cplusplus
|
|
}
|
|
#endif
|
|
#endif /* dr_flac_h */
|
|
|
|
|
|
/************************************************************************************************************************************************************
|
|
************************************************************************************************************************************************************
|
|
|
|
IMPLEMENTATION
|
|
|
|
************************************************************************************************************************************************************
|
|
************************************************************************************************************************************************************/
|
|
#if defined(DR_FLAC_IMPLEMENTATION) || defined(DRFLAC_IMPLEMENTATION)
|
|
|
|
/* Disable some annoying warnings. */
|
|
#if defined(__GNUC__)
|
|
#pragma GCC diagnostic push
|
|
#if __GNUC__ >= 7
|
|
#pragma GCC diagnostic ignored "-Wimplicit-fallthrough"
|
|
#endif
|
|
#endif
|
|
|
|
#ifdef __linux__
|
|
#ifndef _BSD_SOURCE
|
|
#define _BSD_SOURCE
|
|
#endif
|
|
#ifndef __USE_BSD
|
|
#define __USE_BSD
|
|
#endif
|
|
#include <endian.h>
|
|
#endif
|
|
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
|
|
#ifdef _MSC_VER
|
|
#define DRFLAC_INLINE __forceinline
|
|
#elif defined(__GNUC__)
|
|
/*
|
|
I've had a bug report where GCC is emitting warnings about functions possibly not being inlineable. This warning happens when
|
|
the __attribute__((always_inline)) attribute is defined without an "inline" statement. I think therefore there must be some
|
|
case where "__inline__" is not always defined, thus the compiler emitting these warnings. When using -std=c89 or -ansi on the
|
|
command line, we cannot use the "inline" keyword and instead need to use "__inline__". In an attempt to work around this issue
|
|
I am using "__inline__" only when we're compiling in strict ANSI mode.
|
|
*/
|
|
#if defined(__STRICT_ANSI__)
|
|
#define DRFLAC_INLINE __inline__ __attribute__((always_inline))
|
|
#else
|
|
#define DRFLAC_INLINE inline __attribute__((always_inline))
|
|
#endif
|
|
#else
|
|
#define DRFLAC_INLINE
|
|
#endif
|
|
|
|
/* CPU architecture. */
|
|
#if defined(__x86_64__) || defined(_M_X64)
|
|
#define DRFLAC_X64
|
|
#elif defined(__i386) || defined(_M_IX86)
|
|
#define DRFLAC_X86
|
|
#elif defined(__arm__) || defined(_M_ARM)
|
|
#define DRFLAC_ARM
|
|
#endif
|
|
|
|
/* Intrinsics Support */
|
|
#if !defined(DR_FLAC_NO_SIMD)
|
|
#if defined(DRFLAC_X64) || defined(DRFLAC_X86)
|
|
#if defined(_MSC_VER) && !defined(__clang__)
|
|
/* MSVC. */
|
|
#if _MSC_VER >= 1400 && !defined(DRFLAC_NO_SSE2) /* 2005 */
|
|
#define DRFLAC_SUPPORT_SSE2
|
|
#endif
|
|
#if _MSC_VER >= 1600 && !defined(DRFLAC_NO_SSE41) /* 2010 */
|
|
#define DRFLAC_SUPPORT_SSE41
|
|
#endif
|
|
#else
|
|
/* Assume GNUC-style. */
|
|
#if defined(__SSE2__) && !defined(DRFLAC_NO_SSE2)
|
|
#define DRFLAC_SUPPORT_SSE2
|
|
#endif
|
|
#if defined(__SSE4_1__) && !defined(DRFLAC_NO_SSE41)
|
|
#define DRFLAC_SUPPORT_SSE41
|
|
#endif
|
|
#endif
|
|
|
|
/* If at this point we still haven't determined compiler support for the intrinsics just fall back to __has_include. */
|
|
#if !defined(__GNUC__) && !defined(__clang__) && defined(__has_include)
|
|
#if !defined(DRFLAC_SUPPORT_SSE2) && !defined(DRFLAC_NO_SSE2) && __has_include(<emmintrin.h>)
|
|
#define DRFLAC_SUPPORT_SSE2
|
|
#endif
|
|
#if !defined(DRFLAC_SUPPORT_SSE41) && !defined(DRFLAC_NO_SSE41) && __has_include(<smmintrin.h>)
|
|
#define DRFLAC_SUPPORT_SSE41
|
|
#endif
|
|
#endif
|
|
|
|
#if defined(DRFLAC_SUPPORT_SSE41)
|
|
#include <smmintrin.h>
|
|
#elif defined(DRFLAC_SUPPORT_SSE2)
|
|
#include <emmintrin.h>
|
|
#endif
|
|
#endif
|
|
|
|
#if defined(DRFLAC_ARM)
|
|
#if !defined(DRFLAC_NO_NEON) && (defined(__ARM_NEON) || defined(__aarch64__) || defined(_M_ARM64))
|
|
#define DRFLAC_SUPPORT_NEON
|
|
#endif
|
|
|
|
/* Fall back to looking for the #include file. */
|
|
#if !defined(__GNUC__) && !defined(__clang__) && defined(__has_include)
|
|
#if !defined(DRFLAC_SUPPORT_NEON) && !defined(DRFLAC_NO_NEON) && __has_include(<arm_neon.h>)
|
|
#define DRFLAC_SUPPORT_NEON
|
|
#endif
|
|
#endif
|
|
|
|
#if defined(DRFLAC_SUPPORT_NEON)
|
|
#include <arm_neon.h>
|
|
#endif
|
|
#endif
|
|
#endif
|
|
|
|
/* Compile-time CPU feature support. */
|
|
#if !defined(DR_FLAC_NO_SIMD) && (defined(DRFLAC_X86) || defined(DRFLAC_X64))
|
|
#if defined(_MSC_VER) && !defined(__clang__)
|
|
#if _MSC_VER >= 1400
|
|
#include <intrin.h>
|
|
static void drflac__cpuid(int info[4], int fid)
|
|
{
|
|
__cpuid(info, fid);
|
|
}
|
|
#else
|
|
#define DRFLAC_NO_CPUID
|
|
#endif
|
|
#else
|
|
#if defined(__GNUC__) || defined(__clang__)
|
|
static void drflac__cpuid(int info[4], int fid)
|
|
{
|
|
/*
|
|
It looks like the -fPIC option uses the ebx register which GCC complains about. We can work around this by just using a different register, the
|
|
specific register of which I'm letting the compiler decide on. The "k" prefix is used to specify a 32-bit register. The {...} syntax is for
|
|
supporting different assembly dialects.
|
|
|
|
What's basically happening is that we're saving and restoring the ebx register manually.
|
|
*/
|
|
#if defined(DRFLAC_X86) && defined(__PIC__)
|
|
__asm__ __volatile__ (
|
|
"xchg{l} {%%}ebx, %k1;"
|
|
"cpuid;"
|
|
"xchg{l} {%%}ebx, %k1;"
|
|
: "=a"(info[0]), "=&r"(info[1]), "=c"(info[2]), "=d"(info[3]) : "a"(fid), "c"(0)
|
|
);
|
|
#else
|
|
__asm__ __volatile__ (
|
|
"cpuid" : "=a"(info[0]), "=b"(info[1]), "=c"(info[2]), "=d"(info[3]) : "a"(fid), "c"(0)
|
|
);
|
|
#endif
|
|
}
|
|
#else
|
|
#define DRFLAC_NO_CPUID
|
|
#endif
|
|
#endif
|
|
#else
|
|
#define DRFLAC_NO_CPUID
|
|
#endif
|
|
|
|
static DRFLAC_INLINE drflac_bool32 drflac_has_sse2(void)
|
|
{
|
|
#if defined(DRFLAC_SUPPORT_SSE2)
|
|
#if (defined(DRFLAC_X64) || defined(DRFLAC_X86)) && !defined(DRFLAC_NO_SSE2)
|
|
#if defined(DRFLAC_X64)
|
|
return DRFLAC_TRUE; /* 64-bit targets always support SSE2. */
|
|
#elif (defined(_M_IX86_FP) && _M_IX86_FP == 2) || defined(__SSE2__)
|
|
return DRFLAC_TRUE; /* If the compiler is allowed to freely generate SSE2 code we can assume support. */
|
|
#else
|
|
#if defined(DRFLAC_NO_CPUID)
|
|
return DRFLAC_FALSE;
|
|
#else
|
|
int info[4];
|
|
drflac__cpuid(info, 1);
|
|
return (info[3] & (1 << 26)) != 0;
|
|
#endif
|
|
#endif
|
|
#else
|
|
return DRFLAC_FALSE; /* SSE2 is only supported on x86 and x64 architectures. */
|
|
#endif
|
|
#else
|
|
return DRFLAC_FALSE; /* No compiler support. */
|
|
#endif
|
|
}
|
|
|
|
static DRFLAC_INLINE drflac_bool32 drflac_has_sse41(void)
|
|
{
|
|
#if defined(DRFLAC_SUPPORT_SSE41)
|
|
#if (defined(DRFLAC_X64) || defined(DRFLAC_X86)) && !defined(DRFLAC_NO_SSE41)
|
|
#if defined(DRFLAC_X64)
|
|
return DRFLAC_TRUE; /* 64-bit targets always support SSE4.1. */
|
|
#elif (defined(_M_IX86_FP) && _M_IX86_FP == 2) || defined(__SSE4_1__)
|
|
return DRFLAC_TRUE; /* If the compiler is allowed to freely generate SSE41 code we can assume support. */
|
|
#else
|
|
#if defined(DRFLAC_NO_CPUID)
|
|
return DRFLAC_FALSE;
|
|
#else
|
|
int info[4];
|
|
drflac__cpuid(info, 1);
|
|
return (info[2] & (1 << 19)) != 0;
|
|
#endif
|
|
#endif
|
|
#else
|
|
return DRFLAC_FALSE; /* SSE41 is only supported on x86 and x64 architectures. */
|
|
#endif
|
|
#else
|
|
return DRFLAC_FALSE; /* No compiler support. */
|
|
#endif
|
|
}
|
|
|
|
|
|
#if defined(_MSC_VER) && _MSC_VER >= 1500 && (defined(DRFLAC_X86) || defined(DRFLAC_X64))
|
|
#define DRFLAC_HAS_LZCNT_INTRINSIC
|
|
#elif (defined(__GNUC__) && ((__GNUC__ > 4) || (__GNUC__ == 4 && __GNUC_MINOR__ >= 7)))
|
|
#define DRFLAC_HAS_LZCNT_INTRINSIC
|
|
#elif defined(__clang__)
|
|
#if defined(__has_builtin)
|
|
#if __has_builtin(__builtin_clzll) || __has_builtin(__builtin_clzl)
|
|
#define DRFLAC_HAS_LZCNT_INTRINSIC
|
|
#endif
|
|
#endif
|
|
#endif
|
|
|
|
#if defined(_MSC_VER) && _MSC_VER >= 1400
|
|
#define DRFLAC_HAS_BYTESWAP16_INTRINSIC
|
|
#define DRFLAC_HAS_BYTESWAP32_INTRINSIC
|
|
#define DRFLAC_HAS_BYTESWAP64_INTRINSIC
|
|
#elif defined(__clang__)
|
|
#if defined(__has_builtin)
|
|
#if __has_builtin(__builtin_bswap16)
|
|
#define DRFLAC_HAS_BYTESWAP16_INTRINSIC
|
|
#endif
|
|
#if __has_builtin(__builtin_bswap32)
|
|
#define DRFLAC_HAS_BYTESWAP32_INTRINSIC
|
|
#endif
|
|
#if __has_builtin(__builtin_bswap64)
|
|
#define DRFLAC_HAS_BYTESWAP64_INTRINSIC
|
|
#endif
|
|
#endif
|
|
#elif defined(__GNUC__)
|
|
#if ((__GNUC__ > 4) || (__GNUC__ == 4 && __GNUC_MINOR__ >= 3))
|
|
#define DRFLAC_HAS_BYTESWAP32_INTRINSIC
|
|
#define DRFLAC_HAS_BYTESWAP64_INTRINSIC
|
|
#endif
|
|
#if ((__GNUC__ > 4) || (__GNUC__ == 4 && __GNUC_MINOR__ >= 8))
|
|
#define DRFLAC_HAS_BYTESWAP16_INTRINSIC
|
|
#endif
|
|
#endif
|
|
|
|
|
|
/* Standard library stuff. */
|
|
#ifndef DRFLAC_ASSERT
|
|
#include <assert.h>
|
|
#define DRFLAC_ASSERT(expression) assert(expression)
|
|
#endif
|
|
#ifndef DRFLAC_MALLOC
|
|
#define DRFLAC_MALLOC(sz) malloc((sz))
|
|
#endif
|
|
#ifndef DRFLAC_REALLOC
|
|
#define DRFLAC_REALLOC(p, sz) realloc((p), (sz))
|
|
#endif
|
|
#ifndef DRFLAC_FREE
|
|
#define DRFLAC_FREE(p) free((p))
|
|
#endif
|
|
#ifndef DRFLAC_COPY_MEMORY
|
|
#define DRFLAC_COPY_MEMORY(dst, src, sz) memcpy((dst), (src), (sz))
|
|
#endif
|
|
#ifndef DRFLAC_ZERO_MEMORY
|
|
#define DRFLAC_ZERO_MEMORY(p, sz) memset((p), 0, (sz))
|
|
#endif
|
|
#ifndef DRFLAC_ZERO_OBJECT
|
|
#define DRFLAC_ZERO_OBJECT(p) DRFLAC_ZERO_MEMORY((p), sizeof(*(p)))
|
|
#endif
|
|
|
|
#define DRFLAC_MAX_SIMD_VECTOR_SIZE 64 /* 64 for AVX-512 in the future. */
|
|
|
|
typedef drflac_int32 drflac_result;
|
|
#define DRFLAC_SUCCESS 0
|
|
#define DRFLAC_ERROR -1 /* A generic error. */
|
|
#define DRFLAC_INVALID_ARGS -2
|
|
#define DRFLAC_INVALID_OPERATION -3
|
|
#define DRFLAC_OUT_OF_MEMORY -4
|
|
#define DRFLAC_OUT_OF_RANGE -5
|
|
#define DRFLAC_ACCESS_DENIED -6
|
|
#define DRFLAC_DOES_NOT_EXIST -7
|
|
#define DRFLAC_ALREADY_EXISTS -8
|
|
#define DRFLAC_TOO_MANY_OPEN_FILES -9
|
|
#define DRFLAC_INVALID_FILE -10
|
|
#define DRFLAC_TOO_BIG -11
|
|
#define DRFLAC_PATH_TOO_LONG -12
|
|
#define DRFLAC_NAME_TOO_LONG -13
|
|
#define DRFLAC_NOT_DIRECTORY -14
|
|
#define DRFLAC_IS_DIRECTORY -15
|
|
#define DRFLAC_DIRECTORY_NOT_EMPTY -16
|
|
#define DRFLAC_END_OF_FILE -17
|
|
#define DRFLAC_NO_SPACE -18
|
|
#define DRFLAC_BUSY -19
|
|
#define DRFLAC_IO_ERROR -20
|
|
#define DRFLAC_INTERRUPT -21
|
|
#define DRFLAC_UNAVAILABLE -22
|
|
#define DRFLAC_ALREADY_IN_USE -23
|
|
#define DRFLAC_BAD_ADDRESS -24
|
|
#define DRFLAC_BAD_SEEK -25
|
|
#define DRFLAC_BAD_PIPE -26
|
|
#define DRFLAC_DEADLOCK -27
|
|
#define DRFLAC_TOO_MANY_LINKS -28
|
|
#define DRFLAC_NOT_IMPLEMENTED -29
|
|
#define DRFLAC_NO_MESSAGE -30
|
|
#define DRFLAC_BAD_MESSAGE -31
|
|
#define DRFLAC_NO_DATA_AVAILABLE -32
|
|
#define DRFLAC_INVALID_DATA -33
|
|
#define DRFLAC_TIMEOUT -34
|
|
#define DRFLAC_NO_NETWORK -35
|
|
#define DRFLAC_NOT_UNIQUE -36
|
|
#define DRFLAC_NOT_SOCKET -37
|
|
#define DRFLAC_NO_ADDRESS -38
|
|
#define DRFLAC_BAD_PROTOCOL -39
|
|
#define DRFLAC_PROTOCOL_UNAVAILABLE -40
|
|
#define DRFLAC_PROTOCOL_NOT_SUPPORTED -41
|
|
#define DRFLAC_PROTOCOL_FAMILY_NOT_SUPPORTED -42
|
|
#define DRFLAC_ADDRESS_FAMILY_NOT_SUPPORTED -43
|
|
#define DRFLAC_SOCKET_NOT_SUPPORTED -44
|
|
#define DRFLAC_CONNECTION_RESET -45
|
|
#define DRFLAC_ALREADY_CONNECTED -46
|
|
#define DRFLAC_NOT_CONNECTED -47
|
|
#define DRFLAC_CONNECTION_REFUSED -48
|
|
#define DRFLAC_NO_HOST -49
|
|
#define DRFLAC_IN_PROGRESS -50
|
|
#define DRFLAC_CANCELLED -51
|
|
#define DRFLAC_MEMORY_ALREADY_MAPPED -52
|
|
#define DRFLAC_AT_END -53
|
|
#define DRFLAC_CRC_MISMATCH -128
|
|
|
|
#define DRFLAC_SUBFRAME_CONSTANT 0
|
|
#define DRFLAC_SUBFRAME_VERBATIM 1
|
|
#define DRFLAC_SUBFRAME_FIXED 8
|
|
#define DRFLAC_SUBFRAME_LPC 32
|
|
#define DRFLAC_SUBFRAME_RESERVED 255
|
|
|
|
#define DRFLAC_RESIDUAL_CODING_METHOD_PARTITIONED_RICE 0
|
|
#define DRFLAC_RESIDUAL_CODING_METHOD_PARTITIONED_RICE2 1
|
|
|
|
#define DRFLAC_CHANNEL_ASSIGNMENT_INDEPENDENT 0
|
|
#define DRFLAC_CHANNEL_ASSIGNMENT_LEFT_SIDE 8
|
|
#define DRFLAC_CHANNEL_ASSIGNMENT_RIGHT_SIDE 9
|
|
#define DRFLAC_CHANNEL_ASSIGNMENT_MID_SIDE 10
|
|
|
|
#define drflac_align(x, a) ((((x) + (a) - 1) / (a)) * (a))
|
|
|
|
|
|
DRFLAC_API void drflac_version(drflac_uint32* pMajor, drflac_uint32* pMinor, drflac_uint32* pRevision)
|
|
{
|
|
if (pMajor) {
|
|
*pMajor = DRFLAC_VERSION_MAJOR;
|
|
}
|
|
|
|
if (pMinor) {
|
|
*pMinor = DRFLAC_VERSION_MINOR;
|
|
}
|
|
|
|
if (pRevision) {
|
|
*pRevision = DRFLAC_VERSION_REVISION;
|
|
}
|
|
}
|
|
|
|
DRFLAC_API const char* drflac_version_string()
|
|
{
|
|
return DRFLAC_VERSION_STRING;
|
|
}
|
|
|
|
|
|
/* CPU caps. */
|
|
#if defined(__has_feature)
|
|
#if __has_feature(thread_sanitizer)
|
|
#define DRFLAC_NO_THREAD_SANITIZE __attribute__((no_sanitize("thread")))
|
|
#else
|
|
#define DRFLAC_NO_THREAD_SANITIZE
|
|
#endif
|
|
#else
|
|
#define DRFLAC_NO_THREAD_SANITIZE
|
|
#endif
|
|
|
|
#if defined(DRFLAC_HAS_LZCNT_INTRINSIC)
|
|
static drflac_bool32 drflac__gIsLZCNTSupported = DRFLAC_FALSE;
|
|
#endif
|
|
|
|
#ifndef DRFLAC_NO_CPUID
|
|
static drflac_bool32 drflac__gIsSSE2Supported = DRFLAC_FALSE;
|
|
static drflac_bool32 drflac__gIsSSE41Supported = DRFLAC_FALSE;
|
|
|
|
/*
|
|
I've had a bug report that Clang's ThreadSanitizer presents a warning in this function. Having reviewed this, this does
|
|
actually make sense. However, since CPU caps should never differ for a running process, I don't think the trade off of
|
|
complicating internal API's by passing around CPU caps versus just disabling the warnings is worthwhile. I'm therefore
|
|
just going to disable these warnings. This is disabled via the DRFLAC_NO_THREAD_SANITIZE attribute.
|
|
*/
|
|
DRFLAC_NO_THREAD_SANITIZE static void drflac__init_cpu_caps(void)
|
|
{
|
|
static drflac_bool32 isCPUCapsInitialized = DRFLAC_FALSE;
|
|
|
|
if (!isCPUCapsInitialized) {
|
|
/* LZCNT */
|
|
#if defined(DRFLAC_HAS_LZCNT_INTRINSIC)
|
|
int info[4] = {0};
|
|
drflac__cpuid(info, 0x80000001);
|
|
drflac__gIsLZCNTSupported = (info[2] & (1 << 5)) != 0;
|
|
#endif
|
|
|
|
/* SSE2 */
|
|
drflac__gIsSSE2Supported = drflac_has_sse2();
|
|
|
|
/* SSE4.1 */
|
|
drflac__gIsSSE41Supported = drflac_has_sse41();
|
|
|
|
/* Initialized. */
|
|
isCPUCapsInitialized = DRFLAC_TRUE;
|
|
}
|
|
}
|
|
#else
|
|
static drflac_bool32 drflac__gIsNEONSupported = DRFLAC_FALSE;
|
|
|
|
static DRFLAC_INLINE drflac_bool32 drflac__has_neon(void)
|
|
{
|
|
#if defined(DRFLAC_SUPPORT_NEON)
|
|
#if defined(DRFLAC_ARM) && !defined(DRFLAC_NO_NEON)
|
|
#if (defined(__ARM_NEON) || defined(__aarch64__) || defined(_M_ARM64))
|
|
return DRFLAC_TRUE; /* If the compiler is allowed to freely generate NEON code we can assume support. */
|
|
#else
|
|
/* TODO: Runtime check. */
|
|
return DRFLAC_FALSE;
|
|
#endif
|
|
#else
|
|
return DRFLAC_FALSE; /* NEON is only supported on ARM architectures. */
|
|
#endif
|
|
#else
|
|
return DRFLAC_FALSE; /* No compiler support. */
|
|
#endif
|
|
}
|
|
|
|
DRFLAC_NO_THREAD_SANITIZE static void drflac__init_cpu_caps(void)
|
|
{
|
|
drflac__gIsNEONSupported = drflac__has_neon();
|
|
|
|
#if defined(DRFLAC_HAS_LZCNT_INTRINSIC) && defined(DRFLAC_ARM) && (defined(__ARM_ARCH) && __ARM_ARCH >= 5)
|
|
drflac__gIsLZCNTSupported = DRFLAC_TRUE;
|
|
#endif
|
|
}
|
|
#endif
|
|
|
|
|
|
/* Endian Management */
|
|
static DRFLAC_INLINE drflac_bool32 drflac__is_little_endian(void)
|
|
{
|
|
#if defined(DRFLAC_X86) || defined(DRFLAC_X64)
|
|
return DRFLAC_TRUE;
|
|
#elif defined(__BYTE_ORDER) && defined(__LITTLE_ENDIAN) && __BYTE_ORDER == __LITTLE_ENDIAN
|
|
return DRFLAC_TRUE;
|
|
#else
|
|
int n = 1;
|
|
return (*(char*)&n) == 1;
|
|
#endif
|
|
}
|
|
|
|
static DRFLAC_INLINE drflac_uint16 drflac__swap_endian_uint16(drflac_uint16 n)
|
|
{
|
|
#ifdef DRFLAC_HAS_BYTESWAP16_INTRINSIC
|
|
#if defined(_MSC_VER)
|
|
return _byteswap_ushort(n);
|
|
#elif defined(__GNUC__) || defined(__clang__)
|
|
return __builtin_bswap16(n);
|
|
#else
|
|
#error "This compiler does not support the byte swap intrinsic."
|
|
#endif
|
|
#else
|
|
return ((n & 0xFF00) >> 8) |
|
|
((n & 0x00FF) << 8);
|
|
#endif
|
|
}
|
|
|
|
static DRFLAC_INLINE drflac_uint32 drflac__swap_endian_uint32(drflac_uint32 n)
|
|
{
|
|
#ifdef DRFLAC_HAS_BYTESWAP32_INTRINSIC
|
|
#if defined(_MSC_VER)
|
|
return _byteswap_ulong(n);
|
|
#elif defined(__GNUC__) || defined(__clang__)
|
|
#if defined(DRFLAC_ARM) && (defined(__ARM_ARCH) && __ARM_ARCH >= 6) && !defined(DRFLAC_64BIT) /* <-- 64-bit inline assembly has not been tested, so disabling for now. */
|
|
/* Inline assembly optimized implementation for ARM. In my testing, GCC does not generate optimized code with __builtin_bswap32(). */
|
|
drflac_uint32 r;
|
|
__asm__ __volatile__ (
|
|
#if defined(DRFLAC_64BIT)
|
|
"rev %w[out], %w[in]" : [out]"=r"(r) : [in]"r"(n) /* <-- This is untested. If someone in the community could test this, that would be appreciated! */
|
|
#else
|
|
"rev %[out], %[in]" : [out]"=r"(r) : [in]"r"(n)
|
|
#endif
|
|
);
|
|
return r;
|
|
#else
|
|
return __builtin_bswap32(n);
|
|
#endif
|
|
#else
|
|
#error "This compiler does not support the byte swap intrinsic."
|
|
#endif
|
|
#else
|
|
return ((n & 0xFF000000) >> 24) |
|
|
((n & 0x00FF0000) >> 8) |
|
|
((n & 0x0000FF00) << 8) |
|
|
((n & 0x000000FF) << 24);
|
|
#endif
|
|
}
|
|
|
|
static DRFLAC_INLINE drflac_uint64 drflac__swap_endian_uint64(drflac_uint64 n)
|
|
{
|
|
#ifdef DRFLAC_HAS_BYTESWAP64_INTRINSIC
|
|
#if defined(_MSC_VER)
|
|
return _byteswap_uint64(n);
|
|
#elif defined(__GNUC__) || defined(__clang__)
|
|
return __builtin_bswap64(n);
|
|
#else
|
|
#error "This compiler does not support the byte swap intrinsic."
|
|
#endif
|
|
#else
|
|
return ((n & (drflac_uint64)0xFF00000000000000) >> 56) |
|
|
((n & (drflac_uint64)0x00FF000000000000) >> 40) |
|
|
((n & (drflac_uint64)0x0000FF0000000000) >> 24) |
|
|
((n & (drflac_uint64)0x000000FF00000000) >> 8) |
|
|
((n & (drflac_uint64)0x00000000FF000000) << 8) |
|
|
((n & (drflac_uint64)0x0000000000FF0000) << 24) |
|
|
((n & (drflac_uint64)0x000000000000FF00) << 40) |
|
|
((n & (drflac_uint64)0x00000000000000FF) << 56);
|
|
#endif
|
|
}
|
|
|
|
|
|
static DRFLAC_INLINE drflac_uint16 drflac__be2host_16(drflac_uint16 n)
|
|
{
|
|
if (drflac__is_little_endian()) {
|
|
return drflac__swap_endian_uint16(n);
|
|
}
|
|
|
|
return n;
|
|
}
|
|
|
|
static DRFLAC_INLINE drflac_uint32 drflac__be2host_32(drflac_uint32 n)
|
|
{
|
|
if (drflac__is_little_endian()) {
|
|
return drflac__swap_endian_uint32(n);
|
|
}
|
|
|
|
return n;
|
|
}
|
|
|
|
static DRFLAC_INLINE drflac_uint64 drflac__be2host_64(drflac_uint64 n)
|
|
{
|
|
if (drflac__is_little_endian()) {
|
|
return drflac__swap_endian_uint64(n);
|
|
}
|
|
|
|
return n;
|
|
}
|
|
|
|
|
|
static DRFLAC_INLINE drflac_uint32 drflac__le2host_32(drflac_uint32 n)
|
|
{
|
|
if (!drflac__is_little_endian()) {
|
|
return drflac__swap_endian_uint32(n);
|
|
}
|
|
|
|
return n;
|
|
}
|
|
|
|
|
|
static DRFLAC_INLINE drflac_uint32 drflac__unsynchsafe_32(drflac_uint32 n)
|
|
{
|
|
drflac_uint32 result = 0;
|
|
result |= (n & 0x7F000000) >> 3;
|
|
result |= (n & 0x007F0000) >> 2;
|
|
result |= (n & 0x00007F00) >> 1;
|
|
result |= (n & 0x0000007F) >> 0;
|
|
|
|
return result;
|
|
}
|
|
|
|
|
|
|
|
/* The CRC code below is based on this document: http://zlib.net/crc_v3.txt */
|
|
static drflac_uint8 drflac__crc8_table[] = {
|
|
0x00, 0x07, 0x0E, 0x09, 0x1C, 0x1B, 0x12, 0x15, 0x38, 0x3F, 0x36, 0x31, 0x24, 0x23, 0x2A, 0x2D,
|
|
0x70, 0x77, 0x7E, 0x79, 0x6C, 0x6B, 0x62, 0x65, 0x48, 0x4F, 0x46, 0x41, 0x54, 0x53, 0x5A, 0x5D,
|
|
0xE0, 0xE7, 0xEE, 0xE9, 0xFC, 0xFB, 0xF2, 0xF5, 0xD8, 0xDF, 0xD6, 0xD1, 0xC4, 0xC3, 0xCA, 0xCD,
|
|
0x90, 0x97, 0x9E, 0x99, 0x8C, 0x8B, 0x82, 0x85, 0xA8, 0xAF, 0xA6, 0xA1, 0xB4, 0xB3, 0xBA, 0xBD,
|
|
0xC7, 0xC0, 0xC9, 0xCE, 0xDB, 0xDC, 0xD5, 0xD2, 0xFF, 0xF8, 0xF1, 0xF6, 0xE3, 0xE4, 0xED, 0xEA,
|
|
0xB7, 0xB0, 0xB9, 0xBE, 0xAB, 0xAC, 0xA5, 0xA2, 0x8F, 0x88, 0x81, 0x86, 0x93, 0x94, 0x9D, 0x9A,
|
|
0x27, 0x20, 0x29, 0x2E, 0x3B, 0x3C, 0x35, 0x32, 0x1F, 0x18, 0x11, 0x16, 0x03, 0x04, 0x0D, 0x0A,
|
|
0x57, 0x50, 0x59, 0x5E, 0x4B, 0x4C, 0x45, 0x42, 0x6F, 0x68, 0x61, 0x66, 0x73, 0x74, 0x7D, 0x7A,
|
|
0x89, 0x8E, 0x87, 0x80, 0x95, 0x92, 0x9B, 0x9C, 0xB1, 0xB6, 0xBF, 0xB8, 0xAD, 0xAA, 0xA3, 0xA4,
|
|
0xF9, 0xFE, 0xF7, 0xF0, 0xE5, 0xE2, 0xEB, 0xEC, 0xC1, 0xC6, 0xCF, 0xC8, 0xDD, 0xDA, 0xD3, 0xD4,
|
|
0x69, 0x6E, 0x67, 0x60, 0x75, 0x72, 0x7B, 0x7C, 0x51, 0x56, 0x5F, 0x58, 0x4D, 0x4A, 0x43, 0x44,
|
|
0x19, 0x1E, 0x17, 0x10, 0x05, 0x02, 0x0B, 0x0C, 0x21, 0x26, 0x2F, 0x28, 0x3D, 0x3A, 0x33, 0x34,
|
|
0x4E, 0x49, 0x40, 0x47, 0x52, 0x55, 0x5C, 0x5B, 0x76, 0x71, 0x78, 0x7F, 0x6A, 0x6D, 0x64, 0x63,
|
|
0x3E, 0x39, 0x30, 0x37, 0x22, 0x25, 0x2C, 0x2B, 0x06, 0x01, 0x08, 0x0F, 0x1A, 0x1D, 0x14, 0x13,
|
|
0xAE, 0xA9, 0xA0, 0xA7, 0xB2, 0xB5, 0xBC, 0xBB, 0x96, 0x91, 0x98, 0x9F, 0x8A, 0x8D, 0x84, 0x83,
|
|
0xDE, 0xD9, 0xD0, 0xD7, 0xC2, 0xC5, 0xCC, 0xCB, 0xE6, 0xE1, 0xE8, 0xEF, 0xFA, 0xFD, 0xF4, 0xF3
|
|
};
|
|
|
|
static drflac_uint16 drflac__crc16_table[] = {
|
|
0x0000, 0x8005, 0x800F, 0x000A, 0x801B, 0x001E, 0x0014, 0x8011,
|
|
0x8033, 0x0036, 0x003C, 0x8039, 0x0028, 0x802D, 0x8027, 0x0022,
|
|
0x8063, 0x0066, 0x006C, 0x8069, 0x0078, 0x807D, 0x8077, 0x0072,
|
|
0x0050, 0x8055, 0x805F, 0x005A, 0x804B, 0x004E, 0x0044, 0x8041,
|
|
0x80C3, 0x00C6, 0x00CC, 0x80C9, 0x00D8, 0x80DD, 0x80D7, 0x00D2,
|
|
0x00F0, 0x80F5, 0x80FF, 0x00FA, 0x80EB, 0x00EE, 0x00E4, 0x80E1,
|
|
0x00A0, 0x80A5, 0x80AF, 0x00AA, 0x80BB, 0x00BE, 0x00B4, 0x80B1,
|
|
0x8093, 0x0096, 0x009C, 0x8099, 0x0088, 0x808D, 0x8087, 0x0082,
|
|
0x8183, 0x0186, 0x018C, 0x8189, 0x0198, 0x819D, 0x8197, 0x0192,
|
|
0x01B0, 0x81B5, 0x81BF, 0x01BA, 0x81AB, 0x01AE, 0x01A4, 0x81A1,
|
|
0x01E0, 0x81E5, 0x81EF, 0x01EA, 0x81FB, 0x01FE, 0x01F4, 0x81F1,
|
|
0x81D3, 0x01D6, 0x01DC, 0x81D9, 0x01C8, 0x81CD, 0x81C7, 0x01C2,
|
|
0x0140, 0x8145, 0x814F, 0x014A, 0x815B, 0x015E, 0x0154, 0x8151,
|
|
0x8173, 0x0176, 0x017C, 0x8179, 0x0168, 0x816D, 0x8167, 0x0162,
|
|
0x8123, 0x0126, 0x012C, 0x8129, 0x0138, 0x813D, 0x8137, 0x0132,
|
|
0x0110, 0x8115, 0x811F, 0x011A, 0x810B, 0x010E, 0x0104, 0x8101,
|
|
0x8303, 0x0306, 0x030C, 0x8309, 0x0318, 0x831D, 0x8317, 0x0312,
|
|
0x0330, 0x8335, 0x833F, 0x033A, 0x832B, 0x032E, 0x0324, 0x8321,
|
|
0x0360, 0x8365, 0x836F, 0x036A, 0x837B, 0x037E, 0x0374, 0x8371,
|
|
0x8353, 0x0356, 0x035C, 0x8359, 0x0348, 0x834D, 0x8347, 0x0342,
|
|
0x03C0, 0x83C5, 0x83CF, 0x03CA, 0x83DB, 0x03DE, 0x03D4, 0x83D1,
|
|
0x83F3, 0x03F6, 0x03FC, 0x83F9, 0x03E8, 0x83ED, 0x83E7, 0x03E2,
|
|
0x83A3, 0x03A6, 0x03AC, 0x83A9, 0x03B8, 0x83BD, 0x83B7, 0x03B2,
|
|
0x0390, 0x8395, 0x839F, 0x039A, 0x838B, 0x038E, 0x0384, 0x8381,
|
|
0x0280, 0x8285, 0x828F, 0x028A, 0x829B, 0x029E, 0x0294, 0x8291,
|
|
0x82B3, 0x02B6, 0x02BC, 0x82B9, 0x02A8, 0x82AD, 0x82A7, 0x02A2,
|
|
0x82E3, 0x02E6, 0x02EC, 0x82E9, 0x02F8, 0x82FD, 0x82F7, 0x02F2,
|
|
0x02D0, 0x82D5, 0x82DF, 0x02DA, 0x82CB, 0x02CE, 0x02C4, 0x82C1,
|
|
0x8243, 0x0246, 0x024C, 0x8249, 0x0258, 0x825D, 0x8257, 0x0252,
|
|
0x0270, 0x8275, 0x827F, 0x027A, 0x826B, 0x026E, 0x0264, 0x8261,
|
|
0x0220, 0x8225, 0x822F, 0x022A, 0x823B, 0x023E, 0x0234, 0x8231,
|
|
0x8213, 0x0216, 0x021C, 0x8219, 0x0208, 0x820D, 0x8207, 0x0202
|
|
};
|
|
|
|
static DRFLAC_INLINE drflac_uint8 drflac_crc8_byte(drflac_uint8 crc, drflac_uint8 data)
|
|
{
|
|
return drflac__crc8_table[crc ^ data];
|
|
}
|
|
|
|
static DRFLAC_INLINE drflac_uint8 drflac_crc8(drflac_uint8 crc, drflac_uint32 data, drflac_uint32 count)
|
|
{
|
|
#ifdef DR_FLAC_NO_CRC
|
|
(void)crc;
|
|
(void)data;
|
|
(void)count;
|
|
return 0;
|
|
#else
|
|
#if 0
|
|
/* REFERENCE (use of this implementation requires an explicit flush by doing "drflac_crc8(crc, 0, 8);") */
|
|
drflac_uint8 p = 0x07;
|
|
for (int i = count-1; i >= 0; --i) {
|
|
drflac_uint8 bit = (data & (1 << i)) >> i;
|
|
if (crc & 0x80) {
|
|
crc = ((crc << 1) | bit) ^ p;
|
|
} else {
|
|
crc = ((crc << 1) | bit);
|
|
}
|
|
}
|
|
return crc;
|
|
#else
|
|
drflac_uint32 wholeBytes;
|
|
drflac_uint32 leftoverBits;
|
|
drflac_uint64 leftoverDataMask;
|
|
|
|
static drflac_uint64 leftoverDataMaskTable[8] = {
|
|
0x00, 0x01, 0x03, 0x07, 0x0F, 0x1F, 0x3F, 0x7F
|
|
};
|
|
|
|
DRFLAC_ASSERT(count <= 32);
|
|
|
|
wholeBytes = count >> 3;
|
|
leftoverBits = count - (wholeBytes*8);
|
|
leftoverDataMask = leftoverDataMaskTable[leftoverBits];
|
|
|
|
switch (wholeBytes) {
|
|
case 4: crc = drflac_crc8_byte(crc, (drflac_uint8)((data & (0xFF000000UL << leftoverBits)) >> (24 + leftoverBits)));
|
|
case 3: crc = drflac_crc8_byte(crc, (drflac_uint8)((data & (0x00FF0000UL << leftoverBits)) >> (16 + leftoverBits)));
|
|
case 2: crc = drflac_crc8_byte(crc, (drflac_uint8)((data & (0x0000FF00UL << leftoverBits)) >> ( 8 + leftoverBits)));
|
|
case 1: crc = drflac_crc8_byte(crc, (drflac_uint8)((data & (0x000000FFUL << leftoverBits)) >> ( 0 + leftoverBits)));
|
|
case 0: if (leftoverBits > 0) crc = (drflac_uint8)((crc << leftoverBits) ^ drflac__crc8_table[(crc >> (8 - leftoverBits)) ^ (data & leftoverDataMask)]);
|
|
}
|
|
return crc;
|
|
#endif
|
|
#endif
|
|
}
|
|
|
|
static DRFLAC_INLINE drflac_uint16 drflac_crc16_byte(drflac_uint16 crc, drflac_uint8 data)
|
|
{
|
|
return (crc << 8) ^ drflac__crc16_table[(drflac_uint8)(crc >> 8) ^ data];
|
|
}
|
|
|
|
static DRFLAC_INLINE drflac_uint16 drflac_crc16_cache(drflac_uint16 crc, drflac_cache_t data)
|
|
{
|
|
#ifdef DRFLAC_64BIT
|
|
crc = drflac_crc16_byte(crc, (drflac_uint8)((data >> 56) & 0xFF));
|
|
crc = drflac_crc16_byte(crc, (drflac_uint8)((data >> 48) & 0xFF));
|
|
crc = drflac_crc16_byte(crc, (drflac_uint8)((data >> 40) & 0xFF));
|
|
crc = drflac_crc16_byte(crc, (drflac_uint8)((data >> 32) & 0xFF));
|
|
#endif
|
|
crc = drflac_crc16_byte(crc, (drflac_uint8)((data >> 24) & 0xFF));
|
|
crc = drflac_crc16_byte(crc, (drflac_uint8)((data >> 16) & 0xFF));
|
|
crc = drflac_crc16_byte(crc, (drflac_uint8)((data >> 8) & 0xFF));
|
|
crc = drflac_crc16_byte(crc, (drflac_uint8)((data >> 0) & 0xFF));
|
|
|
|
return crc;
|
|
}
|
|
|
|
static DRFLAC_INLINE drflac_uint16 drflac_crc16_bytes(drflac_uint16 crc, drflac_cache_t data, drflac_uint32 byteCount)
|
|
{
|
|
switch (byteCount)
|
|
{
|
|
#ifdef DRFLAC_64BIT
|
|
case 8: crc = drflac_crc16_byte(crc, (drflac_uint8)((data >> 56) & 0xFF));
|
|
case 7: crc = drflac_crc16_byte(crc, (drflac_uint8)((data >> 48) & 0xFF));
|
|
case 6: crc = drflac_crc16_byte(crc, (drflac_uint8)((data >> 40) & 0xFF));
|
|
case 5: crc = drflac_crc16_byte(crc, (drflac_uint8)((data >> 32) & 0xFF));
|
|
#endif
|
|
case 4: crc = drflac_crc16_byte(crc, (drflac_uint8)((data >> 24) & 0xFF));
|
|
case 3: crc = drflac_crc16_byte(crc, (drflac_uint8)((data >> 16) & 0xFF));
|
|
case 2: crc = drflac_crc16_byte(crc, (drflac_uint8)((data >> 8) & 0xFF));
|
|
case 1: crc = drflac_crc16_byte(crc, (drflac_uint8)((data >> 0) & 0xFF));
|
|
}
|
|
|
|
return crc;
|
|
}
|
|
|
|
#if 0
|
|
static DRFLAC_INLINE drflac_uint16 drflac_crc16__32bit(drflac_uint16 crc, drflac_uint32 data, drflac_uint32 count)
|
|
{
|
|
#ifdef DR_FLAC_NO_CRC
|
|
(void)crc;
|
|
(void)data;
|
|
(void)count;
|
|
return 0;
|
|
#else
|
|
#if 0
|
|
/* REFERENCE (use of this implementation requires an explicit flush by doing "drflac_crc16(crc, 0, 16);") */
|
|
drflac_uint16 p = 0x8005;
|
|
for (int i = count-1; i >= 0; --i) {
|
|
drflac_uint16 bit = (data & (1ULL << i)) >> i;
|
|
if (r & 0x8000) {
|
|
r = ((r << 1) | bit) ^ p;
|
|
} else {
|
|
r = ((r << 1) | bit);
|
|
}
|
|
}
|
|
|
|
return crc;
|
|
#else
|
|
drflac_uint32 wholeBytes;
|
|
drflac_uint32 leftoverBits;
|
|
drflac_uint64 leftoverDataMask;
|
|
|
|
static drflac_uint64 leftoverDataMaskTable[8] = {
|
|
0x00, 0x01, 0x03, 0x07, 0x0F, 0x1F, 0x3F, 0x7F
|
|
};
|
|
|
|
DRFLAC_ASSERT(count <= 64);
|
|
|
|
wholeBytes = count >> 3;
|
|
leftoverBits = count & 7;
|
|
leftoverDataMask = leftoverDataMaskTable[leftoverBits];
|
|
|
|
switch (wholeBytes) {
|
|
default:
|
|
case 4: crc = drflac_crc16_byte(crc, (drflac_uint8)((data & (0xFF000000UL << leftoverBits)) >> (24 + leftoverBits)));
|
|
case 3: crc = drflac_crc16_byte(crc, (drflac_uint8)((data & (0x00FF0000UL << leftoverBits)) >> (16 + leftoverBits)));
|
|
case 2: crc = drflac_crc16_byte(crc, (drflac_uint8)((data & (0x0000FF00UL << leftoverBits)) >> ( 8 + leftoverBits)));
|
|
case 1: crc = drflac_crc16_byte(crc, (drflac_uint8)((data & (0x000000FFUL << leftoverBits)) >> ( 0 + leftoverBits)));
|
|
case 0: if (leftoverBits > 0) crc = (crc << leftoverBits) ^ drflac__crc16_table[(crc >> (16 - leftoverBits)) ^ (data & leftoverDataMask)];
|
|
}
|
|
return crc;
|
|
#endif
|
|
#endif
|
|
}
|
|
|
|
static DRFLAC_INLINE drflac_uint16 drflac_crc16__64bit(drflac_uint16 crc, drflac_uint64 data, drflac_uint32 count)
|
|
{
|
|
#ifdef DR_FLAC_NO_CRC
|
|
(void)crc;
|
|
(void)data;
|
|
(void)count;
|
|
return 0;
|
|
#else
|
|
drflac_uint32 wholeBytes;
|
|
drflac_uint32 leftoverBits;
|
|
drflac_uint64 leftoverDataMask;
|
|
|
|
static drflac_uint64 leftoverDataMaskTable[8] = {
|
|
0x00, 0x01, 0x03, 0x07, 0x0F, 0x1F, 0x3F, 0x7F
|
|
};
|
|
|
|
DRFLAC_ASSERT(count <= 64);
|
|
|
|
wholeBytes = count >> 3;
|
|
leftoverBits = count & 7;
|
|
leftoverDataMask = leftoverDataMaskTable[leftoverBits];
|
|
|
|
switch (wholeBytes) {
|
|
default:
|
|
case 8: crc = drflac_crc16_byte(crc, (drflac_uint8)((data & (((drflac_uint64)0xFF000000 << 32) << leftoverBits)) >> (56 + leftoverBits))); /* Weird "<< 32" bitshift is required for C89 because it doesn't support 64-bit constants. Should be optimized out by a good compiler. */
|
|
case 7: crc = drflac_crc16_byte(crc, (drflac_uint8)((data & (((drflac_uint64)0x00FF0000 << 32) << leftoverBits)) >> (48 + leftoverBits)));
|
|
case 6: crc = drflac_crc16_byte(crc, (drflac_uint8)((data & (((drflac_uint64)0x0000FF00 << 32) << leftoverBits)) >> (40 + leftoverBits)));
|
|
case 5: crc = drflac_crc16_byte(crc, (drflac_uint8)((data & (((drflac_uint64)0x000000FF << 32) << leftoverBits)) >> (32 + leftoverBits)));
|
|
case 4: crc = drflac_crc16_byte(crc, (drflac_uint8)((data & (((drflac_uint64)0xFF000000 ) << leftoverBits)) >> (24 + leftoverBits)));
|
|
case 3: crc = drflac_crc16_byte(crc, (drflac_uint8)((data & (((drflac_uint64)0x00FF0000 ) << leftoverBits)) >> (16 + leftoverBits)));
|
|
case 2: crc = drflac_crc16_byte(crc, (drflac_uint8)((data & (((drflac_uint64)0x0000FF00 ) << leftoverBits)) >> ( 8 + leftoverBits)));
|
|
case 1: crc = drflac_crc16_byte(crc, (drflac_uint8)((data & (((drflac_uint64)0x000000FF ) << leftoverBits)) >> ( 0 + leftoverBits)));
|
|
case 0: if (leftoverBits > 0) crc = (crc << leftoverBits) ^ drflac__crc16_table[(crc >> (16 - leftoverBits)) ^ (data & leftoverDataMask)];
|
|
}
|
|
return crc;
|
|
#endif
|
|
}
|
|
|
|
|
|
static DRFLAC_INLINE drflac_uint16 drflac_crc16(drflac_uint16 crc, drflac_cache_t data, drflac_uint32 count)
|
|
{
|
|
#ifdef DRFLAC_64BIT
|
|
return drflac_crc16__64bit(crc, data, count);
|
|
#else
|
|
return drflac_crc16__32bit(crc, data, count);
|
|
#endif
|
|
}
|
|
#endif
|
|
|
|
|
|
#ifdef DRFLAC_64BIT
|
|
#define drflac__be2host__cache_line drflac__be2host_64
|
|
#else
|
|
#define drflac__be2host__cache_line drflac__be2host_32
|
|
#endif
|
|
|
|
/*
|
|
BIT READING ATTEMPT #2
|
|
|
|
This uses a 32- or 64-bit bit-shifted cache - as bits are read, the cache is shifted such that the first valid bit is sitting
|
|
on the most significant bit. It uses the notion of an L1 and L2 cache (borrowed from CPU architecture), where the L1 cache
|
|
is a 32- or 64-bit unsigned integer (depending on whether or not a 32- or 64-bit build is being compiled) and the L2 is an
|
|
array of "cache lines", with each cache line being the same size as the L1. The L2 is a buffer of about 4KB and is where data
|
|
from onRead() is read into.
|
|
*/
|
|
#define DRFLAC_CACHE_L1_SIZE_BYTES(bs) (sizeof((bs)->cache))
|
|
#define DRFLAC_CACHE_L1_SIZE_BITS(bs) (sizeof((bs)->cache)*8)
|
|
#define DRFLAC_CACHE_L1_BITS_REMAINING(bs) (DRFLAC_CACHE_L1_SIZE_BITS(bs) - (bs)->consumedBits)
|
|
#define DRFLAC_CACHE_L1_SELECTION_MASK(_bitCount) (~((~(drflac_cache_t)0) >> (_bitCount)))
|
|
#define DRFLAC_CACHE_L1_SELECTION_SHIFT(bs, _bitCount) (DRFLAC_CACHE_L1_SIZE_BITS(bs) - (_bitCount))
|
|
#define DRFLAC_CACHE_L1_SELECT(bs, _bitCount) (((bs)->cache) & DRFLAC_CACHE_L1_SELECTION_MASK(_bitCount))
|
|
#define DRFLAC_CACHE_L1_SELECT_AND_SHIFT(bs, _bitCount) (DRFLAC_CACHE_L1_SELECT((bs), (_bitCount)) >> DRFLAC_CACHE_L1_SELECTION_SHIFT((bs), (_bitCount)))
|
|
#define DRFLAC_CACHE_L1_SELECT_AND_SHIFT_SAFE(bs, _bitCount)(DRFLAC_CACHE_L1_SELECT((bs), (_bitCount)) >> (DRFLAC_CACHE_L1_SELECTION_SHIFT((bs), (_bitCount)) & (DRFLAC_CACHE_L1_SIZE_BITS(bs)-1)))
|
|
#define DRFLAC_CACHE_L2_SIZE_BYTES(bs) (sizeof((bs)->cacheL2))
|
|
#define DRFLAC_CACHE_L2_LINE_COUNT(bs) (DRFLAC_CACHE_L2_SIZE_BYTES(bs) / sizeof((bs)->cacheL2[0]))
|
|
#define DRFLAC_CACHE_L2_LINES_REMAINING(bs) (DRFLAC_CACHE_L2_LINE_COUNT(bs) - (bs)->nextL2Line)
|
|
|
|
|
|
#ifndef DR_FLAC_NO_CRC
|
|
static DRFLAC_INLINE void drflac__reset_crc16(drflac_bs* bs)
|
|
{
|
|
bs->crc16 = 0;
|
|
bs->crc16CacheIgnoredBytes = bs->consumedBits >> 3;
|
|
}
|
|
|
|
static DRFLAC_INLINE void drflac__update_crc16(drflac_bs* bs)
|
|
{
|
|
if (bs->crc16CacheIgnoredBytes == 0) {
|
|
bs->crc16 = drflac_crc16_cache(bs->crc16, bs->crc16Cache);
|
|
} else {
|
|
bs->crc16 = drflac_crc16_bytes(bs->crc16, bs->crc16Cache, DRFLAC_CACHE_L1_SIZE_BYTES(bs) - bs->crc16CacheIgnoredBytes);
|
|
bs->crc16CacheIgnoredBytes = 0;
|
|
}
|
|
}
|
|
|
|
static DRFLAC_INLINE drflac_uint16 drflac__flush_crc16(drflac_bs* bs)
|
|
{
|
|
/* We should never be flushing in a situation where we are not aligned on a byte boundary. */
|
|
DRFLAC_ASSERT((DRFLAC_CACHE_L1_BITS_REMAINING(bs) & 7) == 0);
|
|
|
|
/*
|
|
The bits that were read from the L1 cache need to be accumulated. The number of bytes needing to be accumulated is determined
|
|
by the number of bits that have been consumed.
|
|
*/
|
|
if (DRFLAC_CACHE_L1_BITS_REMAINING(bs) == 0) {
|
|
drflac__update_crc16(bs);
|
|
} else {
|
|
/* We only accumulate the consumed bits. */
|
|
bs->crc16 = drflac_crc16_bytes(bs->crc16, bs->crc16Cache >> DRFLAC_CACHE_L1_BITS_REMAINING(bs), (bs->consumedBits >> 3) - bs->crc16CacheIgnoredBytes);
|
|
|
|
/*
|
|
The bits that we just accumulated should never be accumulated again. We need to keep track of how many bytes were accumulated
|
|
so we can handle that later.
|
|
*/
|
|
bs->crc16CacheIgnoredBytes = bs->consumedBits >> 3;
|
|
}
|
|
|
|
return bs->crc16;
|
|
}
|
|
#endif
|
|
|
|
static DRFLAC_INLINE drflac_bool32 drflac__reload_l1_cache_from_l2(drflac_bs* bs)
|
|
{
|
|
size_t bytesRead;
|
|
size_t alignedL1LineCount;
|
|
|
|
/* Fast path. Try loading straight from L2. */
|
|
if (bs->nextL2Line < DRFLAC_CACHE_L2_LINE_COUNT(bs)) {
|
|
bs->cache = bs->cacheL2[bs->nextL2Line++];
|
|
return DRFLAC_TRUE;
|
|
}
|
|
|
|
/*
|
|
If we get here it means we've run out of data in the L2 cache. We'll need to fetch more from the client, if there's
|
|
any left.
|
|
*/
|
|
if (bs->unalignedByteCount > 0) {
|
|
return DRFLAC_FALSE; /* If we have any unaligned bytes it means there's no more aligned bytes left in the client. */
|
|
}
|
|
|
|
bytesRead = bs->onRead(bs->pUserData, bs->cacheL2, DRFLAC_CACHE_L2_SIZE_BYTES(bs));
|
|
|
|
bs->nextL2Line = 0;
|
|
if (bytesRead == DRFLAC_CACHE_L2_SIZE_BYTES(bs)) {
|
|
bs->cache = bs->cacheL2[bs->nextL2Line++];
|
|
return DRFLAC_TRUE;
|
|
}
|
|
|
|
|
|
/*
|
|
If we get here it means we were unable to retrieve enough data to fill the entire L2 cache. It probably
|
|
means we've just reached the end of the file. We need to move the valid data down to the end of the buffer
|
|
and adjust the index of the next line accordingly. Also keep in mind that the L2 cache must be aligned to
|
|
the size of the L1 so we'll need to seek backwards by any misaligned bytes.
|
|
*/
|
|
alignedL1LineCount = bytesRead / DRFLAC_CACHE_L1_SIZE_BYTES(bs);
|
|
|
|
/* We need to keep track of any unaligned bytes for later use. */
|
|
bs->unalignedByteCount = bytesRead - (alignedL1LineCount * DRFLAC_CACHE_L1_SIZE_BYTES(bs));
|
|
if (bs->unalignedByteCount > 0) {
|
|
bs->unalignedCache = bs->cacheL2[alignedL1LineCount];
|
|
}
|
|
|
|
if (alignedL1LineCount > 0) {
|
|
size_t offset = DRFLAC_CACHE_L2_LINE_COUNT(bs) - alignedL1LineCount;
|
|
size_t i;
|
|
for (i = alignedL1LineCount; i > 0; --i) {
|
|
bs->cacheL2[i-1 + offset] = bs->cacheL2[i-1];
|
|
}
|
|
|
|
bs->nextL2Line = (drflac_uint32)offset;
|
|
bs->cache = bs->cacheL2[bs->nextL2Line++];
|
|
return DRFLAC_TRUE;
|
|
} else {
|
|
/* If we get into this branch it means we weren't able to load any L1-aligned data. */
|
|
bs->nextL2Line = DRFLAC_CACHE_L2_LINE_COUNT(bs);
|
|
return DRFLAC_FALSE;
|
|
}
|
|
}
|
|
|
|
static drflac_bool32 drflac__reload_cache(drflac_bs* bs)
|
|
{
|
|
size_t bytesRead;
|
|
|
|
#ifndef DR_FLAC_NO_CRC
|
|
drflac__update_crc16(bs);
|
|
#endif
|
|
|
|
/* Fast path. Try just moving the next value in the L2 cache to the L1 cache. */
|
|
if (drflac__reload_l1_cache_from_l2(bs)) {
|
|
bs->cache = drflac__be2host__cache_line(bs->cache);
|
|
bs->consumedBits = 0;
|
|
#ifndef DR_FLAC_NO_CRC
|
|
bs->crc16Cache = bs->cache;
|
|
#endif
|
|
return DRFLAC_TRUE;
|
|
}
|
|
|
|
/* Slow path. */
|
|
|
|
/*
|
|
If we get here it means we have failed to load the L1 cache from the L2. Likely we've just reached the end of the stream and the last
|
|
few bytes did not meet the alignment requirements for the L2 cache. In this case we need to fall back to a slower path and read the
|
|
data from the unaligned cache.
|
|
*/
|
|
bytesRead = bs->unalignedByteCount;
|
|
if (bytesRead == 0) {
|
|
bs->consumedBits = DRFLAC_CACHE_L1_SIZE_BITS(bs); /* <-- The stream has been exhausted, so marked the bits as consumed. */
|
|
return DRFLAC_FALSE;
|
|
}
|
|
|
|
DRFLAC_ASSERT(bytesRead < DRFLAC_CACHE_L1_SIZE_BYTES(bs));
|
|
bs->consumedBits = (drflac_uint32)(DRFLAC_CACHE_L1_SIZE_BYTES(bs) - bytesRead) * 8;
|
|
|
|
bs->cache = drflac__be2host__cache_line(bs->unalignedCache);
|
|
bs->cache &= DRFLAC_CACHE_L1_SELECTION_MASK(DRFLAC_CACHE_L1_BITS_REMAINING(bs)); /* <-- Make sure the consumed bits are always set to zero. Other parts of the library depend on this property. */
|
|
bs->unalignedByteCount = 0; /* <-- At this point the unaligned bytes have been moved into the cache and we thus have no more unaligned bytes. */
|
|
|
|
#ifndef DR_FLAC_NO_CRC
|
|
bs->crc16Cache = bs->cache >> bs->consumedBits;
|
|
bs->crc16CacheIgnoredBytes = bs->consumedBits >> 3;
|
|
#endif
|
|
return DRFLAC_TRUE;
|
|
}
|
|
|
|
static void drflac__reset_cache(drflac_bs* bs)
|
|
{
|
|
bs->nextL2Line = DRFLAC_CACHE_L2_LINE_COUNT(bs); /* <-- This clears the L2 cache. */
|
|
bs->consumedBits = DRFLAC_CACHE_L1_SIZE_BITS(bs); /* <-- This clears the L1 cache. */
|
|
bs->cache = 0;
|
|
bs->unalignedByteCount = 0; /* <-- This clears the trailing unaligned bytes. */
|
|
bs->unalignedCache = 0;
|
|
|
|
#ifndef DR_FLAC_NO_CRC
|
|
bs->crc16Cache = 0;
|
|
bs->crc16CacheIgnoredBytes = 0;
|
|
#endif
|
|
}
|
|
|
|
|
|
static DRFLAC_INLINE drflac_bool32 drflac__read_uint32(drflac_bs* bs, unsigned int bitCount, drflac_uint32* pResultOut)
|
|
{
|
|
DRFLAC_ASSERT(bs != NULL);
|
|
DRFLAC_ASSERT(pResultOut != NULL);
|
|
DRFLAC_ASSERT(bitCount > 0);
|
|
DRFLAC_ASSERT(bitCount <= 32);
|
|
|
|
if (bs->consumedBits == DRFLAC_CACHE_L1_SIZE_BITS(bs)) {
|
|
if (!drflac__reload_cache(bs)) {
|
|
return DRFLAC_FALSE;
|
|
}
|
|
}
|
|
|
|
if (bitCount <= DRFLAC_CACHE_L1_BITS_REMAINING(bs)) {
|
|
/*
|
|
If we want to load all 32-bits from a 32-bit cache we need to do it slightly differently because we can't do
|
|
a 32-bit shift on a 32-bit integer. This will never be the case on 64-bit caches, so we can have a slightly
|
|
more optimal solution for this.
|
|
*/
|
|
#ifdef DRFLAC_64BIT
|
|
*pResultOut = (drflac_uint32)DRFLAC_CACHE_L1_SELECT_AND_SHIFT(bs, bitCount);
|
|
bs->consumedBits += bitCount;
|
|
bs->cache <<= bitCount;
|
|
#else
|
|
if (bitCount < DRFLAC_CACHE_L1_SIZE_BITS(bs)) {
|
|
*pResultOut = (drflac_uint32)DRFLAC_CACHE_L1_SELECT_AND_SHIFT(bs, bitCount);
|
|
bs->consumedBits += bitCount;
|
|
bs->cache <<= bitCount;
|
|
} else {
|
|
/* Cannot shift by 32-bits, so need to do it differently. */
|
|
*pResultOut = (drflac_uint32)bs->cache;
|
|
bs->consumedBits = DRFLAC_CACHE_L1_SIZE_BITS(bs);
|
|
bs->cache = 0;
|
|
}
|
|
#endif
|
|
|
|
return DRFLAC_TRUE;
|
|
} else {
|
|
/* It straddles the cached data. It will never cover more than the next chunk. We just read the number in two parts and combine them. */
|
|
drflac_uint32 bitCountHi = DRFLAC_CACHE_L1_BITS_REMAINING(bs);
|
|
drflac_uint32 bitCountLo = bitCount - bitCountHi;
|
|
drflac_uint32 resultHi;
|
|
|
|
DRFLAC_ASSERT(bitCountHi > 0);
|
|
DRFLAC_ASSERT(bitCountHi < 32);
|
|
resultHi = (drflac_uint32)DRFLAC_CACHE_L1_SELECT_AND_SHIFT(bs, bitCountHi);
|
|
|
|
if (!drflac__reload_cache(bs)) {
|
|
return DRFLAC_FALSE;
|
|
}
|
|
|
|
*pResultOut = (resultHi << bitCountLo) | (drflac_uint32)DRFLAC_CACHE_L1_SELECT_AND_SHIFT(bs, bitCountLo);
|
|
bs->consumedBits += bitCountLo;
|
|
bs->cache <<= bitCountLo;
|
|
return DRFLAC_TRUE;
|
|
}
|
|
}
|
|
|
|
static drflac_bool32 drflac__read_int32(drflac_bs* bs, unsigned int bitCount, drflac_int32* pResult)
|
|
{
|
|
drflac_uint32 result;
|
|
drflac_uint32 signbit;
|
|
|
|
DRFLAC_ASSERT(bs != NULL);
|
|
DRFLAC_ASSERT(pResult != NULL);
|
|
DRFLAC_ASSERT(bitCount > 0);
|
|
DRFLAC_ASSERT(bitCount <= 32);
|
|
|
|
if (!drflac__read_uint32(bs, bitCount, &result)) {
|
|
return DRFLAC_FALSE;
|
|
}
|
|
|
|
signbit = ((result >> (bitCount-1)) & 0x01);
|
|
result |= (~signbit + 1) << bitCount;
|
|
|
|
*pResult = (drflac_int32)result;
|
|
return DRFLAC_TRUE;
|
|
}
|
|
|
|
#ifdef DRFLAC_64BIT
|
|
static drflac_bool32 drflac__read_uint64(drflac_bs* bs, unsigned int bitCount, drflac_uint64* pResultOut)
|
|
{
|
|
drflac_uint32 resultHi;
|
|
drflac_uint32 resultLo;
|
|
|
|
DRFLAC_ASSERT(bitCount <= 64);
|
|
DRFLAC_ASSERT(bitCount > 32);
|
|
|
|
if (!drflac__read_uint32(bs, bitCount - 32, &resultHi)) {
|
|
return DRFLAC_FALSE;
|
|
}
|
|
|
|
if (!drflac__read_uint32(bs, 32, &resultLo)) {
|
|
return DRFLAC_FALSE;
|
|
}
|
|
|
|
*pResultOut = (((drflac_uint64)resultHi) << 32) | ((drflac_uint64)resultLo);
|
|
return DRFLAC_TRUE;
|
|
}
|
|
#endif
|
|
|
|
/* Function below is unused, but leaving it here in case I need to quickly add it again. */
|
|
#if 0
|
|
static drflac_bool32 drflac__read_int64(drflac_bs* bs, unsigned int bitCount, drflac_int64* pResultOut)
|
|
{
|
|
drflac_uint64 result;
|
|
drflac_uint64 signbit;
|
|
|
|
DRFLAC_ASSERT(bitCount <= 64);
|
|
|
|
if (!drflac__read_uint64(bs, bitCount, &result)) {
|
|
return DRFLAC_FALSE;
|
|
}
|
|
|
|
signbit = ((result >> (bitCount-1)) & 0x01);
|
|
result |= (~signbit + 1) << bitCount;
|
|
|
|
*pResultOut = (drflac_int64)result;
|
|
return DRFLAC_TRUE;
|
|
}
|
|
#endif
|
|
|
|
static drflac_bool32 drflac__read_uint16(drflac_bs* bs, unsigned int bitCount, drflac_uint16* pResult)
|
|
{
|
|
drflac_uint32 result;
|
|
|
|
DRFLAC_ASSERT(bs != NULL);
|
|
DRFLAC_ASSERT(pResult != NULL);
|
|
DRFLAC_ASSERT(bitCount > 0);
|
|
DRFLAC_ASSERT(bitCount <= 16);
|
|
|
|
if (!drflac__read_uint32(bs, bitCount, &result)) {
|
|
return DRFLAC_FALSE;
|
|
}
|
|
|
|
*pResult = (drflac_uint16)result;
|
|
return DRFLAC_TRUE;
|
|
}
|
|
|
|
#if 0
|
|
static drflac_bool32 drflac__read_int16(drflac_bs* bs, unsigned int bitCount, drflac_int16* pResult)
|
|
{
|
|
drflac_int32 result;
|
|
|
|
DRFLAC_ASSERT(bs != NULL);
|
|
DRFLAC_ASSERT(pResult != NULL);
|
|
DRFLAC_ASSERT(bitCount > 0);
|
|
DRFLAC_ASSERT(bitCount <= 16);
|
|
|
|
if (!drflac__read_int32(bs, bitCount, &result)) {
|
|
return DRFLAC_FALSE;
|
|
}
|
|
|
|
*pResult = (drflac_int16)result;
|
|
return DRFLAC_TRUE;
|
|
}
|
|
#endif
|
|
|
|
static drflac_bool32 drflac__read_uint8(drflac_bs* bs, unsigned int bitCount, drflac_uint8* pResult)
|
|
{
|
|
drflac_uint32 result;
|
|
|
|
DRFLAC_ASSERT(bs != NULL);
|
|
DRFLAC_ASSERT(pResult != NULL);
|
|
DRFLAC_ASSERT(bitCount > 0);
|
|
DRFLAC_ASSERT(bitCount <= 8);
|
|
|
|
if (!drflac__read_uint32(bs, bitCount, &result)) {
|
|
return DRFLAC_FALSE;
|
|
}
|
|
|
|
*pResult = (drflac_uint8)result;
|
|
return DRFLAC_TRUE;
|
|
}
|
|
|
|
static drflac_bool32 drflac__read_int8(drflac_bs* bs, unsigned int bitCount, drflac_int8* pResult)
|
|
{
|
|
drflac_int32 result;
|
|
|
|
DRFLAC_ASSERT(bs != NULL);
|
|
DRFLAC_ASSERT(pResult != NULL);
|
|
DRFLAC_ASSERT(bitCount > 0);
|
|
DRFLAC_ASSERT(bitCount <= 8);
|
|
|
|
if (!drflac__read_int32(bs, bitCount, &result)) {
|
|
return DRFLAC_FALSE;
|
|
}
|
|
|
|
*pResult = (drflac_int8)result;
|
|
return DRFLAC_TRUE;
|
|
}
|
|
|
|
|
|
static drflac_bool32 drflac__seek_bits(drflac_bs* bs, size_t bitsToSeek)
|
|
{
|
|
if (bitsToSeek <= DRFLAC_CACHE_L1_BITS_REMAINING(bs)) {
|
|
bs->consumedBits += (drflac_uint32)bitsToSeek;
|
|
bs->cache <<= bitsToSeek;
|
|
return DRFLAC_TRUE;
|
|
} else {
|
|
/* It straddles the cached data. This function isn't called too frequently so I'm favouring simplicity here. */
|
|
bitsToSeek -= DRFLAC_CACHE_L1_BITS_REMAINING(bs);
|
|
bs->consumedBits += DRFLAC_CACHE_L1_BITS_REMAINING(bs);
|
|
bs->cache = 0;
|
|
|
|
/* Simple case. Seek in groups of the same number as bits that fit within a cache line. */
|
|
#ifdef DRFLAC_64BIT
|
|
while (bitsToSeek >= DRFLAC_CACHE_L1_SIZE_BITS(bs)) {
|
|
drflac_uint64 bin;
|
|
if (!drflac__read_uint64(bs, DRFLAC_CACHE_L1_SIZE_BITS(bs), &bin)) {
|
|
return DRFLAC_FALSE;
|
|
}
|
|
bitsToSeek -= DRFLAC_CACHE_L1_SIZE_BITS(bs);
|
|
}
|
|
#else
|
|
while (bitsToSeek >= DRFLAC_CACHE_L1_SIZE_BITS(bs)) {
|
|
drflac_uint32 bin;
|
|
if (!drflac__read_uint32(bs, DRFLAC_CACHE_L1_SIZE_BITS(bs), &bin)) {
|
|
return DRFLAC_FALSE;
|
|
}
|
|
bitsToSeek -= DRFLAC_CACHE_L1_SIZE_BITS(bs);
|
|
}
|
|
#endif
|
|
|
|
/* Whole leftover bytes. */
|
|
while (bitsToSeek >= 8) {
|
|
drflac_uint8 bin;
|
|
if (!drflac__read_uint8(bs, 8, &bin)) {
|
|
return DRFLAC_FALSE;
|
|
}
|
|
bitsToSeek -= 8;
|
|
}
|
|
|
|
/* Leftover bits. */
|
|
if (bitsToSeek > 0) {
|
|
drflac_uint8 bin;
|
|
if (!drflac__read_uint8(bs, (drflac_uint32)bitsToSeek, &bin)) {
|
|
return DRFLAC_FALSE;
|
|
}
|
|
bitsToSeek = 0; /* <-- Necessary for the assert below. */
|
|
}
|
|
|
|
DRFLAC_ASSERT(bitsToSeek == 0);
|
|
return DRFLAC_TRUE;
|
|
}
|
|
}
|
|
|
|
|
|
/* This function moves the bit streamer to the first bit after the sync code (bit 15 of the of the frame header). It will also update the CRC-16. */
|
|
static drflac_bool32 drflac__find_and_seek_to_next_sync_code(drflac_bs* bs)
|
|
{
|
|
DRFLAC_ASSERT(bs != NULL);
|
|
|
|
/*
|
|
The sync code is always aligned to 8 bits. This is convenient for us because it means we can do byte-aligned movements. The first
|
|
thing to do is align to the next byte.
|
|
*/
|
|
if (!drflac__seek_bits(bs, DRFLAC_CACHE_L1_BITS_REMAINING(bs) & 7)) {
|
|
return DRFLAC_FALSE;
|
|
}
|
|
|
|
for (;;) {
|
|
drflac_uint8 hi;
|
|
|
|
#ifndef DR_FLAC_NO_CRC
|
|
drflac__reset_crc16(bs);
|
|
#endif
|
|
|
|
if (!drflac__read_uint8(bs, 8, &hi)) {
|
|
return DRFLAC_FALSE;
|
|
}
|
|
|
|
if (hi == 0xFF) {
|
|
drflac_uint8 lo;
|
|
if (!drflac__read_uint8(bs, 6, &lo)) {
|
|
return DRFLAC_FALSE;
|
|
}
|
|
|
|
if (lo == 0x3E) {
|
|
return DRFLAC_TRUE;
|
|
} else {
|
|
if (!drflac__seek_bits(bs, DRFLAC_CACHE_L1_BITS_REMAINING(bs) & 7)) {
|
|
return DRFLAC_FALSE;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Should never get here. */
|
|
/*return DRFLAC_FALSE;*/
|
|
}
|
|
|
|
|
|
#if defined(DRFLAC_HAS_LZCNT_INTRINSIC)
|
|
#define DRFLAC_IMPLEMENT_CLZ_LZCNT
|
|
#endif
|
|
#if defined(_MSC_VER) && _MSC_VER >= 1400 && (defined(DRFLAC_X64) || defined(DRFLAC_X86))
|
|
#define DRFLAC_IMPLEMENT_CLZ_MSVC
|
|
#endif
|
|
|
|
static DRFLAC_INLINE drflac_uint32 drflac__clz_software(drflac_cache_t x)
|
|
{
|
|
drflac_uint32 n;
|
|
static drflac_uint32 clz_table_4[] = {
|
|
0,
|
|
4,
|
|
3, 3,
|
|
2, 2, 2, 2,
|
|
1, 1, 1, 1, 1, 1, 1, 1
|
|
};
|
|
|
|
if (x == 0) {
|
|
return sizeof(x)*8;
|
|
}
|
|
|
|
n = clz_table_4[x >> (sizeof(x)*8 - 4)];
|
|
if (n == 0) {
|
|
#ifdef DRFLAC_64BIT
|
|
if ((x & ((drflac_uint64)0xFFFFFFFF << 32)) == 0) { n = 32; x <<= 32; }
|
|
if ((x & ((drflac_uint64)0xFFFF0000 << 32)) == 0) { n += 16; x <<= 16; }
|
|
if ((x & ((drflac_uint64)0xFF000000 << 32)) == 0) { n += 8; x <<= 8; }
|
|
if ((x & ((drflac_uint64)0xF0000000 << 32)) == 0) { n += 4; x <<= 4; }
|
|
#else
|
|
if ((x & 0xFFFF0000) == 0) { n = 16; x <<= 16; }
|
|
if ((x & 0xFF000000) == 0) { n += 8; x <<= 8; }
|
|
if ((x & 0xF0000000) == 0) { n += 4; x <<= 4; }
|
|
#endif
|
|
n += clz_table_4[x >> (sizeof(x)*8 - 4)];
|
|
}
|
|
|
|
return n - 1;
|
|
}
|
|
|
|
#ifdef DRFLAC_IMPLEMENT_CLZ_LZCNT
|
|
static DRFLAC_INLINE drflac_bool32 drflac__is_lzcnt_supported(void)
|
|
{
|
|
/* Fast compile time check for ARM. */
|
|
#if defined(DRFLAC_HAS_LZCNT_INTRINSIC) && defined(DRFLAC_ARM) && (defined(__ARM_ARCH) && __ARM_ARCH >= 5)
|
|
return DRFLAC_TRUE;
|
|
#else
|
|
/* If the compiler itself does not support the intrinsic then we'll need to return false. */
|
|
#ifdef DRFLAC_HAS_LZCNT_INTRINSIC
|
|
return drflac__gIsLZCNTSupported;
|
|
#else
|
|
return DRFLAC_FALSE;
|
|
#endif
|
|
#endif
|
|
}
|
|
|
|
static DRFLAC_INLINE drflac_uint32 drflac__clz_lzcnt(drflac_cache_t x)
|
|
{
|
|
#if defined(_MSC_VER) && !defined(__clang__)
|
|
#ifdef DRFLAC_64BIT
|
|
return (drflac_uint32)__lzcnt64(x);
|
|
#else
|
|
return (drflac_uint32)__lzcnt(x);
|
|
#endif
|
|
#else
|
|
#if defined(__GNUC__) || defined(__clang__)
|
|
#if defined(DRFLAC_X64)
|
|
{
|
|
drflac_uint64 r;
|
|
__asm__ __volatile__ (
|
|
"lzcnt{ %1, %0| %0, %1}" : "=r"(r) : "r"(x)
|
|
);
|
|
|
|
return (drflac_uint32)r;
|
|
}
|
|
#elif defined(DRFLAC_X86)
|
|
{
|
|
drflac_uint32 r;
|
|
__asm__ __volatile__ (
|
|
"lzcnt{l %1, %0| %0, %1}" : "=r"(r) : "r"(x)
|
|
);
|
|
|
|
return r;
|
|
}
|
|
#elif defined(DRFLAC_ARM) && (defined(__ARM_ARCH) && __ARM_ARCH >= 5) && !defined(DRFLAC_64BIT) /* <-- I haven't tested 64-bit inline assembly, so only enabling this for the 32-bit build for now. */
|
|
{
|
|
unsigned int r;
|
|
__asm__ __volatile__ (
|
|
#if defined(DRFLAC_64BIT)
|
|
"clz %w[out], %w[in]" : [out]"=r"(r) : [in]"r"(x) /* <-- This is untested. If someone in the community could test this, that would be appreciated! */
|
|
#else
|
|
"clz %[out], %[in]" : [out]"=r"(r) : [in]"r"(x)
|
|
#endif
|
|
);
|
|
|
|
return r;
|
|
}
|
|
#else
|
|
if (x == 0) {
|
|
return sizeof(x)*8;
|
|
}
|
|
#ifdef DRFLAC_64BIT
|
|
return (drflac_uint32)__builtin_clzll((drflac_uint64)x);
|
|
#else
|
|
return (drflac_uint32)__builtin_clzl((drflac_uint32)x);
|
|
#endif
|
|
#endif
|
|
#else
|
|
/* Unsupported compiler. */
|
|
#error "This compiler does not support the lzcnt intrinsic."
|
|
#endif
|
|
#endif
|
|
}
|
|
#endif
|
|
|
|
#ifdef DRFLAC_IMPLEMENT_CLZ_MSVC
|
|
#include <intrin.h> /* For BitScanReverse(). */
|
|
|
|
static DRFLAC_INLINE drflac_uint32 drflac__clz_msvc(drflac_cache_t x)
|
|
{
|
|
drflac_uint32 n;
|
|
|
|
if (x == 0) {
|
|
return sizeof(x)*8;
|
|
}
|
|
|
|
#ifdef DRFLAC_64BIT
|
|
_BitScanReverse64((unsigned long*)&n, x);
|
|
#else
|
|
_BitScanReverse((unsigned long*)&n, x);
|
|
#endif
|
|
return sizeof(x)*8 - n - 1;
|
|
}
|
|
#endif
|
|
|
|
static DRFLAC_INLINE drflac_uint32 drflac__clz(drflac_cache_t x)
|
|
{
|
|
#ifdef DRFLAC_IMPLEMENT_CLZ_LZCNT
|
|
if (drflac__is_lzcnt_supported()) {
|
|
return drflac__clz_lzcnt(x);
|
|
} else
|
|
#endif
|
|
{
|
|
#ifdef DRFLAC_IMPLEMENT_CLZ_MSVC
|
|
return drflac__clz_msvc(x);
|
|
#else
|
|
return drflac__clz_software(x);
|
|
#endif
|
|
}
|
|
}
|
|
|
|
|
|
static DRFLAC_INLINE drflac_bool32 drflac__seek_past_next_set_bit(drflac_bs* bs, unsigned int* pOffsetOut)
|
|
{
|
|
drflac_uint32 zeroCounter = 0;
|
|
drflac_uint32 setBitOffsetPlus1;
|
|
|
|
while (bs->cache == 0) {
|
|
zeroCounter += (drflac_uint32)DRFLAC_CACHE_L1_BITS_REMAINING(bs);
|
|
if (!drflac__reload_cache(bs)) {
|
|
return DRFLAC_FALSE;
|
|
}
|
|
}
|
|
|
|
setBitOffsetPlus1 = drflac__clz(bs->cache);
|
|
setBitOffsetPlus1 += 1;
|
|
|
|
bs->consumedBits += setBitOffsetPlus1;
|
|
bs->cache <<= setBitOffsetPlus1;
|
|
|
|
*pOffsetOut = zeroCounter + setBitOffsetPlus1 - 1;
|
|
return DRFLAC_TRUE;
|
|
}
|
|
|
|
|
|
|
|
static drflac_bool32 drflac__seek_to_byte(drflac_bs* bs, drflac_uint64 offsetFromStart)
|
|
{
|
|
DRFLAC_ASSERT(bs != NULL);
|
|
DRFLAC_ASSERT(offsetFromStart > 0);
|
|
|
|
/*
|
|
Seeking from the start is not quite as trivial as it sounds because the onSeek callback takes a signed 32-bit integer (which
|
|
is intentional because it simplifies the implementation of the onSeek callbacks), however offsetFromStart is unsigned 64-bit.
|
|
To resolve we just need to do an initial seek from the start, and then a series of offset seeks to make up the remainder.
|
|
*/
|
|
if (offsetFromStart > 0x7FFFFFFF) {
|
|
drflac_uint64 bytesRemaining = offsetFromStart;
|
|
if (!bs->onSeek(bs->pUserData, 0x7FFFFFFF, drflac_seek_origin_start)) {
|
|
return DRFLAC_FALSE;
|
|
}
|
|
bytesRemaining -= 0x7FFFFFFF;
|
|
|
|
while (bytesRemaining > 0x7FFFFFFF) {
|
|
if (!bs->onSeek(bs->pUserData, 0x7FFFFFFF, drflac_seek_origin_current)) {
|
|
return DRFLAC_FALSE;
|
|
}
|
|
bytesRemaining -= 0x7FFFFFFF;
|
|
}
|
|
|
|
if (bytesRemaining > 0) {
|
|
if (!bs->onSeek(bs->pUserData, (int)bytesRemaining, drflac_seek_origin_current)) {
|
|
return DRFLAC_FALSE;
|
|
}
|
|
}
|
|
} else {
|
|
if (!bs->onSeek(bs->pUserData, (int)offsetFromStart, drflac_seek_origin_start)) {
|
|
return DRFLAC_FALSE;
|
|
}
|
|
}
|
|
|
|
/* The cache should be reset to force a reload of fresh data from the client. */
|
|
drflac__reset_cache(bs);
|
|
return DRFLAC_TRUE;
|
|
}
|
|
|
|
|
|
static drflac_result drflac__read_utf8_coded_number(drflac_bs* bs, drflac_uint64* pNumberOut, drflac_uint8* pCRCOut)
|
|
{
|
|
drflac_uint8 crc;
|
|
drflac_uint64 result;
|
|
drflac_uint8 utf8[7] = {0};
|
|
int byteCount;
|
|
int i;
|
|
|
|
DRFLAC_ASSERT(bs != NULL);
|
|
DRFLAC_ASSERT(pNumberOut != NULL);
|
|
DRFLAC_ASSERT(pCRCOut != NULL);
|
|
|
|
crc = *pCRCOut;
|
|
|
|
if (!drflac__read_uint8(bs, 8, utf8)) {
|
|
*pNumberOut = 0;
|
|
return DRFLAC_AT_END;
|
|
}
|
|
crc = drflac_crc8(crc, utf8[0], 8);
|
|
|
|
if ((utf8[0] & 0x80) == 0) {
|
|
*pNumberOut = utf8[0];
|
|
*pCRCOut = crc;
|
|
return DRFLAC_SUCCESS;
|
|
}
|
|
|
|
/*byteCount = 1;*/
|
|
if ((utf8[0] & 0xE0) == 0xC0) {
|
|
byteCount = 2;
|
|
} else if ((utf8[0] & 0xF0) == 0xE0) {
|
|
byteCount = 3;
|
|
} else if ((utf8[0] & 0xF8) == 0xF0) {
|
|
byteCount = 4;
|
|
} else if ((utf8[0] & 0xFC) == 0xF8) {
|
|
byteCount = 5;
|
|
} else if ((utf8[0] & 0xFE) == 0xFC) {
|
|
byteCount = 6;
|
|
} else if ((utf8[0] & 0xFF) == 0xFE) {
|
|
byteCount = 7;
|
|
} else {
|
|
*pNumberOut = 0;
|
|
return DRFLAC_CRC_MISMATCH; /* Bad UTF-8 encoding. */
|
|
}
|
|
|
|
/* Read extra bytes. */
|
|
DRFLAC_ASSERT(byteCount > 1);
|
|
|
|
result = (drflac_uint64)(utf8[0] & (0xFF >> (byteCount + 1)));
|
|
for (i = 1; i < byteCount; ++i) {
|
|
if (!drflac__read_uint8(bs, 8, utf8 + i)) {
|
|
*pNumberOut = 0;
|
|
return DRFLAC_AT_END;
|
|
}
|
|
crc = drflac_crc8(crc, utf8[i], 8);
|
|
|
|
result = (result << 6) | (utf8[i] & 0x3F);
|
|
}
|
|
|
|
*pNumberOut = result;
|
|
*pCRCOut = crc;
|
|
return DRFLAC_SUCCESS;
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
The next two functions are responsible for calculating the prediction.
|
|
|
|
When the bits per sample is >16 we need to use 64-bit integer arithmetic because otherwise we'll run out of precision. It's
|
|
safe to assume this will be slower on 32-bit platforms so we use a more optimal solution when the bits per sample is <=16.
|
|
*/
|
|
static DRFLAC_INLINE drflac_int32 drflac__calculate_prediction_32(drflac_uint32 order, drflac_int32 shift, const drflac_int32* coefficients, drflac_int32* pDecodedSamples)
|
|
{
|
|
drflac_int32 prediction = 0;
|
|
|
|
DRFLAC_ASSERT(order <= 32);
|
|
|
|
/* 32-bit version. */
|
|
|
|
/* VC++ optimizes this to a single jmp. I've not yet verified this for other compilers. */
|
|
switch (order)
|
|
{
|
|
case 32: prediction += coefficients[31] * pDecodedSamples[-32];
|
|
case 31: prediction += coefficients[30] * pDecodedSamples[-31];
|
|
case 30: prediction += coefficients[29] * pDecodedSamples[-30];
|
|
case 29: prediction += coefficients[28] * pDecodedSamples[-29];
|
|
case 28: prediction += coefficients[27] * pDecodedSamples[-28];
|
|
case 27: prediction += coefficients[26] * pDecodedSamples[-27];
|
|
case 26: prediction += coefficients[25] * pDecodedSamples[-26];
|
|
case 25: prediction += coefficients[24] * pDecodedSamples[-25];
|
|
case 24: prediction += coefficients[23] * pDecodedSamples[-24];
|
|
case 23: prediction += coefficients[22] * pDecodedSamples[-23];
|
|
case 22: prediction += coefficients[21] * pDecodedSamples[-22];
|
|
case 21: prediction += coefficients[20] * pDecodedSamples[-21];
|
|
case 20: prediction += coefficients[19] * pDecodedSamples[-20];
|
|
case 19: prediction += coefficients[18] * pDecodedSamples[-19];
|
|
case 18: prediction += coefficients[17] * pDecodedSamples[-18];
|
|
case 17: prediction += coefficients[16] * pDecodedSamples[-17];
|
|
case 16: prediction += coefficients[15] * pDecodedSamples[-16];
|
|
case 15: prediction += coefficients[14] * pDecodedSamples[-15];
|
|
case 14: prediction += coefficients[13] * pDecodedSamples[-14];
|
|
case 13: prediction += coefficients[12] * pDecodedSamples[-13];
|
|
case 12: prediction += coefficients[11] * pDecodedSamples[-12];
|
|
case 11: prediction += coefficients[10] * pDecodedSamples[-11];
|
|
case 10: prediction += coefficients[ 9] * pDecodedSamples[-10];
|
|
case 9: prediction += coefficients[ 8] * pDecodedSamples[- 9];
|
|
case 8: prediction += coefficients[ 7] * pDecodedSamples[- 8];
|
|
case 7: prediction += coefficients[ 6] * pDecodedSamples[- 7];
|
|
case 6: prediction += coefficients[ 5] * pDecodedSamples[- 6];
|
|
case 5: prediction += coefficients[ 4] * pDecodedSamples[- 5];
|
|
case 4: prediction += coefficients[ 3] * pDecodedSamples[- 4];
|
|
case 3: prediction += coefficients[ 2] * pDecodedSamples[- 3];
|
|
case 2: prediction += coefficients[ 1] * pDecodedSamples[- 2];
|
|
case 1: prediction += coefficients[ 0] * pDecodedSamples[- 1];
|
|
}
|
|
|
|
return (drflac_int32)(prediction >> shift);
|
|
}
|
|
|
|
static DRFLAC_INLINE drflac_int32 drflac__calculate_prediction_64(drflac_uint32 order, drflac_int32 shift, const drflac_int32* coefficients, drflac_int32* pDecodedSamples)
|
|
{
|
|
drflac_int64 prediction;
|
|
|
|
DRFLAC_ASSERT(order <= 32);
|
|
|
|
/* 64-bit version. */
|
|
|
|
/* This method is faster on the 32-bit build when compiling with VC++. See note below. */
|
|
#ifndef DRFLAC_64BIT
|
|
if (order == 8)
|
|
{
|
|
prediction = coefficients[0] * (drflac_int64)pDecodedSamples[-1];
|
|
prediction += coefficients[1] * (drflac_int64)pDecodedSamples[-2];
|
|
prediction += coefficients[2] * (drflac_int64)pDecodedSamples[-3];
|
|
prediction += coefficients[3] * (drflac_int64)pDecodedSamples[-4];
|
|
prediction += coefficients[4] * (drflac_int64)pDecodedSamples[-5];
|
|
prediction += coefficients[5] * (drflac_int64)pDecodedSamples[-6];
|
|
prediction += coefficients[6] * (drflac_int64)pDecodedSamples[-7];
|
|
prediction += coefficients[7] * (drflac_int64)pDecodedSamples[-8];
|
|
}
|
|
else if (order == 7)
|
|
{
|
|
prediction = coefficients[0] * (drflac_int64)pDecodedSamples[-1];
|
|
prediction += coefficients[1] * (drflac_int64)pDecodedSamples[-2];
|
|
prediction += coefficients[2] * (drflac_int64)pDecodedSamples[-3];
|
|
prediction += coefficients[3] * (drflac_int64)pDecodedSamples[-4];
|
|
prediction += coefficients[4] * (drflac_int64)pDecodedSamples[-5];
|
|
prediction += coefficients[5] * (drflac_int64)pDecodedSamples[-6];
|
|
prediction += coefficients[6] * (drflac_int64)pDecodedSamples[-7];
|
|
}
|
|
else if (order == 3)
|
|
{
|
|
prediction = coefficients[0] * (drflac_int64)pDecodedSamples[-1];
|
|
prediction += coefficients[1] * (drflac_int64)pDecodedSamples[-2];
|
|
prediction += coefficients[2] * (drflac_int64)pDecodedSamples[-3];
|
|
}
|
|
else if (order == 6)
|
|
{
|
|
prediction = coefficients[0] * (drflac_int64)pDecodedSamples[-1];
|
|
prediction += coefficients[1] * (drflac_int64)pDecodedSamples[-2];
|
|
prediction += coefficients[2] * (drflac_int64)pDecodedSamples[-3];
|
|
prediction += coefficients[3] * (drflac_int64)pDecodedSamples[-4];
|
|
prediction += coefficients[4] * (drflac_int64)pDecodedSamples[-5];
|
|
prediction += coefficients[5] * (drflac_int64)pDecodedSamples[-6];
|
|
}
|
|
else if (order == 5)
|
|
{
|
|
prediction = coefficients[0] * (drflac_int64)pDecodedSamples[-1];
|
|
prediction += coefficients[1] * (drflac_int64)pDecodedSamples[-2];
|
|
prediction += coefficients[2] * (drflac_int64)pDecodedSamples[-3];
|
|
prediction += coefficients[3] * (drflac_int64)pDecodedSamples[-4];
|
|
prediction += coefficients[4] * (drflac_int64)pDecodedSamples[-5];
|
|
}
|
|
else if (order == 4)
|
|
{
|
|
prediction = coefficients[0] * (drflac_int64)pDecodedSamples[-1];
|
|
prediction += coefficients[1] * (drflac_int64)pDecodedSamples[-2];
|
|
prediction += coefficients[2] * (drflac_int64)pDecodedSamples[-3];
|
|
prediction += coefficients[3] * (drflac_int64)pDecodedSamples[-4];
|
|
}
|
|
else if (order == 12)
|
|
{
|
|
prediction = coefficients[0] * (drflac_int64)pDecodedSamples[-1];
|
|
prediction += coefficients[1] * (drflac_int64)pDecodedSamples[-2];
|
|
prediction += coefficients[2] * (drflac_int64)pDecodedSamples[-3];
|
|
prediction += coefficients[3] * (drflac_int64)pDecodedSamples[-4];
|
|
prediction += coefficients[4] * (drflac_int64)pDecodedSamples[-5];
|
|
prediction += coefficients[5] * (drflac_int64)pDecodedSamples[-6];
|
|
prediction += coefficients[6] * (drflac_int64)pDecodedSamples[-7];
|
|
prediction += coefficients[7] * (drflac_int64)pDecodedSamples[-8];
|
|
prediction += coefficients[8] * (drflac_int64)pDecodedSamples[-9];
|
|
prediction += coefficients[9] * (drflac_int64)pDecodedSamples[-10];
|
|
prediction += coefficients[10] * (drflac_int64)pDecodedSamples[-11];
|
|
prediction += coefficients[11] * (drflac_int64)pDecodedSamples[-12];
|
|
}
|
|
else if (order == 2)
|
|
{
|
|
prediction = coefficients[0] * (drflac_int64)pDecodedSamples[-1];
|
|
prediction += coefficients[1] * (drflac_int64)pDecodedSamples[-2];
|
|
}
|
|
else if (order == 1)
|
|
{
|
|
prediction = coefficients[0] * (drflac_int64)pDecodedSamples[-1];
|
|
}
|
|
else if (order == 10)
|
|
{
|
|
prediction = coefficients[0] * (drflac_int64)pDecodedSamples[-1];
|
|
prediction += coefficients[1] * (drflac_int64)pDecodedSamples[-2];
|
|
prediction += coefficients[2] * (drflac_int64)pDecodedSamples[-3];
|
|
prediction += coefficients[3] * (drflac_int64)pDecodedSamples[-4];
|
|
prediction += coefficients[4] * (drflac_int64)pDecodedSamples[-5];
|
|
prediction += coefficients[5] * (drflac_int64)pDecodedSamples[-6];
|
|
prediction += coefficients[6] * (drflac_int64)pDecodedSamples[-7];
|
|
prediction += coefficients[7] * (drflac_int64)pDecodedSamples[-8];
|
|
prediction += coefficients[8] * (drflac_int64)pDecodedSamples[-9];
|
|
prediction += coefficients[9] * (drflac_int64)pDecodedSamples[-10];
|
|
}
|
|
else if (order == 9)
|
|
{
|
|
prediction = coefficients[0] * (drflac_int64)pDecodedSamples[-1];
|
|
prediction += coefficients[1] * (drflac_int64)pDecodedSamples[-2];
|
|
prediction += coefficients[2] * (drflac_int64)pDecodedSamples[-3];
|
|
prediction += coefficients[3] * (drflac_int64)pDecodedSamples[-4];
|
|
prediction += coefficients[4] * (drflac_int64)pDecodedSamples[-5];
|
|
prediction += coefficients[5] * (drflac_int64)pDecodedSamples[-6];
|
|
prediction += coefficients[6] * (drflac_int64)pDecodedSamples[-7];
|
|
prediction += coefficients[7] * (drflac_int64)pDecodedSamples[-8];
|
|
prediction += coefficients[8] * (drflac_int64)pDecodedSamples[-9];
|
|
}
|
|
else if (order == 11)
|
|
{
|
|
prediction = coefficients[0] * (drflac_int64)pDecodedSamples[-1];
|
|
prediction += coefficients[1] * (drflac_int64)pDecodedSamples[-2];
|
|
prediction += coefficients[2] * (drflac_int64)pDecodedSamples[-3];
|
|
prediction += coefficients[3] * (drflac_int64)pDecodedSamples[-4];
|
|
prediction += coefficients[4] * (drflac_int64)pDecodedSamples[-5];
|
|
prediction += coefficients[5] * (drflac_int64)pDecodedSamples[-6];
|
|
prediction += coefficients[6] * (drflac_int64)pDecodedSamples[-7];
|
|
prediction += coefficients[7] * (drflac_int64)pDecodedSamples[-8];
|
|
prediction += coefficients[8] * (drflac_int64)pDecodedSamples[-9];
|
|
prediction += coefficients[9] * (drflac_int64)pDecodedSamples[-10];
|
|
prediction += coefficients[10] * (drflac_int64)pDecodedSamples[-11];
|
|
}
|
|
else
|
|
{
|
|
int j;
|
|
|
|
prediction = 0;
|
|
for (j = 0; j < (int)order; ++j) {
|
|
prediction += coefficients[j] * (drflac_int64)pDecodedSamples[-j-1];
|
|
}
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
VC++ optimizes this to a single jmp instruction, but only the 64-bit build. The 32-bit build generates less efficient code for some
|
|
reason. The ugly version above is faster so we'll just switch between the two depending on the target platform.
|
|
*/
|
|
#ifdef DRFLAC_64BIT
|
|
prediction = 0;
|
|
switch (order)
|
|
{
|
|
case 32: prediction += coefficients[31] * (drflac_int64)pDecodedSamples[-32];
|
|
case 31: prediction += coefficients[30] * (drflac_int64)pDecodedSamples[-31];
|
|
case 30: prediction += coefficients[29] * (drflac_int64)pDecodedSamples[-30];
|
|
case 29: prediction += coefficients[28] * (drflac_int64)pDecodedSamples[-29];
|
|
case 28: prediction += coefficients[27] * (drflac_int64)pDecodedSamples[-28];
|
|
case 27: prediction += coefficients[26] * (drflac_int64)pDecodedSamples[-27];
|
|
case 26: prediction += coefficients[25] * (drflac_int64)pDecodedSamples[-26];
|
|
case 25: prediction += coefficients[24] * (drflac_int64)pDecodedSamples[-25];
|
|
case 24: prediction += coefficients[23] * (drflac_int64)pDecodedSamples[-24];
|
|
case 23: prediction += coefficients[22] * (drflac_int64)pDecodedSamples[-23];
|
|
case 22: prediction += coefficients[21] * (drflac_int64)pDecodedSamples[-22];
|
|
case 21: prediction += coefficients[20] * (drflac_int64)pDecodedSamples[-21];
|
|
case 20: prediction += coefficients[19] * (drflac_int64)pDecodedSamples[-20];
|
|
case 19: prediction += coefficients[18] * (drflac_int64)pDecodedSamples[-19];
|
|
case 18: prediction += coefficients[17] * (drflac_int64)pDecodedSamples[-18];
|
|
case 17: prediction += coefficients[16] * (drflac_int64)pDecodedSamples[-17];
|
|
case 16: prediction += coefficients[15] * (drflac_int64)pDecodedSamples[-16];
|
|
case 15: prediction += coefficients[14] * (drflac_int64)pDecodedSamples[-15];
|
|
case 14: prediction += coefficients[13] * (drflac_int64)pDecodedSamples[-14];
|
|
case 13: prediction += coefficients[12] * (drflac_int64)pDecodedSamples[-13];
|
|
case 12: prediction += coefficients[11] * (drflac_int64)pDecodedSamples[-12];
|
|
case 11: prediction += coefficients[10] * (drflac_int64)pDecodedSamples[-11];
|
|
case 10: prediction += coefficients[ 9] * (drflac_int64)pDecodedSamples[-10];
|
|
case 9: prediction += coefficients[ 8] * (drflac_int64)pDecodedSamples[- 9];
|
|
case 8: prediction += coefficients[ 7] * (drflac_int64)pDecodedSamples[- 8];
|
|
case 7: prediction += coefficients[ 6] * (drflac_int64)pDecodedSamples[- 7];
|
|
case 6: prediction += coefficients[ 5] * (drflac_int64)pDecodedSamples[- 6];
|
|
case 5: prediction += coefficients[ 4] * (drflac_int64)pDecodedSamples[- 5];
|
|
case 4: prediction += coefficients[ 3] * (drflac_int64)pDecodedSamples[- 4];
|
|
case 3: prediction += coefficients[ 2] * (drflac_int64)pDecodedSamples[- 3];
|
|
case 2: prediction += coefficients[ 1] * (drflac_int64)pDecodedSamples[- 2];
|
|
case 1: prediction += coefficients[ 0] * (drflac_int64)pDecodedSamples[- 1];
|
|
}
|
|
#endif
|
|
|
|
return (drflac_int32)(prediction >> shift);
|
|
}
|
|
|
|
|
|
#if 0
|
|
/*
|
|
Reference implementation for reading and decoding samples with residual. This is intentionally left unoptimized for the
|
|
sake of readability and should only be used as a reference.
|
|
*/
|
|
static drflac_bool32 drflac__decode_samples_with_residual__rice__reference(drflac_bs* bs, drflac_uint32 bitsPerSample, drflac_uint32 count, drflac_uint8 riceParam, drflac_uint32 order, drflac_int32 shift, const drflac_int32* coefficients, drflac_int32* pSamplesOut)
|
|
{
|
|
drflac_uint32 i;
|
|
|
|
DRFLAC_ASSERT(bs != NULL);
|
|
DRFLAC_ASSERT(count > 0);
|
|
DRFLAC_ASSERT(pSamplesOut != NULL);
|
|
|
|
for (i = 0; i < count; ++i) {
|
|
drflac_uint32 zeroCounter = 0;
|
|
for (;;) {
|
|
drflac_uint8 bit;
|
|
if (!drflac__read_uint8(bs, 1, &bit)) {
|
|
return DRFLAC_FALSE;
|
|
}
|
|
|
|
if (bit == 0) {
|
|
zeroCounter += 1;
|
|
} else {
|
|
break;
|
|
}
|
|
}
|
|
|
|
drflac_uint32 decodedRice;
|
|
if (riceParam > 0) {
|
|
if (!drflac__read_uint32(bs, riceParam, &decodedRice)) {
|
|
return DRFLAC_FALSE;
|
|
}
|
|
} else {
|
|
decodedRice = 0;
|
|
}
|
|
|
|
decodedRice |= (zeroCounter << riceParam);
|
|
if ((decodedRice & 0x01)) {
|
|
decodedRice = ~(decodedRice >> 1);
|
|
} else {
|
|
decodedRice = (decodedRice >> 1);
|
|
}
|
|
|
|
|
|
if (bitsPerSample+shift >= 32) {
|
|
pSamplesOut[i] = decodedRice + drflac__calculate_prediction_64(order, shift, coefficients, pSamplesOut + i);
|
|
} else {
|
|
pSamplesOut[i] = decodedRice + drflac__calculate_prediction_32(order, shift, coefficients, pSamplesOut + i);
|
|
}
|
|
}
|
|
|
|
return DRFLAC_TRUE;
|
|
}
|
|
#endif
|
|
|
|
#if 0
|
|
static drflac_bool32 drflac__read_rice_parts__reference(drflac_bs* bs, drflac_uint8 riceParam, drflac_uint32* pZeroCounterOut, drflac_uint32* pRiceParamPartOut)
|
|
{
|
|
drflac_uint32 zeroCounter = 0;
|
|
drflac_uint32 decodedRice;
|
|
|
|
for (;;) {
|
|
drflac_uint8 bit;
|
|
if (!drflac__read_uint8(bs, 1, &bit)) {
|
|
return DRFLAC_FALSE;
|
|
}
|
|
|
|
if (bit == 0) {
|
|
zeroCounter += 1;
|
|
} else {
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (riceParam > 0) {
|
|
if (!drflac__read_uint32(bs, riceParam, &decodedRice)) {
|
|
return DRFLAC_FALSE;
|
|
}
|
|
} else {
|
|
decodedRice = 0;
|
|
}
|
|
|
|
*pZeroCounterOut = zeroCounter;
|
|
*pRiceParamPartOut = decodedRice;
|
|
return DRFLAC_TRUE;
|
|
}
|
|
#endif
|
|
|
|
#if 0
|
|
static DRFLAC_INLINE drflac_bool32 drflac__read_rice_parts(drflac_bs* bs, drflac_uint8 riceParam, drflac_uint32* pZeroCounterOut, drflac_uint32* pRiceParamPartOut)
|
|
{
|
|
drflac_cache_t riceParamMask;
|
|
drflac_uint32 zeroCounter;
|
|
drflac_uint32 setBitOffsetPlus1;
|
|
drflac_uint32 riceParamPart;
|
|
drflac_uint32 riceLength;
|
|
|
|
DRFLAC_ASSERT(riceParam > 0); /* <-- riceParam should never be 0. drflac__read_rice_parts__param_equals_zero() should be used instead for this case. */
|
|
|
|
riceParamMask = DRFLAC_CACHE_L1_SELECTION_MASK(riceParam);
|
|
|
|
zeroCounter = 0;
|
|
while (bs->cache == 0) {
|
|
zeroCounter += (drflac_uint32)DRFLAC_CACHE_L1_BITS_REMAINING(bs);
|
|
if (!drflac__reload_cache(bs)) {
|
|
return DRFLAC_FALSE;
|
|
}
|
|
}
|
|
|
|
setBitOffsetPlus1 = drflac__clz(bs->cache);
|
|
zeroCounter += setBitOffsetPlus1;
|
|
setBitOffsetPlus1 += 1;
|
|
|
|
riceLength = setBitOffsetPlus1 + riceParam;
|
|
if (riceLength < DRFLAC_CACHE_L1_BITS_REMAINING(bs)) {
|
|
riceParamPart = (drflac_uint32)((bs->cache & (riceParamMask >> setBitOffsetPlus1)) >> DRFLAC_CACHE_L1_SELECTION_SHIFT(bs, riceLength));
|
|
|
|
bs->consumedBits += riceLength;
|
|
bs->cache <<= riceLength;
|
|
} else {
|
|
drflac_uint32 bitCountLo;
|
|
drflac_cache_t resultHi;
|
|
|
|
bs->consumedBits += riceLength;
|
|
bs->cache <<= setBitOffsetPlus1 & (DRFLAC_CACHE_L1_SIZE_BITS(bs)-1); /* <-- Equivalent to "if (setBitOffsetPlus1 < DRFLAC_CACHE_L1_SIZE_BITS(bs)) { bs->cache <<= setBitOffsetPlus1; }" */
|
|
|
|
/* It straddles the cached data. It will never cover more than the next chunk. We just read the number in two parts and combine them. */
|
|
bitCountLo = bs->consumedBits - DRFLAC_CACHE_L1_SIZE_BITS(bs);
|
|
resultHi = DRFLAC_CACHE_L1_SELECT_AND_SHIFT(bs, riceParam); /* <-- Use DRFLAC_CACHE_L1_SELECT_AND_SHIFT_SAFE() if ever this function allows riceParam=0. */
|
|
|
|
if (bs->nextL2Line < DRFLAC_CACHE_L2_LINE_COUNT(bs)) {
|
|
#ifndef DR_FLAC_NO_CRC
|
|
drflac__update_crc16(bs);
|
|
#endif
|
|
bs->cache = drflac__be2host__cache_line(bs->cacheL2[bs->nextL2Line++]);
|
|
bs->consumedBits = 0;
|
|
#ifndef DR_FLAC_NO_CRC
|
|
bs->crc16Cache = bs->cache;
|
|
#endif
|
|
} else {
|
|
/* Slow path. We need to fetch more data from the client. */
|
|
if (!drflac__reload_cache(bs)) {
|
|
return DRFLAC_FALSE;
|
|
}
|
|
}
|
|
|
|
riceParamPart = (drflac_uint32)(resultHi | DRFLAC_CACHE_L1_SELECT_AND_SHIFT_SAFE(bs, bitCountLo));
|
|
|
|
bs->consumedBits += bitCountLo;
|
|
bs->cache <<= bitCountLo;
|
|
}
|
|
|
|
pZeroCounterOut[0] = zeroCounter;
|
|
pRiceParamPartOut[0] = riceParamPart;
|
|
|
|
return DRFLAC_TRUE;
|
|
}
|
|
#endif
|
|
|
|
static DRFLAC_INLINE drflac_bool32 drflac__read_rice_parts_x1(drflac_bs* bs, drflac_uint8 riceParam, drflac_uint32* pZeroCounterOut, drflac_uint32* pRiceParamPartOut)
|
|
{
|
|
drflac_uint32 riceParamPlus1 = riceParam + 1;
|
|
/*drflac_cache_t riceParamPlus1Mask = DRFLAC_CACHE_L1_SELECTION_MASK(riceParamPlus1);*/
|
|
drflac_uint32 riceParamPlus1Shift = DRFLAC_CACHE_L1_SELECTION_SHIFT(bs, riceParamPlus1);
|
|
drflac_uint32 riceParamPlus1MaxConsumedBits = DRFLAC_CACHE_L1_SIZE_BITS(bs) - riceParamPlus1;
|
|
|
|
/*
|
|
The idea here is to use local variables for the cache in an attempt to encourage the compiler to store them in registers. I have
|
|
no idea how this will work in practice...
|
|
*/
|
|
drflac_cache_t bs_cache = bs->cache;
|
|
drflac_uint32 bs_consumedBits = bs->consumedBits;
|
|
|
|
/* The first thing to do is find the first unset bit. Most likely a bit will be set in the current cache line. */
|
|
drflac_uint32 lzcount = drflac__clz(bs_cache);
|
|
if (lzcount < sizeof(bs_cache)*8) {
|
|
pZeroCounterOut[0] = lzcount;
|
|
|
|
/*
|
|
It is most likely that the riceParam part (which comes after the zero counter) is also on this cache line. When extracting
|
|
this, we include the set bit from the unary coded part because it simplifies cache management. This bit will be handled
|
|
outside of this function at a higher level.
|
|
*/
|
|
extract_rice_param_part:
|
|
bs_cache <<= lzcount;
|
|
bs_consumedBits += lzcount;
|
|
|
|
if (bs_consumedBits <= riceParamPlus1MaxConsumedBits) {
|
|
/* Getting here means the rice parameter part is wholly contained within the current cache line. */
|
|
pRiceParamPartOut[0] = (drflac_uint32)(bs_cache >> riceParamPlus1Shift);
|
|
bs_cache <<= riceParamPlus1;
|
|
bs_consumedBits += riceParamPlus1;
|
|
} else {
|
|
drflac_uint32 riceParamPartHi;
|
|
drflac_uint32 riceParamPartLo;
|
|
drflac_uint32 riceParamPartLoBitCount;
|
|
|
|
/*
|
|
Getting here means the rice parameter part straddles the cache line. We need to read from the tail of the current cache
|
|
line, reload the cache, and then combine it with the head of the next cache line.
|
|
*/
|
|
|
|
/* Grab the high part of the rice parameter part. */
|
|
riceParamPartHi = (drflac_uint32)(bs_cache >> riceParamPlus1Shift);
|
|
|
|
/* Before reloading the cache we need to grab the size in bits of the low part. */
|
|
riceParamPartLoBitCount = bs_consumedBits - riceParamPlus1MaxConsumedBits;
|
|
DRFLAC_ASSERT(riceParamPartLoBitCount > 0 && riceParamPartLoBitCount < 32);
|
|
|
|
/* Now reload the cache. */
|
|
if (bs->nextL2Line < DRFLAC_CACHE_L2_LINE_COUNT(bs)) {
|
|
#ifndef DR_FLAC_NO_CRC
|
|
drflac__update_crc16(bs);
|
|
#endif
|
|
bs_cache = drflac__be2host__cache_line(bs->cacheL2[bs->nextL2Line++]);
|
|
bs_consumedBits = riceParamPartLoBitCount;
|
|
#ifndef DR_FLAC_NO_CRC
|
|
bs->crc16Cache = bs_cache;
|
|
#endif
|
|
} else {
|
|
/* Slow path. We need to fetch more data from the client. */
|
|
if (!drflac__reload_cache(bs)) {
|
|
return DRFLAC_FALSE;
|
|
}
|
|
|
|
bs_cache = bs->cache;
|
|
bs_consumedBits = bs->consumedBits + riceParamPartLoBitCount;
|
|
}
|
|
|
|
/* We should now have enough information to construct the rice parameter part. */
|
|
riceParamPartLo = (drflac_uint32)(bs_cache >> (DRFLAC_CACHE_L1_SELECTION_SHIFT(bs, riceParamPartLoBitCount)));
|
|
pRiceParamPartOut[0] = riceParamPartHi | riceParamPartLo;
|
|
|
|
bs_cache <<= riceParamPartLoBitCount;
|
|
}
|
|
} else {
|
|
/*
|
|
Getting here means there are no bits set on the cache line. This is a less optimal case because we just wasted a call
|
|
to drflac__clz() and we need to reload the cache.
|
|
*/
|
|
drflac_uint32 zeroCounter = (drflac_uint32)(DRFLAC_CACHE_L1_SIZE_BITS(bs) - bs_consumedBits);
|
|
for (;;) {
|
|
if (bs->nextL2Line < DRFLAC_CACHE_L2_LINE_COUNT(bs)) {
|
|
#ifndef DR_FLAC_NO_CRC
|
|
drflac__update_crc16(bs);
|
|
#endif
|
|
bs_cache = drflac__be2host__cache_line(bs->cacheL2[bs->nextL2Line++]);
|
|
bs_consumedBits = 0;
|
|
#ifndef DR_FLAC_NO_CRC
|
|
bs->crc16Cache = bs_cache;
|
|
#endif
|
|
} else {
|
|
/* Slow path. We need to fetch more data from the client. */
|
|
if (!drflac__reload_cache(bs)) {
|
|
return DRFLAC_FALSE;
|
|
}
|
|
|
|
bs_cache = bs->cache;
|
|
bs_consumedBits = bs->consumedBits;
|
|
}
|
|
|
|
lzcount = drflac__clz(bs_cache);
|
|
zeroCounter += lzcount;
|
|
|
|
if (lzcount < sizeof(bs_cache)*8) {
|
|
break;
|
|
}
|
|
}
|
|
|
|
pZeroCounterOut[0] = zeroCounter;
|
|
goto extract_rice_param_part;
|
|
}
|
|
|
|
/* Make sure the cache is restored at the end of it all. */
|
|
bs->cache = bs_cache;
|
|
bs->consumedBits = bs_consumedBits;
|
|
|
|
return DRFLAC_TRUE;
|
|
}
|
|
|
|
static DRFLAC_INLINE drflac_bool32 drflac__seek_rice_parts(drflac_bs* bs, drflac_uint8 riceParam)
|
|
{
|
|
drflac_uint32 riceParamPlus1 = riceParam + 1;
|
|
drflac_uint32 riceParamPlus1MaxConsumedBits = DRFLAC_CACHE_L1_SIZE_BITS(bs) - riceParamPlus1;
|
|
|
|
/*
|
|
The idea here is to use local variables for the cache in an attempt to encourage the compiler to store them in registers. I have
|
|
no idea how this will work in practice...
|
|
*/
|
|
drflac_cache_t bs_cache = bs->cache;
|
|
drflac_uint32 bs_consumedBits = bs->consumedBits;
|
|
|
|
/* The first thing to do is find the first unset bit. Most likely a bit will be set in the current cache line. */
|
|
drflac_uint32 lzcount = drflac__clz(bs_cache);
|
|
if (lzcount < sizeof(bs_cache)*8) {
|
|
/*
|
|
It is most likely that the riceParam part (which comes after the zero counter) is also on this cache line. When extracting
|
|
this, we include the set bit from the unary coded part because it simplifies cache management. This bit will be handled
|
|
outside of this function at a higher level.
|
|
*/
|
|
extract_rice_param_part:
|
|
bs_cache <<= lzcount;
|
|
bs_consumedBits += lzcount;
|
|
|
|
if (bs_consumedBits <= riceParamPlus1MaxConsumedBits) {
|
|
/* Getting here means the rice parameter part is wholly contained within the current cache line. */
|
|
bs_cache <<= riceParamPlus1;
|
|
bs_consumedBits += riceParamPlus1;
|
|
} else {
|
|
/*
|
|
Getting here means the rice parameter part straddles the cache line. We need to read from the tail of the current cache
|
|
line, reload the cache, and then combine it with the head of the next cache line.
|
|
*/
|
|
|
|
/* Before reloading the cache we need to grab the size in bits of the low part. */
|
|
drflac_uint32 riceParamPartLoBitCount = bs_consumedBits - riceParamPlus1MaxConsumedBits;
|
|
DRFLAC_ASSERT(riceParamPartLoBitCount > 0 && riceParamPartLoBitCount < 32);
|
|
|
|
/* Now reload the cache. */
|
|
if (bs->nextL2Line < DRFLAC_CACHE_L2_LINE_COUNT(bs)) {
|
|
#ifndef DR_FLAC_NO_CRC
|
|
drflac__update_crc16(bs);
|
|
#endif
|
|
bs_cache = drflac__be2host__cache_line(bs->cacheL2[bs->nextL2Line++]);
|
|
bs_consumedBits = riceParamPartLoBitCount;
|
|
#ifndef DR_FLAC_NO_CRC
|
|
bs->crc16Cache = bs_cache;
|
|
#endif
|
|
} else {
|
|
/* Slow path. We need to fetch more data from the client. */
|
|
if (!drflac__reload_cache(bs)) {
|
|
return DRFLAC_FALSE;
|
|
}
|
|
|
|
bs_cache = bs->cache;
|
|
bs_consumedBits = bs->consumedBits + riceParamPartLoBitCount;
|
|
}
|
|
|
|
bs_cache <<= riceParamPartLoBitCount;
|
|
}
|
|
} else {
|
|
/*
|
|
Getting here means there are no bits set on the cache line. This is a less optimal case because we just wasted a call
|
|
to drflac__clz() and we need to reload the cache.
|
|
*/
|
|
for (;;) {
|
|
if (bs->nextL2Line < DRFLAC_CACHE_L2_LINE_COUNT(bs)) {
|
|
#ifndef DR_FLAC_NO_CRC
|
|
drflac__update_crc16(bs);
|
|
#endif
|
|
bs_cache = drflac__be2host__cache_line(bs->cacheL2[bs->nextL2Line++]);
|
|
bs_consumedBits = 0;
|
|
#ifndef DR_FLAC_NO_CRC
|
|
bs->crc16Cache = bs_cache;
|
|
#endif
|
|
} else {
|
|
/* Slow path. We need to fetch more data from the client. */
|
|
if (!drflac__reload_cache(bs)) {
|
|
return DRFLAC_FALSE;
|
|
}
|
|
|
|
bs_cache = bs->cache;
|
|
bs_consumedBits = bs->consumedBits;
|
|
}
|
|
|
|
lzcount = drflac__clz(bs_cache);
|
|
if (lzcount < sizeof(bs_cache)*8) {
|
|
break;
|
|
}
|
|
}
|
|
|
|
goto extract_rice_param_part;
|
|
}
|
|
|
|
/* Make sure the cache is restored at the end of it all. */
|
|
bs->cache = bs_cache;
|
|
bs->consumedBits = bs_consumedBits;
|
|
|
|
return DRFLAC_TRUE;
|
|
}
|
|
|
|
|
|
static drflac_bool32 drflac__decode_samples_with_residual__rice__scalar_zeroorder(drflac_bs* bs, drflac_uint32 bitsPerSample, drflac_uint32 count, drflac_uint8 riceParam, drflac_uint32 order, drflac_int32 shift, const drflac_int32* coefficients, drflac_int32* pSamplesOut)
|
|
{
|
|
drflac_uint32 t[2] = {0x00000000, 0xFFFFFFFF};
|
|
drflac_uint32 zeroCountPart0;
|
|
drflac_uint32 riceParamPart0;
|
|
drflac_uint32 riceParamMask;
|
|
drflac_uint32 i;
|
|
|
|
DRFLAC_ASSERT(bs != NULL);
|
|
DRFLAC_ASSERT(count > 0);
|
|
DRFLAC_ASSERT(pSamplesOut != NULL);
|
|
|
|
(void)bitsPerSample;
|
|
(void)order;
|
|
(void)shift;
|
|
(void)coefficients;
|
|
|
|
riceParamMask = (drflac_uint32)~((~0UL) << riceParam);
|
|
|
|
i = 0;
|
|
while (i < count) {
|
|
/* Rice extraction. */
|
|
if (!drflac__read_rice_parts_x1(bs, riceParam, &zeroCountPart0, &riceParamPart0)) {
|
|
return DRFLAC_FALSE;
|
|
}
|
|
|
|
/* Rice reconstruction. */
|
|
riceParamPart0 &= riceParamMask;
|
|
riceParamPart0 |= (zeroCountPart0 << riceParam);
|
|
riceParamPart0 = (riceParamPart0 >> 1) ^ t[riceParamPart0 & 0x01];
|
|
|
|
pSamplesOut[i] = riceParamPart0;
|
|
|
|
i += 1;
|
|
}
|
|
|
|
return DRFLAC_TRUE;
|
|
}
|
|
|
|
static drflac_bool32 drflac__decode_samples_with_residual__rice__scalar(drflac_bs* bs, drflac_uint32 bitsPerSample, drflac_uint32 count, drflac_uint8 riceParam, drflac_uint32 order, drflac_int32 shift, const drflac_int32* coefficients, drflac_int32* pSamplesOut)
|
|
{
|
|
drflac_uint32 t[2] = {0x00000000, 0xFFFFFFFF};
|
|
drflac_uint32 zeroCountPart0 = 0;
|
|
drflac_uint32 zeroCountPart1 = 0;
|
|
drflac_uint32 zeroCountPart2 = 0;
|
|
drflac_uint32 zeroCountPart3 = 0;
|
|
drflac_uint32 riceParamPart0 = 0;
|
|
drflac_uint32 riceParamPart1 = 0;
|
|
drflac_uint32 riceParamPart2 = 0;
|
|
drflac_uint32 riceParamPart3 = 0;
|
|
drflac_uint32 riceParamMask;
|
|
const drflac_int32* pSamplesOutEnd;
|
|
drflac_uint32 i;
|
|
|
|
DRFLAC_ASSERT(bs != NULL);
|
|
DRFLAC_ASSERT(count > 0);
|
|
DRFLAC_ASSERT(pSamplesOut != NULL);
|
|
|
|
if (order == 0) {
|
|
return drflac__decode_samples_with_residual__rice__scalar_zeroorder(bs, bitsPerSample, count, riceParam, order, shift, coefficients, pSamplesOut);
|
|
}
|
|
|
|
riceParamMask = (drflac_uint32)~((~0UL) << riceParam);
|
|
pSamplesOutEnd = pSamplesOut + (count & ~3);
|
|
|
|
if (bitsPerSample+shift > 32) {
|
|
while (pSamplesOut < pSamplesOutEnd) {
|
|
/*
|
|
Rice extraction. It's faster to do this one at a time against local variables than it is to use the x4 version
|
|
against an array. Not sure why, but perhaps it's making more efficient use of registers?
|
|
*/
|
|
if (!drflac__read_rice_parts_x1(bs, riceParam, &zeroCountPart0, &riceParamPart0) ||
|
|
!drflac__read_rice_parts_x1(bs, riceParam, &zeroCountPart1, &riceParamPart1) ||
|
|
!drflac__read_rice_parts_x1(bs, riceParam, &zeroCountPart2, &riceParamPart2) ||
|
|
!drflac__read_rice_parts_x1(bs, riceParam, &zeroCountPart3, &riceParamPart3)) {
|
|
return DRFLAC_FALSE;
|
|
}
|
|
|
|
riceParamPart0 &= riceParamMask;
|
|
riceParamPart1 &= riceParamMask;
|
|
riceParamPart2 &= riceParamMask;
|
|
riceParamPart3 &= riceParamMask;
|
|
|
|
riceParamPart0 |= (zeroCountPart0 << riceParam);
|
|
riceParamPart1 |= (zeroCountPart1 << riceParam);
|
|
riceParamPart2 |= (zeroCountPart2 << riceParam);
|
|
riceParamPart3 |= (zeroCountPart3 << riceParam);
|
|
|
|
riceParamPart0 = (riceParamPart0 >> 1) ^ t[riceParamPart0 & 0x01];
|
|
riceParamPart1 = (riceParamPart1 >> 1) ^ t[riceParamPart1 & 0x01];
|
|
riceParamPart2 = (riceParamPart2 >> 1) ^ t[riceParamPart2 & 0x01];
|
|
riceParamPart3 = (riceParamPart3 >> 1) ^ t[riceParamPart3 & 0x01];
|
|
|
|
pSamplesOut[0] = riceParamPart0 + drflac__calculate_prediction_64(order, shift, coefficients, pSamplesOut + 0);
|
|
pSamplesOut[1] = riceParamPart1 + drflac__calculate_prediction_64(order, shift, coefficients, pSamplesOut + 1);
|
|
pSamplesOut[2] = riceParamPart2 + drflac__calculate_prediction_64(order, shift, coefficients, pSamplesOut + 2);
|
|
pSamplesOut[3] = riceParamPart3 + drflac__calculate_prediction_64(order, shift, coefficients, pSamplesOut + 3);
|
|
|
|
pSamplesOut += 4;
|
|
}
|
|
} else {
|
|
while (pSamplesOut < pSamplesOutEnd) {
|
|
if (!drflac__read_rice_parts_x1(bs, riceParam, &zeroCountPart0, &riceParamPart0) ||
|
|
!drflac__read_rice_parts_x1(bs, riceParam, &zeroCountPart1, &riceParamPart1) ||
|
|
!drflac__read_rice_parts_x1(bs, riceParam, &zeroCountPart2, &riceParamPart2) ||
|
|
!drflac__read_rice_parts_x1(bs, riceParam, &zeroCountPart3, &riceParamPart3)) {
|
|
return DRFLAC_FALSE;
|
|
}
|
|
|
|
riceParamPart0 &= riceParamMask;
|
|
riceParamPart1 &= riceParamMask;
|
|
riceParamPart2 &= riceParamMask;
|
|
riceParamPart3 &= riceParamMask;
|
|
|
|
riceParamPart0 |= (zeroCountPart0 << riceParam);
|
|
riceParamPart1 |= (zeroCountPart1 << riceParam);
|
|
riceParamPart2 |= (zeroCountPart2 << riceParam);
|
|
riceParamPart3 |= (zeroCountPart3 << riceParam);
|
|
|
|
riceParamPart0 = (riceParamPart0 >> 1) ^ t[riceParamPart0 & 0x01];
|
|
riceParamPart1 = (riceParamPart1 >> 1) ^ t[riceParamPart1 & 0x01];
|
|
riceParamPart2 = (riceParamPart2 >> 1) ^ t[riceParamPart2 & 0x01];
|
|
riceParamPart3 = (riceParamPart3 >> 1) ^ t[riceParamPart3 & 0x01];
|
|
|
|
pSamplesOut[0] = riceParamPart0 + drflac__calculate_prediction_32(order, shift, coefficients, pSamplesOut + 0);
|
|
pSamplesOut[1] = riceParamPart1 + drflac__calculate_prediction_32(order, shift, coefficients, pSamplesOut + 1);
|
|
pSamplesOut[2] = riceParamPart2 + drflac__calculate_prediction_32(order, shift, coefficients, pSamplesOut + 2);
|
|
pSamplesOut[3] = riceParamPart3 + drflac__calculate_prediction_32(order, shift, coefficients, pSamplesOut + 3);
|
|
|
|
pSamplesOut += 4;
|
|
}
|
|
}
|
|
|
|
i = (count & ~3);
|
|
while (i < count) {
|
|
/* Rice extraction. */
|
|
if (!drflac__read_rice_parts_x1(bs, riceParam, &zeroCountPart0, &riceParamPart0)) {
|
|
return DRFLAC_FALSE;
|
|
}
|
|
|
|
/* Rice reconstruction. */
|
|
riceParamPart0 &= riceParamMask;
|
|
riceParamPart0 |= (zeroCountPart0 << riceParam);
|
|
riceParamPart0 = (riceParamPart0 >> 1) ^ t[riceParamPart0 & 0x01];
|
|
/*riceParamPart0 = (riceParamPart0 >> 1) ^ (~(riceParamPart0 & 0x01) + 1);*/
|
|
|
|
/* Sample reconstruction. */
|
|
if (bitsPerSample+shift > 32) {
|
|
pSamplesOut[0] = riceParamPart0 + drflac__calculate_prediction_64(order, shift, coefficients, pSamplesOut + 0);
|
|
} else {
|
|
pSamplesOut[0] = riceParamPart0 + drflac__calculate_prediction_32(order, shift, coefficients, pSamplesOut + 0);
|
|
}
|
|
|
|
i += 1;
|
|
pSamplesOut += 1;
|
|
}
|
|
|
|
return DRFLAC_TRUE;
|
|
}
|
|
|
|
#if defined(DRFLAC_SUPPORT_SSE2)
|
|
static DRFLAC_INLINE __m128i drflac__mm_packs_interleaved_epi32(__m128i a, __m128i b)
|
|
{
|
|
__m128i r;
|
|
|
|
/* Pack. */
|
|
r = _mm_packs_epi32(a, b);
|
|
|
|
/* a3a2 a1a0 b3b2 b1b0 -> a3a2 b3b2 a1a0 b1b0 */
|
|
r = _mm_shuffle_epi32(r, _MM_SHUFFLE(3, 1, 2, 0));
|
|
|
|
/* a3a2 b3b2 a1a0 b1b0 -> a3b3 a2b2 a1b1 a0b0 */
|
|
r = _mm_shufflehi_epi16(r, _MM_SHUFFLE(3, 1, 2, 0));
|
|
r = _mm_shufflelo_epi16(r, _MM_SHUFFLE(3, 1, 2, 0));
|
|
|
|
return r;
|
|
}
|
|
#endif
|
|
|
|
#if defined(DRFLAC_SUPPORT_SSE41)
|
|
static DRFLAC_INLINE __m128i drflac__mm_not_si128(__m128i a)
|
|
{
|
|
return _mm_xor_si128(a, _mm_cmpeq_epi32(_mm_setzero_si128(), _mm_setzero_si128()));
|
|
}
|
|
|
|
static DRFLAC_INLINE __m128i drflac__mm_hadd_epi32(__m128i x)
|
|
{
|
|
__m128i x64 = _mm_add_epi32(x, _mm_shuffle_epi32(x, _MM_SHUFFLE(1, 0, 3, 2)));
|
|
__m128i x32 = _mm_shufflelo_epi16(x64, _MM_SHUFFLE(1, 0, 3, 2));
|
|
return _mm_add_epi32(x64, x32);
|
|
}
|
|
|
|
static DRFLAC_INLINE __m128i drflac__mm_hadd_epi64(__m128i x)
|
|
{
|
|
return _mm_add_epi64(x, _mm_shuffle_epi32(x, _MM_SHUFFLE(1, 0, 3, 2)));
|
|
}
|
|
|
|
static DRFLAC_INLINE __m128i drflac__mm_srai_epi64(__m128i x, int count)
|
|
{
|
|
/*
|
|
To simplify this we are assuming count < 32. This restriction allows us to work on a low side and a high side. The low side
|
|
is shifted with zero bits, whereas the right side is shifted with sign bits.
|
|
*/
|
|
__m128i lo = _mm_srli_epi64(x, count);
|
|
__m128i hi = _mm_srai_epi32(x, count);
|
|
|
|
hi = _mm_and_si128(hi, _mm_set_epi32(0xFFFFFFFF, 0, 0xFFFFFFFF, 0)); /* The high part needs to have the low part cleared. */
|
|
|
|
return _mm_or_si128(lo, hi);
|
|
}
|
|
|
|
static drflac_bool32 drflac__decode_samples_with_residual__rice__sse41_32(drflac_bs* bs, drflac_uint32 count, drflac_uint8 riceParam, drflac_uint32 order, drflac_int32 shift, const drflac_int32* coefficients, drflac_int32* pSamplesOut)
|
|
{
|
|
int i;
|
|
drflac_uint32 riceParamMask;
|
|
drflac_int32* pDecodedSamples = pSamplesOut;
|
|
drflac_int32* pDecodedSamplesEnd = pSamplesOut + (count & ~3);
|
|
drflac_uint32 zeroCountParts0 = 0;
|
|
drflac_uint32 zeroCountParts1 = 0;
|
|
drflac_uint32 zeroCountParts2 = 0;
|
|
drflac_uint32 zeroCountParts3 = 0;
|
|
drflac_uint32 riceParamParts0 = 0;
|
|
drflac_uint32 riceParamParts1 = 0;
|
|
drflac_uint32 riceParamParts2 = 0;
|
|
drflac_uint32 riceParamParts3 = 0;
|
|
__m128i coefficients128_0;
|
|
__m128i coefficients128_4;
|
|
__m128i coefficients128_8;
|
|
__m128i samples128_0;
|
|
__m128i samples128_4;
|
|
__m128i samples128_8;
|
|
__m128i riceParamMask128;
|
|
|
|
const drflac_uint32 t[2] = {0x00000000, 0xFFFFFFFF};
|
|
|
|
riceParamMask = (drflac_uint32)~((~0UL) << riceParam);
|
|
riceParamMask128 = _mm_set1_epi32(riceParamMask);
|
|
|
|
/* Pre-load. */
|
|
coefficients128_0 = _mm_setzero_si128();
|
|
coefficients128_4 = _mm_setzero_si128();
|
|
coefficients128_8 = _mm_setzero_si128();
|
|
|
|
samples128_0 = _mm_setzero_si128();
|
|
samples128_4 = _mm_setzero_si128();
|
|
samples128_8 = _mm_setzero_si128();
|
|
|
|
/*
|
|
Pre-loading the coefficients and prior samples is annoying because we need to ensure we don't try reading more than
|
|
what's available in the input buffers. It would be convenient to use a fall-through switch to do this, but this results
|
|
in strict aliasing warnings with GCC. To work around this I'm just doing something hacky. This feels a bit convoluted
|
|
so I think there's opportunity for this to be simplified.
|
|
*/
|
|
#if 1
|
|
{
|
|
int runningOrder = order;
|
|
|
|
/* 0 - 3. */
|
|
if (runningOrder >= 4) {
|
|
coefficients128_0 = _mm_loadu_si128((const __m128i*)(coefficients + 0));
|
|
samples128_0 = _mm_loadu_si128((const __m128i*)(pSamplesOut - 4));
|
|
runningOrder -= 4;
|
|
} else {
|
|
switch (runningOrder) {
|
|
case 3: coefficients128_0 = _mm_set_epi32(0, coefficients[2], coefficients[1], coefficients[0]); samples128_0 = _mm_set_epi32(pSamplesOut[-1], pSamplesOut[-2], pSamplesOut[-3], 0); break;
|
|
case 2: coefficients128_0 = _mm_set_epi32(0, 0, coefficients[1], coefficients[0]); samples128_0 = _mm_set_epi32(pSamplesOut[-1], pSamplesOut[-2], 0, 0); break;
|
|
case 1: coefficients128_0 = _mm_set_epi32(0, 0, 0, coefficients[0]); samples128_0 = _mm_set_epi32(pSamplesOut[-1], 0, 0, 0); break;
|
|
}
|
|
runningOrder = 0;
|
|
}
|
|
|
|
/* 4 - 7 */
|
|
if (runningOrder >= 4) {
|
|
coefficients128_4 = _mm_loadu_si128((const __m128i*)(coefficients + 4));
|
|
samples128_4 = _mm_loadu_si128((const __m128i*)(pSamplesOut - 8));
|
|
runningOrder -= 4;
|
|
} else {
|
|
switch (runningOrder) {
|
|
case 3: coefficients128_4 = _mm_set_epi32(0, coefficients[6], coefficients[5], coefficients[4]); samples128_4 = _mm_set_epi32(pSamplesOut[-5], pSamplesOut[-6], pSamplesOut[-7], 0); break;
|
|
case 2: coefficients128_4 = _mm_set_epi32(0, 0, coefficients[5], coefficients[4]); samples128_4 = _mm_set_epi32(pSamplesOut[-5], pSamplesOut[-6], 0, 0); break;
|
|
case 1: coefficients128_4 = _mm_set_epi32(0, 0, 0, coefficients[4]); samples128_4 = _mm_set_epi32(pSamplesOut[-5], 0, 0, 0); break;
|
|
}
|
|
runningOrder = 0;
|
|
}
|
|
|
|
/* 8 - 11 */
|
|
if (runningOrder == 4) {
|
|
coefficients128_8 = _mm_loadu_si128((const __m128i*)(coefficients + 8));
|
|
samples128_8 = _mm_loadu_si128((const __m128i*)(pSamplesOut - 12));
|
|
runningOrder -= 4;
|
|
} else {
|
|
switch (runningOrder) {
|
|
case 3: coefficients128_8 = _mm_set_epi32(0, coefficients[10], coefficients[9], coefficients[8]); samples128_8 = _mm_set_epi32(pSamplesOut[-9], pSamplesOut[-10], pSamplesOut[-11], 0); break;
|
|
case 2: coefficients128_8 = _mm_set_epi32(0, 0, coefficients[9], coefficients[8]); samples128_8 = _mm_set_epi32(pSamplesOut[-9], pSamplesOut[-10], 0, 0); break;
|
|
case 1: coefficients128_8 = _mm_set_epi32(0, 0, 0, coefficients[8]); samples128_8 = _mm_set_epi32(pSamplesOut[-9], 0, 0, 0); break;
|
|
}
|
|
runningOrder = 0;
|
|
}
|
|
|
|
/* Coefficients need to be shuffled for our streaming algorithm below to work. Samples are already in the correct order from the loading routine above. */
|
|
coefficients128_0 = _mm_shuffle_epi32(coefficients128_0, _MM_SHUFFLE(0, 1, 2, 3));
|
|
coefficients128_4 = _mm_shuffle_epi32(coefficients128_4, _MM_SHUFFLE(0, 1, 2, 3));
|
|
coefficients128_8 = _mm_shuffle_epi32(coefficients128_8, _MM_SHUFFLE(0, 1, 2, 3));
|
|
}
|
|
#else
|
|
/* This causes strict-aliasing warnings with GCC. */
|
|
switch (order)
|
|
{
|
|
case 12: ((drflac_int32*)&coefficients128_8)[0] = coefficients[11]; ((drflac_int32*)&samples128_8)[0] = pDecodedSamples[-12];
|
|
case 11: ((drflac_int32*)&coefficients128_8)[1] = coefficients[10]; ((drflac_int32*)&samples128_8)[1] = pDecodedSamples[-11];
|
|
case 10: ((drflac_int32*)&coefficients128_8)[2] = coefficients[ 9]; ((drflac_int32*)&samples128_8)[2] = pDecodedSamples[-10];
|
|
case 9: ((drflac_int32*)&coefficients128_8)[3] = coefficients[ 8]; ((drflac_int32*)&samples128_8)[3] = pDecodedSamples[- 9];
|
|
case 8: ((drflac_int32*)&coefficients128_4)[0] = coefficients[ 7]; ((drflac_int32*)&samples128_4)[0] = pDecodedSamples[- 8];
|
|
case 7: ((drflac_int32*)&coefficients128_4)[1] = coefficients[ 6]; ((drflac_int32*)&samples128_4)[1] = pDecodedSamples[- 7];
|
|
case 6: ((drflac_int32*)&coefficients128_4)[2] = coefficients[ 5]; ((drflac_int32*)&samples128_4)[2] = pDecodedSamples[- 6];
|
|
case 5: ((drflac_int32*)&coefficients128_4)[3] = coefficients[ 4]; ((drflac_int32*)&samples128_4)[3] = pDecodedSamples[- 5];
|
|
case 4: ((drflac_int32*)&coefficients128_0)[0] = coefficients[ 3]; ((drflac_int32*)&samples128_0)[0] = pDecodedSamples[- 4];
|
|
case 3: ((drflac_int32*)&coefficients128_0)[1] = coefficients[ 2]; ((drflac_int32*)&samples128_0)[1] = pDecodedSamples[- 3];
|
|
case 2: ((drflac_int32*)&coefficients128_0)[2] = coefficients[ 1]; ((drflac_int32*)&samples128_0)[2] = pDecodedSamples[- 2];
|
|
case 1: ((drflac_int32*)&coefficients128_0)[3] = coefficients[ 0]; ((drflac_int32*)&samples128_0)[3] = pDecodedSamples[- 1];
|
|
}
|
|
#endif
|
|
|
|
/* For this version we are doing one sample at a time. */
|
|
while (pDecodedSamples < pDecodedSamplesEnd) {
|
|
__m128i prediction128;
|
|
__m128i zeroCountPart128;
|
|
__m128i riceParamPart128;
|
|
|
|
if (!drflac__read_rice_parts_x1(bs, riceParam, &zeroCountParts0, &riceParamParts0) ||
|
|
!drflac__read_rice_parts_x1(bs, riceParam, &zeroCountParts1, &riceParamParts1) ||
|
|
!drflac__read_rice_parts_x1(bs, riceParam, &zeroCountParts2, &riceParamParts2) ||
|
|
!drflac__read_rice_parts_x1(bs, riceParam, &zeroCountParts3, &riceParamParts3)) {
|
|
return DRFLAC_FALSE;
|
|
}
|
|
|
|
zeroCountPart128 = _mm_set_epi32(zeroCountParts3, zeroCountParts2, zeroCountParts1, zeroCountParts0);
|
|
riceParamPart128 = _mm_set_epi32(riceParamParts3, riceParamParts2, riceParamParts1, riceParamParts0);
|
|
|
|
riceParamPart128 = _mm_and_si128(riceParamPart128, riceParamMask128);
|
|
riceParamPart128 = _mm_or_si128(riceParamPart128, _mm_slli_epi32(zeroCountPart128, riceParam));
|
|
riceParamPart128 = _mm_xor_si128(_mm_srli_epi32(riceParamPart128, 1), _mm_add_epi32(drflac__mm_not_si128(_mm_and_si128(riceParamPart128, _mm_set1_epi32(0x01))), _mm_set1_epi32(0x01))); /* <-- SSE2 compatible */
|
|
/*riceParamPart128 = _mm_xor_si128(_mm_srli_epi32(riceParamPart128, 1), _mm_mullo_epi32(_mm_and_si128(riceParamPart128, _mm_set1_epi32(0x01)), _mm_set1_epi32(0xFFFFFFFF)));*/ /* <-- Only supported from SSE4.1 and is slower in my testing... */
|
|
|
|
if (order <= 4) {
|
|
for (i = 0; i < 4; i += 1) {
|
|
prediction128 = _mm_mullo_epi32(coefficients128_0, samples128_0);
|
|
|
|
/* Horizontal add and shift. */
|
|
prediction128 = drflac__mm_hadd_epi32(prediction128);
|
|
prediction128 = _mm_srai_epi32(prediction128, shift);
|
|
prediction128 = _mm_add_epi32(riceParamPart128, prediction128);
|
|
|
|
samples128_0 = _mm_alignr_epi8(prediction128, samples128_0, 4);
|
|
riceParamPart128 = _mm_alignr_epi8(_mm_setzero_si128(), riceParamPart128, 4);
|
|
}
|
|
} else if (order <= 8) {
|
|
for (i = 0; i < 4; i += 1) {
|
|
prediction128 = _mm_mullo_epi32(coefficients128_4, samples128_4);
|
|
prediction128 = _mm_add_epi32(prediction128, _mm_mullo_epi32(coefficients128_0, samples128_0));
|
|
|
|
/* Horizontal add and shift. */
|
|
prediction128 = drflac__mm_hadd_epi32(prediction128);
|
|
prediction128 = _mm_srai_epi32(prediction128, shift);
|
|
prediction128 = _mm_add_epi32(riceParamPart128, prediction128);
|
|
|
|
samples128_4 = _mm_alignr_epi8(samples128_0, samples128_4, 4);
|
|
samples128_0 = _mm_alignr_epi8(prediction128, samples128_0, 4);
|
|
riceParamPart128 = _mm_alignr_epi8(_mm_setzero_si128(), riceParamPart128, 4);
|
|
}
|
|
} else {
|
|
for (i = 0; i < 4; i += 1) {
|
|
prediction128 = _mm_mullo_epi32(coefficients128_8, samples128_8);
|
|
prediction128 = _mm_add_epi32(prediction128, _mm_mullo_epi32(coefficients128_4, samples128_4));
|
|
prediction128 = _mm_add_epi32(prediction128, _mm_mullo_epi32(coefficients128_0, samples128_0));
|
|
|
|
/* Horizontal add and shift. */
|
|
prediction128 = drflac__mm_hadd_epi32(prediction128);
|
|
prediction128 = _mm_srai_epi32(prediction128, shift);
|
|
prediction128 = _mm_add_epi32(riceParamPart128, prediction128);
|
|
|
|
samples128_8 = _mm_alignr_epi8(samples128_4, samples128_8, 4);
|
|
samples128_4 = _mm_alignr_epi8(samples128_0, samples128_4, 4);
|
|
samples128_0 = _mm_alignr_epi8(prediction128, samples128_0, 4);
|
|
riceParamPart128 = _mm_alignr_epi8(_mm_setzero_si128(), riceParamPart128, 4);
|
|
}
|
|
}
|
|
|
|
/* We store samples in groups of 4. */
|
|
_mm_storeu_si128((__m128i*)pDecodedSamples, samples128_0);
|
|
pDecodedSamples += 4;
|
|
}
|
|
|
|
/* Make sure we process the last few samples. */
|
|
i = (count & ~3);
|
|
while (i < (int)count) {
|
|
/* Rice extraction. */
|
|
if (!drflac__read_rice_parts_x1(bs, riceParam, &zeroCountParts0, &riceParamParts0)) {
|
|
return DRFLAC_FALSE;
|
|
}
|
|
|
|
/* Rice reconstruction. */
|
|
riceParamParts0 &= riceParamMask;
|
|
riceParamParts0 |= (zeroCountParts0 << riceParam);
|
|
riceParamParts0 = (riceParamParts0 >> 1) ^ t[riceParamParts0 & 0x01];
|
|
|
|
/* Sample reconstruction. */
|
|
pDecodedSamples[0] = riceParamParts0 + drflac__calculate_prediction_32(order, shift, coefficients, pDecodedSamples);
|
|
|
|
i += 1;
|
|
pDecodedSamples += 1;
|
|
}
|
|
|
|
return DRFLAC_TRUE;
|
|
}
|
|
|
|
static drflac_bool32 drflac__decode_samples_with_residual__rice__sse41_64(drflac_bs* bs, drflac_uint32 count, drflac_uint8 riceParam, drflac_uint32 order, drflac_int32 shift, const drflac_int32* coefficients, drflac_int32* pSamplesOut)
|
|
{
|
|
int i;
|
|
drflac_uint32 riceParamMask;
|
|
drflac_int32* pDecodedSamples = pSamplesOut;
|
|
drflac_int32* pDecodedSamplesEnd = pSamplesOut + (count & ~3);
|
|
drflac_uint32 zeroCountParts0 = 0;
|
|
drflac_uint32 zeroCountParts1 = 0;
|
|
drflac_uint32 zeroCountParts2 = 0;
|
|
drflac_uint32 zeroCountParts3 = 0;
|
|
drflac_uint32 riceParamParts0 = 0;
|
|
drflac_uint32 riceParamParts1 = 0;
|
|
drflac_uint32 riceParamParts2 = 0;
|
|
drflac_uint32 riceParamParts3 = 0;
|
|
__m128i coefficients128_0;
|
|
__m128i coefficients128_4;
|
|
__m128i coefficients128_8;
|
|
__m128i samples128_0;
|
|
__m128i samples128_4;
|
|
__m128i samples128_8;
|
|
__m128i prediction128;
|
|
__m128i riceParamMask128;
|
|
|
|
const drflac_uint32 t[2] = {0x00000000, 0xFFFFFFFF};
|
|
|
|
DRFLAC_ASSERT(order <= 12);
|
|
|
|
riceParamMask = (drflac_uint32)~((~0UL) << riceParam);
|
|
riceParamMask128 = _mm_set1_epi32(riceParamMask);
|
|
|
|
prediction128 = _mm_setzero_si128();
|
|
|
|
/* Pre-load. */
|
|
coefficients128_0 = _mm_setzero_si128();
|
|
coefficients128_4 = _mm_setzero_si128();
|
|
coefficients128_8 = _mm_setzero_si128();
|
|
|
|
samples128_0 = _mm_setzero_si128();
|
|
samples128_4 = _mm_setzero_si128();
|
|
samples128_8 = _mm_setzero_si128();
|
|
|
|
#if 1
|
|
{
|
|
int runningOrder = order;
|
|
|
|
/* 0 - 3. */
|
|
if (runningOrder >= 4) {
|
|
coefficients128_0 = _mm_loadu_si128((const __m128i*)(coefficients + 0));
|
|
samples128_0 = _mm_loadu_si128((const __m128i*)(pSamplesOut - 4));
|
|
runningOrder -= 4;
|
|
} else {
|
|
switch (runningOrder) {
|
|
case 3: coefficients128_0 = _mm_set_epi32(0, coefficients[2], coefficients[1], coefficients[0]); samples128_0 = _mm_set_epi32(pSamplesOut[-1], pSamplesOut[-2], pSamplesOut[-3], 0); break;
|
|
case 2: coefficients128_0 = _mm_set_epi32(0, 0, coefficients[1], coefficients[0]); samples128_0 = _mm_set_epi32(pSamplesOut[-1], pSamplesOut[-2], 0, 0); break;
|
|
case 1: coefficients128_0 = _mm_set_epi32(0, 0, 0, coefficients[0]); samples128_0 = _mm_set_epi32(pSamplesOut[-1], 0, 0, 0); break;
|
|
}
|
|
runningOrder = 0;
|
|
}
|
|
|
|
/* 4 - 7 */
|
|
if (runningOrder >= 4) {
|
|
coefficients128_4 = _mm_loadu_si128((const __m128i*)(coefficients + 4));
|
|
samples128_4 = _mm_loadu_si128((const __m128i*)(pSamplesOut - 8));
|
|
runningOrder -= 4;
|
|
} else {
|
|
switch (runningOrder) {
|
|
case 3: coefficients128_4 = _mm_set_epi32(0, coefficients[6], coefficients[5], coefficients[4]); samples128_4 = _mm_set_epi32(pSamplesOut[-5], pSamplesOut[-6], pSamplesOut[-7], 0); break;
|
|
case 2: coefficients128_4 = _mm_set_epi32(0, 0, coefficients[5], coefficients[4]); samples128_4 = _mm_set_epi32(pSamplesOut[-5], pSamplesOut[-6], 0, 0); break;
|
|
case 1: coefficients128_4 = _mm_set_epi32(0, 0, 0, coefficients[4]); samples128_4 = _mm_set_epi32(pSamplesOut[-5], 0, 0, 0); break;
|
|
}
|
|
runningOrder = 0;
|
|
}
|
|
|
|
/* 8 - 11 */
|
|
if (runningOrder == 4) {
|
|
coefficients128_8 = _mm_loadu_si128((const __m128i*)(coefficients + 8));
|
|
samples128_8 = _mm_loadu_si128((const __m128i*)(pSamplesOut - 12));
|
|
runningOrder -= 4;
|
|
} else {
|
|
switch (runningOrder) {
|
|
case 3: coefficients128_8 = _mm_set_epi32(0, coefficients[10], coefficients[9], coefficients[8]); samples128_8 = _mm_set_epi32(pSamplesOut[-9], pSamplesOut[-10], pSamplesOut[-11], 0); break;
|
|
case 2: coefficients128_8 = _mm_set_epi32(0, 0, coefficients[9], coefficients[8]); samples128_8 = _mm_set_epi32(pSamplesOut[-9], pSamplesOut[-10], 0, 0); break;
|
|
case 1: coefficients128_8 = _mm_set_epi32(0, 0, 0, coefficients[8]); samples128_8 = _mm_set_epi32(pSamplesOut[-9], 0, 0, 0); break;
|
|
}
|
|
runningOrder = 0;
|
|
}
|
|
|
|
/* Coefficients need to be shuffled for our streaming algorithm below to work. Samples are already in the correct order from the loading routine above. */
|
|
coefficients128_0 = _mm_shuffle_epi32(coefficients128_0, _MM_SHUFFLE(0, 1, 2, 3));
|
|
coefficients128_4 = _mm_shuffle_epi32(coefficients128_4, _MM_SHUFFLE(0, 1, 2, 3));
|
|
coefficients128_8 = _mm_shuffle_epi32(coefficients128_8, _MM_SHUFFLE(0, 1, 2, 3));
|
|
}
|
|
#else
|
|
switch (order)
|
|
{
|
|
case 12: ((drflac_int32*)&coefficients128_8)[0] = coefficients[11]; ((drflac_int32*)&samples128_8)[0] = pDecodedSamples[-12];
|
|
case 11: ((drflac_int32*)&coefficients128_8)[1] = coefficients[10]; ((drflac_int32*)&samples128_8)[1] = pDecodedSamples[-11];
|
|
case 10: ((drflac_int32*)&coefficients128_8)[2] = coefficients[ 9]; ((drflac_int32*)&samples128_8)[2] = pDecodedSamples[-10];
|
|
case 9: ((drflac_int32*)&coefficients128_8)[3] = coefficients[ 8]; ((drflac_int32*)&samples128_8)[3] = pDecodedSamples[- 9];
|
|
case 8: ((drflac_int32*)&coefficients128_4)[0] = coefficients[ 7]; ((drflac_int32*)&samples128_4)[0] = pDecodedSamples[- 8];
|
|
case 7: ((drflac_int32*)&coefficients128_4)[1] = coefficients[ 6]; ((drflac_int32*)&samples128_4)[1] = pDecodedSamples[- 7];
|
|
case 6: ((drflac_int32*)&coefficients128_4)[2] = coefficients[ 5]; ((drflac_int32*)&samples128_4)[2] = pDecodedSamples[- 6];
|
|
case 5: ((drflac_int32*)&coefficients128_4)[3] = coefficients[ 4]; ((drflac_int32*)&samples128_4)[3] = pDecodedSamples[- 5];
|
|
case 4: ((drflac_int32*)&coefficients128_0)[0] = coefficients[ 3]; ((drflac_int32*)&samples128_0)[0] = pDecodedSamples[- 4];
|
|
case 3: ((drflac_int32*)&coefficients128_0)[1] = coefficients[ 2]; ((drflac_int32*)&samples128_0)[1] = pDecodedSamples[- 3];
|
|
case 2: ((drflac_int32*)&coefficients128_0)[2] = coefficients[ 1]; ((drflac_int32*)&samples128_0)[2] = pDecodedSamples[- 2];
|
|
case 1: ((drflac_int32*)&coefficients128_0)[3] = coefficients[ 0]; ((drflac_int32*)&samples128_0)[3] = pDecodedSamples[- 1];
|
|
}
|
|
#endif
|
|
|
|
/* For this version we are doing one sample at a time. */
|
|
while (pDecodedSamples < pDecodedSamplesEnd) {
|
|
__m128i zeroCountPart128;
|
|
__m128i riceParamPart128;
|
|
|
|
if (!drflac__read_rice_parts_x1(bs, riceParam, &zeroCountParts0, &riceParamParts0) ||
|
|
!drflac__read_rice_parts_x1(bs, riceParam, &zeroCountParts1, &riceParamParts1) ||
|
|
!drflac__read_rice_parts_x1(bs, riceParam, &zeroCountParts2, &riceParamParts2) ||
|
|
!drflac__read_rice_parts_x1(bs, riceParam, &zeroCountParts3, &riceParamParts3)) {
|
|
return DRFLAC_FALSE;
|
|
}
|
|
|
|
zeroCountPart128 = _mm_set_epi32(zeroCountParts3, zeroCountParts2, zeroCountParts1, zeroCountParts0);
|
|
riceParamPart128 = _mm_set_epi32(riceParamParts3, riceParamParts2, riceParamParts1, riceParamParts0);
|
|
|
|
riceParamPart128 = _mm_and_si128(riceParamPart128, riceParamMask128);
|
|
riceParamPart128 = _mm_or_si128(riceParamPart128, _mm_slli_epi32(zeroCountPart128, riceParam));
|
|
riceParamPart128 = _mm_xor_si128(_mm_srli_epi32(riceParamPart128, 1), _mm_add_epi32(drflac__mm_not_si128(_mm_and_si128(riceParamPart128, _mm_set1_epi32(1))), _mm_set1_epi32(1)));
|
|
|
|
for (i = 0; i < 4; i += 1) {
|
|
prediction128 = _mm_xor_si128(prediction128, prediction128); /* Reset to 0. */
|
|
|
|
switch (order)
|
|
{
|
|
case 12:
|
|
case 11: prediction128 = _mm_add_epi64(prediction128, _mm_mul_epi32(_mm_shuffle_epi32(coefficients128_8, _MM_SHUFFLE(1, 1, 0, 0)), _mm_shuffle_epi32(samples128_8, _MM_SHUFFLE(1, 1, 0, 0))));
|
|
case 10:
|
|
case 9: prediction128 = _mm_add_epi64(prediction128, _mm_mul_epi32(_mm_shuffle_epi32(coefficients128_8, _MM_SHUFFLE(3, 3, 2, 2)), _mm_shuffle_epi32(samples128_8, _MM_SHUFFLE(3, 3, 2, 2))));
|
|
case 8:
|
|
case 7: prediction128 = _mm_add_epi64(prediction128, _mm_mul_epi32(_mm_shuffle_epi32(coefficients128_4, _MM_SHUFFLE(1, 1, 0, 0)), _mm_shuffle_epi32(samples128_4, _MM_SHUFFLE(1, 1, 0, 0))));
|
|
case 6:
|
|
case 5: prediction128 = _mm_add_epi64(prediction128, _mm_mul_epi32(_mm_shuffle_epi32(coefficients128_4, _MM_SHUFFLE(3, 3, 2, 2)), _mm_shuffle_epi32(samples128_4, _MM_SHUFFLE(3, 3, 2, 2))));
|
|
case 4:
|
|
case 3: prediction128 = _mm_add_epi64(prediction128, _mm_mul_epi32(_mm_shuffle_epi32(coefficients128_0, _MM_SHUFFLE(1, 1, 0, 0)), _mm_shuffle_epi32(samples128_0, _MM_SHUFFLE(1, 1, 0, 0))));
|
|
case 2:
|
|
case 1: prediction128 = _mm_add_epi64(prediction128, _mm_mul_epi32(_mm_shuffle_epi32(coefficients128_0, _MM_SHUFFLE(3, 3, 2, 2)), _mm_shuffle_epi32(samples128_0, _MM_SHUFFLE(3, 3, 2, 2))));
|
|
}
|
|
|
|
/* Horizontal add and shift. */
|
|
prediction128 = drflac__mm_hadd_epi64(prediction128);
|
|
prediction128 = drflac__mm_srai_epi64(prediction128, shift);
|
|
prediction128 = _mm_add_epi32(riceParamPart128, prediction128);
|
|
|
|
/* Our value should be sitting in prediction128[0]. We need to combine this with our SSE samples. */
|
|
samples128_8 = _mm_alignr_epi8(samples128_4, samples128_8, 4);
|
|
samples128_4 = _mm_alignr_epi8(samples128_0, samples128_4, 4);
|
|
samples128_0 = _mm_alignr_epi8(prediction128, samples128_0, 4);
|
|
|
|
/* Slide our rice parameter down so that the value in position 0 contains the next one to process. */
|
|
riceParamPart128 = _mm_alignr_epi8(_mm_setzero_si128(), riceParamPart128, 4);
|
|
}
|
|
|
|
/* We store samples in groups of 4. */
|
|
_mm_storeu_si128((__m128i*)pDecodedSamples, samples128_0);
|
|
pDecodedSamples += 4;
|
|
}
|
|
|
|
/* Make sure we process the last few samples. */
|
|
i = (count & ~3);
|
|
while (i < (int)count) {
|
|
/* Rice extraction. */
|
|
if (!drflac__read_rice_parts_x1(bs, riceParam, &zeroCountParts0, &riceParamParts0)) {
|
|
return DRFLAC_FALSE;
|
|
}
|
|
|
|
/* Rice reconstruction. */
|
|
riceParamParts0 &= riceParamMask;
|
|
riceParamParts0 |= (zeroCountParts0 << riceParam);
|
|
riceParamParts0 = (riceParamParts0 >> 1) ^ t[riceParamParts0 & 0x01];
|
|
|
|
/* Sample reconstruction. */
|
|
pDecodedSamples[0] = riceParamParts0 + drflac__calculate_prediction_64(order, shift, coefficients, pDecodedSamples);
|
|
|
|
i += 1;
|
|
pDecodedSamples += 1;
|
|
}
|
|
|
|
return DRFLAC_TRUE;
|
|
}
|
|
|
|
static drflac_bool32 drflac__decode_samples_with_residual__rice__sse41(drflac_bs* bs, drflac_uint32 bitsPerSample, drflac_uint32 count, drflac_uint8 riceParam, drflac_uint32 order, drflac_int32 shift, const drflac_int32* coefficients, drflac_int32* pSamplesOut)
|
|
{
|
|
DRFLAC_ASSERT(bs != NULL);
|
|
DRFLAC_ASSERT(count > 0);
|
|
DRFLAC_ASSERT(pSamplesOut != NULL);
|
|
|
|
/* In my testing the order is rarely > 12, so in this case I'm going to simplify the SSE implementation by only handling order <= 12. */
|
|
if (order > 0 && order <= 12) {
|
|
if (bitsPerSample+shift > 32) {
|
|
return drflac__decode_samples_with_residual__rice__sse41_64(bs, count, riceParam, order, shift, coefficients, pSamplesOut);
|
|
} else {
|
|
return drflac__decode_samples_with_residual__rice__sse41_32(bs, count, riceParam, order, shift, coefficients, pSamplesOut);
|
|
}
|
|
} else {
|
|
return drflac__decode_samples_with_residual__rice__scalar(bs, bitsPerSample, count, riceParam, order, shift, coefficients, pSamplesOut);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
#if defined(DRFLAC_SUPPORT_NEON)
|
|
static DRFLAC_INLINE void drflac__vst2q_s32(drflac_int32* p, int32x4x2_t x)
|
|
{
|
|
vst1q_s32(p+0, x.val[0]);
|
|
vst1q_s32(p+4, x.val[1]);
|
|
}
|
|
|
|
static DRFLAC_INLINE void drflac__vst2q_u32(drflac_uint32* p, uint32x4x2_t x)
|
|
{
|
|
vst1q_u32(p+0, x.val[0]);
|
|
vst1q_u32(p+4, x.val[1]);
|
|
}
|
|
|
|
static DRFLAC_INLINE void drflac__vst2q_f32(float* p, float32x4x2_t x)
|
|
{
|
|
vst1q_f32(p+0, x.val[0]);
|
|
vst1q_f32(p+4, x.val[1]);
|
|
}
|
|
|
|
static DRFLAC_INLINE void drflac__vst2q_s16(drflac_int16* p, int16x4x2_t x)
|
|
{
|
|
vst1q_s16(p, vcombine_s16(x.val[0], x.val[1]));
|
|
}
|
|
|
|
static DRFLAC_INLINE void drflac__vst2q_u16(drflac_uint16* p, uint16x4x2_t x)
|
|
{
|
|
vst1q_u16(p, vcombine_u16(x.val[0], x.val[1]));
|
|
}
|
|
|
|
static DRFLAC_INLINE int32x4_t drflac__vdupq_n_s32x4(drflac_int32 x3, drflac_int32 x2, drflac_int32 x1, drflac_int32 x0)
|
|
{
|
|
drflac_int32 x[4];
|
|
x[3] = x3;
|
|
x[2] = x2;
|
|
x[1] = x1;
|
|
x[0] = x0;
|
|
return vld1q_s32(x);
|
|
}
|
|
|
|
static DRFLAC_INLINE int32x4_t drflac__valignrq_s32_1(int32x4_t a, int32x4_t b)
|
|
{
|
|
/* Equivalent to SSE's _mm_alignr_epi8(a, b, 4) */
|
|
|
|
/* Reference */
|
|
/*return drflac__vdupq_n_s32x4(
|
|
vgetq_lane_s32(a, 0),
|
|
vgetq_lane_s32(b, 3),
|
|
vgetq_lane_s32(b, 2),
|
|
vgetq_lane_s32(b, 1)
|
|
);*/
|
|
|
|
return vextq_s32(b, a, 1);
|
|
}
|
|
|
|
static DRFLAC_INLINE uint32x4_t drflac__valignrq_u32_1(uint32x4_t a, uint32x4_t b)
|
|
{
|
|
/* Equivalent to SSE's _mm_alignr_epi8(a, b, 4) */
|
|
|
|
/* Reference */
|
|
/*return drflac__vdupq_n_s32x4(
|
|
vgetq_lane_s32(a, 0),
|
|
vgetq_lane_s32(b, 3),
|
|
vgetq_lane_s32(b, 2),
|
|
vgetq_lane_s32(b, 1)
|
|
);*/
|
|
|
|
return vextq_u32(b, a, 1);
|
|
}
|
|
|
|
static DRFLAC_INLINE int32x2_t drflac__vhaddq_s32(int32x4_t x)
|
|
{
|
|
/* The sum must end up in position 0. */
|
|
|
|
/* Reference */
|
|
/*return vdupq_n_s32(
|
|
vgetq_lane_s32(x, 3) +
|
|
vgetq_lane_s32(x, 2) +
|
|
vgetq_lane_s32(x, 1) +
|
|
vgetq_lane_s32(x, 0)
|
|
);*/
|
|
|
|
int32x2_t r = vadd_s32(vget_high_s32(x), vget_low_s32(x));
|
|
return vpadd_s32(r, r);
|
|
}
|
|
|
|
static DRFLAC_INLINE int64x1_t drflac__vhaddq_s64(int64x2_t x)
|
|
{
|
|
return vadd_s64(vget_high_s64(x), vget_low_s64(x));
|
|
}
|
|
|
|
static DRFLAC_INLINE int32x4_t drflac__vrevq_s32(int32x4_t x)
|
|
{
|
|
/* Reference */
|
|
/*return drflac__vdupq_n_s32x4(
|
|
vgetq_lane_s32(x, 0),
|
|
vgetq_lane_s32(x, 1),
|
|
vgetq_lane_s32(x, 2),
|
|
vgetq_lane_s32(x, 3)
|
|
);*/
|
|
|
|
return vrev64q_s32(vcombine_s32(vget_high_s32(x), vget_low_s32(x)));
|
|
}
|
|
|
|
static DRFLAC_INLINE int32x4_t drflac__vnotq_s32(int32x4_t x)
|
|
{
|
|
return veorq_s32(x, vdupq_n_s32(0xFFFFFFFF));
|
|
}
|
|
|
|
static DRFLAC_INLINE uint32x4_t drflac__vnotq_u32(uint32x4_t x)
|
|
{
|
|
return veorq_u32(x, vdupq_n_u32(0xFFFFFFFF));
|
|
}
|
|
|
|
static drflac_bool32 drflac__decode_samples_with_residual__rice__neon_32(drflac_bs* bs, drflac_uint32 count, drflac_uint8 riceParam, drflac_uint32 order, drflac_int32 shift, const drflac_int32* coefficients, drflac_int32* pSamplesOut)
|
|
{
|
|
int i;
|
|
drflac_uint32 riceParamMask;
|
|
drflac_int32* pDecodedSamples = pSamplesOut;
|
|
drflac_int32* pDecodedSamplesEnd = pSamplesOut + (count & ~3);
|
|
drflac_uint32 zeroCountParts[4];
|
|
drflac_uint32 riceParamParts[4];
|
|
int32x4_t coefficients128_0;
|
|
int32x4_t coefficients128_4;
|
|
int32x4_t coefficients128_8;
|
|
int32x4_t samples128_0;
|
|
int32x4_t samples128_4;
|
|
int32x4_t samples128_8;
|
|
uint32x4_t riceParamMask128;
|
|
int32x4_t riceParam128;
|
|
int32x2_t shift64;
|
|
uint32x4_t one128;
|
|
|
|
const drflac_uint32 t[2] = {0x00000000, 0xFFFFFFFF};
|
|
|
|
riceParamMask = ~((~0UL) << riceParam);
|
|
riceParamMask128 = vdupq_n_u32(riceParamMask);
|
|
|
|
riceParam128 = vdupq_n_s32(riceParam);
|
|
shift64 = vdup_n_s32(-shift); /* Negate the shift because we'll be doing a variable shift using vshlq_s32(). */
|
|
one128 = vdupq_n_u32(1);
|
|
|
|
/*
|
|
Pre-loading the coefficients and prior samples is annoying because we need to ensure we don't try reading more than
|
|
what's available in the input buffers. It would be conenient to use a fall-through switch to do this, but this results
|
|
in strict aliasing warnings with GCC. To work around this I'm just doing something hacky. This feels a bit convoluted
|
|
so I think there's opportunity for this to be simplified.
|
|
*/
|
|
{
|
|
int runningOrder = order;
|
|
drflac_int32 tempC[4] = {0, 0, 0, 0};
|
|
drflac_int32 tempS[4] = {0, 0, 0, 0};
|
|
|
|
/* 0 - 3. */
|
|
if (runningOrder >= 4) {
|
|
coefficients128_0 = vld1q_s32(coefficients + 0);
|
|
samples128_0 = vld1q_s32(pSamplesOut - 4);
|
|
runningOrder -= 4;
|
|
} else {
|
|
switch (runningOrder) {
|
|
case 3: tempC[2] = coefficients[2]; tempS[1] = pSamplesOut[-3]; /* fallthrough */
|
|
case 2: tempC[1] = coefficients[1]; tempS[2] = pSamplesOut[-2]; /* fallthrough */
|
|
case 1: tempC[0] = coefficients[0]; tempS[3] = pSamplesOut[-1]; /* fallthrough */
|
|
}
|
|
|
|
coefficients128_0 = vld1q_s32(tempC);
|
|
samples128_0 = vld1q_s32(tempS);
|
|
runningOrder = 0;
|
|
}
|
|
|
|
/* 4 - 7 */
|
|
if (runningOrder >= 4) {
|
|
coefficients128_4 = vld1q_s32(coefficients + 4);
|
|
samples128_4 = vld1q_s32(pSamplesOut - 8);
|
|
runningOrder -= 4;
|
|
} else {
|
|
switch (runningOrder) {
|
|
case 3: tempC[2] = coefficients[6]; tempS[1] = pSamplesOut[-7]; /* fallthrough */
|
|
case 2: tempC[1] = coefficients[5]; tempS[2] = pSamplesOut[-6]; /* fallthrough */
|
|
case 1: tempC[0] = coefficients[4]; tempS[3] = pSamplesOut[-5]; /* fallthrough */
|
|
}
|
|
|
|
coefficients128_4 = vld1q_s32(tempC);
|
|
samples128_4 = vld1q_s32(tempS);
|
|
runningOrder = 0;
|
|
}
|
|
|
|
/* 8 - 11 */
|
|
if (runningOrder == 4) {
|
|
coefficients128_8 = vld1q_s32(coefficients + 8);
|
|
samples128_8 = vld1q_s32(pSamplesOut - 12);
|
|
runningOrder -= 4;
|
|
} else {
|
|
switch (runningOrder) {
|
|
case 3: tempC[2] = coefficients[10]; tempS[1] = pSamplesOut[-11]; /* fallthrough */
|
|
case 2: tempC[1] = coefficients[ 9]; tempS[2] = pSamplesOut[-10]; /* fallthrough */
|
|
case 1: tempC[0] = coefficients[ 8]; tempS[3] = pSamplesOut[- 9]; /* fallthrough */
|
|
}
|
|
|
|
coefficients128_8 = vld1q_s32(tempC);
|
|
samples128_8 = vld1q_s32(tempS);
|
|
runningOrder = 0;
|
|
}
|
|
|
|
/* Coefficients need to be shuffled for our streaming algorithm below to work. Samples are already in the correct order from the loading routine above. */
|
|
coefficients128_0 = drflac__vrevq_s32(coefficients128_0);
|
|
coefficients128_4 = drflac__vrevq_s32(coefficients128_4);
|
|
coefficients128_8 = drflac__vrevq_s32(coefficients128_8);
|
|
}
|
|
|
|
/* For this version we are doing one sample at a time. */
|
|
while (pDecodedSamples < pDecodedSamplesEnd) {
|
|
int32x4_t prediction128;
|
|
int32x2_t prediction64;
|
|
uint32x4_t zeroCountPart128;
|
|
uint32x4_t riceParamPart128;
|
|
|
|
if (!drflac__read_rice_parts_x1(bs, riceParam, &zeroCountParts[0], &riceParamParts[0]) ||
|
|
!drflac__read_rice_parts_x1(bs, riceParam, &zeroCountParts[1], &riceParamParts[1]) ||
|
|
!drflac__read_rice_parts_x1(bs, riceParam, &zeroCountParts[2], &riceParamParts[2]) ||
|
|
!drflac__read_rice_parts_x1(bs, riceParam, &zeroCountParts[3], &riceParamParts[3])) {
|
|
return DRFLAC_FALSE;
|
|
}
|
|
|
|
zeroCountPart128 = vld1q_u32(zeroCountParts);
|
|
riceParamPart128 = vld1q_u32(riceParamParts);
|
|
|
|
riceParamPart128 = vandq_u32(riceParamPart128, riceParamMask128);
|
|
riceParamPart128 = vorrq_u32(riceParamPart128, vshlq_u32(zeroCountPart128, riceParam128));
|
|
riceParamPart128 = veorq_u32(vshrq_n_u32(riceParamPart128, 1), vaddq_u32(drflac__vnotq_u32(vandq_u32(riceParamPart128, one128)), one128));
|
|
|
|
if (order <= 4) {
|
|
for (i = 0; i < 4; i += 1) {
|
|
prediction128 = vmulq_s32(coefficients128_0, samples128_0);
|
|
|
|
/* Horizontal add and shift. */
|
|
prediction64 = drflac__vhaddq_s32(prediction128);
|
|
prediction64 = vshl_s32(prediction64, shift64);
|
|
prediction64 = vadd_s32(prediction64, vget_low_s32(vreinterpretq_s32_u32(riceParamPart128)));
|
|
|
|
samples128_0 = drflac__valignrq_s32_1(vcombine_s32(prediction64, vdup_n_s32(0)), samples128_0);
|
|
riceParamPart128 = drflac__valignrq_u32_1(vdupq_n_u32(0), riceParamPart128);
|
|
}
|
|
} else if (order <= 8) {
|
|
for (i = 0; i < 4; i += 1) {
|
|
prediction128 = vmulq_s32(coefficients128_4, samples128_4);
|
|
prediction128 = vmlaq_s32(prediction128, coefficients128_0, samples128_0);
|
|
|
|
/* Horizontal add and shift. */
|
|
prediction64 = drflac__vhaddq_s32(prediction128);
|
|
prediction64 = vshl_s32(prediction64, shift64);
|
|
prediction64 = vadd_s32(prediction64, vget_low_s32(vreinterpretq_s32_u32(riceParamPart128)));
|
|
|
|
samples128_4 = drflac__valignrq_s32_1(samples128_0, samples128_4);
|
|
samples128_0 = drflac__valignrq_s32_1(vcombine_s32(prediction64, vdup_n_s32(0)), samples128_0);
|
|
riceParamPart128 = drflac__valignrq_u32_1(vdupq_n_u32(0), riceParamPart128);
|
|
}
|
|
} else {
|
|
for (i = 0; i < 4; i += 1) {
|
|
prediction128 = vmulq_s32(coefficients128_8, samples128_8);
|
|
prediction128 = vmlaq_s32(prediction128, coefficients128_4, samples128_4);
|
|
prediction128 = vmlaq_s32(prediction128, coefficients128_0, samples128_0);
|
|
|
|
/* Horizontal add and shift. */
|
|
prediction64 = drflac__vhaddq_s32(prediction128);
|
|
prediction64 = vshl_s32(prediction64, shift64);
|
|
prediction64 = vadd_s32(prediction64, vget_low_s32(vreinterpretq_s32_u32(riceParamPart128)));
|
|
|
|
samples128_8 = drflac__valignrq_s32_1(samples128_4, samples128_8);
|
|
samples128_4 = drflac__valignrq_s32_1(samples128_0, samples128_4);
|
|
samples128_0 = drflac__valignrq_s32_1(vcombine_s32(prediction64, vdup_n_s32(0)), samples128_0);
|
|
riceParamPart128 = drflac__valignrq_u32_1(vdupq_n_u32(0), riceParamPart128);
|
|
}
|
|
}
|
|
|
|
/* We store samples in groups of 4. */
|
|
vst1q_s32(pDecodedSamples, samples128_0);
|
|
pDecodedSamples += 4;
|
|
}
|
|
|
|
/* Make sure we process the last few samples. */
|
|
i = (count & ~3);
|
|
while (i < (int)count) {
|
|
/* Rice extraction. */
|
|
if (!drflac__read_rice_parts_x1(bs, riceParam, &zeroCountParts[0], &riceParamParts[0])) {
|
|
return DRFLAC_FALSE;
|
|
}
|
|
|
|
/* Rice reconstruction. */
|
|
riceParamParts[0] &= riceParamMask;
|
|
riceParamParts[0] |= (zeroCountParts[0] << riceParam);
|
|
riceParamParts[0] = (riceParamParts[0] >> 1) ^ t[riceParamParts[0] & 0x01];
|
|
|
|
/* Sample reconstruction. */
|
|
pDecodedSamples[0] = riceParamParts[0] + drflac__calculate_prediction_32(order, shift, coefficients, pDecodedSamples);
|
|
|
|
i += 1;
|
|
pDecodedSamples += 1;
|
|
}
|
|
|
|
return DRFLAC_TRUE;
|
|
}
|
|
|
|
static drflac_bool32 drflac__decode_samples_with_residual__rice__neon_64(drflac_bs* bs, drflac_uint32 count, drflac_uint8 riceParam, drflac_uint32 order, drflac_int32 shift, const drflac_int32* coefficients, drflac_int32* pSamplesOut)
|
|
{
|
|
int i;
|
|
drflac_uint32 riceParamMask;
|
|
drflac_int32* pDecodedSamples = pSamplesOut;
|
|
drflac_int32* pDecodedSamplesEnd = pSamplesOut + (count & ~3);
|
|
drflac_uint32 zeroCountParts[4];
|
|
drflac_uint32 riceParamParts[4];
|
|
int32x4_t coefficients128_0;
|
|
int32x4_t coefficients128_4;
|
|
int32x4_t coefficients128_8;
|
|
int32x4_t samples128_0;
|
|
int32x4_t samples128_4;
|
|
int32x4_t samples128_8;
|
|
uint32x4_t riceParamMask128;
|
|
int32x4_t riceParam128;
|
|
int64x1_t shift64;
|
|
uint32x4_t one128;
|
|
|
|
const drflac_uint32 t[2] = {0x00000000, 0xFFFFFFFF};
|
|
|
|
riceParamMask = ~((~0UL) << riceParam);
|
|
riceParamMask128 = vdupq_n_u32(riceParamMask);
|
|
|
|
riceParam128 = vdupq_n_s32(riceParam);
|
|
shift64 = vdup_n_s64(-shift); /* Negate the shift because we'll be doing a variable shift using vshlq_s32(). */
|
|
one128 = vdupq_n_u32(1);
|
|
|
|
/*
|
|
Pre-loading the coefficients and prior samples is annoying because we need to ensure we don't try reading more than
|
|
what's available in the input buffers. It would be conenient to use a fall-through switch to do this, but this results
|
|
in strict aliasing warnings with GCC. To work around this I'm just doing something hacky. This feels a bit convoluted
|
|
so I think there's opportunity for this to be simplified.
|
|
*/
|
|
{
|
|
int runningOrder = order;
|
|
drflac_int32 tempC[4] = {0, 0, 0, 0};
|
|
drflac_int32 tempS[4] = {0, 0, 0, 0};
|
|
|
|
/* 0 - 3. */
|
|
if (runningOrder >= 4) {
|
|
coefficients128_0 = vld1q_s32(coefficients + 0);
|
|
samples128_0 = vld1q_s32(pSamplesOut - 4);
|
|
runningOrder -= 4;
|
|
} else {
|
|
switch (runningOrder) {
|
|
case 3: tempC[2] = coefficients[2]; tempS[1] = pSamplesOut[-3]; /* fallthrough */
|
|
case 2: tempC[1] = coefficients[1]; tempS[2] = pSamplesOut[-2]; /* fallthrough */
|
|
case 1: tempC[0] = coefficients[0]; tempS[3] = pSamplesOut[-1]; /* fallthrough */
|
|
}
|
|
|
|
coefficients128_0 = vld1q_s32(tempC);
|
|
samples128_0 = vld1q_s32(tempS);
|
|
runningOrder = 0;
|
|
}
|
|
|
|
/* 4 - 7 */
|
|
if (runningOrder >= 4) {
|
|
coefficients128_4 = vld1q_s32(coefficients + 4);
|
|
samples128_4 = vld1q_s32(pSamplesOut - 8);
|
|
runningOrder -= 4;
|
|
} else {
|
|
switch (runningOrder) {
|
|
case 3: tempC[2] = coefficients[6]; tempS[1] = pSamplesOut[-7]; /* fallthrough */
|
|
case 2: tempC[1] = coefficients[5]; tempS[2] = pSamplesOut[-6]; /* fallthrough */
|
|
case 1: tempC[0] = coefficients[4]; tempS[3] = pSamplesOut[-5]; /* fallthrough */
|
|
}
|
|
|
|
coefficients128_4 = vld1q_s32(tempC);
|
|
samples128_4 = vld1q_s32(tempS);
|
|
runningOrder = 0;
|
|
}
|
|
|
|
/* 8 - 11 */
|
|
if (runningOrder == 4) {
|
|
coefficients128_8 = vld1q_s32(coefficients + 8);
|
|
samples128_8 = vld1q_s32(pSamplesOut - 12);
|
|
runningOrder -= 4;
|
|
} else {
|
|
switch (runningOrder) {
|
|
case 3: tempC[2] = coefficients[10]; tempS[1] = pSamplesOut[-11]; /* fallthrough */
|
|
case 2: tempC[1] = coefficients[ 9]; tempS[2] = pSamplesOut[-10]; /* fallthrough */
|
|
case 1: tempC[0] = coefficients[ 8]; tempS[3] = pSamplesOut[- 9]; /* fallthrough */
|
|
}
|
|
|
|
coefficients128_8 = vld1q_s32(tempC);
|
|
samples128_8 = vld1q_s32(tempS);
|
|
runningOrder = 0;
|
|
}
|
|
|
|
/* Coefficients need to be shuffled for our streaming algorithm below to work. Samples are already in the correct order from the loading routine above. */
|
|
coefficients128_0 = drflac__vrevq_s32(coefficients128_0);
|
|
coefficients128_4 = drflac__vrevq_s32(coefficients128_4);
|
|
coefficients128_8 = drflac__vrevq_s32(coefficients128_8);
|
|
}
|
|
|
|
/* For this version we are doing one sample at a time. */
|
|
while (pDecodedSamples < pDecodedSamplesEnd) {
|
|
int64x2_t prediction128;
|
|
uint32x4_t zeroCountPart128;
|
|
uint32x4_t riceParamPart128;
|
|
|
|
if (!drflac__read_rice_parts_x1(bs, riceParam, &zeroCountParts[0], &riceParamParts[0]) ||
|
|
!drflac__read_rice_parts_x1(bs, riceParam, &zeroCountParts[1], &riceParamParts[1]) ||
|
|
!drflac__read_rice_parts_x1(bs, riceParam, &zeroCountParts[2], &riceParamParts[2]) ||
|
|
!drflac__read_rice_parts_x1(bs, riceParam, &zeroCountParts[3], &riceParamParts[3])) {
|
|
return DRFLAC_FALSE;
|
|
}
|
|
|
|
zeroCountPart128 = vld1q_u32(zeroCountParts);
|
|
riceParamPart128 = vld1q_u32(riceParamParts);
|
|
|
|
riceParamPart128 = vandq_u32(riceParamPart128, riceParamMask128);
|
|
riceParamPart128 = vorrq_u32(riceParamPart128, vshlq_u32(zeroCountPart128, riceParam128));
|
|
riceParamPart128 = veorq_u32(vshrq_n_u32(riceParamPart128, 1), vaddq_u32(drflac__vnotq_u32(vandq_u32(riceParamPart128, one128)), one128));
|
|
|
|
for (i = 0; i < 4; i += 1) {
|
|
int64x1_t prediction64;
|
|
|
|
prediction128 = veorq_s64(prediction128, prediction128); /* Reset to 0. */
|
|
switch (order)
|
|
{
|
|
case 12:
|
|
case 11: prediction128 = vaddq_s64(prediction128, vmull_s32(vget_low_s32(coefficients128_8), vget_low_s32(samples128_8)));
|
|
case 10:
|
|
case 9: prediction128 = vaddq_s64(prediction128, vmull_s32(vget_high_s32(coefficients128_8), vget_high_s32(samples128_8)));
|
|
case 8:
|
|
case 7: prediction128 = vaddq_s64(prediction128, vmull_s32(vget_low_s32(coefficients128_4), vget_low_s32(samples128_4)));
|
|
case 6:
|
|
case 5: prediction128 = vaddq_s64(prediction128, vmull_s32(vget_high_s32(coefficients128_4), vget_high_s32(samples128_4)));
|
|
case 4:
|
|
case 3: prediction128 = vaddq_s64(prediction128, vmull_s32(vget_low_s32(coefficients128_0), vget_low_s32(samples128_0)));
|
|
case 2:
|
|
case 1: prediction128 = vaddq_s64(prediction128, vmull_s32(vget_high_s32(coefficients128_0), vget_high_s32(samples128_0)));
|
|
}
|
|
|
|
/* Horizontal add and shift. */
|
|
prediction64 = drflac__vhaddq_s64(prediction128);
|
|
prediction64 = vshl_s64(prediction64, shift64);
|
|
prediction64 = vadd_s64(prediction64, vdup_n_s64(vgetq_lane_u32(riceParamPart128, 0)));
|
|
|
|
/* Our value should be sitting in prediction64[0]. We need to combine this with our SSE samples. */
|
|
samples128_8 = drflac__valignrq_s32_1(samples128_4, samples128_8);
|
|
samples128_4 = drflac__valignrq_s32_1(samples128_0, samples128_4);
|
|
samples128_0 = drflac__valignrq_s32_1(vcombine_s32(vreinterpret_s32_s64(prediction64), vdup_n_s32(0)), samples128_0);
|
|
|
|
/* Slide our rice parameter down so that the value in position 0 contains the next one to process. */
|
|
riceParamPart128 = drflac__valignrq_u32_1(vdupq_n_u32(0), riceParamPart128);
|
|
}
|
|
|
|
/* We store samples in groups of 4. */
|
|
vst1q_s32(pDecodedSamples, samples128_0);
|
|
pDecodedSamples += 4;
|
|
}
|
|
|
|
/* Make sure we process the last few samples. */
|
|
i = (count & ~3);
|
|
while (i < (int)count) {
|
|
/* Rice extraction. */
|
|
if (!drflac__read_rice_parts_x1(bs, riceParam, &zeroCountParts[0], &riceParamParts[0])) {
|
|
return DRFLAC_FALSE;
|
|
}
|
|
|
|
/* Rice reconstruction. */
|
|
riceParamParts[0] &= riceParamMask;
|
|
riceParamParts[0] |= (zeroCountParts[0] << riceParam);
|
|
riceParamParts[0] = (riceParamParts[0] >> 1) ^ t[riceParamParts[0] & 0x01];
|
|
|
|
/* Sample reconstruction. */
|
|
pDecodedSamples[0] = riceParamParts[0] + drflac__calculate_prediction_64(order, shift, coefficients, pDecodedSamples);
|
|
|
|
i += 1;
|
|
pDecodedSamples += 1;
|
|
}
|
|
|
|
return DRFLAC_TRUE;
|
|
}
|
|
|
|
static drflac_bool32 drflac__decode_samples_with_residual__rice__neon(drflac_bs* bs, drflac_uint32 bitsPerSample, drflac_uint32 count, drflac_uint8 riceParam, drflac_uint32 order, drflac_int32 shift, const drflac_int32* coefficients, drflac_int32* pSamplesOut)
|
|
{
|
|
DRFLAC_ASSERT(bs != NULL);
|
|
DRFLAC_ASSERT(count > 0);
|
|
DRFLAC_ASSERT(pSamplesOut != NULL);
|
|
|
|
/* In my testing the order is rarely > 12, so in this case I'm going to simplify the NEON implementation by only handling order <= 12. */
|
|
if (order > 0 && order <= 12) {
|
|
if (bitsPerSample+shift > 32) {
|
|
return drflac__decode_samples_with_residual__rice__neon_64(bs, count, riceParam, order, shift, coefficients, pSamplesOut);
|
|
} else {
|
|
return drflac__decode_samples_with_residual__rice__neon_32(bs, count, riceParam, order, shift, coefficients, pSamplesOut);
|
|
}
|
|
} else {
|
|
return drflac__decode_samples_with_residual__rice__scalar(bs, bitsPerSample, count, riceParam, order, shift, coefficients, pSamplesOut);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
static drflac_bool32 drflac__decode_samples_with_residual__rice(drflac_bs* bs, drflac_uint32 bitsPerSample, drflac_uint32 count, drflac_uint8 riceParam, drflac_uint32 order, drflac_int32 shift, const drflac_int32* coefficients, drflac_int32* pSamplesOut)
|
|
{
|
|
#if defined(DRFLAC_SUPPORT_SSE41)
|
|
if (drflac__gIsSSE41Supported) {
|
|
return drflac__decode_samples_with_residual__rice__sse41(bs, bitsPerSample, count, riceParam, order, shift, coefficients, pSamplesOut);
|
|
} else
|
|
#elif defined(DRFLAC_SUPPORT_NEON)
|
|
if (drflac__gIsNEONSupported) {
|
|
return drflac__decode_samples_with_residual__rice__neon(bs, bitsPerSample, count, riceParam, order, shift, coefficients, pSamplesOut);
|
|
} else
|
|
#endif
|
|
{
|
|
/* Scalar fallback. */
|
|
#if 0
|
|
return drflac__decode_samples_with_residual__rice__reference(bs, bitsPerSample, count, riceParam, order, shift, coefficients, pSamplesOut);
|
|
#else
|
|
return drflac__decode_samples_with_residual__rice__scalar(bs, bitsPerSample, count, riceParam, order, shift, coefficients, pSamplesOut);
|
|
#endif
|
|
}
|
|
}
|
|
|
|
/* Reads and seeks past a string of residual values as Rice codes. The decoder should be sitting on the first bit of the Rice codes. */
|
|
static drflac_bool32 drflac__read_and_seek_residual__rice(drflac_bs* bs, drflac_uint32 count, drflac_uint8 riceParam)
|
|
{
|
|
drflac_uint32 i;
|
|
|
|
DRFLAC_ASSERT(bs != NULL);
|
|
DRFLAC_ASSERT(count > 0);
|
|
|
|
for (i = 0; i < count; ++i) {
|
|
if (!drflac__seek_rice_parts(bs, riceParam)) {
|
|
return DRFLAC_FALSE;
|
|
}
|
|
}
|
|
|
|
return DRFLAC_TRUE;
|
|
}
|
|
|
|
static drflac_bool32 drflac__decode_samples_with_residual__unencoded(drflac_bs* bs, drflac_uint32 bitsPerSample, drflac_uint32 count, drflac_uint8 unencodedBitsPerSample, drflac_uint32 order, drflac_int32 shift, const drflac_int32* coefficients, drflac_int32* pSamplesOut)
|
|
{
|
|
drflac_uint32 i;
|
|
|
|
DRFLAC_ASSERT(bs != NULL);
|
|
DRFLAC_ASSERT(count > 0);
|
|
DRFLAC_ASSERT(unencodedBitsPerSample <= 31); /* <-- unencodedBitsPerSample is a 5 bit number, so cannot exceed 31. */
|
|
DRFLAC_ASSERT(pSamplesOut != NULL);
|
|
|
|
for (i = 0; i < count; ++i) {
|
|
if (unencodedBitsPerSample > 0) {
|
|
if (!drflac__read_int32(bs, unencodedBitsPerSample, pSamplesOut + i)) {
|
|
return DRFLAC_FALSE;
|
|
}
|
|
} else {
|
|
pSamplesOut[i] = 0;
|
|
}
|
|
|
|
if (bitsPerSample >= 24) {
|
|
pSamplesOut[i] += drflac__calculate_prediction_64(order, shift, coefficients, pSamplesOut + i);
|
|
} else {
|
|
pSamplesOut[i] += drflac__calculate_prediction_32(order, shift, coefficients, pSamplesOut + i);
|
|
}
|
|
}
|
|
|
|
return DRFLAC_TRUE;
|
|
}
|
|
|
|
|
|
/*
|
|
Reads and decodes the residual for the sub-frame the decoder is currently sitting on. This function should be called
|
|
when the decoder is sitting at the very start of the RESIDUAL block. The first <order> residuals will be ignored. The
|
|
<blockSize> and <order> parameters are used to determine how many residual values need to be decoded.
|
|
*/
|
|
static drflac_bool32 drflac__decode_samples_with_residual(drflac_bs* bs, drflac_uint32 bitsPerSample, drflac_uint32 blockSize, drflac_uint32 order, drflac_int32 shift, const drflac_int32* coefficients, drflac_int32* pDecodedSamples)
|
|
{
|
|
drflac_uint8 residualMethod;
|
|
drflac_uint8 partitionOrder;
|
|
drflac_uint32 samplesInPartition;
|
|
drflac_uint32 partitionsRemaining;
|
|
|
|
DRFLAC_ASSERT(bs != NULL);
|
|
DRFLAC_ASSERT(blockSize != 0);
|
|
DRFLAC_ASSERT(pDecodedSamples != NULL); /* <-- Should we allow NULL, in which case we just seek past the residual rather than do a full decode? */
|
|
|
|
if (!drflac__read_uint8(bs, 2, &residualMethod)) {
|
|
return DRFLAC_FALSE;
|
|
}
|
|
|
|
if (residualMethod != DRFLAC_RESIDUAL_CODING_METHOD_PARTITIONED_RICE && residualMethod != DRFLAC_RESIDUAL_CODING_METHOD_PARTITIONED_RICE2) {
|
|
return DRFLAC_FALSE; /* Unknown or unsupported residual coding method. */
|
|
}
|
|
|
|
/* Ignore the first <order> values. */
|
|
pDecodedSamples += order;
|
|
|
|
if (!drflac__read_uint8(bs, 4, &partitionOrder)) {
|
|
return DRFLAC_FALSE;
|
|
}
|
|
|
|
/*
|
|
From the FLAC spec:
|
|
The Rice partition order in a Rice-coded residual section must be less than or equal to 8.
|
|
*/
|
|
if (partitionOrder > 8) {
|
|
return DRFLAC_FALSE;
|
|
}
|
|
|
|
/* Validation check. */
|
|
if ((blockSize / (1 << partitionOrder)) <= order) {
|
|
return DRFLAC_FALSE;
|
|
}
|
|
|
|
samplesInPartition = (blockSize / (1 << partitionOrder)) - order;
|
|
partitionsRemaining = (1 << partitionOrder);
|
|
for (;;) {
|
|
drflac_uint8 riceParam = 0;
|
|
if (residualMethod == DRFLAC_RESIDUAL_CODING_METHOD_PARTITIONED_RICE) {
|
|
if (!drflac__read_uint8(bs, 4, &riceParam)) {
|
|
return DRFLAC_FALSE;
|
|
}
|
|
if (riceParam == 15) {
|
|
riceParam = 0xFF;
|
|
}
|
|
} else if (residualMethod == DRFLAC_RESIDUAL_CODING_METHOD_PARTITIONED_RICE2) {
|
|
if (!drflac__read_uint8(bs, 5, &riceParam)) {
|
|
return DRFLAC_FALSE;
|
|
}
|
|
if (riceParam == 31) {
|
|
riceParam = 0xFF;
|
|
}
|
|
}
|
|
|
|
if (riceParam != 0xFF) {
|
|
if (!drflac__decode_samples_with_residual__rice(bs, bitsPerSample, samplesInPartition, riceParam, order, shift, coefficients, pDecodedSamples)) {
|
|
return DRFLAC_FALSE;
|
|
}
|
|
} else {
|
|
drflac_uint8 unencodedBitsPerSample = 0;
|
|
if (!drflac__read_uint8(bs, 5, &unencodedBitsPerSample)) {
|
|
return DRFLAC_FALSE;
|
|
}
|
|
|
|
if (!drflac__decode_samples_with_residual__unencoded(bs, bitsPerSample, samplesInPartition, unencodedBitsPerSample, order, shift, coefficients, pDecodedSamples)) {
|
|
return DRFLAC_FALSE;
|
|
}
|
|
}
|
|
|
|
pDecodedSamples += samplesInPartition;
|
|
|
|
if (partitionsRemaining == 1) {
|
|
break;
|
|
}
|
|
|
|
partitionsRemaining -= 1;
|
|
|
|
if (partitionOrder != 0) {
|
|
samplesInPartition = blockSize / (1 << partitionOrder);
|
|
}
|
|
}
|
|
|
|
return DRFLAC_TRUE;
|
|
}
|
|
|
|
/*
|
|
Reads and seeks past the residual for the sub-frame the decoder is currently sitting on. This function should be called
|
|
when the decoder is sitting at the very start of the RESIDUAL block. The first <order> residuals will be set to 0. The
|
|
<blockSize> and <order> parameters are used to determine how many residual values need to be decoded.
|
|
*/
|
|
static drflac_bool32 drflac__read_and_seek_residual(drflac_bs* bs, drflac_uint32 blockSize, drflac_uint32 order)
|
|
{
|
|
drflac_uint8 residualMethod;
|
|
drflac_uint8 partitionOrder;
|
|
drflac_uint32 samplesInPartition;
|
|
drflac_uint32 partitionsRemaining;
|
|
|
|
DRFLAC_ASSERT(bs != NULL);
|
|
DRFLAC_ASSERT(blockSize != 0);
|
|
|
|
if (!drflac__read_uint8(bs, 2, &residualMethod)) {
|
|
return DRFLAC_FALSE;
|
|
}
|
|
|
|
if (residualMethod != DRFLAC_RESIDUAL_CODING_METHOD_PARTITIONED_RICE && residualMethod != DRFLAC_RESIDUAL_CODING_METHOD_PARTITIONED_RICE2) {
|
|
return DRFLAC_FALSE; /* Unknown or unsupported residual coding method. */
|
|
}
|
|
|
|
if (!drflac__read_uint8(bs, 4, &partitionOrder)) {
|
|
return DRFLAC_FALSE;
|
|
}
|
|
|
|
/*
|
|
From the FLAC spec:
|
|
The Rice partition order in a Rice-coded residual section must be less than or equal to 8.
|
|
*/
|
|
if (partitionOrder > 8) {
|
|
return DRFLAC_FALSE;
|
|
}
|
|
|
|
/* Validation check. */
|
|
if ((blockSize / (1 << partitionOrder)) <= order) {
|
|
return DRFLAC_FALSE;
|
|
}
|
|
|
|
samplesInPartition = (blockSize / (1 << partitionOrder)) - order;
|
|
partitionsRemaining = (1 << partitionOrder);
|
|
for (;;)
|
|
{
|
|
drflac_uint8 riceParam = 0;
|
|
if (residualMethod == DRFLAC_RESIDUAL_CODING_METHOD_PARTITIONED_RICE) {
|
|
if (!drflac__read_uint8(bs, 4, &riceParam)) {
|
|
return DRFLAC_FALSE;
|
|
}
|
|
if (riceParam == 15) {
|
|
riceParam = 0xFF;
|
|
}
|
|
} else if (residualMethod == DRFLAC_RESIDUAL_CODING_METHOD_PARTITIONED_RICE2) {
|
|
if (!drflac__read_uint8(bs, 5, &riceParam)) {
|
|
return DRFLAC_FALSE;
|
|
}
|
|
if (riceParam == 31) {
|
|
riceParam = 0xFF;
|
|
}
|
|
}
|
|
|
|
if (riceParam != 0xFF) {
|
|
if (!drflac__read_and_seek_residual__rice(bs, samplesInPartition, riceParam)) {
|
|
return DRFLAC_FALSE;
|
|
}
|
|
} else {
|
|
drflac_uint8 unencodedBitsPerSample = 0;
|
|
if (!drflac__read_uint8(bs, 5, &unencodedBitsPerSample)) {
|
|
return DRFLAC_FALSE;
|
|
}
|
|
|
|
if (!drflac__seek_bits(bs, unencodedBitsPerSample * samplesInPartition)) {
|
|
return DRFLAC_FALSE;
|
|
}
|
|
}
|
|
|
|
|
|
if (partitionsRemaining == 1) {
|
|
break;
|
|
}
|
|
|
|
partitionsRemaining -= 1;
|
|
samplesInPartition = blockSize / (1 << partitionOrder);
|
|
}
|
|
|
|
return DRFLAC_TRUE;
|
|
}
|
|
|
|
|
|
static drflac_bool32 drflac__decode_samples__constant(drflac_bs* bs, drflac_uint32 blockSize, drflac_uint32 subframeBitsPerSample, drflac_int32* pDecodedSamples)
|
|
{
|
|
drflac_uint32 i;
|
|
|
|
/* Only a single sample needs to be decoded here. */
|
|
drflac_int32 sample;
|
|
if (!drflac__read_int32(bs, subframeBitsPerSample, &sample)) {
|
|
return DRFLAC_FALSE;
|
|
}
|
|
|
|
/*
|
|
We don't really need to expand this, but it does simplify the process of reading samples. If this becomes a performance issue (unlikely)
|
|
we'll want to look at a more efficient way.
|
|
*/
|
|
for (i = 0; i < blockSize; ++i) {
|
|
pDecodedSamples[i] = sample;
|
|
}
|
|
|
|
return DRFLAC_TRUE;
|
|
}
|
|
|
|
static drflac_bool32 drflac__decode_samples__verbatim(drflac_bs* bs, drflac_uint32 blockSize, drflac_uint32 subframeBitsPerSample, drflac_int32* pDecodedSamples)
|
|
{
|
|
drflac_uint32 i;
|
|
|
|
for (i = 0; i < blockSize; ++i) {
|
|
drflac_int32 sample;
|
|
if (!drflac__read_int32(bs, subframeBitsPerSample, &sample)) {
|
|
return DRFLAC_FALSE;
|
|
}
|
|
|
|
pDecodedSamples[i] = sample;
|
|
}
|
|
|
|
return DRFLAC_TRUE;
|
|
}
|
|
|
|
static drflac_bool32 drflac__decode_samples__fixed(drflac_bs* bs, drflac_uint32 blockSize, drflac_uint32 subframeBitsPerSample, drflac_uint8 lpcOrder, drflac_int32* pDecodedSamples)
|
|
{
|
|
drflac_uint32 i;
|
|
|
|
static drflac_int32 lpcCoefficientsTable[5][4] = {
|
|
{0, 0, 0, 0},
|
|
{1, 0, 0, 0},
|
|
{2, -1, 0, 0},
|
|
{3, -3, 1, 0},
|
|
{4, -6, 4, -1}
|
|
};
|
|
|
|
/* Warm up samples and coefficients. */
|
|
for (i = 0; i < lpcOrder; ++i) {
|
|
drflac_int32 sample;
|
|
if (!drflac__read_int32(bs, subframeBitsPerSample, &sample)) {
|
|
return DRFLAC_FALSE;
|
|
}
|
|
|
|
pDecodedSamples[i] = sample;
|
|
}
|
|
|
|
if (!drflac__decode_samples_with_residual(bs, subframeBitsPerSample, blockSize, lpcOrder, 0, lpcCoefficientsTable[lpcOrder], pDecodedSamples)) {
|
|
return DRFLAC_FALSE;
|
|
}
|
|
|
|
return DRFLAC_TRUE;
|
|
}
|
|
|
|
static drflac_bool32 drflac__decode_samples__lpc(drflac_bs* bs, drflac_uint32 blockSize, drflac_uint32 bitsPerSample, drflac_uint8 lpcOrder, drflac_int32* pDecodedSamples)
|
|
{
|
|
drflac_uint8 i;
|
|
drflac_uint8 lpcPrecision;
|
|
drflac_int8 lpcShift;
|
|
drflac_int32 coefficients[32];
|
|
|
|
/* Warm up samples. */
|
|
for (i = 0; i < lpcOrder; ++i) {
|
|
drflac_int32 sample;
|
|
if (!drflac__read_int32(bs, bitsPerSample, &sample)) {
|
|
return DRFLAC_FALSE;
|
|
}
|
|
|
|
pDecodedSamples[i] = sample;
|
|
}
|
|
|
|
if (!drflac__read_uint8(bs, 4, &lpcPrecision)) {
|
|
return DRFLAC_FALSE;
|
|
}
|
|
if (lpcPrecision == 15) {
|
|
return DRFLAC_FALSE; /* Invalid. */
|
|
}
|
|
lpcPrecision += 1;
|
|
|
|
if (!drflac__read_int8(bs, 5, &lpcShift)) {
|
|
return DRFLAC_FALSE;
|
|
}
|
|
|
|
DRFLAC_ZERO_MEMORY(coefficients, sizeof(coefficients));
|
|
for (i = 0; i < lpcOrder; ++i) {
|
|
if (!drflac__read_int32(bs, lpcPrecision, coefficients + i)) {
|
|
return DRFLAC_FALSE;
|
|
}
|
|
}
|
|
|
|
if (!drflac__decode_samples_with_residual(bs, bitsPerSample, blockSize, lpcOrder, lpcShift, coefficients, pDecodedSamples)) {
|
|
return DRFLAC_FALSE;
|
|
}
|
|
|
|
return DRFLAC_TRUE;
|
|
}
|
|
|
|
|
|
static drflac_bool32 drflac__read_next_flac_frame_header(drflac_bs* bs, drflac_uint8 streaminfoBitsPerSample, drflac_frame_header* header)
|
|
{
|
|
const drflac_uint32 sampleRateTable[12] = {0, 88200, 176400, 192000, 8000, 16000, 22050, 24000, 32000, 44100, 48000, 96000};
|
|
const drflac_uint8 bitsPerSampleTable[8] = {0, 8, 12, (drflac_uint8)-1, 16, 20, 24, (drflac_uint8)-1}; /* -1 = reserved. */
|
|
|
|
DRFLAC_ASSERT(bs != NULL);
|
|
DRFLAC_ASSERT(header != NULL);
|
|
|
|
/* Keep looping until we find a valid sync code. */
|
|
for (;;) {
|
|
drflac_uint8 crc8 = 0xCE; /* 0xCE = drflac_crc8(0, 0x3FFE, 14); */
|
|
drflac_uint8 reserved = 0;
|
|
drflac_uint8 blockingStrategy = 0;
|
|
drflac_uint8 blockSize = 0;
|
|
drflac_uint8 sampleRate = 0;
|
|
drflac_uint8 channelAssignment = 0;
|
|
drflac_uint8 bitsPerSample = 0;
|
|
drflac_bool32 isVariableBlockSize;
|
|
|
|
if (!drflac__find_and_seek_to_next_sync_code(bs)) {
|
|
return DRFLAC_FALSE;
|
|
}
|
|
|
|
if (!drflac__read_uint8(bs, 1, &reserved)) {
|
|
return DRFLAC_FALSE;
|
|
}
|
|
if (reserved == 1) {
|
|
continue;
|
|
}
|
|
crc8 = drflac_crc8(crc8, reserved, 1);
|
|
|
|
if (!drflac__read_uint8(bs, 1, &blockingStrategy)) {
|
|
return DRFLAC_FALSE;
|
|
}
|
|
crc8 = drflac_crc8(crc8, blockingStrategy, 1);
|
|
|
|
if (!drflac__read_uint8(bs, 4, &blockSize)) {
|
|
return DRFLAC_FALSE;
|
|
}
|
|
if (blockSize == 0) {
|
|
continue;
|
|
}
|
|
crc8 = drflac_crc8(crc8, blockSize, 4);
|
|
|
|
if (!drflac__read_uint8(bs, 4, &sampleRate)) {
|
|
return DRFLAC_FALSE;
|
|
}
|
|
crc8 = drflac_crc8(crc8, sampleRate, 4);
|
|
|
|
if (!drflac__read_uint8(bs, 4, &channelAssignment)) {
|
|
return DRFLAC_FALSE;
|
|
}
|
|
if (channelAssignment > 10) {
|
|
continue;
|
|
}
|
|
crc8 = drflac_crc8(crc8, channelAssignment, 4);
|
|
|
|
if (!drflac__read_uint8(bs, 3, &bitsPerSample)) {
|
|
return DRFLAC_FALSE;
|
|
}
|
|
if (bitsPerSample == 3 || bitsPerSample == 7) {
|
|
continue;
|
|
}
|
|
crc8 = drflac_crc8(crc8, bitsPerSample, 3);
|
|
|
|
|
|
if (!drflac__read_uint8(bs, 1, &reserved)) {
|
|
return DRFLAC_FALSE;
|
|
}
|
|
if (reserved == 1) {
|
|
continue;
|
|
}
|
|
crc8 = drflac_crc8(crc8, reserved, 1);
|
|
|
|
|
|
isVariableBlockSize = blockingStrategy == 1;
|
|
if (isVariableBlockSize) {
|
|
drflac_uint64 pcmFrameNumber;
|
|
drflac_result result = drflac__read_utf8_coded_number(bs, &pcmFrameNumber, &crc8);
|
|
if (result != DRFLAC_SUCCESS) {
|
|
if (result == DRFLAC_AT_END) {
|
|
return DRFLAC_FALSE;
|
|
} else {
|
|
continue;
|
|
}
|
|
}
|
|
header->flacFrameNumber = 0;
|
|
header->pcmFrameNumber = pcmFrameNumber;
|
|
} else {
|
|
drflac_uint64 flacFrameNumber = 0;
|
|
drflac_result result = drflac__read_utf8_coded_number(bs, &flacFrameNumber, &crc8);
|
|
if (result != DRFLAC_SUCCESS) {
|
|
if (result == DRFLAC_AT_END) {
|
|
return DRFLAC_FALSE;
|
|
} else {
|
|
continue;
|
|
}
|
|
}
|
|
header->flacFrameNumber = (drflac_uint32)flacFrameNumber; /* <-- Safe cast. */
|
|
header->pcmFrameNumber = 0;
|
|
}
|
|
|
|
|
|
DRFLAC_ASSERT(blockSize > 0);
|
|
if (blockSize == 1) {
|
|
header->blockSizeInPCMFrames = 192;
|
|
} else if (blockSize >= 2 && blockSize <= 5) {
|
|
header->blockSizeInPCMFrames = 576 * (1 << (blockSize - 2));
|
|
} else if (blockSize == 6) {
|
|
if (!drflac__read_uint16(bs, 8, &header->blockSizeInPCMFrames)) {
|
|
return DRFLAC_FALSE;
|
|
}
|
|
crc8 = drflac_crc8(crc8, header->blockSizeInPCMFrames, 8);
|
|
header->blockSizeInPCMFrames += 1;
|
|
} else if (blockSize == 7) {
|
|
if (!drflac__read_uint16(bs, 16, &header->blockSizeInPCMFrames)) {
|
|
return DRFLAC_FALSE;
|
|
}
|
|
crc8 = drflac_crc8(crc8, header->blockSizeInPCMFrames, 16);
|
|
header->blockSizeInPCMFrames += 1;
|
|
} else {
|
|
DRFLAC_ASSERT(blockSize >= 8);
|
|
header->blockSizeInPCMFrames = 256 * (1 << (blockSize - 8));
|
|
}
|
|
|
|
|
|
if (sampleRate <= 11) {
|
|
header->sampleRate = sampleRateTable[sampleRate];
|
|
} else if (sampleRate == 12) {
|
|
if (!drflac__read_uint32(bs, 8, &header->sampleRate)) {
|
|
return DRFLAC_FALSE;
|
|
}
|
|
crc8 = drflac_crc8(crc8, header->sampleRate, 8);
|
|
header->sampleRate *= 1000;
|
|
} else if (sampleRate == 13) {
|
|
if (!drflac__read_uint32(bs, 16, &header->sampleRate)) {
|
|
return DRFLAC_FALSE;
|
|
}
|
|
crc8 = drflac_crc8(crc8, header->sampleRate, 16);
|
|
} else if (sampleRate == 14) {
|
|
if (!drflac__read_uint32(bs, 16, &header->sampleRate)) {
|
|
return DRFLAC_FALSE;
|
|
}
|
|
crc8 = drflac_crc8(crc8, header->sampleRate, 16);
|
|
header->sampleRate *= 10;
|
|
} else {
|
|
continue; /* Invalid. Assume an invalid block. */
|
|
}
|
|
|
|
|
|
header->channelAssignment = channelAssignment;
|
|
|
|
header->bitsPerSample = bitsPerSampleTable[bitsPerSample];
|
|
if (header->bitsPerSample == 0) {
|
|
header->bitsPerSample = streaminfoBitsPerSample;
|
|
}
|
|
|
|
if (!drflac__read_uint8(bs, 8, &header->crc8)) {
|
|
return DRFLAC_FALSE;
|
|
}
|
|
|
|
#ifndef DR_FLAC_NO_CRC
|
|
if (header->crc8 != crc8) {
|
|
continue; /* CRC mismatch. Loop back to the top and find the next sync code. */
|
|
}
|
|
#endif
|
|
return DRFLAC_TRUE;
|
|
}
|
|
}
|
|
|
|
static drflac_bool32 drflac__read_subframe_header(drflac_bs* bs, drflac_subframe* pSubframe)
|
|
{
|
|
drflac_uint8 header;
|
|
int type;
|
|
|
|
if (!drflac__read_uint8(bs, 8, &header)) {
|
|
return DRFLAC_FALSE;
|
|
}
|
|
|
|
/* First bit should always be 0. */
|
|
if ((header & 0x80) != 0) {
|
|
return DRFLAC_FALSE;
|
|
}
|
|
|
|
type = (header & 0x7E) >> 1;
|
|
if (type == 0) {
|
|
pSubframe->subframeType = DRFLAC_SUBFRAME_CONSTANT;
|
|
} else if (type == 1) {
|
|
pSubframe->subframeType = DRFLAC_SUBFRAME_VERBATIM;
|
|
} else {
|
|
if ((type & 0x20) != 0) {
|
|
pSubframe->subframeType = DRFLAC_SUBFRAME_LPC;
|
|
pSubframe->lpcOrder = (drflac_uint8)(type & 0x1F) + 1;
|
|
} else if ((type & 0x08) != 0) {
|
|
pSubframe->subframeType = DRFLAC_SUBFRAME_FIXED;
|
|
pSubframe->lpcOrder = (drflac_uint8)(type & 0x07);
|
|
if (pSubframe->lpcOrder > 4) {
|
|
pSubframe->subframeType = DRFLAC_SUBFRAME_RESERVED;
|
|
pSubframe->lpcOrder = 0;
|
|
}
|
|
} else {
|
|
pSubframe->subframeType = DRFLAC_SUBFRAME_RESERVED;
|
|
}
|
|
}
|
|
|
|
if (pSubframe->subframeType == DRFLAC_SUBFRAME_RESERVED) {
|
|
return DRFLAC_FALSE;
|
|
}
|
|
|
|
/* Wasted bits per sample. */
|
|
pSubframe->wastedBitsPerSample = 0;
|
|
if ((header & 0x01) == 1) {
|
|
unsigned int wastedBitsPerSample;
|
|
if (!drflac__seek_past_next_set_bit(bs, &wastedBitsPerSample)) {
|
|
return DRFLAC_FALSE;
|
|
}
|
|
pSubframe->wastedBitsPerSample = (drflac_uint8)wastedBitsPerSample + 1;
|
|
}
|
|
|
|
return DRFLAC_TRUE;
|
|
}
|
|
|
|
static drflac_bool32 drflac__decode_subframe(drflac_bs* bs, drflac_frame* frame, int subframeIndex, drflac_int32* pDecodedSamplesOut)
|
|
{
|
|
drflac_subframe* pSubframe;
|
|
drflac_uint32 subframeBitsPerSample;
|
|
|
|
DRFLAC_ASSERT(bs != NULL);
|
|
DRFLAC_ASSERT(frame != NULL);
|
|
|
|
pSubframe = frame->subframes + subframeIndex;
|
|
if (!drflac__read_subframe_header(bs, pSubframe)) {
|
|
return DRFLAC_FALSE;
|
|
}
|
|
|
|
/* Side channels require an extra bit per sample. Took a while to figure that one out... */
|
|
subframeBitsPerSample = frame->header.bitsPerSample;
|
|
if ((frame->header.channelAssignment == DRFLAC_CHANNEL_ASSIGNMENT_LEFT_SIDE || frame->header.channelAssignment == DRFLAC_CHANNEL_ASSIGNMENT_MID_SIDE) && subframeIndex == 1) {
|
|
subframeBitsPerSample += 1;
|
|
} else if (frame->header.channelAssignment == DRFLAC_CHANNEL_ASSIGNMENT_RIGHT_SIDE && subframeIndex == 0) {
|
|
subframeBitsPerSample += 1;
|
|
}
|
|
|
|
/* Need to handle wasted bits per sample. */
|
|
if (pSubframe->wastedBitsPerSample >= subframeBitsPerSample) {
|
|
return DRFLAC_FALSE;
|
|
}
|
|
subframeBitsPerSample -= pSubframe->wastedBitsPerSample;
|
|
|
|
pSubframe->pSamplesS32 = pDecodedSamplesOut;
|
|
|
|
switch (pSubframe->subframeType)
|
|
{
|
|
case DRFLAC_SUBFRAME_CONSTANT:
|
|
{
|
|
drflac__decode_samples__constant(bs, frame->header.blockSizeInPCMFrames, subframeBitsPerSample, pSubframe->pSamplesS32);
|
|
} break;
|
|
|
|
case DRFLAC_SUBFRAME_VERBATIM:
|
|
{
|
|
drflac__decode_samples__verbatim(bs, frame->header.blockSizeInPCMFrames, subframeBitsPerSample, pSubframe->pSamplesS32);
|
|
} break;
|
|
|
|
case DRFLAC_SUBFRAME_FIXED:
|
|
{
|
|
drflac__decode_samples__fixed(bs, frame->header.blockSizeInPCMFrames, subframeBitsPerSample, pSubframe->lpcOrder, pSubframe->pSamplesS32);
|
|
} break;
|
|
|
|
case DRFLAC_SUBFRAME_LPC:
|
|
{
|
|
drflac__decode_samples__lpc(bs, frame->header.blockSizeInPCMFrames, subframeBitsPerSample, pSubframe->lpcOrder, pSubframe->pSamplesS32);
|
|
} break;
|
|
|
|
default: return DRFLAC_FALSE;
|
|
}
|
|
|
|
return DRFLAC_TRUE;
|
|
}
|
|
|
|
static drflac_bool32 drflac__seek_subframe(drflac_bs* bs, drflac_frame* frame, int subframeIndex)
|
|
{
|
|
drflac_subframe* pSubframe;
|
|
drflac_uint32 subframeBitsPerSample;
|
|
|
|
DRFLAC_ASSERT(bs != NULL);
|
|
DRFLAC_ASSERT(frame != NULL);
|
|
|
|
pSubframe = frame->subframes + subframeIndex;
|
|
if (!drflac__read_subframe_header(bs, pSubframe)) {
|
|
return DRFLAC_FALSE;
|
|
}
|
|
|
|
/* Side channels require an extra bit per sample. Took a while to figure that one out... */
|
|
subframeBitsPerSample = frame->header.bitsPerSample;
|
|
if ((frame->header.channelAssignment == DRFLAC_CHANNEL_ASSIGNMENT_LEFT_SIDE || frame->header.channelAssignment == DRFLAC_CHANNEL_ASSIGNMENT_MID_SIDE) && subframeIndex == 1) {
|
|
subframeBitsPerSample += 1;
|
|
} else if (frame->header.channelAssignment == DRFLAC_CHANNEL_ASSIGNMENT_RIGHT_SIDE && subframeIndex == 0) {
|
|
subframeBitsPerSample += 1;
|
|
}
|
|
|
|
/* Need to handle wasted bits per sample. */
|
|
if (pSubframe->wastedBitsPerSample >= subframeBitsPerSample) {
|
|
return DRFLAC_FALSE;
|
|
}
|
|
subframeBitsPerSample -= pSubframe->wastedBitsPerSample;
|
|
|
|
pSubframe->pSamplesS32 = NULL;
|
|
|
|
switch (pSubframe->subframeType)
|
|
{
|
|
case DRFLAC_SUBFRAME_CONSTANT:
|
|
{
|
|
if (!drflac__seek_bits(bs, subframeBitsPerSample)) {
|
|
return DRFLAC_FALSE;
|
|
}
|
|
} break;
|
|
|
|
case DRFLAC_SUBFRAME_VERBATIM:
|
|
{
|
|
unsigned int bitsToSeek = frame->header.blockSizeInPCMFrames * subframeBitsPerSample;
|
|
if (!drflac__seek_bits(bs, bitsToSeek)) {
|
|
return DRFLAC_FALSE;
|
|
}
|
|
} break;
|
|
|
|
case DRFLAC_SUBFRAME_FIXED:
|
|
{
|
|
unsigned int bitsToSeek = pSubframe->lpcOrder * subframeBitsPerSample;
|
|
if (!drflac__seek_bits(bs, bitsToSeek)) {
|
|
return DRFLAC_FALSE;
|
|
}
|
|
|
|
if (!drflac__read_and_seek_residual(bs, frame->header.blockSizeInPCMFrames, pSubframe->lpcOrder)) {
|
|
return DRFLAC_FALSE;
|
|
}
|
|
} break;
|
|
|
|
case DRFLAC_SUBFRAME_LPC:
|
|
{
|
|
drflac_uint8 lpcPrecision;
|
|
|
|
unsigned int bitsToSeek = pSubframe->lpcOrder * subframeBitsPerSample;
|
|
if (!drflac__seek_bits(bs, bitsToSeek)) {
|
|
return DRFLAC_FALSE;
|
|
}
|
|
|
|
if (!drflac__read_uint8(bs, 4, &lpcPrecision)) {
|
|
return DRFLAC_FALSE;
|
|
}
|
|
if (lpcPrecision == 15) {
|
|
return DRFLAC_FALSE; /* Invalid. */
|
|
}
|
|
lpcPrecision += 1;
|
|
|
|
|
|
bitsToSeek = (pSubframe->lpcOrder * lpcPrecision) + 5; /* +5 for shift. */
|
|
if (!drflac__seek_bits(bs, bitsToSeek)) {
|
|
return DRFLAC_FALSE;
|
|
}
|
|
|
|
if (!drflac__read_and_seek_residual(bs, frame->header.blockSizeInPCMFrames, pSubframe->lpcOrder)) {
|
|
return DRFLAC_FALSE;
|
|
}
|
|
} break;
|
|
|
|
default: return DRFLAC_FALSE;
|
|
}
|
|
|
|
return DRFLAC_TRUE;
|
|
}
|
|
|
|
|
|
static DRFLAC_INLINE drflac_uint8 drflac__get_channel_count_from_channel_assignment(drflac_int8 channelAssignment)
|
|
{
|
|
drflac_uint8 lookup[] = {1, 2, 3, 4, 5, 6, 7, 8, 2, 2, 2};
|
|
|
|
DRFLAC_ASSERT(channelAssignment <= 10);
|
|
return lookup[channelAssignment];
|
|
}
|
|
|
|
static drflac_result drflac__decode_flac_frame(drflac* pFlac)
|
|
{
|
|
int channelCount;
|
|
int i;
|
|
drflac_uint8 paddingSizeInBits;
|
|
drflac_uint16 desiredCRC16;
|
|
#ifndef DR_FLAC_NO_CRC
|
|
drflac_uint16 actualCRC16;
|
|
#endif
|
|
|
|
/* This function should be called while the stream is sitting on the first byte after the frame header. */
|
|
DRFLAC_ZERO_MEMORY(pFlac->currentFLACFrame.subframes, sizeof(pFlac->currentFLACFrame.subframes));
|
|
|
|
/* The frame block size must never be larger than the maximum block size defined by the FLAC stream. */
|
|
if (pFlac->currentFLACFrame.header.blockSizeInPCMFrames > pFlac->maxBlockSizeInPCMFrames) {
|
|
return DRFLAC_ERROR;
|
|
}
|
|
|
|
/* The number of channels in the frame must match the channel count from the STREAMINFO block. */
|
|
channelCount = drflac__get_channel_count_from_channel_assignment(pFlac->currentFLACFrame.header.channelAssignment);
|
|
if (channelCount != (int)pFlac->channels) {
|
|
return DRFLAC_ERROR;
|
|
}
|
|
|
|
for (i = 0; i < channelCount; ++i) {
|
|
if (!drflac__decode_subframe(&pFlac->bs, &pFlac->currentFLACFrame, i, pFlac->pDecodedSamples + (pFlac->currentFLACFrame.header.blockSizeInPCMFrames * i))) {
|
|
return DRFLAC_ERROR;
|
|
}
|
|
}
|
|
|
|
paddingSizeInBits = (drflac_uint8)(DRFLAC_CACHE_L1_BITS_REMAINING(&pFlac->bs) & 7);
|
|
if (paddingSizeInBits > 0) {
|
|
drflac_uint8 padding = 0;
|
|
if (!drflac__read_uint8(&pFlac->bs, paddingSizeInBits, &padding)) {
|
|
return DRFLAC_AT_END;
|
|
}
|
|
}
|
|
|
|
#ifndef DR_FLAC_NO_CRC
|
|
actualCRC16 = drflac__flush_crc16(&pFlac->bs);
|
|
#endif
|
|
if (!drflac__read_uint16(&pFlac->bs, 16, &desiredCRC16)) {
|
|
return DRFLAC_AT_END;
|
|
}
|
|
|
|
#ifndef DR_FLAC_NO_CRC
|
|
if (actualCRC16 != desiredCRC16) {
|
|
return DRFLAC_CRC_MISMATCH; /* CRC mismatch. */
|
|
}
|
|
#endif
|
|
|
|
pFlac->currentFLACFrame.pcmFramesRemaining = pFlac->currentFLACFrame.header.blockSizeInPCMFrames;
|
|
|
|
return DRFLAC_SUCCESS;
|
|
}
|
|
|
|
static drflac_result drflac__seek_flac_frame(drflac* pFlac)
|
|
{
|
|
int channelCount;
|
|
int i;
|
|
drflac_uint16 desiredCRC16;
|
|
#ifndef DR_FLAC_NO_CRC
|
|
drflac_uint16 actualCRC16;
|
|
#endif
|
|
|
|
channelCount = drflac__get_channel_count_from_channel_assignment(pFlac->currentFLACFrame.header.channelAssignment);
|
|
for (i = 0; i < channelCount; ++i) {
|
|
if (!drflac__seek_subframe(&pFlac->bs, &pFlac->currentFLACFrame, i)) {
|
|
return DRFLAC_ERROR;
|
|
}
|
|
}
|
|
|
|
/* Padding. */
|
|
if (!drflac__seek_bits(&pFlac->bs, DRFLAC_CACHE_L1_BITS_REMAINING(&pFlac->bs) & 7)) {
|
|
return DRFLAC_ERROR;
|
|
}
|
|
|
|
/* CRC. */
|
|
#ifndef DR_FLAC_NO_CRC
|
|
actualCRC16 = drflac__flush_crc16(&pFlac->bs);
|
|
#endif
|
|
if (!drflac__read_uint16(&pFlac->bs, 16, &desiredCRC16)) {
|
|
return DRFLAC_AT_END;
|
|
}
|
|
|
|
#ifndef DR_FLAC_NO_CRC
|
|
if (actualCRC16 != desiredCRC16) {
|
|
return DRFLAC_CRC_MISMATCH; /* CRC mismatch. */
|
|
}
|
|
#endif
|
|
|
|
return DRFLAC_SUCCESS;
|
|
}
|
|
|
|
static drflac_bool32 drflac__read_and_decode_next_flac_frame(drflac* pFlac)
|
|
{
|
|
DRFLAC_ASSERT(pFlac != NULL);
|
|
|
|
for (;;) {
|
|
drflac_result result;
|
|
|
|
if (!drflac__read_next_flac_frame_header(&pFlac->bs, pFlac->bitsPerSample, &pFlac->currentFLACFrame.header)) {
|
|
return DRFLAC_FALSE;
|
|
}
|
|
|
|
result = drflac__decode_flac_frame(pFlac);
|
|
if (result != DRFLAC_SUCCESS) {
|
|
if (result == DRFLAC_CRC_MISMATCH) {
|
|
continue; /* CRC mismatch. Skip to the next frame. */
|
|
} else {
|
|
return DRFLAC_FALSE;
|
|
}
|
|
}
|
|
|
|
return DRFLAC_TRUE;
|
|
}
|
|
}
|
|
|
|
static void drflac__get_pcm_frame_range_of_current_flac_frame(drflac* pFlac, drflac_uint64* pFirstPCMFrame, drflac_uint64* pLastPCMFrame)
|
|
{
|
|
drflac_uint64 firstPCMFrame;
|
|
drflac_uint64 lastPCMFrame;
|
|
|
|
DRFLAC_ASSERT(pFlac != NULL);
|
|
|
|
firstPCMFrame = pFlac->currentFLACFrame.header.pcmFrameNumber;
|
|
if (firstPCMFrame == 0) {
|
|
firstPCMFrame = ((drflac_uint64)pFlac->currentFLACFrame.header.flacFrameNumber) * pFlac->maxBlockSizeInPCMFrames;
|
|
}
|
|
|
|
lastPCMFrame = firstPCMFrame + pFlac->currentFLACFrame.header.blockSizeInPCMFrames;
|
|
if (lastPCMFrame > 0) {
|
|
lastPCMFrame -= 1; /* Needs to be zero based. */
|
|
}
|
|
|
|
if (pFirstPCMFrame) {
|
|
*pFirstPCMFrame = firstPCMFrame;
|
|
}
|
|
if (pLastPCMFrame) {
|
|
*pLastPCMFrame = lastPCMFrame;
|
|
}
|
|
}
|
|
|
|
static drflac_bool32 drflac__seek_to_first_frame(drflac* pFlac)
|
|
{
|
|
drflac_bool32 result;
|
|
|
|
DRFLAC_ASSERT(pFlac != NULL);
|
|
|
|
result = drflac__seek_to_byte(&pFlac->bs, pFlac->firstFLACFramePosInBytes);
|
|
|
|
DRFLAC_ZERO_MEMORY(&pFlac->currentFLACFrame, sizeof(pFlac->currentFLACFrame));
|
|
pFlac->currentPCMFrame = 0;
|
|
|
|
return result;
|
|
}
|
|
|
|
static DRFLAC_INLINE drflac_result drflac__seek_to_next_flac_frame(drflac* pFlac)
|
|
{
|
|
/* This function should only ever be called while the decoder is sitting on the first byte past the FRAME_HEADER section. */
|
|
DRFLAC_ASSERT(pFlac != NULL);
|
|
return drflac__seek_flac_frame(pFlac);
|
|
}
|
|
|
|
|
|
static drflac_uint64 drflac__seek_forward_by_pcm_frames(drflac* pFlac, drflac_uint64 pcmFramesToSeek)
|
|
{
|
|
drflac_uint64 pcmFramesRead = 0;
|
|
while (pcmFramesToSeek > 0) {
|
|
if (pFlac->currentFLACFrame.pcmFramesRemaining == 0) {
|
|
if (!drflac__read_and_decode_next_flac_frame(pFlac)) {
|
|
break; /* Couldn't read the next frame, so just break from the loop and return. */
|
|
}
|
|
} else {
|
|
if (pFlac->currentFLACFrame.pcmFramesRemaining > pcmFramesToSeek) {
|
|
pcmFramesRead += pcmFramesToSeek;
|
|
pFlac->currentFLACFrame.pcmFramesRemaining -= (drflac_uint32)pcmFramesToSeek; /* <-- Safe cast. Will always be < currentFrame.pcmFramesRemaining < 65536. */
|
|
pcmFramesToSeek = 0;
|
|
} else {
|
|
pcmFramesRead += pFlac->currentFLACFrame.pcmFramesRemaining;
|
|
pcmFramesToSeek -= pFlac->currentFLACFrame.pcmFramesRemaining;
|
|
pFlac->currentFLACFrame.pcmFramesRemaining = 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
pFlac->currentPCMFrame += pcmFramesRead;
|
|
return pcmFramesRead;
|
|
}
|
|
|
|
|
|
static drflac_bool32 drflac__seek_to_pcm_frame__brute_force(drflac* pFlac, drflac_uint64 pcmFrameIndex)
|
|
{
|
|
drflac_bool32 isMidFrame = DRFLAC_FALSE;
|
|
drflac_uint64 runningPCMFrameCount;
|
|
|
|
DRFLAC_ASSERT(pFlac != NULL);
|
|
|
|
/* If we are seeking forward we start from the current position. Otherwise we need to start all the way from the start of the file. */
|
|
if (pcmFrameIndex >= pFlac->currentPCMFrame) {
|
|
/* Seeking forward. Need to seek from the current position. */
|
|
runningPCMFrameCount = pFlac->currentPCMFrame;
|
|
|
|
/* The frame header for the first frame may not yet have been read. We need to do that if necessary. */
|
|
if (pFlac->currentPCMFrame == 0 && pFlac->currentFLACFrame.pcmFramesRemaining == 0) {
|
|
if (!drflac__read_next_flac_frame_header(&pFlac->bs, pFlac->bitsPerSample, &pFlac->currentFLACFrame.header)) {
|
|
return DRFLAC_FALSE;
|
|
}
|
|
} else {
|
|
isMidFrame = DRFLAC_TRUE;
|
|
}
|
|
} else {
|
|
/* Seeking backwards. Need to seek from the start of the file. */
|
|
runningPCMFrameCount = 0;
|
|
|
|
/* Move back to the start. */
|
|
if (!drflac__seek_to_first_frame(pFlac)) {
|
|
return DRFLAC_FALSE;
|
|
}
|
|
|
|
/* Decode the first frame in preparation for sample-exact seeking below. */
|
|
if (!drflac__read_next_flac_frame_header(&pFlac->bs, pFlac->bitsPerSample, &pFlac->currentFLACFrame.header)) {
|
|
return DRFLAC_FALSE;
|
|
}
|
|
}
|
|
|
|
/*
|
|
We need to as quickly as possible find the frame that contains the target sample. To do this, we iterate over each frame and inspect its
|
|
header. If based on the header we can determine that the frame contains the sample, we do a full decode of that frame.
|
|
*/
|
|
for (;;) {
|
|
drflac_uint64 pcmFrameCountInThisFLACFrame;
|
|
drflac_uint64 firstPCMFrameInFLACFrame = 0;
|
|
drflac_uint64 lastPCMFrameInFLACFrame = 0;
|
|
|
|
drflac__get_pcm_frame_range_of_current_flac_frame(pFlac, &firstPCMFrameInFLACFrame, &lastPCMFrameInFLACFrame);
|
|
|
|
pcmFrameCountInThisFLACFrame = (lastPCMFrameInFLACFrame - firstPCMFrameInFLACFrame) + 1;
|
|
if (pcmFrameIndex < (runningPCMFrameCount + pcmFrameCountInThisFLACFrame)) {
|
|
/*
|
|
The sample should be in this frame. We need to fully decode it, however if it's an invalid frame (a CRC mismatch), we need to pretend
|
|
it never existed and keep iterating.
|
|
*/
|
|
drflac_uint64 pcmFramesToDecode = pcmFrameIndex - runningPCMFrameCount;
|
|
|
|
if (!isMidFrame) {
|
|
drflac_result result = drflac__decode_flac_frame(pFlac);
|
|
if (result == DRFLAC_SUCCESS) {
|
|
/* The frame is valid. We just need to skip over some samples to ensure it's sample-exact. */
|
|
return drflac__seek_forward_by_pcm_frames(pFlac, pcmFramesToDecode) == pcmFramesToDecode; /* <-- If this fails, something bad has happened (it should never fail). */
|
|
} else {
|
|
if (result == DRFLAC_CRC_MISMATCH) {
|
|
goto next_iteration; /* CRC mismatch. Pretend this frame never existed. */
|
|
} else {
|
|
return DRFLAC_FALSE;
|
|
}
|
|
}
|
|
} else {
|
|
/* We started seeking mid-frame which means we need to skip the frame decoding part. */
|
|
return drflac__seek_forward_by_pcm_frames(pFlac, pcmFramesToDecode) == pcmFramesToDecode;
|
|
}
|
|
} else {
|
|
/*
|
|
It's not in this frame. We need to seek past the frame, but check if there was a CRC mismatch. If so, we pretend this
|
|
frame never existed and leave the running sample count untouched.
|
|
*/
|
|
if (!isMidFrame) {
|
|
drflac_result result = drflac__seek_to_next_flac_frame(pFlac);
|
|
if (result == DRFLAC_SUCCESS) {
|
|
runningPCMFrameCount += pcmFrameCountInThisFLACFrame;
|
|
} else {
|
|
if (result == DRFLAC_CRC_MISMATCH) {
|
|
goto next_iteration; /* CRC mismatch. Pretend this frame never existed. */
|
|
} else {
|
|
return DRFLAC_FALSE;
|
|
}
|
|
}
|
|
} else {
|
|
/*
|
|
We started seeking mid-frame which means we need to seek by reading to the end of the frame instead of with
|
|
drflac__seek_to_next_flac_frame() which only works if the decoder is sitting on the byte just after the frame header.
|
|
*/
|
|
runningPCMFrameCount += pFlac->currentFLACFrame.pcmFramesRemaining;
|
|
pFlac->currentFLACFrame.pcmFramesRemaining = 0;
|
|
isMidFrame = DRFLAC_FALSE;
|
|
}
|
|
|
|
/* If we are seeking to the end of the file and we've just hit it, we're done. */
|
|
if (pcmFrameIndex == pFlac->totalPCMFrameCount && runningPCMFrameCount == pFlac->totalPCMFrameCount) {
|
|
return DRFLAC_TRUE;
|
|
}
|
|
}
|
|
|
|
next_iteration:
|
|
/* Grab the next frame in preparation for the next iteration. */
|
|
if (!drflac__read_next_flac_frame_header(&pFlac->bs, pFlac->bitsPerSample, &pFlac->currentFLACFrame.header)) {
|
|
return DRFLAC_FALSE;
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
#if !defined(DR_FLAC_NO_CRC)
|
|
/*
|
|
We use an average compression ratio to determine our approximate start location. FLAC files are generally about 50%-70% the size of their
|
|
uncompressed counterparts so we'll use this as a basis. I'm going to split the middle and use a factor of 0.6 to determine the starting
|
|
location.
|
|
*/
|
|
#define DRFLAC_BINARY_SEARCH_APPROX_COMPRESSION_RATIO 0.6f
|
|
|
|
static drflac_bool32 drflac__seek_to_approximate_flac_frame_to_byte(drflac* pFlac, drflac_uint64 targetByte, drflac_uint64 rangeLo, drflac_uint64 rangeHi, drflac_uint64* pLastSuccessfulSeekOffset)
|
|
{
|
|
DRFLAC_ASSERT(pFlac != NULL);
|
|
DRFLAC_ASSERT(pLastSuccessfulSeekOffset != NULL);
|
|
DRFLAC_ASSERT(targetByte >= rangeLo);
|
|
DRFLAC_ASSERT(targetByte <= rangeHi);
|
|
|
|
*pLastSuccessfulSeekOffset = pFlac->firstFLACFramePosInBytes;
|
|
|
|
for (;;) {
|
|
/* When seeking to a byte, failure probably means we've attempted to seek beyond the end of the stream. To counter this we just halve it each attempt. */
|
|
if (!drflac__seek_to_byte(&pFlac->bs, targetByte)) {
|
|
/* If we couldn't even seek to the first byte in the stream we have a problem. Just abandon the whole thing. */
|
|
if (targetByte == 0) {
|
|
drflac__seek_to_first_frame(pFlac); /* Try to recover. */
|
|
return DRFLAC_FALSE;
|
|
}
|
|
|
|
/* Halve the byte location and continue. */
|
|
targetByte = rangeLo + ((rangeHi - rangeLo)/2);
|
|
rangeHi = targetByte;
|
|
} else {
|
|
/* Getting here should mean that we have seeked to an appropriate byte. */
|
|
|
|
/* Clear the details of the FLAC frame so we don't misreport data. */
|
|
DRFLAC_ZERO_MEMORY(&pFlac->currentFLACFrame, sizeof(pFlac->currentFLACFrame));
|
|
|
|
/*
|
|
Now seek to the next FLAC frame. We need to decode the entire frame (not just the header) because it's possible for the header to incorrectly pass the
|
|
CRC check and return bad data. We need to decode the entire frame to be more certain. Although this seems unlikely, this has happened to me in testing
|
|
so it needs to stay this way for now.
|
|
*/
|
|
#if 1
|
|
if (!drflac__read_and_decode_next_flac_frame(pFlac)) {
|
|
/* Halve the byte location and continue. */
|
|
targetByte = rangeLo + ((rangeHi - rangeLo)/2);
|
|
rangeHi = targetByte;
|
|
} else {
|
|
break;
|
|
}
|
|
#else
|
|
if (!drflac__read_next_flac_frame_header(&pFlac->bs, pFlac->bitsPerSample, &pFlac->currentFLACFrame.header)) {
|
|
/* Halve the byte location and continue. */
|
|
targetByte = rangeLo + ((rangeHi - rangeLo)/2);
|
|
rangeHi = targetByte;
|
|
} else {
|
|
break;
|
|
}
|
|
#endif
|
|
}
|
|
}
|
|
|
|
/* The current PCM frame needs to be updated based on the frame we just seeked to. */
|
|
drflac__get_pcm_frame_range_of_current_flac_frame(pFlac, &pFlac->currentPCMFrame, NULL);
|
|
|
|
DRFLAC_ASSERT(targetByte <= rangeHi);
|
|
|
|
*pLastSuccessfulSeekOffset = targetByte;
|
|
return DRFLAC_TRUE;
|
|
}
|
|
|
|
static drflac_bool32 drflac__decode_flac_frame_and_seek_forward_by_pcm_frames(drflac* pFlac, drflac_uint64 offset)
|
|
{
|
|
/* This section of code would be used if we were only decoding the FLAC frame header when calling drflac__seek_to_approximate_flac_frame_to_byte(). */
|
|
#if 0
|
|
if (drflac__decode_flac_frame(pFlac) != DRFLAC_SUCCESS) {
|
|
/* We failed to decode this frame which may be due to it being corrupt. We'll just use the next valid FLAC frame. */
|
|
if (drflac__read_and_decode_next_flac_frame(pFlac) == DRFLAC_FALSE) {
|
|
return DRFLAC_FALSE;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
return drflac__seek_forward_by_pcm_frames(pFlac, offset) == offset;
|
|
}
|
|
|
|
|
|
static drflac_bool32 drflac__seek_to_pcm_frame__binary_search_internal(drflac* pFlac, drflac_uint64 pcmFrameIndex, drflac_uint64 byteRangeLo, drflac_uint64 byteRangeHi)
|
|
{
|
|
/* This assumes pFlac->currentPCMFrame is sitting on byteRangeLo upon entry. */
|
|
|
|
drflac_uint64 targetByte;
|
|
drflac_uint64 pcmRangeLo = pFlac->totalPCMFrameCount;
|
|
drflac_uint64 pcmRangeHi = 0;
|
|
drflac_uint64 lastSuccessfulSeekOffset = (drflac_uint64)-1;
|
|
drflac_uint64 closestSeekOffsetBeforeTargetPCMFrame = byteRangeLo;
|
|
drflac_uint32 seekForwardThreshold = (pFlac->maxBlockSizeInPCMFrames != 0) ? pFlac->maxBlockSizeInPCMFrames*2 : 4096;
|
|
|
|
targetByte = byteRangeLo + (drflac_uint64)(((drflac_int64)((pcmFrameIndex - pFlac->currentPCMFrame) * pFlac->channels * pFlac->bitsPerSample)/8.0f) * DRFLAC_BINARY_SEARCH_APPROX_COMPRESSION_RATIO);
|
|
if (targetByte > byteRangeHi) {
|
|
targetByte = byteRangeHi;
|
|
}
|
|
|
|
for (;;) {
|
|
if (drflac__seek_to_approximate_flac_frame_to_byte(pFlac, targetByte, byteRangeLo, byteRangeHi, &lastSuccessfulSeekOffset)) {
|
|
/* We found a FLAC frame. We need to check if it contains the sample we're looking for. */
|
|
drflac_uint64 newPCMRangeLo;
|
|
drflac_uint64 newPCMRangeHi;
|
|
drflac__get_pcm_frame_range_of_current_flac_frame(pFlac, &newPCMRangeLo, &newPCMRangeHi);
|
|
|
|
/* If we selected the same frame, it means we should be pretty close. Just decode the rest. */
|
|
if (pcmRangeLo == newPCMRangeLo) {
|
|
if (!drflac__seek_to_approximate_flac_frame_to_byte(pFlac, closestSeekOffsetBeforeTargetPCMFrame, closestSeekOffsetBeforeTargetPCMFrame, byteRangeHi, &lastSuccessfulSeekOffset)) {
|
|
break; /* Failed to seek to closest frame. */
|
|
}
|
|
|
|
if (drflac__decode_flac_frame_and_seek_forward_by_pcm_frames(pFlac, pcmFrameIndex - pFlac->currentPCMFrame)) {
|
|
return DRFLAC_TRUE;
|
|
} else {
|
|
break; /* Failed to seek forward. */
|
|
}
|
|
}
|
|
|
|
pcmRangeLo = newPCMRangeLo;
|
|
pcmRangeHi = newPCMRangeHi;
|
|
|
|
if (pcmRangeLo <= pcmFrameIndex && pcmRangeHi >= pcmFrameIndex) {
|
|
/* The target PCM frame is in this FLAC frame. */
|
|
if (drflac__decode_flac_frame_and_seek_forward_by_pcm_frames(pFlac, pcmFrameIndex - pFlac->currentPCMFrame) ) {
|
|
return DRFLAC_TRUE;
|
|
} else {
|
|
break; /* Failed to seek to FLAC frame. */
|
|
}
|
|
} else {
|
|
const float approxCompressionRatio = (drflac_int64)(lastSuccessfulSeekOffset - pFlac->firstFLACFramePosInBytes) / ((drflac_int64)(pcmRangeLo * pFlac->channels * pFlac->bitsPerSample)/8.0f);
|
|
|
|
if (pcmRangeLo > pcmFrameIndex) {
|
|
/* We seeked too far forward. We need to move our target byte backward and try again. */
|
|
byteRangeHi = lastSuccessfulSeekOffset;
|
|
if (byteRangeLo > byteRangeHi) {
|
|
byteRangeLo = byteRangeHi;
|
|
}
|
|
|
|
targetByte = byteRangeLo + ((byteRangeHi - byteRangeLo) / 2);
|
|
if (targetByte < byteRangeLo) {
|
|
targetByte = byteRangeLo;
|
|
}
|
|
} else /*if (pcmRangeHi < pcmFrameIndex)*/ {
|
|
/* We didn't seek far enough. We need to move our target byte forward and try again. */
|
|
|
|
/* If we're close enough we can just seek forward. */
|
|
if ((pcmFrameIndex - pcmRangeLo) < seekForwardThreshold) {
|
|
if (drflac__decode_flac_frame_and_seek_forward_by_pcm_frames(pFlac, pcmFrameIndex - pFlac->currentPCMFrame)) {
|
|
return DRFLAC_TRUE;
|
|
} else {
|
|
break; /* Failed to seek to FLAC frame. */
|
|
}
|
|
} else {
|
|
byteRangeLo = lastSuccessfulSeekOffset;
|
|
if (byteRangeHi < byteRangeLo) {
|
|
byteRangeHi = byteRangeLo;
|
|
}
|
|
|
|
targetByte = lastSuccessfulSeekOffset + (drflac_uint64)(((drflac_int64)((pcmFrameIndex-pcmRangeLo) * pFlac->channels * pFlac->bitsPerSample)/8.0f) * approxCompressionRatio);
|
|
if (targetByte > byteRangeHi) {
|
|
targetByte = byteRangeHi;
|
|
}
|
|
|
|
if (closestSeekOffsetBeforeTargetPCMFrame < lastSuccessfulSeekOffset) {
|
|
closestSeekOffsetBeforeTargetPCMFrame = lastSuccessfulSeekOffset;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
} else {
|
|
/* Getting here is really bad. We just recover as best we can, but moving to the first frame in the stream, and then abort. */
|
|
break;
|
|
}
|
|
}
|
|
|
|
drflac__seek_to_first_frame(pFlac); /* <-- Try to recover. */
|
|
return DRFLAC_FALSE;
|
|
}
|
|
|
|
static drflac_bool32 drflac__seek_to_pcm_frame__binary_search(drflac* pFlac, drflac_uint64 pcmFrameIndex)
|
|
{
|
|
drflac_uint64 byteRangeLo;
|
|
drflac_uint64 byteRangeHi;
|
|
drflac_uint32 seekForwardThreshold = (pFlac->maxBlockSizeInPCMFrames != 0) ? pFlac->maxBlockSizeInPCMFrames*2 : 4096;
|
|
|
|
/* Our algorithm currently assumes the FLAC stream is currently sitting at the start. */
|
|
if (drflac__seek_to_first_frame(pFlac) == DRFLAC_FALSE) {
|
|
return DRFLAC_FALSE;
|
|
}
|
|
|
|
/* If we're close enough to the start, just move to the start and seek forward. */
|
|
if (pcmFrameIndex < seekForwardThreshold) {
|
|
return drflac__seek_forward_by_pcm_frames(pFlac, pcmFrameIndex) == pcmFrameIndex;
|
|
}
|
|
|
|
/*
|
|
Our starting byte range is the byte position of the first FLAC frame and the approximate end of the file as if it were completely uncompressed. This ensures
|
|
the entire file is included, even though most of the time it'll exceed the end of the actual stream. This is OK as the frame searching logic will handle it.
|
|
*/
|
|
byteRangeLo = pFlac->firstFLACFramePosInBytes;
|
|
byteRangeHi = pFlac->firstFLACFramePosInBytes + (drflac_uint64)((drflac_int64)(pFlac->totalPCMFrameCount * pFlac->channels * pFlac->bitsPerSample)/8.0f);
|
|
|
|
return drflac__seek_to_pcm_frame__binary_search_internal(pFlac, pcmFrameIndex, byteRangeLo, byteRangeHi);
|
|
}
|
|
#endif /* !DR_FLAC_NO_CRC */
|
|
|
|
static drflac_bool32 drflac__seek_to_pcm_frame__seek_table(drflac* pFlac, drflac_uint64 pcmFrameIndex)
|
|
{
|
|
drflac_uint32 iClosestSeekpoint = 0;
|
|
drflac_bool32 isMidFrame = DRFLAC_FALSE;
|
|
drflac_uint64 runningPCMFrameCount;
|
|
drflac_uint32 iSeekpoint;
|
|
|
|
|
|
DRFLAC_ASSERT(pFlac != NULL);
|
|
|
|
if (pFlac->pSeekpoints == NULL || pFlac->seekpointCount == 0) {
|
|
return DRFLAC_FALSE;
|
|
}
|
|
|
|
for (iSeekpoint = 0; iSeekpoint < pFlac->seekpointCount; ++iSeekpoint) {
|
|
if (pFlac->pSeekpoints[iSeekpoint].firstPCMFrame >= pcmFrameIndex) {
|
|
break;
|
|
}
|
|
|
|
iClosestSeekpoint = iSeekpoint;
|
|
}
|
|
|
|
/* There's been cases where the seek table contains only zeros. We need to do some basic validation on the closest seekpoint. */
|
|
if (pFlac->pSeekpoints[iClosestSeekpoint].pcmFrameCount == 0 || pFlac->pSeekpoints[iClosestSeekpoint].pcmFrameCount > pFlac->maxBlockSizeInPCMFrames) {
|
|
return DRFLAC_FALSE;
|
|
}
|
|
if (pFlac->pSeekpoints[iClosestSeekpoint].firstPCMFrame > pFlac->totalPCMFrameCount && pFlac->totalPCMFrameCount > 0) {
|
|
return DRFLAC_FALSE;
|
|
}
|
|
|
|
#if !defined(DR_FLAC_NO_CRC)
|
|
/* At this point we should know the closest seek point. We can use a binary search for this. We need to know the total sample count for this. */
|
|
if (pFlac->totalPCMFrameCount > 0) {
|
|
drflac_uint64 byteRangeLo;
|
|
drflac_uint64 byteRangeHi;
|
|
|
|
byteRangeHi = pFlac->firstFLACFramePosInBytes + (drflac_uint64)((drflac_int64)(pFlac->totalPCMFrameCount * pFlac->channels * pFlac->bitsPerSample)/8.0f);
|
|
byteRangeLo = pFlac->firstFLACFramePosInBytes + pFlac->pSeekpoints[iClosestSeekpoint].flacFrameOffset;
|
|
|
|
/*
|
|
If our closest seek point is not the last one, we only need to search between it and the next one. The section below calculates an appropriate starting
|
|
value for byteRangeHi which will clamp it appropriately.
|
|
|
|
Note that the next seekpoint must have an offset greater than the closest seekpoint because otherwise our binary search algorithm will break down. There
|
|
have been cases where a seektable consists of seek points where every byte offset is set to 0 which causes problems. If this happens we need to abort.
|
|
*/
|
|
if (iClosestSeekpoint < pFlac->seekpointCount-1) {
|
|
drflac_uint32 iNextSeekpoint = iClosestSeekpoint + 1;
|
|
|
|
/* Basic validation on the seekpoints to ensure they're usable. */
|
|
if (pFlac->pSeekpoints[iClosestSeekpoint].flacFrameOffset >= pFlac->pSeekpoints[iNextSeekpoint].flacFrameOffset || pFlac->pSeekpoints[iNextSeekpoint].pcmFrameCount == 0) {
|
|
return DRFLAC_FALSE; /* The next seekpoint doesn't look right. The seek table cannot be trusted from here. Abort. */
|
|
}
|
|
|
|
if (pFlac->pSeekpoints[iNextSeekpoint].firstPCMFrame != (((drflac_uint64)0xFFFFFFFF << 32) | 0xFFFFFFFF)) { /* Make sure it's not a placeholder seekpoint. */
|
|
byteRangeHi = pFlac->firstFLACFramePosInBytes + pFlac->pSeekpoints[iNextSeekpoint].flacFrameOffset - 1; /* byteRangeHi must be zero based. */
|
|
}
|
|
}
|
|
|
|
if (drflac__seek_to_byte(&pFlac->bs, pFlac->firstFLACFramePosInBytes + pFlac->pSeekpoints[iClosestSeekpoint].flacFrameOffset)) {
|
|
if (drflac__read_next_flac_frame_header(&pFlac->bs, pFlac->bitsPerSample, &pFlac->currentFLACFrame.header)) {
|
|
drflac__get_pcm_frame_range_of_current_flac_frame(pFlac, &pFlac->currentPCMFrame, NULL);
|
|
|
|
if (drflac__seek_to_pcm_frame__binary_search_internal(pFlac, pcmFrameIndex, byteRangeLo, byteRangeHi)) {
|
|
return DRFLAC_TRUE;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
#endif /* !DR_FLAC_NO_CRC */
|
|
|
|
/* Getting here means we need to use a slower algorithm because the binary search method failed or cannot be used. */
|
|
|
|
/*
|
|
If we are seeking forward and the closest seekpoint is _before_ the current sample, we just seek forward from where we are. Otherwise we start seeking
|
|
from the seekpoint's first sample.
|
|
*/
|
|
if (pcmFrameIndex >= pFlac->currentPCMFrame && pFlac->pSeekpoints[iClosestSeekpoint].firstPCMFrame <= pFlac->currentPCMFrame) {
|
|
/* Optimized case. Just seek forward from where we are. */
|
|
runningPCMFrameCount = pFlac->currentPCMFrame;
|
|
|
|
/* The frame header for the first frame may not yet have been read. We need to do that if necessary. */
|
|
if (pFlac->currentPCMFrame == 0 && pFlac->currentFLACFrame.pcmFramesRemaining == 0) {
|
|
if (!drflac__read_next_flac_frame_header(&pFlac->bs, pFlac->bitsPerSample, &pFlac->currentFLACFrame.header)) {
|
|
return DRFLAC_FALSE;
|
|
}
|
|
} else {
|
|
isMidFrame = DRFLAC_TRUE;
|
|
}
|
|
} else {
|
|
/* Slower case. Seek to the start of the seekpoint and then seek forward from there. */
|
|
runningPCMFrameCount = pFlac->pSeekpoints[iClosestSeekpoint].firstPCMFrame;
|
|
|
|
if (!drflac__seek_to_byte(&pFlac->bs, pFlac->firstFLACFramePosInBytes + pFlac->pSeekpoints[iClosestSeekpoint].flacFrameOffset)) {
|
|
return DRFLAC_FALSE;
|
|
}
|
|
|
|
/* Grab the frame the seekpoint is sitting on in preparation for the sample-exact seeking below. */
|
|
if (!drflac__read_next_flac_frame_header(&pFlac->bs, pFlac->bitsPerSample, &pFlac->currentFLACFrame.header)) {
|
|
return DRFLAC_FALSE;
|
|
}
|
|
}
|
|
|
|
for (;;) {
|
|
drflac_uint64 pcmFrameCountInThisFLACFrame;
|
|
drflac_uint64 firstPCMFrameInFLACFrame = 0;
|
|
drflac_uint64 lastPCMFrameInFLACFrame = 0;
|
|
|
|
drflac__get_pcm_frame_range_of_current_flac_frame(pFlac, &firstPCMFrameInFLACFrame, &lastPCMFrameInFLACFrame);
|
|
|
|
pcmFrameCountInThisFLACFrame = (lastPCMFrameInFLACFrame - firstPCMFrameInFLACFrame) + 1;
|
|
if (pcmFrameIndex < (runningPCMFrameCount + pcmFrameCountInThisFLACFrame)) {
|
|
/*
|
|
The sample should be in this frame. We need to fully decode it, but if it's an invalid frame (a CRC mismatch) we need to pretend
|
|
it never existed and keep iterating.
|
|
*/
|
|
drflac_uint64 pcmFramesToDecode = pcmFrameIndex - runningPCMFrameCount;
|
|
|
|
if (!isMidFrame) {
|
|
drflac_result result = drflac__decode_flac_frame(pFlac);
|
|
if (result == DRFLAC_SUCCESS) {
|
|
/* The frame is valid. We just need to skip over some samples to ensure it's sample-exact. */
|
|
return drflac__seek_forward_by_pcm_frames(pFlac, pcmFramesToDecode) == pcmFramesToDecode; /* <-- If this fails, something bad has happened (it should never fail). */
|
|
} else {
|
|
if (result == DRFLAC_CRC_MISMATCH) {
|
|
goto next_iteration; /* CRC mismatch. Pretend this frame never existed. */
|
|
} else {
|
|
return DRFLAC_FALSE;
|
|
}
|
|
}
|
|
} else {
|
|
/* We started seeking mid-frame which means we need to skip the frame decoding part. */
|
|
return drflac__seek_forward_by_pcm_frames(pFlac, pcmFramesToDecode) == pcmFramesToDecode;
|
|
}
|
|
} else {
|
|
/*
|
|
It's not in this frame. We need to seek past the frame, but check if there was a CRC mismatch. If so, we pretend this
|
|
frame never existed and leave the running sample count untouched.
|
|
*/
|
|
if (!isMidFrame) {
|
|
drflac_result result = drflac__seek_to_next_flac_frame(pFlac);
|
|
if (result == DRFLAC_SUCCESS) {
|
|
runningPCMFrameCount += pcmFrameCountInThisFLACFrame;
|
|
} else {
|
|
if (result == DRFLAC_CRC_MISMATCH) {
|
|
goto next_iteration; /* CRC mismatch. Pretend this frame never existed. */
|
|
} else {
|
|
return DRFLAC_FALSE;
|
|
}
|
|
}
|
|
} else {
|
|
/*
|
|
We started seeking mid-frame which means we need to seek by reading to the end of the frame instead of with
|
|
drflac__seek_to_next_flac_frame() which only works if the decoder is sitting on the byte just after the frame header.
|
|
*/
|
|
runningPCMFrameCount += pFlac->currentFLACFrame.pcmFramesRemaining;
|
|
pFlac->currentFLACFrame.pcmFramesRemaining = 0;
|
|
isMidFrame = DRFLAC_FALSE;
|
|
}
|
|
|
|
/* If we are seeking to the end of the file and we've just hit it, we're done. */
|
|
if (pcmFrameIndex == pFlac->totalPCMFrameCount && runningPCMFrameCount == pFlac->totalPCMFrameCount) {
|
|
return DRFLAC_TRUE;
|
|
}
|
|
}
|
|
|
|
next_iteration:
|
|
/* Grab the next frame in preparation for the next iteration. */
|
|
if (!drflac__read_next_flac_frame_header(&pFlac->bs, pFlac->bitsPerSample, &pFlac->currentFLACFrame.header)) {
|
|
return DRFLAC_FALSE;
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
#ifndef DR_FLAC_NO_OGG
|
|
typedef struct
|
|
{
|
|
drflac_uint8 capturePattern[4]; /* Should be "OggS" */
|
|
drflac_uint8 structureVersion; /* Always 0. */
|
|
drflac_uint8 headerType;
|
|
drflac_uint64 granulePosition;
|
|
drflac_uint32 serialNumber;
|
|
drflac_uint32 sequenceNumber;
|
|
drflac_uint32 checksum;
|
|
drflac_uint8 segmentCount;
|
|
drflac_uint8 segmentTable[255];
|
|
} drflac_ogg_page_header;
|
|
#endif
|
|
|
|
typedef struct
|
|
{
|
|
drflac_read_proc onRead;
|
|
drflac_seek_proc onSeek;
|
|
drflac_meta_proc onMeta;
|
|
drflac_container container;
|
|
void* pUserData;
|
|
void* pUserDataMD;
|
|
drflac_uint32 sampleRate;
|
|
drflac_uint8 channels;
|
|
drflac_uint8 bitsPerSample;
|
|
drflac_uint64 totalPCMFrameCount;
|
|
drflac_uint16 maxBlockSizeInPCMFrames;
|
|
drflac_uint64 runningFilePos;
|
|
drflac_bool32 hasStreamInfoBlock;
|
|
drflac_bool32 hasMetadataBlocks;
|
|
drflac_bs bs; /* <-- A bit streamer is required for loading data during initialization. */
|
|
drflac_frame_header firstFrameHeader; /* <-- The header of the first frame that was read during relaxed initalization. Only set if there is no STREAMINFO block. */
|
|
|
|
#ifndef DR_FLAC_NO_OGG
|
|
drflac_uint32 oggSerial;
|
|
drflac_uint64 oggFirstBytePos;
|
|
drflac_ogg_page_header oggBosHeader;
|
|
#endif
|
|
} drflac_init_info;
|
|
|
|
static DRFLAC_INLINE void drflac__decode_block_header(drflac_uint32 blockHeader, drflac_uint8* isLastBlock, drflac_uint8* blockType, drflac_uint32* blockSize)
|
|
{
|
|
blockHeader = drflac__be2host_32(blockHeader);
|
|
*isLastBlock = (drflac_uint8)((blockHeader & 0x80000000UL) >> 31);
|
|
*blockType = (drflac_uint8)((blockHeader & 0x7F000000UL) >> 24);
|
|
*blockSize = (blockHeader & 0x00FFFFFFUL);
|
|
}
|
|
|
|
static DRFLAC_INLINE drflac_bool32 drflac__read_and_decode_block_header(drflac_read_proc onRead, void* pUserData, drflac_uint8* isLastBlock, drflac_uint8* blockType, drflac_uint32* blockSize)
|
|
{
|
|
drflac_uint32 blockHeader;
|
|
|
|
*blockSize = 0;
|
|
if (onRead(pUserData, &blockHeader, 4) != 4) {
|
|
return DRFLAC_FALSE;
|
|
}
|
|
|
|
drflac__decode_block_header(blockHeader, isLastBlock, blockType, blockSize);
|
|
return DRFLAC_TRUE;
|
|
}
|
|
|
|
static drflac_bool32 drflac__read_streaminfo(drflac_read_proc onRead, void* pUserData, drflac_streaminfo* pStreamInfo)
|
|
{
|
|
drflac_uint32 blockSizes;
|
|
drflac_uint64 frameSizes = 0;
|
|
drflac_uint64 importantProps;
|
|
drflac_uint8 md5[16];
|
|
|
|
/* min/max block size. */
|
|
if (onRead(pUserData, &blockSizes, 4) != 4) {
|
|
return DRFLAC_FALSE;
|
|
}
|
|
|
|
/* min/max frame size. */
|
|
if (onRead(pUserData, &frameSizes, 6) != 6) {
|
|
return DRFLAC_FALSE;
|
|
}
|
|
|
|
/* Sample rate, channels, bits per sample and total sample count. */
|
|
if (onRead(pUserData, &importantProps, 8) != 8) {
|
|
return DRFLAC_FALSE;
|
|
}
|
|
|
|
/* MD5 */
|
|
if (onRead(pUserData, md5, sizeof(md5)) != sizeof(md5)) {
|
|
return DRFLAC_FALSE;
|
|
}
|
|
|
|
blockSizes = drflac__be2host_32(blockSizes);
|
|
frameSizes = drflac__be2host_64(frameSizes);
|
|
importantProps = drflac__be2host_64(importantProps);
|
|
|
|
pStreamInfo->minBlockSizeInPCMFrames = (drflac_uint16)((blockSizes & 0xFFFF0000) >> 16);
|
|
pStreamInfo->maxBlockSizeInPCMFrames = (drflac_uint16) (blockSizes & 0x0000FFFF);
|
|
pStreamInfo->minFrameSizeInPCMFrames = (drflac_uint32)((frameSizes & (((drflac_uint64)0x00FFFFFF << 16) << 24)) >> 40);
|
|
pStreamInfo->maxFrameSizeInPCMFrames = (drflac_uint32)((frameSizes & (((drflac_uint64)0x00FFFFFF << 16) << 0)) >> 16);
|
|
pStreamInfo->sampleRate = (drflac_uint32)((importantProps & (((drflac_uint64)0x000FFFFF << 16) << 28)) >> 44);
|
|
pStreamInfo->channels = (drflac_uint8 )((importantProps & (((drflac_uint64)0x0000000E << 16) << 24)) >> 41) + 1;
|
|
pStreamInfo->bitsPerSample = (drflac_uint8 )((importantProps & (((drflac_uint64)0x0000001F << 16) << 20)) >> 36) + 1;
|
|
pStreamInfo->totalPCMFrameCount = ((importantProps & ((((drflac_uint64)0x0000000F << 16) << 16) | 0xFFFFFFFF)));
|
|
DRFLAC_COPY_MEMORY(pStreamInfo->md5, md5, sizeof(md5));
|
|
|
|
return DRFLAC_TRUE;
|
|
}
|
|
|
|
|
|
static void* drflac__malloc_default(size_t sz, void* pUserData)
|
|
{
|
|
(void)pUserData;
|
|
return DRFLAC_MALLOC(sz);
|
|
}
|
|
|
|
static void* drflac__realloc_default(void* p, size_t sz, void* pUserData)
|
|
{
|
|
(void)pUserData;
|
|
return DRFLAC_REALLOC(p, sz);
|
|
}
|
|
|
|
static void drflac__free_default(void* p, void* pUserData)
|
|
{
|
|
(void)pUserData;
|
|
DRFLAC_FREE(p);
|
|
}
|
|
|
|
|
|
static void* drflac__malloc_from_callbacks(size_t sz, const drflac_allocation_callbacks* pAllocationCallbacks)
|
|
{
|
|
if (pAllocationCallbacks == NULL) {
|
|
return NULL;
|
|
}
|
|
|
|
if (pAllocationCallbacks->onMalloc != NULL) {
|
|
return pAllocationCallbacks->onMalloc(sz, pAllocationCallbacks->pUserData);
|
|
}
|
|
|
|
/* Try using realloc(). */
|
|
if (pAllocationCallbacks->onRealloc != NULL) {
|
|
return pAllocationCallbacks->onRealloc(NULL, sz, pAllocationCallbacks->pUserData);
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
static void* drflac__realloc_from_callbacks(void* p, size_t szNew, size_t szOld, const drflac_allocation_callbacks* pAllocationCallbacks)
|
|
{
|
|
if (pAllocationCallbacks == NULL) {
|
|
return NULL;
|
|
}
|
|
|
|
if (pAllocationCallbacks->onRealloc != NULL) {
|
|
return pAllocationCallbacks->onRealloc(p, szNew, pAllocationCallbacks->pUserData);
|
|
}
|
|
|
|
/* Try emulating realloc() in terms of malloc()/free(). */
|
|
if (pAllocationCallbacks->onMalloc != NULL && pAllocationCallbacks->onFree != NULL) {
|
|
void* p2;
|
|
|
|
p2 = pAllocationCallbacks->onMalloc(szNew, pAllocationCallbacks->pUserData);
|
|
if (p2 == NULL) {
|
|
return NULL;
|
|
}
|
|
|
|
if (p != NULL) {
|
|
DRFLAC_COPY_MEMORY(p2, p, szOld);
|
|
pAllocationCallbacks->onFree(p, pAllocationCallbacks->pUserData);
|
|
}
|
|
|
|
return p2;
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
static void drflac__free_from_callbacks(void* p, const drflac_allocation_callbacks* pAllocationCallbacks)
|
|
{
|
|
if (p == NULL || pAllocationCallbacks == NULL) {
|
|
return;
|
|
}
|
|
|
|
if (pAllocationCallbacks->onFree != NULL) {
|
|
pAllocationCallbacks->onFree(p, pAllocationCallbacks->pUserData);
|
|
}
|
|
}
|
|
|
|
|
|
static drflac_bool32 drflac__read_and_decode_metadata(drflac_read_proc onRead, drflac_seek_proc onSeek, drflac_meta_proc onMeta, void* pUserData, void* pUserDataMD, drflac_uint64* pFirstFramePos, drflac_uint64* pSeektablePos, drflac_uint32* pSeektableSize, drflac_allocation_callbacks* pAllocationCallbacks)
|
|
{
|
|
/*
|
|
We want to keep track of the byte position in the stream of the seektable. At the time of calling this function we know that
|
|
we'll be sitting on byte 42.
|
|
*/
|
|
drflac_uint64 runningFilePos = 42;
|
|
drflac_uint64 seektablePos = 0;
|
|
drflac_uint32 seektableSize = 0;
|
|
|
|
for (;;) {
|
|
drflac_metadata metadata;
|
|
drflac_uint8 isLastBlock = 0;
|
|
drflac_uint8 blockType;
|
|
drflac_uint32 blockSize;
|
|
if (drflac__read_and_decode_block_header(onRead, pUserData, &isLastBlock, &blockType, &blockSize) == DRFLAC_FALSE) {
|
|
return DRFLAC_FALSE;
|
|
}
|
|
runningFilePos += 4;
|
|
|
|
metadata.type = blockType;
|
|
metadata.pRawData = NULL;
|
|
metadata.rawDataSize = 0;
|
|
|
|
switch (blockType)
|
|
{
|
|
case DRFLAC_METADATA_BLOCK_TYPE_APPLICATION:
|
|
{
|
|
if (blockSize < 4) {
|
|
return DRFLAC_FALSE;
|
|
}
|
|
|
|
if (onMeta) {
|
|
void* pRawData = drflac__malloc_from_callbacks(blockSize, pAllocationCallbacks);
|
|
if (pRawData == NULL) {
|
|
return DRFLAC_FALSE;
|
|
}
|
|
|
|
if (onRead(pUserData, pRawData, blockSize) != blockSize) {
|
|
drflac__free_from_callbacks(pRawData, pAllocationCallbacks);
|
|
return DRFLAC_FALSE;
|
|
}
|
|
|
|
metadata.pRawData = pRawData;
|
|
metadata.rawDataSize = blockSize;
|
|
metadata.data.application.id = drflac__be2host_32(*(drflac_uint32*)pRawData);
|
|
metadata.data.application.pData = (const void*)((drflac_uint8*)pRawData + sizeof(drflac_uint32));
|
|
metadata.data.application.dataSize = blockSize - sizeof(drflac_uint32);
|
|
onMeta(pUserDataMD, &metadata);
|
|
|
|
drflac__free_from_callbacks(pRawData, pAllocationCallbacks);
|
|
}
|
|
} break;
|
|
|
|
case DRFLAC_METADATA_BLOCK_TYPE_SEEKTABLE:
|
|
{
|
|
seektablePos = runningFilePos;
|
|
seektableSize = blockSize;
|
|
|
|
if (onMeta) {
|
|
drflac_uint32 iSeekpoint;
|
|
void* pRawData;
|
|
|
|
pRawData = drflac__malloc_from_callbacks(blockSize, pAllocationCallbacks);
|
|
if (pRawData == NULL) {
|
|
return DRFLAC_FALSE;
|
|
}
|
|
|
|
if (onRead(pUserData, pRawData, blockSize) != blockSize) {
|
|
drflac__free_from_callbacks(pRawData, pAllocationCallbacks);
|
|
return DRFLAC_FALSE;
|
|
}
|
|
|
|
metadata.pRawData = pRawData;
|
|
metadata.rawDataSize = blockSize;
|
|
metadata.data.seektable.seekpointCount = blockSize/sizeof(drflac_seekpoint);
|
|
metadata.data.seektable.pSeekpoints = (const drflac_seekpoint*)pRawData;
|
|
|
|
/* Endian swap. */
|
|
for (iSeekpoint = 0; iSeekpoint < metadata.data.seektable.seekpointCount; ++iSeekpoint) {
|
|
drflac_seekpoint* pSeekpoint = (drflac_seekpoint*)pRawData + iSeekpoint;
|
|
pSeekpoint->firstPCMFrame = drflac__be2host_64(pSeekpoint->firstPCMFrame);
|
|
pSeekpoint->flacFrameOffset = drflac__be2host_64(pSeekpoint->flacFrameOffset);
|
|
pSeekpoint->pcmFrameCount = drflac__be2host_16(pSeekpoint->pcmFrameCount);
|
|
}
|
|
|
|
onMeta(pUserDataMD, &metadata);
|
|
|
|
drflac__free_from_callbacks(pRawData, pAllocationCallbacks);
|
|
}
|
|
} break;
|
|
|
|
case DRFLAC_METADATA_BLOCK_TYPE_VORBIS_COMMENT:
|
|
{
|
|
if (blockSize < 8) {
|
|
return DRFLAC_FALSE;
|
|
}
|
|
|
|
if (onMeta) {
|
|
void* pRawData;
|
|
const char* pRunningData;
|
|
const char* pRunningDataEnd;
|
|
drflac_uint32 i;
|
|
|
|
pRawData = drflac__malloc_from_callbacks(blockSize, pAllocationCallbacks);
|
|
if (pRawData == NULL) {
|
|
return DRFLAC_FALSE;
|
|
}
|
|
|
|
if (onRead(pUserData, pRawData, blockSize) != blockSize) {
|
|
drflac__free_from_callbacks(pRawData, pAllocationCallbacks);
|
|
return DRFLAC_FALSE;
|
|
}
|
|
|
|
metadata.pRawData = pRawData;
|
|
metadata.rawDataSize = blockSize;
|
|
|
|
pRunningData = (const char*)pRawData;
|
|
pRunningDataEnd = (const char*)pRawData + blockSize;
|
|
|
|
metadata.data.vorbis_comment.vendorLength = drflac__le2host_32(*(const drflac_uint32*)pRunningData); pRunningData += 4;
|
|
|
|
/* Need space for the rest of the block */
|
|
if ((pRunningDataEnd - pRunningData) - 4 < (drflac_int64)metadata.data.vorbis_comment.vendorLength) { /* <-- Note the order of operations to avoid overflow to a valid value */
|
|
drflac__free_from_callbacks(pRawData, pAllocationCallbacks);
|
|
return DRFLAC_FALSE;
|
|
}
|
|
metadata.data.vorbis_comment.vendor = pRunningData; pRunningData += metadata.data.vorbis_comment.vendorLength;
|
|
metadata.data.vorbis_comment.commentCount = drflac__le2host_32(*(const drflac_uint32*)pRunningData); pRunningData += 4;
|
|
|
|
/* Need space for 'commentCount' comments after the block, which at minimum is a drflac_uint32 per comment */
|
|
if ((pRunningDataEnd - pRunningData) / sizeof(drflac_uint32) < metadata.data.vorbis_comment.commentCount) { /* <-- Note the order of operations to avoid overflow to a valid value */
|
|
drflac__free_from_callbacks(pRawData, pAllocationCallbacks);
|
|
return DRFLAC_FALSE;
|
|
}
|
|
metadata.data.vorbis_comment.pComments = pRunningData;
|
|
|
|
/* Check that the comments section is valid before passing it to the callback */
|
|
for (i = 0; i < metadata.data.vorbis_comment.commentCount; ++i) {
|
|
drflac_uint32 commentLength;
|
|
|
|
if (pRunningDataEnd - pRunningData < 4) {
|
|
drflac__free_from_callbacks(pRawData, pAllocationCallbacks);
|
|
return DRFLAC_FALSE;
|
|
}
|
|
|
|
commentLength = drflac__le2host_32(*(const drflac_uint32*)pRunningData); pRunningData += 4;
|
|
if (pRunningDataEnd - pRunningData < (drflac_int64)commentLength) { /* <-- Note the order of operations to avoid overflow to a valid value */
|
|
drflac__free_from_callbacks(pRawData, pAllocationCallbacks);
|
|
return DRFLAC_FALSE;
|
|
}
|
|
pRunningData += commentLength;
|
|
}
|
|
|
|
onMeta(pUserDataMD, &metadata);
|
|
|
|
drflac__free_from_callbacks(pRawData, pAllocationCallbacks);
|
|
}
|
|
} break;
|
|
|
|
case DRFLAC_METADATA_BLOCK_TYPE_CUESHEET:
|
|
{
|
|
if (blockSize < 396) {
|
|
return DRFLAC_FALSE;
|
|
}
|
|
|
|
if (onMeta) {
|
|
void* pRawData;
|
|
const char* pRunningData;
|
|
const char* pRunningDataEnd;
|
|
drflac_uint8 iTrack;
|
|
drflac_uint8 iIndex;
|
|
|
|
pRawData = drflac__malloc_from_callbacks(blockSize, pAllocationCallbacks);
|
|
if (pRawData == NULL) {
|
|
return DRFLAC_FALSE;
|
|
}
|
|
|
|
if (onRead(pUserData, pRawData, blockSize) != blockSize) {
|
|
drflac__free_from_callbacks(pRawData, pAllocationCallbacks);
|
|
return DRFLAC_FALSE;
|
|
}
|
|
|
|
metadata.pRawData = pRawData;
|
|
metadata.rawDataSize = blockSize;
|
|
|
|
pRunningData = (const char*)pRawData;
|
|
pRunningDataEnd = (const char*)pRawData + blockSize;
|
|
|
|
DRFLAC_COPY_MEMORY(metadata.data.cuesheet.catalog, pRunningData, 128); pRunningData += 128;
|
|
metadata.data.cuesheet.leadInSampleCount = drflac__be2host_64(*(const drflac_uint64*)pRunningData); pRunningData += 8;
|
|
metadata.data.cuesheet.isCD = (pRunningData[0] & 0x80) != 0; pRunningData += 259;
|
|
metadata.data.cuesheet.trackCount = pRunningData[0]; pRunningData += 1;
|
|
metadata.data.cuesheet.pTrackData = pRunningData;
|
|
|
|
/* Check that the cuesheet tracks are valid before passing it to the callback */
|
|
for (iTrack = 0; iTrack < metadata.data.cuesheet.trackCount; ++iTrack) {
|
|
drflac_uint8 indexCount;
|
|
drflac_uint32 indexPointSize;
|
|
|
|
if (pRunningDataEnd - pRunningData < 36) {
|
|
drflac__free_from_callbacks(pRawData, pAllocationCallbacks);
|
|
return DRFLAC_FALSE;
|
|
}
|
|
|
|
/* Skip to the index point count */
|
|
pRunningData += 35;
|
|
indexCount = pRunningData[0]; pRunningData += 1;
|
|
indexPointSize = indexCount * sizeof(drflac_cuesheet_track_index);
|
|
if (pRunningDataEnd - pRunningData < (drflac_int64)indexPointSize) {
|
|
drflac__free_from_callbacks(pRawData, pAllocationCallbacks);
|
|
return DRFLAC_FALSE;
|
|
}
|
|
|
|
/* Endian swap. */
|
|
for (iIndex = 0; iIndex < indexCount; ++iIndex) {
|
|
drflac_cuesheet_track_index* pTrack = (drflac_cuesheet_track_index*)pRunningData;
|
|
pRunningData += sizeof(drflac_cuesheet_track_index);
|
|
pTrack->offset = drflac__be2host_64(pTrack->offset);
|
|
}
|
|
}
|
|
|
|
onMeta(pUserDataMD, &metadata);
|
|
|
|
drflac__free_from_callbacks(pRawData, pAllocationCallbacks);
|
|
}
|
|
} break;
|
|
|
|
case DRFLAC_METADATA_BLOCK_TYPE_PICTURE:
|
|
{
|
|
if (blockSize < 32) {
|
|
return DRFLAC_FALSE;
|
|
}
|
|
|
|
if (onMeta) {
|
|
void* pRawData;
|
|
const char* pRunningData;
|
|
const char* pRunningDataEnd;
|
|
|
|
pRawData = drflac__malloc_from_callbacks(blockSize, pAllocationCallbacks);
|
|
if (pRawData == NULL) {
|
|
return DRFLAC_FALSE;
|
|
}
|
|
|
|
if (onRead(pUserData, pRawData, blockSize) != blockSize) {
|
|
drflac__free_from_callbacks(pRawData, pAllocationCallbacks);
|
|
return DRFLAC_FALSE;
|
|
}
|
|
|
|
metadata.pRawData = pRawData;
|
|
metadata.rawDataSize = blockSize;
|
|
|
|
pRunningData = (const char*)pRawData;
|
|
pRunningDataEnd = (const char*)pRawData + blockSize;
|
|
|
|
metadata.data.picture.type = drflac__be2host_32(*(const drflac_uint32*)pRunningData); pRunningData += 4;
|
|
metadata.data.picture.mimeLength = drflac__be2host_32(*(const drflac_uint32*)pRunningData); pRunningData += 4;
|
|
|
|
/* Need space for the rest of the block */
|
|
if ((pRunningDataEnd - pRunningData) - 24 < (drflac_int64)metadata.data.picture.mimeLength) { /* <-- Note the order of operations to avoid overflow to a valid value */
|
|
drflac__free_from_callbacks(pRawData, pAllocationCallbacks);
|
|
return DRFLAC_FALSE;
|
|
}
|
|
metadata.data.picture.mime = pRunningData; pRunningData += metadata.data.picture.mimeLength;
|
|
metadata.data.picture.descriptionLength = drflac__be2host_32(*(const drflac_uint32*)pRunningData); pRunningData += 4;
|
|
|
|
/* Need space for the rest of the block */
|
|
if ((pRunningDataEnd - pRunningData) - 20 < (drflac_int64)metadata.data.picture.descriptionLength) { /* <-- Note the order of operations to avoid overflow to a valid value */
|
|
drflac__free_from_callbacks(pRawData, pAllocationCallbacks);
|
|
return DRFLAC_FALSE;
|
|
}
|
|
metadata.data.picture.description = pRunningData; pRunningData += metadata.data.picture.descriptionLength;
|
|
metadata.data.picture.width = drflac__be2host_32(*(const drflac_uint32*)pRunningData); pRunningData += 4;
|
|
metadata.data.picture.height = drflac__be2host_32(*(const drflac_uint32*)pRunningData); pRunningData += 4;
|
|
metadata.data.picture.colorDepth = drflac__be2host_32(*(const drflac_uint32*)pRunningData); pRunningData += 4;
|
|
metadata.data.picture.indexColorCount = drflac__be2host_32(*(const drflac_uint32*)pRunningData); pRunningData += 4;
|
|
metadata.data.picture.pictureDataSize = drflac__be2host_32(*(const drflac_uint32*)pRunningData); pRunningData += 4;
|
|
metadata.data.picture.pPictureData = (const drflac_uint8*)pRunningData;
|
|
|
|
/* Need space for the picture after the block */
|
|
if (pRunningDataEnd - pRunningData < (drflac_int64)metadata.data.picture.pictureDataSize) { /* <-- Note the order of operations to avoid overflow to a valid value */
|
|
drflac__free_from_callbacks(pRawData, pAllocationCallbacks);
|
|
return DRFLAC_FALSE;
|
|
}
|
|
|
|
onMeta(pUserDataMD, &metadata);
|
|
|
|
drflac__free_from_callbacks(pRawData, pAllocationCallbacks);
|
|
}
|
|
} break;
|
|
|
|
case DRFLAC_METADATA_BLOCK_TYPE_PADDING:
|
|
{
|
|
if (onMeta) {
|
|
metadata.data.padding.unused = 0;
|
|
|
|
/* Padding doesn't have anything meaningful in it, so just skip over it, but make sure the caller is aware of it by firing the callback. */
|
|
if (!onSeek(pUserData, blockSize, drflac_seek_origin_current)) {
|
|
isLastBlock = DRFLAC_TRUE; /* An error occurred while seeking. Attempt to recover by treating this as the last block which will in turn terminate the loop. */
|
|
} else {
|
|
onMeta(pUserDataMD, &metadata);
|
|
}
|
|
}
|
|
} break;
|
|
|
|
case DRFLAC_METADATA_BLOCK_TYPE_INVALID:
|
|
{
|
|
/* Invalid chunk. Just skip over this one. */
|
|
if (onMeta) {
|
|
if (!onSeek(pUserData, blockSize, drflac_seek_origin_current)) {
|
|
isLastBlock = DRFLAC_TRUE; /* An error occurred while seeking. Attempt to recover by treating this as the last block which will in turn terminate the loop. */
|
|
}
|
|
}
|
|
} break;
|
|
|
|
default:
|
|
{
|
|
/*
|
|
It's an unknown chunk, but not necessarily invalid. There's a chance more metadata blocks might be defined later on, so we
|
|
can at the very least report the chunk to the application and let it look at the raw data.
|
|
*/
|
|
if (onMeta) {
|
|
void* pRawData = drflac__malloc_from_callbacks(blockSize, pAllocationCallbacks);
|
|
if (pRawData == NULL) {
|
|
return DRFLAC_FALSE;
|
|
}
|
|
|
|
if (onRead(pUserData, pRawData, blockSize) != blockSize) {
|
|
drflac__free_from_callbacks(pRawData, pAllocationCallbacks);
|
|
return DRFLAC_FALSE;
|
|
}
|
|
|
|
metadata.pRawData = pRawData;
|
|
metadata.rawDataSize = blockSize;
|
|
onMeta(pUserDataMD, &metadata);
|
|
|
|
drflac__free_from_callbacks(pRawData, pAllocationCallbacks);
|
|
}
|
|
} break;
|
|
}
|
|
|
|
/* If we're not handling metadata, just skip over the block. If we are, it will have been handled earlier in the switch statement above. */
|
|
if (onMeta == NULL && blockSize > 0) {
|
|
if (!onSeek(pUserData, blockSize, drflac_seek_origin_current)) {
|
|
isLastBlock = DRFLAC_TRUE;
|
|
}
|
|
}
|
|
|
|
runningFilePos += blockSize;
|
|
if (isLastBlock) {
|
|
break;
|
|
}
|
|
}
|
|
|
|
*pSeektablePos = seektablePos;
|
|
*pSeektableSize = seektableSize;
|
|
*pFirstFramePos = runningFilePos;
|
|
|
|
return DRFLAC_TRUE;
|
|
}
|
|
|
|
static drflac_bool32 drflac__init_private__native(drflac_init_info* pInit, drflac_read_proc onRead, drflac_seek_proc onSeek, drflac_meta_proc onMeta, void* pUserData, void* pUserDataMD, drflac_bool32 relaxed)
|
|
{
|
|
/* Pre Condition: The bit stream should be sitting just past the 4-byte id header. */
|
|
|
|
drflac_uint8 isLastBlock;
|
|
drflac_uint8 blockType;
|
|
drflac_uint32 blockSize;
|
|
|
|
(void)onSeek;
|
|
|
|
pInit->container = drflac_container_native;
|
|
|
|
/* The first metadata block should be the STREAMINFO block. */
|
|
if (!drflac__read_and_decode_block_header(onRead, pUserData, &isLastBlock, &blockType, &blockSize)) {
|
|
return DRFLAC_FALSE;
|
|
}
|
|
|
|
if (blockType != DRFLAC_METADATA_BLOCK_TYPE_STREAMINFO || blockSize != 34) {
|
|
if (!relaxed) {
|
|
/* We're opening in strict mode and the first block is not the STREAMINFO block. Error. */
|
|
return DRFLAC_FALSE;
|
|
} else {
|
|
/*
|
|
Relaxed mode. To open from here we need to just find the first frame and set the sample rate, etc. to whatever is defined
|
|
for that frame.
|
|
*/
|
|
pInit->hasStreamInfoBlock = DRFLAC_FALSE;
|
|
pInit->hasMetadataBlocks = DRFLAC_FALSE;
|
|
|
|
if (!drflac__read_next_flac_frame_header(&pInit->bs, 0, &pInit->firstFrameHeader)) {
|
|
return DRFLAC_FALSE; /* Couldn't find a frame. */
|
|
}
|
|
|
|
if (pInit->firstFrameHeader.bitsPerSample == 0) {
|
|
return DRFLAC_FALSE; /* Failed to initialize because the first frame depends on the STREAMINFO block, which does not exist. */
|
|
}
|
|
|
|
pInit->sampleRate = pInit->firstFrameHeader.sampleRate;
|
|
pInit->channels = drflac__get_channel_count_from_channel_assignment(pInit->firstFrameHeader.channelAssignment);
|
|
pInit->bitsPerSample = pInit->firstFrameHeader.bitsPerSample;
|
|
pInit->maxBlockSizeInPCMFrames = 65535; /* <-- See notes here: https://xiph.org/flac/format.html#metadata_block_streaminfo */
|
|
return DRFLAC_TRUE;
|
|
}
|
|
} else {
|
|
drflac_streaminfo streaminfo;
|
|
if (!drflac__read_streaminfo(onRead, pUserData, &streaminfo)) {
|
|
return DRFLAC_FALSE;
|
|
}
|
|
|
|
pInit->hasStreamInfoBlock = DRFLAC_TRUE;
|
|
pInit->sampleRate = streaminfo.sampleRate;
|
|
pInit->channels = streaminfo.channels;
|
|
pInit->bitsPerSample = streaminfo.bitsPerSample;
|
|
pInit->totalPCMFrameCount = streaminfo.totalPCMFrameCount;
|
|
pInit->maxBlockSizeInPCMFrames = streaminfo.maxBlockSizeInPCMFrames; /* Don't care about the min block size - only the max (used for determining the size of the memory allocation). */
|
|
pInit->hasMetadataBlocks = !isLastBlock;
|
|
|
|
if (onMeta) {
|
|
drflac_metadata metadata;
|
|
metadata.type = DRFLAC_METADATA_BLOCK_TYPE_STREAMINFO;
|
|
metadata.pRawData = NULL;
|
|
metadata.rawDataSize = 0;
|
|
metadata.data.streaminfo = streaminfo;
|
|
onMeta(pUserDataMD, &metadata);
|
|
}
|
|
|
|
return DRFLAC_TRUE;
|
|
}
|
|
}
|
|
|
|
#ifndef DR_FLAC_NO_OGG
|
|
#define DRFLAC_OGG_MAX_PAGE_SIZE 65307
|
|
#define DRFLAC_OGG_CAPTURE_PATTERN_CRC32 1605413199 /* CRC-32 of "OggS". */
|
|
|
|
typedef enum
|
|
{
|
|
drflac_ogg_recover_on_crc_mismatch,
|
|
drflac_ogg_fail_on_crc_mismatch
|
|
} drflac_ogg_crc_mismatch_recovery;
|
|
|
|
#ifndef DR_FLAC_NO_CRC
|
|
static drflac_uint32 drflac__crc32_table[] = {
|
|
0x00000000L, 0x04C11DB7L, 0x09823B6EL, 0x0D4326D9L,
|
|
0x130476DCL, 0x17C56B6BL, 0x1A864DB2L, 0x1E475005L,
|
|
0x2608EDB8L, 0x22C9F00FL, 0x2F8AD6D6L, 0x2B4BCB61L,
|
|
0x350C9B64L, 0x31CD86D3L, 0x3C8EA00AL, 0x384FBDBDL,
|
|
0x4C11DB70L, 0x48D0C6C7L, 0x4593E01EL, 0x4152FDA9L,
|
|
0x5F15ADACL, 0x5BD4B01BL, 0x569796C2L, 0x52568B75L,
|
|
0x6A1936C8L, 0x6ED82B7FL, 0x639B0DA6L, 0x675A1011L,
|
|
0x791D4014L, 0x7DDC5DA3L, 0x709F7B7AL, 0x745E66CDL,
|
|
0x9823B6E0L, 0x9CE2AB57L, 0x91A18D8EL, 0x95609039L,
|
|
0x8B27C03CL, 0x8FE6DD8BL, 0x82A5FB52L, 0x8664E6E5L,
|
|
0xBE2B5B58L, 0xBAEA46EFL, 0xB7A96036L, 0xB3687D81L,
|
|
0xAD2F2D84L, 0xA9EE3033L, 0xA4AD16EAL, 0xA06C0B5DL,
|
|
0xD4326D90L, 0xD0F37027L, 0xDDB056FEL, 0xD9714B49L,
|
|
0xC7361B4CL, 0xC3F706FBL, 0xCEB42022L, 0xCA753D95L,
|
|
0xF23A8028L, 0xF6FB9D9FL, 0xFBB8BB46L, 0xFF79A6F1L,
|
|
0xE13EF6F4L, 0xE5FFEB43L, 0xE8BCCD9AL, 0xEC7DD02DL,
|
|
0x34867077L, 0x30476DC0L, 0x3D044B19L, 0x39C556AEL,
|
|
0x278206ABL, 0x23431B1CL, 0x2E003DC5L, 0x2AC12072L,
|
|
0x128E9DCFL, 0x164F8078L, 0x1B0CA6A1L, 0x1FCDBB16L,
|
|
0x018AEB13L, 0x054BF6A4L, 0x0808D07DL, 0x0CC9CDCAL,
|
|
0x7897AB07L, 0x7C56B6B0L, 0x71159069L, 0x75D48DDEL,
|
|
0x6B93DDDBL, 0x6F52C06CL, 0x6211E6B5L, 0x66D0FB02L,
|
|
0x5E9F46BFL, 0x5A5E5B08L, 0x571D7DD1L, 0x53DC6066L,
|
|
0x4D9B3063L, 0x495A2DD4L, 0x44190B0DL, 0x40D816BAL,
|
|
0xACA5C697L, 0xA864DB20L, 0xA527FDF9L, 0xA1E6E04EL,
|
|
0xBFA1B04BL, 0xBB60ADFCL, 0xB6238B25L, 0xB2E29692L,
|
|
0x8AAD2B2FL, 0x8E6C3698L, 0x832F1041L, 0x87EE0DF6L,
|
|
0x99A95DF3L, 0x9D684044L, 0x902B669DL, 0x94EA7B2AL,
|
|
0xE0B41DE7L, 0xE4750050L, 0xE9362689L, 0xEDF73B3EL,
|
|
0xF3B06B3BL, 0xF771768CL, 0xFA325055L, 0xFEF34DE2L,
|
|
0xC6BCF05FL, 0xC27DEDE8L, 0xCF3ECB31L, 0xCBFFD686L,
|
|
0xD5B88683L, 0xD1799B34L, 0xDC3ABDEDL, 0xD8FBA05AL,
|
|
0x690CE0EEL, 0x6DCDFD59L, 0x608EDB80L, 0x644FC637L,
|
|
0x7A089632L, 0x7EC98B85L, 0x738AAD5CL, 0x774BB0EBL,
|
|
0x4F040D56L, 0x4BC510E1L, 0x46863638L, 0x42472B8FL,
|
|
0x5C007B8AL, 0x58C1663DL, 0x558240E4L, 0x51435D53L,
|
|
0x251D3B9EL, 0x21DC2629L, 0x2C9F00F0L, 0x285E1D47L,
|
|
0x36194D42L, 0x32D850F5L, 0x3F9B762CL, 0x3B5A6B9BL,
|
|
0x0315D626L, 0x07D4CB91L, 0x0A97ED48L, 0x0E56F0FFL,
|
|
0x1011A0FAL, 0x14D0BD4DL, 0x19939B94L, 0x1D528623L,
|
|
0xF12F560EL, 0xF5EE4BB9L, 0xF8AD6D60L, 0xFC6C70D7L,
|
|
0xE22B20D2L, 0xE6EA3D65L, 0xEBA91BBCL, 0xEF68060BL,
|
|
0xD727BBB6L, 0xD3E6A601L, 0xDEA580D8L, 0xDA649D6FL,
|
|
0xC423CD6AL, 0xC0E2D0DDL, 0xCDA1F604L, 0xC960EBB3L,
|
|
0xBD3E8D7EL, 0xB9FF90C9L, 0xB4BCB610L, 0xB07DABA7L,
|
|
0xAE3AFBA2L, 0xAAFBE615L, 0xA7B8C0CCL, 0xA379DD7BL,
|
|
0x9B3660C6L, 0x9FF77D71L, 0x92B45BA8L, 0x9675461FL,
|
|
0x8832161AL, 0x8CF30BADL, 0x81B02D74L, 0x857130C3L,
|
|
0x5D8A9099L, 0x594B8D2EL, 0x5408ABF7L, 0x50C9B640L,
|
|
0x4E8EE645L, 0x4A4FFBF2L, 0x470CDD2BL, 0x43CDC09CL,
|
|
0x7B827D21L, 0x7F436096L, 0x7200464FL, 0x76C15BF8L,
|
|
0x68860BFDL, 0x6C47164AL, 0x61043093L, 0x65C52D24L,
|
|
0x119B4BE9L, 0x155A565EL, 0x18197087L, 0x1CD86D30L,
|
|
0x029F3D35L, 0x065E2082L, 0x0B1D065BL, 0x0FDC1BECL,
|
|
0x3793A651L, 0x3352BBE6L, 0x3E119D3FL, 0x3AD08088L,
|
|
0x2497D08DL, 0x2056CD3AL, 0x2D15EBE3L, 0x29D4F654L,
|
|
0xC5A92679L, 0xC1683BCEL, 0xCC2B1D17L, 0xC8EA00A0L,
|
|
0xD6AD50A5L, 0xD26C4D12L, 0xDF2F6BCBL, 0xDBEE767CL,
|
|
0xE3A1CBC1L, 0xE760D676L, 0xEA23F0AFL, 0xEEE2ED18L,
|
|
0xF0A5BD1DL, 0xF464A0AAL, 0xF9278673L, 0xFDE69BC4L,
|
|
0x89B8FD09L, 0x8D79E0BEL, 0x803AC667L, 0x84FBDBD0L,
|
|
0x9ABC8BD5L, 0x9E7D9662L, 0x933EB0BBL, 0x97FFAD0CL,
|
|
0xAFB010B1L, 0xAB710D06L, 0xA6322BDFL, 0xA2F33668L,
|
|
0xBCB4666DL, 0xB8757BDAL, 0xB5365D03L, 0xB1F740B4L
|
|
};
|
|
#endif
|
|
|
|
static DRFLAC_INLINE drflac_uint32 drflac_crc32_byte(drflac_uint32 crc32, drflac_uint8 data)
|
|
{
|
|
#ifndef DR_FLAC_NO_CRC
|
|
return (crc32 << 8) ^ drflac__crc32_table[(drflac_uint8)((crc32 >> 24) & 0xFF) ^ data];
|
|
#else
|
|
(void)data;
|
|
return crc32;
|
|
#endif
|
|
}
|
|
|
|
#if 0
|
|
static DRFLAC_INLINE drflac_uint32 drflac_crc32_uint32(drflac_uint32 crc32, drflac_uint32 data)
|
|
{
|
|
crc32 = drflac_crc32_byte(crc32, (drflac_uint8)((data >> 24) & 0xFF));
|
|
crc32 = drflac_crc32_byte(crc32, (drflac_uint8)((data >> 16) & 0xFF));
|
|
crc32 = drflac_crc32_byte(crc32, (drflac_uint8)((data >> 8) & 0xFF));
|
|
crc32 = drflac_crc32_byte(crc32, (drflac_uint8)((data >> 0) & 0xFF));
|
|
return crc32;
|
|
}
|
|
|
|
static DRFLAC_INLINE drflac_uint32 drflac_crc32_uint64(drflac_uint32 crc32, drflac_uint64 data)
|
|
{
|
|
crc32 = drflac_crc32_uint32(crc32, (drflac_uint32)((data >> 32) & 0xFFFFFFFF));
|
|
crc32 = drflac_crc32_uint32(crc32, (drflac_uint32)((data >> 0) & 0xFFFFFFFF));
|
|
return crc32;
|
|
}
|
|
#endif
|
|
|
|
static DRFLAC_INLINE drflac_uint32 drflac_crc32_buffer(drflac_uint32 crc32, drflac_uint8* pData, drflac_uint32 dataSize)
|
|
{
|
|
/* This can be optimized. */
|
|
drflac_uint32 i;
|
|
for (i = 0; i < dataSize; ++i) {
|
|
crc32 = drflac_crc32_byte(crc32, pData[i]);
|
|
}
|
|
return crc32;
|
|
}
|
|
|
|
|
|
static DRFLAC_INLINE drflac_bool32 drflac_ogg__is_capture_pattern(drflac_uint8 pattern[4])
|
|
{
|
|
return pattern[0] == 'O' && pattern[1] == 'g' && pattern[2] == 'g' && pattern[3] == 'S';
|
|
}
|
|
|
|
static DRFLAC_INLINE drflac_uint32 drflac_ogg__get_page_header_size(drflac_ogg_page_header* pHeader)
|
|
{
|
|
return 27 + pHeader->segmentCount;
|
|
}
|
|
|
|
static DRFLAC_INLINE drflac_uint32 drflac_ogg__get_page_body_size(drflac_ogg_page_header* pHeader)
|
|
{
|
|
drflac_uint32 pageBodySize = 0;
|
|
int i;
|
|
|
|
for (i = 0; i < pHeader->segmentCount; ++i) {
|
|
pageBodySize += pHeader->segmentTable[i];
|
|
}
|
|
|
|
return pageBodySize;
|
|
}
|
|
|
|
static drflac_result drflac_ogg__read_page_header_after_capture_pattern(drflac_read_proc onRead, void* pUserData, drflac_ogg_page_header* pHeader, drflac_uint32* pBytesRead, drflac_uint32* pCRC32)
|
|
{
|
|
drflac_uint8 data[23];
|
|
drflac_uint32 i;
|
|
|
|
DRFLAC_ASSERT(*pCRC32 == DRFLAC_OGG_CAPTURE_PATTERN_CRC32);
|
|
|
|
if (onRead(pUserData, data, 23) != 23) {
|
|
return DRFLAC_AT_END;
|
|
}
|
|
*pBytesRead += 23;
|
|
|
|
/*
|
|
It's not actually used, but set the capture pattern to 'OggS' for completeness. Not doing this will cause static analysers to complain about
|
|
us trying to access uninitialized data. We could alternatively just comment out this member of the drflac_ogg_page_header structure, but I
|
|
like to have it map to the structure of the underlying data.
|
|
*/
|
|
pHeader->capturePattern[0] = 'O';
|
|
pHeader->capturePattern[1] = 'g';
|
|
pHeader->capturePattern[2] = 'g';
|
|
pHeader->capturePattern[3] = 'S';
|
|
|
|
pHeader->structureVersion = data[0];
|
|
pHeader->headerType = data[1];
|
|
DRFLAC_COPY_MEMORY(&pHeader->granulePosition, &data[ 2], 8);
|
|
DRFLAC_COPY_MEMORY(&pHeader->serialNumber, &data[10], 4);
|
|
DRFLAC_COPY_MEMORY(&pHeader->sequenceNumber, &data[14], 4);
|
|
DRFLAC_COPY_MEMORY(&pHeader->checksum, &data[18], 4);
|
|
pHeader->segmentCount = data[22];
|
|
|
|
/* Calculate the CRC. Note that for the calculation the checksum part of the page needs to be set to 0. */
|
|
data[18] = 0;
|
|
data[19] = 0;
|
|
data[20] = 0;
|
|
data[21] = 0;
|
|
|
|
for (i = 0; i < 23; ++i) {
|
|
*pCRC32 = drflac_crc32_byte(*pCRC32, data[i]);
|
|
}
|
|
|
|
|
|
if (onRead(pUserData, pHeader->segmentTable, pHeader->segmentCount) != pHeader->segmentCount) {
|
|
return DRFLAC_AT_END;
|
|
}
|
|
*pBytesRead += pHeader->segmentCount;
|
|
|
|
for (i = 0; i < pHeader->segmentCount; ++i) {
|
|
*pCRC32 = drflac_crc32_byte(*pCRC32, pHeader->segmentTable[i]);
|
|
}
|
|
|
|
return DRFLAC_SUCCESS;
|
|
}
|
|
|
|
static drflac_result drflac_ogg__read_page_header(drflac_read_proc onRead, void* pUserData, drflac_ogg_page_header* pHeader, drflac_uint32* pBytesRead, drflac_uint32* pCRC32)
|
|
{
|
|
drflac_uint8 id[4];
|
|
|
|
*pBytesRead = 0;
|
|
|
|
if (onRead(pUserData, id, 4) != 4) {
|
|
return DRFLAC_AT_END;
|
|
}
|
|
*pBytesRead += 4;
|
|
|
|
/* We need to read byte-by-byte until we find the OggS capture pattern. */
|
|
for (;;) {
|
|
if (drflac_ogg__is_capture_pattern(id)) {
|
|
drflac_result result;
|
|
|
|
*pCRC32 = DRFLAC_OGG_CAPTURE_PATTERN_CRC32;
|
|
|
|
result = drflac_ogg__read_page_header_after_capture_pattern(onRead, pUserData, pHeader, pBytesRead, pCRC32);
|
|
if (result == DRFLAC_SUCCESS) {
|
|
return DRFLAC_SUCCESS;
|
|
} else {
|
|
if (result == DRFLAC_CRC_MISMATCH) {
|
|
continue;
|
|
} else {
|
|
return result;
|
|
}
|
|
}
|
|
} else {
|
|
/* The first 4 bytes did not equal the capture pattern. Read the next byte and try again. */
|
|
id[0] = id[1];
|
|
id[1] = id[2];
|
|
id[2] = id[3];
|
|
if (onRead(pUserData, &id[3], 1) != 1) {
|
|
return DRFLAC_AT_END;
|
|
}
|
|
*pBytesRead += 1;
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
The main part of the Ogg encapsulation is the conversion from the physical Ogg bitstream to the native FLAC bitstream. It works
|
|
in three general stages: Ogg Physical Bitstream -> Ogg/FLAC Logical Bitstream -> FLAC Native Bitstream. dr_flac is designed
|
|
in such a way that the core sections assume everything is delivered in native format. Therefore, for each encapsulation type
|
|
dr_flac is supporting there needs to be a layer sitting on top of the onRead and onSeek callbacks that ensures the bits read from
|
|
the physical Ogg bitstream are converted and delivered in native FLAC format.
|
|
*/
|
|
typedef struct
|
|
{
|
|
drflac_read_proc onRead; /* The original onRead callback from drflac_open() and family. */
|
|
drflac_seek_proc onSeek; /* The original onSeek callback from drflac_open() and family. */
|
|
void* pUserData; /* The user data passed on onRead and onSeek. This is the user data that was passed on drflac_open() and family. */
|
|
drflac_uint64 currentBytePos; /* The position of the byte we are sitting on in the physical byte stream. Used for efficient seeking. */
|
|
drflac_uint64 firstBytePos; /* The position of the first byte in the physical bitstream. Points to the start of the "OggS" identifier of the FLAC bos page. */
|
|
drflac_uint32 serialNumber; /* The serial number of the FLAC audio pages. This is determined by the initial header page that was read during initialization. */
|
|
drflac_ogg_page_header bosPageHeader; /* Used for seeking. */
|
|
drflac_ogg_page_header currentPageHeader;
|
|
drflac_uint32 bytesRemainingInPage;
|
|
drflac_uint32 pageDataSize;
|
|
drflac_uint8 pageData[DRFLAC_OGG_MAX_PAGE_SIZE];
|
|
} drflac_oggbs; /* oggbs = Ogg Bitstream */
|
|
|
|
static size_t drflac_oggbs__read_physical(drflac_oggbs* oggbs, void* bufferOut, size_t bytesToRead)
|
|
{
|
|
size_t bytesActuallyRead = oggbs->onRead(oggbs->pUserData, bufferOut, bytesToRead);
|
|
oggbs->currentBytePos += bytesActuallyRead;
|
|
|
|
return bytesActuallyRead;
|
|
}
|
|
|
|
static drflac_bool32 drflac_oggbs__seek_physical(drflac_oggbs* oggbs, drflac_uint64 offset, drflac_seek_origin origin)
|
|
{
|
|
if (origin == drflac_seek_origin_start) {
|
|
if (offset <= 0x7FFFFFFF) {
|
|
if (!oggbs->onSeek(oggbs->pUserData, (int)offset, drflac_seek_origin_start)) {
|
|
return DRFLAC_FALSE;
|
|
}
|
|
oggbs->currentBytePos = offset;
|
|
|
|
return DRFLAC_TRUE;
|
|
} else {
|
|
if (!oggbs->onSeek(oggbs->pUserData, 0x7FFFFFFF, drflac_seek_origin_start)) {
|
|
return DRFLAC_FALSE;
|
|
}
|
|
oggbs->currentBytePos = offset;
|
|
|
|
return drflac_oggbs__seek_physical(oggbs, offset - 0x7FFFFFFF, drflac_seek_origin_current);
|
|
}
|
|
} else {
|
|
while (offset > 0x7FFFFFFF) {
|
|
if (!oggbs->onSeek(oggbs->pUserData, 0x7FFFFFFF, drflac_seek_origin_current)) {
|
|
return DRFLAC_FALSE;
|
|
}
|
|
oggbs->currentBytePos += 0x7FFFFFFF;
|
|
offset -= 0x7FFFFFFF;
|
|
}
|
|
|
|
if (!oggbs->onSeek(oggbs->pUserData, (int)offset, drflac_seek_origin_current)) { /* <-- Safe cast thanks to the loop above. */
|
|
return DRFLAC_FALSE;
|
|
}
|
|
oggbs->currentBytePos += offset;
|
|
|
|
return DRFLAC_TRUE;
|
|
}
|
|
}
|
|
|
|
static drflac_bool32 drflac_oggbs__goto_next_page(drflac_oggbs* oggbs, drflac_ogg_crc_mismatch_recovery recoveryMethod)
|
|
{
|
|
drflac_ogg_page_header header;
|
|
for (;;) {
|
|
drflac_uint32 crc32 = 0;
|
|
drflac_uint32 bytesRead;
|
|
drflac_uint32 pageBodySize;
|
|
#ifndef DR_FLAC_NO_CRC
|
|
drflac_uint32 actualCRC32;
|
|
#endif
|
|
|
|
if (drflac_ogg__read_page_header(oggbs->onRead, oggbs->pUserData, &header, &bytesRead, &crc32) != DRFLAC_SUCCESS) {
|
|
return DRFLAC_FALSE;
|
|
}
|
|
oggbs->currentBytePos += bytesRead;
|
|
|
|
pageBodySize = drflac_ogg__get_page_body_size(&header);
|
|
if (pageBodySize > DRFLAC_OGG_MAX_PAGE_SIZE) {
|
|
continue; /* Invalid page size. Assume it's corrupted and just move to the next page. */
|
|
}
|
|
|
|
if (header.serialNumber != oggbs->serialNumber) {
|
|
/* It's not a FLAC page. Skip it. */
|
|
if (pageBodySize > 0 && !drflac_oggbs__seek_physical(oggbs, pageBodySize, drflac_seek_origin_current)) {
|
|
return DRFLAC_FALSE;
|
|
}
|
|
continue;
|
|
}
|
|
|
|
|
|
/* We need to read the entire page and then do a CRC check on it. If there's a CRC mismatch we need to skip this page. */
|
|
if (drflac_oggbs__read_physical(oggbs, oggbs->pageData, pageBodySize) != pageBodySize) {
|
|
return DRFLAC_FALSE;
|
|
}
|
|
oggbs->pageDataSize = pageBodySize;
|
|
|
|
#ifndef DR_FLAC_NO_CRC
|
|
actualCRC32 = drflac_crc32_buffer(crc32, oggbs->pageData, oggbs->pageDataSize);
|
|
if (actualCRC32 != header.checksum) {
|
|
if (recoveryMethod == drflac_ogg_recover_on_crc_mismatch) {
|
|
continue; /* CRC mismatch. Skip this page. */
|
|
} else {
|
|
/*
|
|
Even though we are failing on a CRC mismatch, we still want our stream to be in a good state. Therefore we
|
|
go to the next valid page to ensure we're in a good state, but return false to let the caller know that the
|
|
seek did not fully complete.
|
|
*/
|
|
drflac_oggbs__goto_next_page(oggbs, drflac_ogg_recover_on_crc_mismatch);
|
|
return DRFLAC_FALSE;
|
|
}
|
|
}
|
|
#else
|
|
(void)recoveryMethod; /* <-- Silence a warning. */
|
|
#endif
|
|
|
|
oggbs->currentPageHeader = header;
|
|
oggbs->bytesRemainingInPage = pageBodySize;
|
|
return DRFLAC_TRUE;
|
|
}
|
|
}
|
|
|
|
/* Function below is unused at the moment, but I might be re-adding it later. */
|
|
#if 0
|
|
static drflac_uint8 drflac_oggbs__get_current_segment_index(drflac_oggbs* oggbs, drflac_uint8* pBytesRemainingInSeg)
|
|
{
|
|
drflac_uint32 bytesConsumedInPage = drflac_ogg__get_page_body_size(&oggbs->currentPageHeader) - oggbs->bytesRemainingInPage;
|
|
drflac_uint8 iSeg = 0;
|
|
drflac_uint32 iByte = 0;
|
|
while (iByte < bytesConsumedInPage) {
|
|
drflac_uint8 segmentSize = oggbs->currentPageHeader.segmentTable[iSeg];
|
|
if (iByte + segmentSize > bytesConsumedInPage) {
|
|
break;
|
|
} else {
|
|
iSeg += 1;
|
|
iByte += segmentSize;
|
|
}
|
|
}
|
|
|
|
*pBytesRemainingInSeg = oggbs->currentPageHeader.segmentTable[iSeg] - (drflac_uint8)(bytesConsumedInPage - iByte);
|
|
return iSeg;
|
|
}
|
|
|
|
static drflac_bool32 drflac_oggbs__seek_to_next_packet(drflac_oggbs* oggbs)
|
|
{
|
|
/* The current packet ends when we get to the segment with a lacing value of < 255 which is not at the end of a page. */
|
|
for (;;) {
|
|
drflac_bool32 atEndOfPage = DRFLAC_FALSE;
|
|
|
|
drflac_uint8 bytesRemainingInSeg;
|
|
drflac_uint8 iFirstSeg = drflac_oggbs__get_current_segment_index(oggbs, &bytesRemainingInSeg);
|
|
|
|
drflac_uint32 bytesToEndOfPacketOrPage = bytesRemainingInSeg;
|
|
for (drflac_uint8 iSeg = iFirstSeg; iSeg < oggbs->currentPageHeader.segmentCount; ++iSeg) {
|
|
drflac_uint8 segmentSize = oggbs->currentPageHeader.segmentTable[iSeg];
|
|
if (segmentSize < 255) {
|
|
if (iSeg == oggbs->currentPageHeader.segmentCount-1) {
|
|
atEndOfPage = DRFLAC_TRUE;
|
|
}
|
|
|
|
break;
|
|
}
|
|
|
|
bytesToEndOfPacketOrPage += segmentSize;
|
|
}
|
|
|
|
/*
|
|
At this point we will have found either the packet or the end of the page. If were at the end of the page we'll
|
|
want to load the next page and keep searching for the end of the packet.
|
|
*/
|
|
drflac_oggbs__seek_physical(oggbs, bytesToEndOfPacketOrPage, drflac_seek_origin_current);
|
|
oggbs->bytesRemainingInPage -= bytesToEndOfPacketOrPage;
|
|
|
|
if (atEndOfPage) {
|
|
/*
|
|
We're potentially at the next packet, but we need to check the next page first to be sure because the packet may
|
|
straddle pages.
|
|
*/
|
|
if (!drflac_oggbs__goto_next_page(oggbs)) {
|
|
return DRFLAC_FALSE;
|
|
}
|
|
|
|
/* If it's a fresh packet it most likely means we're at the next packet. */
|
|
if ((oggbs->currentPageHeader.headerType & 0x01) == 0) {
|
|
return DRFLAC_TRUE;
|
|
}
|
|
} else {
|
|
/* We're at the next packet. */
|
|
return DRFLAC_TRUE;
|
|
}
|
|
}
|
|
}
|
|
|
|
static drflac_bool32 drflac_oggbs__seek_to_next_frame(drflac_oggbs* oggbs)
|
|
{
|
|
/* The bitstream should be sitting on the first byte just after the header of the frame. */
|
|
|
|
/* What we're actually doing here is seeking to the start of the next packet. */
|
|
return drflac_oggbs__seek_to_next_packet(oggbs);
|
|
}
|
|
#endif
|
|
|
|
static size_t drflac__on_read_ogg(void* pUserData, void* bufferOut, size_t bytesToRead)
|
|
{
|
|
drflac_oggbs* oggbs = (drflac_oggbs*)pUserData;
|
|
drflac_uint8* pRunningBufferOut = (drflac_uint8*)bufferOut;
|
|
size_t bytesRead = 0;
|
|
|
|
DRFLAC_ASSERT(oggbs != NULL);
|
|
DRFLAC_ASSERT(pRunningBufferOut != NULL);
|
|
|
|
/* Reading is done page-by-page. If we've run out of bytes in the page we need to move to the next one. */
|
|
while (bytesRead < bytesToRead) {
|
|
size_t bytesRemainingToRead = bytesToRead - bytesRead;
|
|
|
|
if (oggbs->bytesRemainingInPage >= bytesRemainingToRead) {
|
|
DRFLAC_COPY_MEMORY(pRunningBufferOut, oggbs->pageData + (oggbs->pageDataSize - oggbs->bytesRemainingInPage), bytesRemainingToRead);
|
|
bytesRead += bytesRemainingToRead;
|
|
oggbs->bytesRemainingInPage -= (drflac_uint32)bytesRemainingToRead;
|
|
break;
|
|
}
|
|
|
|
/* If we get here it means some of the requested data is contained in the next pages. */
|
|
if (oggbs->bytesRemainingInPage > 0) {
|
|
DRFLAC_COPY_MEMORY(pRunningBufferOut, oggbs->pageData + (oggbs->pageDataSize - oggbs->bytesRemainingInPage), oggbs->bytesRemainingInPage);
|
|
bytesRead += oggbs->bytesRemainingInPage;
|
|
pRunningBufferOut += oggbs->bytesRemainingInPage;
|
|
oggbs->bytesRemainingInPage = 0;
|
|
}
|
|
|
|
DRFLAC_ASSERT(bytesRemainingToRead > 0);
|
|
if (!drflac_oggbs__goto_next_page(oggbs, drflac_ogg_recover_on_crc_mismatch)) {
|
|
break; /* Failed to go to the next page. Might have simply hit the end of the stream. */
|
|
}
|
|
}
|
|
|
|
return bytesRead;
|
|
}
|
|
|
|
static drflac_bool32 drflac__on_seek_ogg(void* pUserData, int offset, drflac_seek_origin origin)
|
|
{
|
|
drflac_oggbs* oggbs = (drflac_oggbs*)pUserData;
|
|
int bytesSeeked = 0;
|
|
|
|
DRFLAC_ASSERT(oggbs != NULL);
|
|
DRFLAC_ASSERT(offset >= 0); /* <-- Never seek backwards. */
|
|
|
|
/* Seeking is always forward which makes things a lot simpler. */
|
|
if (origin == drflac_seek_origin_start) {
|
|
if (!drflac_oggbs__seek_physical(oggbs, (int)oggbs->firstBytePos, drflac_seek_origin_start)) {
|
|
return DRFLAC_FALSE;
|
|
}
|
|
|
|
if (!drflac_oggbs__goto_next_page(oggbs, drflac_ogg_fail_on_crc_mismatch)) {
|
|
return DRFLAC_FALSE;
|
|
}
|
|
|
|
return drflac__on_seek_ogg(pUserData, offset, drflac_seek_origin_current);
|
|
}
|
|
|
|
DRFLAC_ASSERT(origin == drflac_seek_origin_current);
|
|
|
|
while (bytesSeeked < offset) {
|
|
int bytesRemainingToSeek = offset - bytesSeeked;
|
|
DRFLAC_ASSERT(bytesRemainingToSeek >= 0);
|
|
|
|
if (oggbs->bytesRemainingInPage >= (size_t)bytesRemainingToSeek) {
|
|
bytesSeeked += bytesRemainingToSeek;
|
|
(void)bytesSeeked; /* <-- Silence a dead store warning emitted by Clang Static Analyzer. */
|
|
oggbs->bytesRemainingInPage -= bytesRemainingToSeek;
|
|
break;
|
|
}
|
|
|
|
/* If we get here it means some of the requested data is contained in the next pages. */
|
|
if (oggbs->bytesRemainingInPage > 0) {
|
|
bytesSeeked += (int)oggbs->bytesRemainingInPage;
|
|
oggbs->bytesRemainingInPage = 0;
|
|
}
|
|
|
|
DRFLAC_ASSERT(bytesRemainingToSeek > 0);
|
|
if (!drflac_oggbs__goto_next_page(oggbs, drflac_ogg_fail_on_crc_mismatch)) {
|
|
/* Failed to go to the next page. We either hit the end of the stream or had a CRC mismatch. */
|
|
return DRFLAC_FALSE;
|
|
}
|
|
}
|
|
|
|
return DRFLAC_TRUE;
|
|
}
|
|
|
|
|
|
static drflac_bool32 drflac_ogg__seek_to_pcm_frame(drflac* pFlac, drflac_uint64 pcmFrameIndex)
|
|
{
|
|
drflac_oggbs* oggbs = (drflac_oggbs*)pFlac->_oggbs;
|
|
drflac_uint64 originalBytePos;
|
|
drflac_uint64 runningGranulePosition;
|
|
drflac_uint64 runningFrameBytePos;
|
|
drflac_uint64 runningPCMFrameCount;
|
|
|
|
DRFLAC_ASSERT(oggbs != NULL);
|
|
|
|
originalBytePos = oggbs->currentBytePos; /* For recovery. Points to the OggS identifier. */
|
|
|
|
/* First seek to the first frame. */
|
|
if (!drflac__seek_to_byte(&pFlac->bs, pFlac->firstFLACFramePosInBytes)) {
|
|
return DRFLAC_FALSE;
|
|
}
|
|
oggbs->bytesRemainingInPage = 0;
|
|
|
|
runningGranulePosition = 0;
|
|
for (;;) {
|
|
if (!drflac_oggbs__goto_next_page(oggbs, drflac_ogg_recover_on_crc_mismatch)) {
|
|
drflac_oggbs__seek_physical(oggbs, originalBytePos, drflac_seek_origin_start);
|
|
return DRFLAC_FALSE; /* Never did find that sample... */
|
|
}
|
|
|
|
runningFrameBytePos = oggbs->currentBytePos - drflac_ogg__get_page_header_size(&oggbs->currentPageHeader) - oggbs->pageDataSize;
|
|
if (oggbs->currentPageHeader.granulePosition >= pcmFrameIndex) {
|
|
break; /* The sample is somewhere in the previous page. */
|
|
}
|
|
|
|
/*
|
|
At this point we know the sample is not in the previous page. It could possibly be in this page. For simplicity we
|
|
disregard any pages that do not begin a fresh packet.
|
|
*/
|
|
if ((oggbs->currentPageHeader.headerType & 0x01) == 0) { /* <-- Is it a fresh page? */
|
|
if (oggbs->currentPageHeader.segmentTable[0] >= 2) {
|
|
drflac_uint8 firstBytesInPage[2];
|
|
firstBytesInPage[0] = oggbs->pageData[0];
|
|
firstBytesInPage[1] = oggbs->pageData[1];
|
|
|
|
if ((firstBytesInPage[0] == 0xFF) && (firstBytesInPage[1] & 0xFC) == 0xF8) { /* <-- Does the page begin with a frame's sync code? */
|
|
runningGranulePosition = oggbs->currentPageHeader.granulePosition;
|
|
}
|
|
|
|
continue;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
We found the page that that is closest to the sample, so now we need to find it. The first thing to do is seek to the
|
|
start of that page. In the loop above we checked that it was a fresh page which means this page is also the start of
|
|
a new frame. This property means that after we've seeked to the page we can immediately start looping over frames until
|
|
we find the one containing the target sample.
|
|
*/
|
|
if (!drflac_oggbs__seek_physical(oggbs, runningFrameBytePos, drflac_seek_origin_start)) {
|
|
return DRFLAC_FALSE;
|
|
}
|
|
if (!drflac_oggbs__goto_next_page(oggbs, drflac_ogg_recover_on_crc_mismatch)) {
|
|
return DRFLAC_FALSE;
|
|
}
|
|
|
|
/*
|
|
At this point we'll be sitting on the first byte of the frame header of the first frame in the page. We just keep
|
|
looping over these frames until we find the one containing the sample we're after.
|
|
*/
|
|
runningPCMFrameCount = runningGranulePosition;
|
|
for (;;) {
|
|
/*
|
|
There are two ways to find the sample and seek past irrelevant frames:
|
|
1) Use the native FLAC decoder.
|
|
2) Use Ogg's framing system.
|
|
|
|
Both of these options have their own pros and cons. Using the native FLAC decoder is slower because it needs to
|
|
do a full decode of the frame. Using Ogg's framing system is faster, but more complicated and involves some code
|
|
duplication for the decoding of frame headers.
|
|
|
|
Another thing to consider is that using the Ogg framing system will perform direct seeking of the physical Ogg
|
|
bitstream. This is important to consider because it means we cannot read data from the drflac_bs object using the
|
|
standard drflac__*() APIs because that will read in extra data for its own internal caching which in turn breaks
|
|
the positioning of the read pointer of the physical Ogg bitstream. Therefore, anything that would normally be read
|
|
using the native FLAC decoding APIs, such as drflac__read_next_flac_frame_header(), need to be re-implemented so as to
|
|
avoid the use of the drflac_bs object.
|
|
|
|
Considering these issues, I have decided to use the slower native FLAC decoding method for the following reasons:
|
|
1) Seeking is already partially accelerated using Ogg's paging system in the code block above.
|
|
2) Seeking in an Ogg encapsulated FLAC stream is probably quite uncommon.
|
|
3) Simplicity.
|
|
*/
|
|
drflac_uint64 firstPCMFrameInFLACFrame = 0;
|
|
drflac_uint64 lastPCMFrameInFLACFrame = 0;
|
|
drflac_uint64 pcmFrameCountInThisFrame;
|
|
|
|
if (!drflac__read_next_flac_frame_header(&pFlac->bs, pFlac->bitsPerSample, &pFlac->currentFLACFrame.header)) {
|
|
return DRFLAC_FALSE;
|
|
}
|
|
|
|
drflac__get_pcm_frame_range_of_current_flac_frame(pFlac, &firstPCMFrameInFLACFrame, &lastPCMFrameInFLACFrame);
|
|
|
|
pcmFrameCountInThisFrame = (lastPCMFrameInFLACFrame - firstPCMFrameInFLACFrame) + 1;
|
|
|
|
/* If we are seeking to the end of the file and we've just hit it, we're done. */
|
|
if (pcmFrameIndex == pFlac->totalPCMFrameCount && (runningPCMFrameCount + pcmFrameCountInThisFrame) == pFlac->totalPCMFrameCount) {
|
|
drflac_result result = drflac__decode_flac_frame(pFlac);
|
|
if (result == DRFLAC_SUCCESS) {
|
|
pFlac->currentPCMFrame = pcmFrameIndex;
|
|
pFlac->currentFLACFrame.pcmFramesRemaining = 0;
|
|
return DRFLAC_TRUE;
|
|
} else {
|
|
return DRFLAC_FALSE;
|
|
}
|
|
}
|
|
|
|
if (pcmFrameIndex < (runningPCMFrameCount + pcmFrameCountInThisFrame)) {
|
|
/*
|
|
The sample should be in this FLAC frame. We need to fully decode it, however if it's an invalid frame (a CRC mismatch), we need to pretend
|
|
it never existed and keep iterating.
|
|
*/
|
|
drflac_result result = drflac__decode_flac_frame(pFlac);
|
|
if (result == DRFLAC_SUCCESS) {
|
|
/* The frame is valid. We just need to skip over some samples to ensure it's sample-exact. */
|
|
drflac_uint64 pcmFramesToDecode = (size_t)(pcmFrameIndex - runningPCMFrameCount); /* <-- Safe cast because the maximum number of samples in a frame is 65535. */
|
|
if (pcmFramesToDecode == 0) {
|
|
return DRFLAC_TRUE;
|
|
}
|
|
|
|
pFlac->currentPCMFrame = runningPCMFrameCount;
|
|
|
|
return drflac__seek_forward_by_pcm_frames(pFlac, pcmFramesToDecode) == pcmFramesToDecode; /* <-- If this fails, something bad has happened (it should never fail). */
|
|
} else {
|
|
if (result == DRFLAC_CRC_MISMATCH) {
|
|
continue; /* CRC mismatch. Pretend this frame never existed. */
|
|
} else {
|
|
return DRFLAC_FALSE;
|
|
}
|
|
}
|
|
} else {
|
|
/*
|
|
It's not in this frame. We need to seek past the frame, but check if there was a CRC mismatch. If so, we pretend this
|
|
frame never existed and leave the running sample count untouched.
|
|
*/
|
|
drflac_result result = drflac__seek_to_next_flac_frame(pFlac);
|
|
if (result == DRFLAC_SUCCESS) {
|
|
runningPCMFrameCount += pcmFrameCountInThisFrame;
|
|
} else {
|
|
if (result == DRFLAC_CRC_MISMATCH) {
|
|
continue; /* CRC mismatch. Pretend this frame never existed. */
|
|
} else {
|
|
return DRFLAC_FALSE;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
|
|
static drflac_bool32 drflac__init_private__ogg(drflac_init_info* pInit, drflac_read_proc onRead, drflac_seek_proc onSeek, drflac_meta_proc onMeta, void* pUserData, void* pUserDataMD, drflac_bool32 relaxed)
|
|
{
|
|
drflac_ogg_page_header header;
|
|
drflac_uint32 crc32 = DRFLAC_OGG_CAPTURE_PATTERN_CRC32;
|
|
drflac_uint32 bytesRead = 0;
|
|
|
|
/* Pre Condition: The bit stream should be sitting just past the 4-byte OggS capture pattern. */
|
|
(void)relaxed;
|
|
|
|
pInit->container = drflac_container_ogg;
|
|
pInit->oggFirstBytePos = 0;
|
|
|
|
/*
|
|
We'll get here if the first 4 bytes of the stream were the OggS capture pattern, however it doesn't necessarily mean the
|
|
stream includes FLAC encoded audio. To check for this we need to scan the beginning-of-stream page markers and check if
|
|
any match the FLAC specification. Important to keep in mind that the stream may be multiplexed.
|
|
*/
|
|
if (drflac_ogg__read_page_header_after_capture_pattern(onRead, pUserData, &header, &bytesRead, &crc32) != DRFLAC_SUCCESS) {
|
|
return DRFLAC_FALSE;
|
|
}
|
|
pInit->runningFilePos += bytesRead;
|
|
|
|
for (;;) {
|
|
int pageBodySize;
|
|
|
|
/* Break if we're past the beginning of stream page. */
|
|
if ((header.headerType & 0x02) == 0) {
|
|
return DRFLAC_FALSE;
|
|
}
|
|
|
|
/* Check if it's a FLAC header. */
|
|
pageBodySize = drflac_ogg__get_page_body_size(&header);
|
|
if (pageBodySize == 51) { /* 51 = the lacing value of the FLAC header packet. */
|
|
/* It could be a FLAC page... */
|
|
drflac_uint32 bytesRemainingInPage = pageBodySize;
|
|
drflac_uint8 packetType;
|
|
|
|
if (onRead(pUserData, &packetType, 1) != 1) {
|
|
return DRFLAC_FALSE;
|
|
}
|
|
|
|
bytesRemainingInPage -= 1;
|
|
if (packetType == 0x7F) {
|
|
/* Increasingly more likely to be a FLAC page... */
|
|
drflac_uint8 sig[4];
|
|
if (onRead(pUserData, sig, 4) != 4) {
|
|
return DRFLAC_FALSE;
|
|
}
|
|
|
|
bytesRemainingInPage -= 4;
|
|
if (sig[0] == 'F' && sig[1] == 'L' && sig[2] == 'A' && sig[3] == 'C') {
|
|
/* Almost certainly a FLAC page... */
|
|
drflac_uint8 mappingVersion[2];
|
|
if (onRead(pUserData, mappingVersion, 2) != 2) {
|
|
return DRFLAC_FALSE;
|
|
}
|
|
|
|
if (mappingVersion[0] != 1) {
|
|
return DRFLAC_FALSE; /* Only supporting version 1.x of the Ogg mapping. */
|
|
}
|
|
|
|
/*
|
|
The next 2 bytes are the non-audio packets, not including this one. We don't care about this because we're going to
|
|
be handling it in a generic way based on the serial number and packet types.
|
|
*/
|
|
if (!onSeek(pUserData, 2, drflac_seek_origin_current)) {
|
|
return DRFLAC_FALSE;
|
|
}
|
|
|
|
/* Expecting the native FLAC signature "fLaC". */
|
|
if (onRead(pUserData, sig, 4) != 4) {
|
|
return DRFLAC_FALSE;
|
|
}
|
|
|
|
if (sig[0] == 'f' && sig[1] == 'L' && sig[2] == 'a' && sig[3] == 'C') {
|
|
/* The remaining data in the page should be the STREAMINFO block. */
|
|
drflac_streaminfo streaminfo;
|
|
drflac_uint8 isLastBlock;
|
|
drflac_uint8 blockType;
|
|
drflac_uint32 blockSize;
|
|
if (!drflac__read_and_decode_block_header(onRead, pUserData, &isLastBlock, &blockType, &blockSize)) {
|
|
return DRFLAC_FALSE;
|
|
}
|
|
|
|
if (blockType != DRFLAC_METADATA_BLOCK_TYPE_STREAMINFO || blockSize != 34) {
|
|
return DRFLAC_FALSE; /* Invalid block type. First block must be the STREAMINFO block. */
|
|
}
|
|
|
|
if (drflac__read_streaminfo(onRead, pUserData, &streaminfo)) {
|
|
/* Success! */
|
|
pInit->hasStreamInfoBlock = DRFLAC_TRUE;
|
|
pInit->sampleRate = streaminfo.sampleRate;
|
|
pInit->channels = streaminfo.channels;
|
|
pInit->bitsPerSample = streaminfo.bitsPerSample;
|
|
pInit->totalPCMFrameCount = streaminfo.totalPCMFrameCount;
|
|
pInit->maxBlockSizeInPCMFrames = streaminfo.maxBlockSizeInPCMFrames;
|
|
pInit->hasMetadataBlocks = !isLastBlock;
|
|
|
|
if (onMeta) {
|
|
drflac_metadata metadata;
|
|
metadata.type = DRFLAC_METADATA_BLOCK_TYPE_STREAMINFO;
|
|
metadata.pRawData = NULL;
|
|
metadata.rawDataSize = 0;
|
|
metadata.data.streaminfo = streaminfo;
|
|
onMeta(pUserDataMD, &metadata);
|
|
}
|
|
|
|
pInit->runningFilePos += pageBodySize;
|
|
pInit->oggFirstBytePos = pInit->runningFilePos - 79; /* Subtracting 79 will place us right on top of the "OggS" identifier of the FLAC bos page. */
|
|
pInit->oggSerial = header.serialNumber;
|
|
pInit->oggBosHeader = header;
|
|
break;
|
|
} else {
|
|
/* Failed to read STREAMINFO block. Aww, so close... */
|
|
return DRFLAC_FALSE;
|
|
}
|
|
} else {
|
|
/* Invalid file. */
|
|
return DRFLAC_FALSE;
|
|
}
|
|
} else {
|
|
/* Not a FLAC header. Skip it. */
|
|
if (!onSeek(pUserData, bytesRemainingInPage, drflac_seek_origin_current)) {
|
|
return DRFLAC_FALSE;
|
|
}
|
|
}
|
|
} else {
|
|
/* Not a FLAC header. Seek past the entire page and move on to the next. */
|
|
if (!onSeek(pUserData, bytesRemainingInPage, drflac_seek_origin_current)) {
|
|
return DRFLAC_FALSE;
|
|
}
|
|
}
|
|
} else {
|
|
if (!onSeek(pUserData, pageBodySize, drflac_seek_origin_current)) {
|
|
return DRFLAC_FALSE;
|
|
}
|
|
}
|
|
|
|
pInit->runningFilePos += pageBodySize;
|
|
|
|
|
|
/* Read the header of the next page. */
|
|
if (drflac_ogg__read_page_header(onRead, pUserData, &header, &bytesRead, &crc32) != DRFLAC_SUCCESS) {
|
|
return DRFLAC_FALSE;
|
|
}
|
|
pInit->runningFilePos += bytesRead;
|
|
}
|
|
|
|
/*
|
|
If we get here it means we found a FLAC audio stream. We should be sitting on the first byte of the header of the next page. The next
|
|
packets in the FLAC logical stream contain the metadata. The only thing left to do in the initialization phase for Ogg is to create the
|
|
Ogg bistream object.
|
|
*/
|
|
pInit->hasMetadataBlocks = DRFLAC_TRUE; /* <-- Always have at least VORBIS_COMMENT metadata block. */
|
|
return DRFLAC_TRUE;
|
|
}
|
|
#endif
|
|
|
|
static drflac_bool32 drflac__init_private(drflac_init_info* pInit, drflac_read_proc onRead, drflac_seek_proc onSeek, drflac_meta_proc onMeta, drflac_container container, void* pUserData, void* pUserDataMD)
|
|
{
|
|
drflac_bool32 relaxed;
|
|
drflac_uint8 id[4];
|
|
|
|
if (pInit == NULL || onRead == NULL || onSeek == NULL) {
|
|
return DRFLAC_FALSE;
|
|
}
|
|
|
|
DRFLAC_ZERO_MEMORY(pInit, sizeof(*pInit));
|
|
pInit->onRead = onRead;
|
|
pInit->onSeek = onSeek;
|
|
pInit->onMeta = onMeta;
|
|
pInit->container = container;
|
|
pInit->pUserData = pUserData;
|
|
pInit->pUserDataMD = pUserDataMD;
|
|
|
|
pInit->bs.onRead = onRead;
|
|
pInit->bs.onSeek = onSeek;
|
|
pInit->bs.pUserData = pUserData;
|
|
drflac__reset_cache(&pInit->bs);
|
|
|
|
|
|
/* If the container is explicitly defined then we can try opening in relaxed mode. */
|
|
relaxed = container != drflac_container_unknown;
|
|
|
|
/* Skip over any ID3 tags. */
|
|
for (;;) {
|
|
if (onRead(pUserData, id, 4) != 4) {
|
|
return DRFLAC_FALSE; /* Ran out of data. */
|
|
}
|
|
pInit->runningFilePos += 4;
|
|
|
|
if (id[0] == 'I' && id[1] == 'D' && id[2] == '3') {
|
|
drflac_uint8 header[6];
|
|
drflac_uint8 flags;
|
|
drflac_uint32 headerSize;
|
|
|
|
if (onRead(pUserData, header, 6) != 6) {
|
|
return DRFLAC_FALSE; /* Ran out of data. */
|
|
}
|
|
pInit->runningFilePos += 6;
|
|
|
|
flags = header[1];
|
|
|
|
DRFLAC_COPY_MEMORY(&headerSize, header+2, 4);
|
|
headerSize = drflac__unsynchsafe_32(drflac__be2host_32(headerSize));
|
|
if (flags & 0x10) {
|
|
headerSize += 10;
|
|
}
|
|
|
|
if (!onSeek(pUserData, headerSize, drflac_seek_origin_current)) {
|
|
return DRFLAC_FALSE; /* Failed to seek past the tag. */
|
|
}
|
|
pInit->runningFilePos += headerSize;
|
|
} else {
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (id[0] == 'f' && id[1] == 'L' && id[2] == 'a' && id[3] == 'C') {
|
|
return drflac__init_private__native(pInit, onRead, onSeek, onMeta, pUserData, pUserDataMD, relaxed);
|
|
}
|
|
#ifndef DR_FLAC_NO_OGG
|
|
if (id[0] == 'O' && id[1] == 'g' && id[2] == 'g' && id[3] == 'S') {
|
|
return drflac__init_private__ogg(pInit, onRead, onSeek, onMeta, pUserData, pUserDataMD, relaxed);
|
|
}
|
|
#endif
|
|
|
|
/* If we get here it means we likely don't have a header. Try opening in relaxed mode, if applicable. */
|
|
if (relaxed) {
|
|
if (container == drflac_container_native) {
|
|
return drflac__init_private__native(pInit, onRead, onSeek, onMeta, pUserData, pUserDataMD, relaxed);
|
|
}
|
|
#ifndef DR_FLAC_NO_OGG
|
|
if (container == drflac_container_ogg) {
|
|
return drflac__init_private__ogg(pInit, onRead, onSeek, onMeta, pUserData, pUserDataMD, relaxed);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
/* Unsupported container. */
|
|
return DRFLAC_FALSE;
|
|
}
|
|
|
|
static void drflac__init_from_info(drflac* pFlac, const drflac_init_info* pInit)
|
|
{
|
|
DRFLAC_ASSERT(pFlac != NULL);
|
|
DRFLAC_ASSERT(pInit != NULL);
|
|
|
|
DRFLAC_ZERO_MEMORY(pFlac, sizeof(*pFlac));
|
|
pFlac->bs = pInit->bs;
|
|
pFlac->onMeta = pInit->onMeta;
|
|
pFlac->pUserDataMD = pInit->pUserDataMD;
|
|
pFlac->maxBlockSizeInPCMFrames = pInit->maxBlockSizeInPCMFrames;
|
|
pFlac->sampleRate = pInit->sampleRate;
|
|
pFlac->channels = (drflac_uint8)pInit->channels;
|
|
pFlac->bitsPerSample = (drflac_uint8)pInit->bitsPerSample;
|
|
pFlac->totalPCMFrameCount = pInit->totalPCMFrameCount;
|
|
pFlac->container = pInit->container;
|
|
}
|
|
|
|
|
|
static drflac* drflac_open_with_metadata_private(drflac_read_proc onRead, drflac_seek_proc onSeek, drflac_meta_proc onMeta, drflac_container container, void* pUserData, void* pUserDataMD, const drflac_allocation_callbacks* pAllocationCallbacks)
|
|
{
|
|
drflac_init_info init;
|
|
drflac_uint32 allocationSize;
|
|
drflac_uint32 wholeSIMDVectorCountPerChannel;
|
|
drflac_uint32 decodedSamplesAllocationSize;
|
|
#ifndef DR_FLAC_NO_OGG
|
|
drflac_oggbs oggbs;
|
|
#endif
|
|
drflac_uint64 firstFramePos;
|
|
drflac_uint64 seektablePos;
|
|
drflac_uint32 seektableSize;
|
|
drflac_allocation_callbacks allocationCallbacks;
|
|
drflac* pFlac;
|
|
|
|
/* CPU support first. */
|
|
drflac__init_cpu_caps();
|
|
|
|
if (!drflac__init_private(&init, onRead, onSeek, onMeta, container, pUserData, pUserDataMD)) {
|
|
return NULL;
|
|
}
|
|
|
|
if (pAllocationCallbacks != NULL) {
|
|
allocationCallbacks = *pAllocationCallbacks;
|
|
if (allocationCallbacks.onFree == NULL || (allocationCallbacks.onMalloc == NULL && allocationCallbacks.onRealloc == NULL)) {
|
|
return NULL; /* Invalid allocation callbacks. */
|
|
}
|
|
} else {
|
|
allocationCallbacks.pUserData = NULL;
|
|
allocationCallbacks.onMalloc = drflac__malloc_default;
|
|
allocationCallbacks.onRealloc = drflac__realloc_default;
|
|
allocationCallbacks.onFree = drflac__free_default;
|
|
}
|
|
|
|
|
|
/*
|
|
The size of the allocation for the drflac object needs to be large enough to fit the following:
|
|
1) The main members of the drflac structure
|
|
2) A block of memory large enough to store the decoded samples of the largest frame in the stream
|
|
3) If the container is Ogg, a drflac_oggbs object
|
|
|
|
The complicated part of the allocation is making sure there's enough room the decoded samples, taking into consideration
|
|
the different SIMD instruction sets.
|
|
*/
|
|
allocationSize = sizeof(drflac);
|
|
|
|
/*
|
|
The allocation size for decoded frames depends on the number of 32-bit integers that fit inside the largest SIMD vector
|
|
we are supporting.
|
|
*/
|
|
if ((init.maxBlockSizeInPCMFrames % (DRFLAC_MAX_SIMD_VECTOR_SIZE / sizeof(drflac_int32))) == 0) {
|
|
wholeSIMDVectorCountPerChannel = (init.maxBlockSizeInPCMFrames / (DRFLAC_MAX_SIMD_VECTOR_SIZE / sizeof(drflac_int32)));
|
|
} else {
|
|
wholeSIMDVectorCountPerChannel = (init.maxBlockSizeInPCMFrames / (DRFLAC_MAX_SIMD_VECTOR_SIZE / sizeof(drflac_int32))) + 1;
|
|
}
|
|
|
|
decodedSamplesAllocationSize = wholeSIMDVectorCountPerChannel * DRFLAC_MAX_SIMD_VECTOR_SIZE * init.channels;
|
|
|
|
allocationSize += decodedSamplesAllocationSize;
|
|
allocationSize += DRFLAC_MAX_SIMD_VECTOR_SIZE; /* Allocate extra bytes to ensure we have enough for alignment. */
|
|
|
|
#ifndef DR_FLAC_NO_OGG
|
|
/* There's additional data required for Ogg streams. */
|
|
if (init.container == drflac_container_ogg) {
|
|
allocationSize += sizeof(drflac_oggbs);
|
|
}
|
|
|
|
DRFLAC_ZERO_MEMORY(&oggbs, sizeof(oggbs));
|
|
if (init.container == drflac_container_ogg) {
|
|
oggbs.onRead = onRead;
|
|
oggbs.onSeek = onSeek;
|
|
oggbs.pUserData = pUserData;
|
|
oggbs.currentBytePos = init.oggFirstBytePos;
|
|
oggbs.firstBytePos = init.oggFirstBytePos;
|
|
oggbs.serialNumber = init.oggSerial;
|
|
oggbs.bosPageHeader = init.oggBosHeader;
|
|
oggbs.bytesRemainingInPage = 0;
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
This part is a bit awkward. We need to load the seektable so that it can be referenced in-memory, but I want the drflac object to
|
|
consist of only a single heap allocation. To this, the size of the seek table needs to be known, which we determine when reading
|
|
and decoding the metadata.
|
|
*/
|
|
firstFramePos = 42; /* <-- We know we are at byte 42 at this point. */
|
|
seektablePos = 0;
|
|
seektableSize = 0;
|
|
if (init.hasMetadataBlocks) {
|
|
drflac_read_proc onReadOverride = onRead;
|
|
drflac_seek_proc onSeekOverride = onSeek;
|
|
void* pUserDataOverride = pUserData;
|
|
|
|
#ifndef DR_FLAC_NO_OGG
|
|
if (init.container == drflac_container_ogg) {
|
|
onReadOverride = drflac__on_read_ogg;
|
|
onSeekOverride = drflac__on_seek_ogg;
|
|
pUserDataOverride = (void*)&oggbs;
|
|
}
|
|
#endif
|
|
|
|
if (!drflac__read_and_decode_metadata(onReadOverride, onSeekOverride, onMeta, pUserDataOverride, pUserDataMD, &firstFramePos, &seektablePos, &seektableSize, &allocationCallbacks)) {
|
|
return NULL;
|
|
}
|
|
|
|
allocationSize += seektableSize;
|
|
}
|
|
|
|
|
|
pFlac = (drflac*)drflac__malloc_from_callbacks(allocationSize, &allocationCallbacks);
|
|
if (pFlac == NULL) {
|
|
return NULL;
|
|
}
|
|
|
|
drflac__init_from_info(pFlac, &init);
|
|
pFlac->allocationCallbacks = allocationCallbacks;
|
|
pFlac->pDecodedSamples = (drflac_int32*)drflac_align((size_t)pFlac->pExtraData, DRFLAC_MAX_SIMD_VECTOR_SIZE);
|
|
|
|
#ifndef DR_FLAC_NO_OGG
|
|
if (init.container == drflac_container_ogg) {
|
|
drflac_oggbs* pInternalOggbs = (drflac_oggbs*)((drflac_uint8*)pFlac->pDecodedSamples + decodedSamplesAllocationSize + seektableSize);
|
|
*pInternalOggbs = oggbs;
|
|
|
|
/* The Ogg bistream needs to be layered on top of the original bitstream. */
|
|
pFlac->bs.onRead = drflac__on_read_ogg;
|
|
pFlac->bs.onSeek = drflac__on_seek_ogg;
|
|
pFlac->bs.pUserData = (void*)pInternalOggbs;
|
|
pFlac->_oggbs = (void*)pInternalOggbs;
|
|
}
|
|
#endif
|
|
|
|
pFlac->firstFLACFramePosInBytes = firstFramePos;
|
|
|
|
/* NOTE: Seektables are not currently compatible with Ogg encapsulation (Ogg has its own accelerated seeking system). I may change this later, so I'm leaving this here for now. */
|
|
#ifndef DR_FLAC_NO_OGG
|
|
if (init.container == drflac_container_ogg)
|
|
{
|
|
pFlac->pSeekpoints = NULL;
|
|
pFlac->seekpointCount = 0;
|
|
}
|
|
else
|
|
#endif
|
|
{
|
|
/* If we have a seektable we need to load it now, making sure we move back to where we were previously. */
|
|
if (seektablePos != 0) {
|
|
pFlac->seekpointCount = seektableSize / sizeof(*pFlac->pSeekpoints);
|
|
pFlac->pSeekpoints = (drflac_seekpoint*)((drflac_uint8*)pFlac->pDecodedSamples + decodedSamplesAllocationSize);
|
|
|
|
DRFLAC_ASSERT(pFlac->bs.onSeek != NULL);
|
|
DRFLAC_ASSERT(pFlac->bs.onRead != NULL);
|
|
|
|
/* Seek to the seektable, then just read directly into our seektable buffer. */
|
|
if (pFlac->bs.onSeek(pFlac->bs.pUserData, (int)seektablePos, drflac_seek_origin_start)) {
|
|
if (pFlac->bs.onRead(pFlac->bs.pUserData, pFlac->pSeekpoints, seektableSize) == seektableSize) {
|
|
/* Endian swap. */
|
|
drflac_uint32 iSeekpoint;
|
|
for (iSeekpoint = 0; iSeekpoint < pFlac->seekpointCount; ++iSeekpoint) {
|
|
pFlac->pSeekpoints[iSeekpoint].firstPCMFrame = drflac__be2host_64(pFlac->pSeekpoints[iSeekpoint].firstPCMFrame);
|
|
pFlac->pSeekpoints[iSeekpoint].flacFrameOffset = drflac__be2host_64(pFlac->pSeekpoints[iSeekpoint].flacFrameOffset);
|
|
pFlac->pSeekpoints[iSeekpoint].pcmFrameCount = drflac__be2host_16(pFlac->pSeekpoints[iSeekpoint].pcmFrameCount);
|
|
}
|
|
} else {
|
|
/* Failed to read the seektable. Pretend we don't have one. */
|
|
pFlac->pSeekpoints = NULL;
|
|
pFlac->seekpointCount = 0;
|
|
}
|
|
|
|
/* We need to seek back to where we were. If this fails it's a critical error. */
|
|
if (!pFlac->bs.onSeek(pFlac->bs.pUserData, (int)pFlac->firstFLACFramePosInBytes, drflac_seek_origin_start)) {
|
|
drflac__free_from_callbacks(pFlac, &allocationCallbacks);
|
|
return NULL;
|
|
}
|
|
} else {
|
|
/* Failed to seek to the seektable. Ominous sign, but for now we can just pretend we don't have one. */
|
|
pFlac->pSeekpoints = NULL;
|
|
pFlac->seekpointCount = 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
If we get here, but don't have a STREAMINFO block, it means we've opened the stream in relaxed mode and need to decode
|
|
the first frame.
|
|
*/
|
|
if (!init.hasStreamInfoBlock) {
|
|
pFlac->currentFLACFrame.header = init.firstFrameHeader;
|
|
for (;;) {
|
|
drflac_result result = drflac__decode_flac_frame(pFlac);
|
|
if (result == DRFLAC_SUCCESS) {
|
|
break;
|
|
} else {
|
|
if (result == DRFLAC_CRC_MISMATCH) {
|
|
if (!drflac__read_next_flac_frame_header(&pFlac->bs, pFlac->bitsPerSample, &pFlac->currentFLACFrame.header)) {
|
|
drflac__free_from_callbacks(pFlac, &allocationCallbacks);
|
|
return NULL;
|
|
}
|
|
continue;
|
|
} else {
|
|
drflac__free_from_callbacks(pFlac, &allocationCallbacks);
|
|
return NULL;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
return pFlac;
|
|
}
|
|
|
|
|
|
|
|
#ifndef DR_FLAC_NO_STDIO
|
|
#include <stdio.h>
|
|
#include <wchar.h> /* For wcslen(), wcsrtombs() */
|
|
|
|
/* drflac_result_from_errno() is only used for fopen() and wfopen() so putting it inside DR_WAV_NO_STDIO for now. If something else needs this later we can move it out. */
|
|
#include <errno.h>
|
|
static drflac_result drflac_result_from_errno(int e)
|
|
{
|
|
switch (e)
|
|
{
|
|
case 0: return DRFLAC_SUCCESS;
|
|
#ifdef EPERM
|
|
case EPERM: return DRFLAC_INVALID_OPERATION;
|
|
#endif
|
|
#ifdef ENOENT
|
|
case ENOENT: return DRFLAC_DOES_NOT_EXIST;
|
|
#endif
|
|
#ifdef ESRCH
|
|
case ESRCH: return DRFLAC_DOES_NOT_EXIST;
|
|
#endif
|
|
#ifdef EINTR
|
|
case EINTR: return DRFLAC_INTERRUPT;
|
|
#endif
|
|
#ifdef EIO
|
|
case EIO: return DRFLAC_IO_ERROR;
|
|
#endif
|
|
#ifdef ENXIO
|
|
case ENXIO: return DRFLAC_DOES_NOT_EXIST;
|
|
#endif
|
|
#ifdef E2BIG
|
|
case E2BIG: return DRFLAC_INVALID_ARGS;
|
|
#endif
|
|
#ifdef ENOEXEC
|
|
case ENOEXEC: return DRFLAC_INVALID_FILE;
|
|
#endif
|
|
#ifdef EBADF
|
|
case EBADF: return DRFLAC_INVALID_FILE;
|
|
#endif
|
|
#ifdef ECHILD
|
|
case ECHILD: return DRFLAC_ERROR;
|
|
#endif
|
|
#ifdef EAGAIN
|
|
case EAGAIN: return DRFLAC_UNAVAILABLE;
|
|
#endif
|
|
#ifdef ENOMEM
|
|
case ENOMEM: return DRFLAC_OUT_OF_MEMORY;
|
|
#endif
|
|
#ifdef EACCES
|
|
case EACCES: return DRFLAC_ACCESS_DENIED;
|
|
#endif
|
|
#ifdef EFAULT
|
|
case EFAULT: return DRFLAC_BAD_ADDRESS;
|
|
#endif
|
|
#ifdef ENOTBLK
|
|
case ENOTBLK: return DRFLAC_ERROR;
|
|
#endif
|
|
#ifdef EBUSY
|
|
case EBUSY: return DRFLAC_BUSY;
|
|
#endif
|
|
#ifdef EEXIST
|
|
case EEXIST: return DRFLAC_ALREADY_EXISTS;
|
|
#endif
|
|
#ifdef EXDEV
|
|
case EXDEV: return DRFLAC_ERROR;
|
|
#endif
|
|
#ifdef ENODEV
|
|
case ENODEV: return DRFLAC_DOES_NOT_EXIST;
|
|
#endif
|
|
#ifdef ENOTDIR
|
|
case ENOTDIR: return DRFLAC_NOT_DIRECTORY;
|
|
#endif
|
|
#ifdef EISDIR
|
|
case EISDIR: return DRFLAC_IS_DIRECTORY;
|
|
#endif
|
|
#ifdef EINVAL
|
|
case EINVAL: return DRFLAC_INVALID_ARGS;
|
|
#endif
|
|
#ifdef ENFILE
|
|
case ENFILE: return DRFLAC_TOO_MANY_OPEN_FILES;
|
|
#endif
|
|
#ifdef EMFILE
|
|
case EMFILE: return DRFLAC_TOO_MANY_OPEN_FILES;
|
|
#endif
|
|
#ifdef ENOTTY
|
|
case ENOTTY: return DRFLAC_INVALID_OPERATION;
|
|
#endif
|
|
#ifdef ETXTBSY
|
|
case ETXTBSY: return DRFLAC_BUSY;
|
|
#endif
|
|
#ifdef EFBIG
|
|
case EFBIG: return DRFLAC_TOO_BIG;
|
|
#endif
|
|
#ifdef ENOSPC
|
|
case ENOSPC: return DRFLAC_NO_SPACE;
|
|
#endif
|
|
#ifdef ESPIPE
|
|
case ESPIPE: return DRFLAC_BAD_SEEK;
|
|
#endif
|
|
#ifdef EROFS
|
|
case EROFS: return DRFLAC_ACCESS_DENIED;
|
|
#endif
|
|
#ifdef EMLINK
|
|
case EMLINK: return DRFLAC_TOO_MANY_LINKS;
|
|
#endif
|
|
#ifdef EPIPE
|
|
case EPIPE: return DRFLAC_BAD_PIPE;
|
|
#endif
|
|
#ifdef EDOM
|
|
case EDOM: return DRFLAC_OUT_OF_RANGE;
|
|
#endif
|
|
#ifdef ERANGE
|
|
case ERANGE: return DRFLAC_OUT_OF_RANGE;
|
|
#endif
|
|
#ifdef EDEADLK
|
|
case EDEADLK: return DRFLAC_DEADLOCK;
|
|
#endif
|
|
#ifdef ENAMETOOLONG
|
|
case ENAMETOOLONG: return DRFLAC_PATH_TOO_LONG;
|
|
#endif
|
|
#ifdef ENOLCK
|
|
case ENOLCK: return DRFLAC_ERROR;
|
|
#endif
|
|
#ifdef ENOSYS
|
|
case ENOSYS: return DRFLAC_NOT_IMPLEMENTED;
|
|
#endif
|
|
#ifdef ENOTEMPTY
|
|
case ENOTEMPTY: return DRFLAC_DIRECTORY_NOT_EMPTY;
|
|
#endif
|
|
#ifdef ELOOP
|
|
case ELOOP: return DRFLAC_TOO_MANY_LINKS;
|
|
#endif
|
|
#ifdef ENOMSG
|
|
case ENOMSG: return DRFLAC_NO_MESSAGE;
|
|
#endif
|
|
#ifdef EIDRM
|
|
case EIDRM: return DRFLAC_ERROR;
|
|
#endif
|
|
#ifdef ECHRNG
|
|
case ECHRNG: return DRFLAC_ERROR;
|
|
#endif
|
|
#ifdef EL2NSYNC
|
|
case EL2NSYNC: return DRFLAC_ERROR;
|
|
#endif
|
|
#ifdef EL3HLT
|
|
case EL3HLT: return DRFLAC_ERROR;
|
|
#endif
|
|
#ifdef EL3RST
|
|
case EL3RST: return DRFLAC_ERROR;
|
|
#endif
|
|
#ifdef ELNRNG
|
|
case ELNRNG: return DRFLAC_OUT_OF_RANGE;
|
|
#endif
|
|
#ifdef EUNATCH
|
|
case EUNATCH: return DRFLAC_ERROR;
|
|
#endif
|
|
#ifdef ENOCSI
|
|
case ENOCSI: return DRFLAC_ERROR;
|
|
#endif
|
|
#ifdef EL2HLT
|
|
case EL2HLT: return DRFLAC_ERROR;
|
|
#endif
|
|
#ifdef EBADE
|
|
case EBADE: return DRFLAC_ERROR;
|
|
#endif
|
|
#ifdef EBADR
|
|
case EBADR: return DRFLAC_ERROR;
|
|
#endif
|
|
#ifdef EXFULL
|
|
case EXFULL: return DRFLAC_ERROR;
|
|
#endif
|
|
#ifdef ENOANO
|
|
case ENOANO: return DRFLAC_ERROR;
|
|
#endif
|
|
#ifdef EBADRQC
|
|
case EBADRQC: return DRFLAC_ERROR;
|
|
#endif
|
|
#ifdef EBADSLT
|
|
case EBADSLT: return DRFLAC_ERROR;
|
|
#endif
|
|
#ifdef EBFONT
|
|
case EBFONT: return DRFLAC_INVALID_FILE;
|
|
#endif
|
|
#ifdef ENOSTR
|
|
case ENOSTR: return DRFLAC_ERROR;
|
|
#endif
|
|
#ifdef ENODATA
|
|
case ENODATA: return DRFLAC_NO_DATA_AVAILABLE;
|
|
#endif
|
|
#ifdef ETIME
|
|
case ETIME: return DRFLAC_TIMEOUT;
|
|
#endif
|
|
#ifdef ENOSR
|
|
case ENOSR: return DRFLAC_NO_DATA_AVAILABLE;
|
|
#endif
|
|
#ifdef ENONET
|
|
case ENONET: return DRFLAC_NO_NETWORK;
|
|
#endif
|
|
#ifdef ENOPKG
|
|
case ENOPKG: return DRFLAC_ERROR;
|
|
#endif
|
|
#ifdef EREMOTE
|
|
case EREMOTE: return DRFLAC_ERROR;
|
|
#endif
|
|
#ifdef ENOLINK
|
|
case ENOLINK: return DRFLAC_ERROR;
|
|
#endif
|
|
#ifdef EADV
|
|
case EADV: return DRFLAC_ERROR;
|
|
#endif
|
|
#ifdef ESRMNT
|
|
case ESRMNT: return DRFLAC_ERROR;
|
|
#endif
|
|
#ifdef ECOMM
|
|
case ECOMM: return DRFLAC_ERROR;
|
|
#endif
|
|
#ifdef EPROTO
|
|
case EPROTO: return DRFLAC_ERROR;
|
|
#endif
|
|
#ifdef EMULTIHOP
|
|
case EMULTIHOP: return DRFLAC_ERROR;
|
|
#endif
|
|
#ifdef EDOTDOT
|
|
case EDOTDOT: return DRFLAC_ERROR;
|
|
#endif
|
|
#ifdef EBADMSG
|
|
case EBADMSG: return DRFLAC_BAD_MESSAGE;
|
|
#endif
|
|
#ifdef EOVERFLOW
|
|
case EOVERFLOW: return DRFLAC_TOO_BIG;
|
|
#endif
|
|
#ifdef ENOTUNIQ
|
|
case ENOTUNIQ: return DRFLAC_NOT_UNIQUE;
|
|
#endif
|
|
#ifdef EBADFD
|
|
case EBADFD: return DRFLAC_ERROR;
|
|
#endif
|
|
#ifdef EREMCHG
|
|
case EREMCHG: return DRFLAC_ERROR;
|
|
#endif
|
|
#ifdef ELIBACC
|
|
case ELIBACC: return DRFLAC_ACCESS_DENIED;
|
|
#endif
|
|
#ifdef ELIBBAD
|
|
case ELIBBAD: return DRFLAC_INVALID_FILE;
|
|
#endif
|
|
#ifdef ELIBSCN
|
|
case ELIBSCN: return DRFLAC_INVALID_FILE;
|
|
#endif
|
|
#ifdef ELIBMAX
|
|
case ELIBMAX: return DRFLAC_ERROR;
|
|
#endif
|
|
#ifdef ELIBEXEC
|
|
case ELIBEXEC: return DRFLAC_ERROR;
|
|
#endif
|
|
#ifdef EILSEQ
|
|
case EILSEQ: return DRFLAC_INVALID_DATA;
|
|
#endif
|
|
#ifdef ERESTART
|
|
case ERESTART: return DRFLAC_ERROR;
|
|
#endif
|
|
#ifdef ESTRPIPE
|
|
case ESTRPIPE: return DRFLAC_ERROR;
|
|
#endif
|
|
#ifdef EUSERS
|
|
case EUSERS: return DRFLAC_ERROR;
|
|
#endif
|
|
#ifdef ENOTSOCK
|
|
case ENOTSOCK: return DRFLAC_NOT_SOCKET;
|
|
#endif
|
|
#ifdef EDESTADDRREQ
|
|
case EDESTADDRREQ: return DRFLAC_NO_ADDRESS;
|
|
#endif
|
|
#ifdef EMSGSIZE
|
|
case EMSGSIZE: return DRFLAC_TOO_BIG;
|
|
#endif
|
|
#ifdef EPROTOTYPE
|
|
case EPROTOTYPE: return DRFLAC_BAD_PROTOCOL;
|
|
#endif
|
|
#ifdef ENOPROTOOPT
|
|
case ENOPROTOOPT: return DRFLAC_PROTOCOL_UNAVAILABLE;
|
|
#endif
|
|
#ifdef EPROTONOSUPPORT
|
|
case EPROTONOSUPPORT: return DRFLAC_PROTOCOL_NOT_SUPPORTED;
|
|
#endif
|
|
#ifdef ESOCKTNOSUPPORT
|
|
case ESOCKTNOSUPPORT: return DRFLAC_SOCKET_NOT_SUPPORTED;
|
|
#endif
|
|
#ifdef EOPNOTSUPP
|
|
case EOPNOTSUPP: return DRFLAC_INVALID_OPERATION;
|
|
#endif
|
|
#ifdef EPFNOSUPPORT
|
|
case EPFNOSUPPORT: return DRFLAC_PROTOCOL_FAMILY_NOT_SUPPORTED;
|
|
#endif
|
|
#ifdef EAFNOSUPPORT
|
|
case EAFNOSUPPORT: return DRFLAC_ADDRESS_FAMILY_NOT_SUPPORTED;
|
|
#endif
|
|
#ifdef EADDRINUSE
|
|
case EADDRINUSE: return DRFLAC_ALREADY_IN_USE;
|
|
#endif
|
|
#ifdef EADDRNOTAVAIL
|
|
case EADDRNOTAVAIL: return DRFLAC_ERROR;
|
|
#endif
|
|
#ifdef ENETDOWN
|
|
case ENETDOWN: return DRFLAC_NO_NETWORK;
|
|
#endif
|
|
#ifdef ENETUNREACH
|
|
case ENETUNREACH: return DRFLAC_NO_NETWORK;
|
|
#endif
|
|
#ifdef ENETRESET
|
|
case ENETRESET: return DRFLAC_NO_NETWORK;
|
|
#endif
|
|
#ifdef ECONNABORTED
|
|
case ECONNABORTED: return DRFLAC_NO_NETWORK;
|
|
#endif
|
|
#ifdef ECONNRESET
|
|
case ECONNRESET: return DRFLAC_CONNECTION_RESET;
|
|
#endif
|
|
#ifdef ENOBUFS
|
|
case ENOBUFS: return DRFLAC_NO_SPACE;
|
|
#endif
|
|
#ifdef EISCONN
|
|
case EISCONN: return DRFLAC_ALREADY_CONNECTED;
|
|
#endif
|
|
#ifdef ENOTCONN
|
|
case ENOTCONN: return DRFLAC_NOT_CONNECTED;
|
|
#endif
|
|
#ifdef ESHUTDOWN
|
|
case ESHUTDOWN: return DRFLAC_ERROR;
|
|
#endif
|
|
#ifdef ETOOMANYREFS
|
|
case ETOOMANYREFS: return DRFLAC_ERROR;
|
|
#endif
|
|
#ifdef ETIMEDOUT
|
|
case ETIMEDOUT: return DRFLAC_TIMEOUT;
|
|
#endif
|
|
#ifdef ECONNREFUSED
|
|
case ECONNREFUSED: return DRFLAC_CONNECTION_REFUSED;
|
|
#endif
|
|
#ifdef EHOSTDOWN
|
|
case EHOSTDOWN: return DRFLAC_NO_HOST;
|
|
#endif
|
|
#ifdef EHOSTUNREACH
|
|
case EHOSTUNREACH: return DRFLAC_NO_HOST;
|
|
#endif
|
|
#ifdef EALREADY
|
|
case EALREADY: return DRFLAC_IN_PROGRESS;
|
|
#endif
|
|
#ifdef EINPROGRESS
|
|
case EINPROGRESS: return DRFLAC_IN_PROGRESS;
|
|
#endif
|
|
#ifdef ESTALE
|
|
case ESTALE: return DRFLAC_INVALID_FILE;
|
|
#endif
|
|
#ifdef EUCLEAN
|
|
case EUCLEAN: return DRFLAC_ERROR;
|
|
#endif
|
|
#ifdef ENOTNAM
|
|
case ENOTNAM: return DRFLAC_ERROR;
|
|
#endif
|
|
#ifdef ENAVAIL
|
|
case ENAVAIL: return DRFLAC_ERROR;
|
|
#endif
|
|
#ifdef EISNAM
|
|
case EISNAM: return DRFLAC_ERROR;
|
|
#endif
|
|
#ifdef EREMOTEIO
|
|
case EREMOTEIO: return DRFLAC_IO_ERROR;
|
|
#endif
|
|
#ifdef EDQUOT
|
|
case EDQUOT: return DRFLAC_NO_SPACE;
|
|
#endif
|
|
#ifdef ENOMEDIUM
|
|
case ENOMEDIUM: return DRFLAC_DOES_NOT_EXIST;
|
|
#endif
|
|
#ifdef EMEDIUMTYPE
|
|
case EMEDIUMTYPE: return DRFLAC_ERROR;
|
|
#endif
|
|
#ifdef ECANCELED
|
|
case ECANCELED: return DRFLAC_CANCELLED;
|
|
#endif
|
|
#ifdef ENOKEY
|
|
case ENOKEY: return DRFLAC_ERROR;
|
|
#endif
|
|
#ifdef EKEYEXPIRED
|
|
case EKEYEXPIRED: return DRFLAC_ERROR;
|
|
#endif
|
|
#ifdef EKEYREVOKED
|
|
case EKEYREVOKED: return DRFLAC_ERROR;
|
|
#endif
|
|
#ifdef EKEYREJECTED
|
|
case EKEYREJECTED: return DRFLAC_ERROR;
|
|
#endif
|
|
#ifdef EOWNERDEAD
|
|
case EOWNERDEAD: return DRFLAC_ERROR;
|
|
#endif
|
|
#ifdef ENOTRECOVERABLE
|
|
case ENOTRECOVERABLE: return DRFLAC_ERROR;
|
|
#endif
|
|
#ifdef ERFKILL
|
|
case ERFKILL: return DRFLAC_ERROR;
|
|
#endif
|
|
#ifdef EHWPOISON
|
|
case EHWPOISON: return DRFLAC_ERROR;
|
|
#endif
|
|
default: return DRFLAC_ERROR;
|
|
}
|
|
}
|
|
|
|
static drflac_result drflac_fopen(FILE** ppFile, const char* pFilePath, const char* pOpenMode)
|
|
{
|
|
#if _MSC_VER && _MSC_VER >= 1400
|
|
errno_t err;
|
|
#endif
|
|
|
|
if (ppFile != NULL) {
|
|
*ppFile = NULL; /* Safety. */
|
|
}
|
|
|
|
if (pFilePath == NULL || pOpenMode == NULL || ppFile == NULL) {
|
|
return DRFLAC_INVALID_ARGS;
|
|
}
|
|
|
|
#if _MSC_VER && _MSC_VER >= 1400
|
|
err = fopen_s(ppFile, pFilePath, pOpenMode);
|
|
if (err != 0) {
|
|
return drflac_result_from_errno(err);
|
|
}
|
|
#else
|
|
#if defined(_WIN32) || defined(__APPLE__)
|
|
*ppFile = fopen(pFilePath, pOpenMode);
|
|
#else
|
|
#if defined(_FILE_OFFSET_BITS) && _FILE_OFFSET_BITS == 64 && defined(_LARGEFILE64_SOURCE)
|
|
*ppFile = fopen64(pFilePath, pOpenMode);
|
|
#else
|
|
*ppFile = fopen(pFilePath, pOpenMode);
|
|
#endif
|
|
#endif
|
|
if (*ppFile == NULL) {
|
|
drflac_result result = drflac_result_from_errno(errno);
|
|
if (result == DRFLAC_SUCCESS) {
|
|
result = DRFLAC_ERROR; /* Just a safety check to make sure we never ever return success when pFile == NULL. */
|
|
}
|
|
|
|
return result;
|
|
}
|
|
#endif
|
|
|
|
return DRFLAC_SUCCESS;
|
|
}
|
|
|
|
/*
|
|
_wfopen() isn't always available in all compilation environments.
|
|
|
|
* Windows only.
|
|
* MSVC seems to support it universally as far back as VC6 from what I can tell (haven't checked further back).
|
|
* MinGW-64 (both 32- and 64-bit) seems to support it.
|
|
* MinGW wraps it in !defined(__STRICT_ANSI__).
|
|
|
|
This can be reviewed as compatibility issues arise. The preference is to use _wfopen_s() and _wfopen() as opposed to the wcsrtombs()
|
|
fallback, so if you notice your compiler not detecting this properly I'm happy to look at adding support.
|
|
*/
|
|
#if defined(_WIN32)
|
|
#if defined(_MSC_VER) || defined(__MINGW64__) || !defined(__STRICT_ANSI__)
|
|
#define DRFLAC_HAS_WFOPEN
|
|
#endif
|
|
#endif
|
|
|
|
static drflac_result drflac_wfopen(FILE** ppFile, const wchar_t* pFilePath, const wchar_t* pOpenMode, const drflac_allocation_callbacks* pAllocationCallbacks)
|
|
{
|
|
if (ppFile != NULL) {
|
|
*ppFile = NULL; /* Safety. */
|
|
}
|
|
|
|
if (pFilePath == NULL || pOpenMode == NULL || ppFile == NULL) {
|
|
return DRFLAC_INVALID_ARGS;
|
|
}
|
|
|
|
#if defined(DRFLAC_HAS_WFOPEN)
|
|
{
|
|
/* Use _wfopen() on Windows. */
|
|
#if defined(_MSC_VER) && _MSC_VER >= 1400
|
|
errno_t err = _wfopen_s(ppFile, pFilePath, pOpenMode);
|
|
if (err != 0) {
|
|
return drflac_result_from_errno(err);
|
|
}
|
|
#else
|
|
*ppFile = _wfopen(pFilePath, pOpenMode);
|
|
if (*ppFile == NULL) {
|
|
return drflac_result_from_errno(errno);
|
|
}
|
|
#endif
|
|
(void)pAllocationCallbacks;
|
|
}
|
|
#else
|
|
/*
|
|
Use fopen() on anything other than Windows. Requires a conversion. This is annoying because fopen() is locale specific. The only real way I can
|
|
think of to do this is with wcsrtombs(). Note that wcstombs() is apparently not thread-safe because it uses a static global mbstate_t object for
|
|
maintaining state. I've checked this with -std=c89 and it works, but if somebody get's a compiler error I'll look into improving compatibility.
|
|
*/
|
|
{
|
|
mbstate_t mbs;
|
|
size_t lenMB;
|
|
const wchar_t* pFilePathTemp = pFilePath;
|
|
char* pFilePathMB = NULL;
|
|
char pOpenModeMB[32] = {0};
|
|
|
|
/* Get the length first. */
|
|
DRFLAC_ZERO_OBJECT(&mbs);
|
|
lenMB = wcsrtombs(NULL, &pFilePathTemp, 0, &mbs);
|
|
if (lenMB == (size_t)-1) {
|
|
return drflac_result_from_errno(errno);
|
|
}
|
|
|
|
pFilePathMB = (char*)drflac__malloc_from_callbacks(lenMB + 1, pAllocationCallbacks);
|
|
if (pFilePathMB == NULL) {
|
|
return DRFLAC_OUT_OF_MEMORY;
|
|
}
|
|
|
|
pFilePathTemp = pFilePath;
|
|
DRFLAC_ZERO_OBJECT(&mbs);
|
|
wcsrtombs(pFilePathMB, &pFilePathTemp, lenMB + 1, &mbs);
|
|
|
|
/* The open mode should always consist of ASCII characters so we should be able to do a trivial conversion. */
|
|
{
|
|
size_t i = 0;
|
|
for (;;) {
|
|
if (pOpenMode[i] == 0) {
|
|
pOpenModeMB[i] = '\0';
|
|
break;
|
|
}
|
|
|
|
pOpenModeMB[i] = (char)pOpenMode[i];
|
|
i += 1;
|
|
}
|
|
}
|
|
|
|
*ppFile = fopen(pFilePathMB, pOpenModeMB);
|
|
|
|
drflac__free_from_callbacks(pFilePathMB, pAllocationCallbacks);
|
|
}
|
|
|
|
if (*ppFile == NULL) {
|
|
return DRFLAC_ERROR;
|
|
}
|
|
#endif
|
|
|
|
return DRFLAC_SUCCESS;
|
|
}
|
|
|
|
static size_t drflac__on_read_stdio(void* pUserData, void* bufferOut, size_t bytesToRead)
|
|
{
|
|
return fread(bufferOut, 1, bytesToRead, (FILE*)pUserData);
|
|
}
|
|
|
|
static drflac_bool32 drflac__on_seek_stdio(void* pUserData, int offset, drflac_seek_origin origin)
|
|
{
|
|
DRFLAC_ASSERT(offset >= 0); /* <-- Never seek backwards. */
|
|
|
|
return fseek((FILE*)pUserData, offset, (origin == drflac_seek_origin_current) ? SEEK_CUR : SEEK_SET) == 0;
|
|
}
|
|
|
|
|
|
DRFLAC_API drflac* drflac_open_file(const char* pFileName, const drflac_allocation_callbacks* pAllocationCallbacks)
|
|
{
|
|
drflac* pFlac;
|
|
FILE* pFile;
|
|
|
|
if (drflac_fopen(&pFile, pFileName, "rb") != DRFLAC_SUCCESS) {
|
|
return NULL;
|
|
}
|
|
|
|
pFlac = drflac_open(drflac__on_read_stdio, drflac__on_seek_stdio, (void*)pFile, pAllocationCallbacks);
|
|
if (pFlac == NULL) {
|
|
fclose(pFile);
|
|
return NULL;
|
|
}
|
|
|
|
return pFlac;
|
|
}
|
|
|
|
DRFLAC_API drflac* drflac_open_file_w(const wchar_t* pFileName, const drflac_allocation_callbacks* pAllocationCallbacks)
|
|
{
|
|
drflac* pFlac;
|
|
FILE* pFile;
|
|
|
|
if (drflac_wfopen(&pFile, pFileName, L"rb", pAllocationCallbacks) != DRFLAC_SUCCESS) {
|
|
return NULL;
|
|
}
|
|
|
|
pFlac = drflac_open(drflac__on_read_stdio, drflac__on_seek_stdio, (void*)pFile, pAllocationCallbacks);
|
|
if (pFlac == NULL) {
|
|
fclose(pFile);
|
|
return NULL;
|
|
}
|
|
|
|
return pFlac;
|
|
}
|
|
|
|
DRFLAC_API drflac* drflac_open_file_with_metadata(const char* pFileName, drflac_meta_proc onMeta, void* pUserData, const drflac_allocation_callbacks* pAllocationCallbacks)
|
|
{
|
|
drflac* pFlac;
|
|
FILE* pFile;
|
|
|
|
if (drflac_fopen(&pFile, pFileName, "rb") != DRFLAC_SUCCESS) {
|
|
return NULL;
|
|
}
|
|
|
|
pFlac = drflac_open_with_metadata_private(drflac__on_read_stdio, drflac__on_seek_stdio, onMeta, drflac_container_unknown, (void*)pFile, pUserData, pAllocationCallbacks);
|
|
if (pFlac == NULL) {
|
|
fclose(pFile);
|
|
return pFlac;
|
|
}
|
|
|
|
return pFlac;
|
|
}
|
|
|
|
DRFLAC_API drflac* drflac_open_file_with_metadata_w(const wchar_t* pFileName, drflac_meta_proc onMeta, void* pUserData, const drflac_allocation_callbacks* pAllocationCallbacks)
|
|
{
|
|
drflac* pFlac;
|
|
FILE* pFile;
|
|
|
|
if (drflac_wfopen(&pFile, pFileName, L"rb", pAllocationCallbacks) != DRFLAC_SUCCESS) {
|
|
return NULL;
|
|
}
|
|
|
|
pFlac = drflac_open_with_metadata_private(drflac__on_read_stdio, drflac__on_seek_stdio, onMeta, drflac_container_unknown, (void*)pFile, pUserData, pAllocationCallbacks);
|
|
if (pFlac == NULL) {
|
|
fclose(pFile);
|
|
return pFlac;
|
|
}
|
|
|
|
return pFlac;
|
|
}
|
|
#endif /* DR_FLAC_NO_STDIO */
|
|
|
|
static size_t drflac__on_read_memory(void* pUserData, void* bufferOut, size_t bytesToRead)
|
|
{
|
|
drflac__memory_stream* memoryStream = (drflac__memory_stream*)pUserData;
|
|
size_t bytesRemaining;
|
|
|
|
DRFLAC_ASSERT(memoryStream != NULL);
|
|
DRFLAC_ASSERT(memoryStream->dataSize >= memoryStream->currentReadPos);
|
|
|
|
bytesRemaining = memoryStream->dataSize - memoryStream->currentReadPos;
|
|
if (bytesToRead > bytesRemaining) {
|
|
bytesToRead = bytesRemaining;
|
|
}
|
|
|
|
if (bytesToRead > 0) {
|
|
DRFLAC_COPY_MEMORY(bufferOut, memoryStream->data + memoryStream->currentReadPos, bytesToRead);
|
|
memoryStream->currentReadPos += bytesToRead;
|
|
}
|
|
|
|
return bytesToRead;
|
|
}
|
|
|
|
static drflac_bool32 drflac__on_seek_memory(void* pUserData, int offset, drflac_seek_origin origin)
|
|
{
|
|
drflac__memory_stream* memoryStream = (drflac__memory_stream*)pUserData;
|
|
|
|
DRFLAC_ASSERT(memoryStream != NULL);
|
|
DRFLAC_ASSERT(offset >= 0); /* <-- Never seek backwards. */
|
|
|
|
if (offset > (drflac_int64)memoryStream->dataSize) {
|
|
return DRFLAC_FALSE;
|
|
}
|
|
|
|
if (origin == drflac_seek_origin_current) {
|
|
if (memoryStream->currentReadPos + offset <= memoryStream->dataSize) {
|
|
memoryStream->currentReadPos += offset;
|
|
} else {
|
|
return DRFLAC_FALSE; /* Trying to seek too far forward. */
|
|
}
|
|
} else {
|
|
if ((drflac_uint32)offset <= memoryStream->dataSize) {
|
|
memoryStream->currentReadPos = offset;
|
|
} else {
|
|
return DRFLAC_FALSE; /* Trying to seek too far forward. */
|
|
}
|
|
}
|
|
|
|
return DRFLAC_TRUE;
|
|
}
|
|
|
|
DRFLAC_API drflac* drflac_open_memory(const void* pData, size_t dataSize, const drflac_allocation_callbacks* pAllocationCallbacks)
|
|
{
|
|
drflac__memory_stream memoryStream;
|
|
drflac* pFlac;
|
|
|
|
memoryStream.data = (const drflac_uint8*)pData;
|
|
memoryStream.dataSize = dataSize;
|
|
memoryStream.currentReadPos = 0;
|
|
pFlac = drflac_open(drflac__on_read_memory, drflac__on_seek_memory, &memoryStream, pAllocationCallbacks);
|
|
if (pFlac == NULL) {
|
|
return NULL;
|
|
}
|
|
|
|
pFlac->memoryStream = memoryStream;
|
|
|
|
/* This is an awful hack... */
|
|
#ifndef DR_FLAC_NO_OGG
|
|
if (pFlac->container == drflac_container_ogg)
|
|
{
|
|
drflac_oggbs* oggbs = (drflac_oggbs*)pFlac->_oggbs;
|
|
oggbs->pUserData = &pFlac->memoryStream;
|
|
}
|
|
else
|
|
#endif
|
|
{
|
|
pFlac->bs.pUserData = &pFlac->memoryStream;
|
|
}
|
|
|
|
return pFlac;
|
|
}
|
|
|
|
DRFLAC_API drflac* drflac_open_memory_with_metadata(const void* pData, size_t dataSize, drflac_meta_proc onMeta, void* pUserData, const drflac_allocation_callbacks* pAllocationCallbacks)
|
|
{
|
|
drflac__memory_stream memoryStream;
|
|
drflac* pFlac;
|
|
|
|
memoryStream.data = (const drflac_uint8*)pData;
|
|
memoryStream.dataSize = dataSize;
|
|
memoryStream.currentReadPos = 0;
|
|
pFlac = drflac_open_with_metadata_private(drflac__on_read_memory, drflac__on_seek_memory, onMeta, drflac_container_unknown, &memoryStream, pUserData, pAllocationCallbacks);
|
|
if (pFlac == NULL) {
|
|
return NULL;
|
|
}
|
|
|
|
pFlac->memoryStream = memoryStream;
|
|
|
|
/* This is an awful hack... */
|
|
#ifndef DR_FLAC_NO_OGG
|
|
if (pFlac->container == drflac_container_ogg)
|
|
{
|
|
drflac_oggbs* oggbs = (drflac_oggbs*)pFlac->_oggbs;
|
|
oggbs->pUserData = &pFlac->memoryStream;
|
|
}
|
|
else
|
|
#endif
|
|
{
|
|
pFlac->bs.pUserData = &pFlac->memoryStream;
|
|
}
|
|
|
|
return pFlac;
|
|
}
|
|
|
|
|
|
|
|
DRFLAC_API drflac* drflac_open(drflac_read_proc onRead, drflac_seek_proc onSeek, void* pUserData, const drflac_allocation_callbacks* pAllocationCallbacks)
|
|
{
|
|
return drflac_open_with_metadata_private(onRead, onSeek, NULL, drflac_container_unknown, pUserData, pUserData, pAllocationCallbacks);
|
|
}
|
|
DRFLAC_API drflac* drflac_open_relaxed(drflac_read_proc onRead, drflac_seek_proc onSeek, drflac_container container, void* pUserData, const drflac_allocation_callbacks* pAllocationCallbacks)
|
|
{
|
|
return drflac_open_with_metadata_private(onRead, onSeek, NULL, container, pUserData, pUserData, pAllocationCallbacks);
|
|
}
|
|
|
|
DRFLAC_API drflac* drflac_open_with_metadata(drflac_read_proc onRead, drflac_seek_proc onSeek, drflac_meta_proc onMeta, void* pUserData, const drflac_allocation_callbacks* pAllocationCallbacks)
|
|
{
|
|
return drflac_open_with_metadata_private(onRead, onSeek, onMeta, drflac_container_unknown, pUserData, pUserData, pAllocationCallbacks);
|
|
}
|
|
DRFLAC_API drflac* drflac_open_with_metadata_relaxed(drflac_read_proc onRead, drflac_seek_proc onSeek, drflac_meta_proc onMeta, drflac_container container, void* pUserData, const drflac_allocation_callbacks* pAllocationCallbacks)
|
|
{
|
|
return drflac_open_with_metadata_private(onRead, onSeek, onMeta, container, pUserData, pUserData, pAllocationCallbacks);
|
|
}
|
|
|
|
DRFLAC_API void drflac_close(drflac* pFlac)
|
|
{
|
|
if (pFlac == NULL) {
|
|
return;
|
|
}
|
|
|
|
#ifndef DR_FLAC_NO_STDIO
|
|
/*
|
|
If we opened the file with drflac_open_file() we will want to close the file handle. We can know whether or not drflac_open_file()
|
|
was used by looking at the callbacks.
|
|
*/
|
|
if (pFlac->bs.onRead == drflac__on_read_stdio) {
|
|
fclose((FILE*)pFlac->bs.pUserData);
|
|
}
|
|
|
|
#ifndef DR_FLAC_NO_OGG
|
|
/* Need to clean up Ogg streams a bit differently due to the way the bit streaming is chained. */
|
|
if (pFlac->container == drflac_container_ogg) {
|
|
drflac_oggbs* oggbs = (drflac_oggbs*)pFlac->_oggbs;
|
|
DRFLAC_ASSERT(pFlac->bs.onRead == drflac__on_read_ogg);
|
|
|
|
if (oggbs->onRead == drflac__on_read_stdio) {
|
|
fclose((FILE*)oggbs->pUserData);
|
|
}
|
|
}
|
|
#endif
|
|
#endif
|
|
|
|
drflac__free_from_callbacks(pFlac, &pFlac->allocationCallbacks);
|
|
}
|
|
|
|
|
|
#if 0
|
|
static DRFLAC_INLINE void drflac_read_pcm_frames_s32__decode_left_side__reference(drflac* pFlac, drflac_uint64 frameCount, drflac_uint32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, drflac_int32* pOutputSamples)
|
|
{
|
|
drflac_uint64 i;
|
|
for (i = 0; i < frameCount; ++i) {
|
|
drflac_uint32 left = (drflac_uint32)pInputSamples0[i] << (unusedBitsPerSample + pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample);
|
|
drflac_uint32 side = (drflac_uint32)pInputSamples1[i] << (unusedBitsPerSample + pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample);
|
|
drflac_uint32 right = left - side;
|
|
|
|
pOutputSamples[i*2+0] = (drflac_int32)left;
|
|
pOutputSamples[i*2+1] = (drflac_int32)right;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
static DRFLAC_INLINE void drflac_read_pcm_frames_s32__decode_left_side__scalar(drflac* pFlac, drflac_uint64 frameCount, drflac_uint32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, drflac_int32* pOutputSamples)
|
|
{
|
|
drflac_uint64 i;
|
|
drflac_uint64 frameCount4 = frameCount >> 2;
|
|
const drflac_uint32* pInputSamples0U32 = (const drflac_uint32*)pInputSamples0;
|
|
const drflac_uint32* pInputSamples1U32 = (const drflac_uint32*)pInputSamples1;
|
|
drflac_uint32 shift0 = unusedBitsPerSample + pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample;
|
|
drflac_uint32 shift1 = unusedBitsPerSample + pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample;
|
|
|
|
for (i = 0; i < frameCount4; ++i) {
|
|
drflac_uint32 left0 = pInputSamples0U32[i*4+0] << shift0;
|
|
drflac_uint32 left1 = pInputSamples0U32[i*4+1] << shift0;
|
|
drflac_uint32 left2 = pInputSamples0U32[i*4+2] << shift0;
|
|
drflac_uint32 left3 = pInputSamples0U32[i*4+3] << shift0;
|
|
|
|
drflac_uint32 side0 = pInputSamples1U32[i*4+0] << shift1;
|
|
drflac_uint32 side1 = pInputSamples1U32[i*4+1] << shift1;
|
|
drflac_uint32 side2 = pInputSamples1U32[i*4+2] << shift1;
|
|
drflac_uint32 side3 = pInputSamples1U32[i*4+3] << shift1;
|
|
|
|
drflac_uint32 right0 = left0 - side0;
|
|
drflac_uint32 right1 = left1 - side1;
|
|
drflac_uint32 right2 = left2 - side2;
|
|
drflac_uint32 right3 = left3 - side3;
|
|
|
|
pOutputSamples[i*8+0] = (drflac_int32)left0;
|
|
pOutputSamples[i*8+1] = (drflac_int32)right0;
|
|
pOutputSamples[i*8+2] = (drflac_int32)left1;
|
|
pOutputSamples[i*8+3] = (drflac_int32)right1;
|
|
pOutputSamples[i*8+4] = (drflac_int32)left2;
|
|
pOutputSamples[i*8+5] = (drflac_int32)right2;
|
|
pOutputSamples[i*8+6] = (drflac_int32)left3;
|
|
pOutputSamples[i*8+7] = (drflac_int32)right3;
|
|
}
|
|
|
|
for (i = (frameCount4 << 2); i < frameCount; ++i) {
|
|
drflac_uint32 left = pInputSamples0U32[i] << shift0;
|
|
drflac_uint32 side = pInputSamples1U32[i] << shift1;
|
|
drflac_uint32 right = left - side;
|
|
|
|
pOutputSamples[i*2+0] = (drflac_int32)left;
|
|
pOutputSamples[i*2+1] = (drflac_int32)right;
|
|
}
|
|
}
|
|
|
|
#if defined(DRFLAC_SUPPORT_SSE2)
|
|
static DRFLAC_INLINE void drflac_read_pcm_frames_s32__decode_left_side__sse2(drflac* pFlac, drflac_uint64 frameCount, drflac_uint32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, drflac_int32* pOutputSamples)
|
|
{
|
|
drflac_uint64 i;
|
|
drflac_uint64 frameCount4 = frameCount >> 2;
|
|
const drflac_uint32* pInputSamples0U32 = (const drflac_uint32*)pInputSamples0;
|
|
const drflac_uint32* pInputSamples1U32 = (const drflac_uint32*)pInputSamples1;
|
|
drflac_uint32 shift0 = unusedBitsPerSample + pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample;
|
|
drflac_uint32 shift1 = unusedBitsPerSample + pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample;
|
|
|
|
DRFLAC_ASSERT(pFlac->bitsPerSample <= 24);
|
|
|
|
for (i = 0; i < frameCount4; ++i) {
|
|
__m128i left = _mm_slli_epi32(_mm_loadu_si128((const __m128i*)pInputSamples0 + i), shift0);
|
|
__m128i side = _mm_slli_epi32(_mm_loadu_si128((const __m128i*)pInputSamples1 + i), shift1);
|
|
__m128i right = _mm_sub_epi32(left, side);
|
|
|
|
_mm_storeu_si128((__m128i*)(pOutputSamples + i*8 + 0), _mm_unpacklo_epi32(left, right));
|
|
_mm_storeu_si128((__m128i*)(pOutputSamples + i*8 + 4), _mm_unpackhi_epi32(left, right));
|
|
}
|
|
|
|
for (i = (frameCount4 << 2); i < frameCount; ++i) {
|
|
drflac_uint32 left = pInputSamples0U32[i] << shift0;
|
|
drflac_uint32 side = pInputSamples1U32[i] << shift1;
|
|
drflac_uint32 right = left - side;
|
|
|
|
pOutputSamples[i*2+0] = (drflac_int32)left;
|
|
pOutputSamples[i*2+1] = (drflac_int32)right;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
#if defined(DRFLAC_SUPPORT_NEON)
|
|
static DRFLAC_INLINE void drflac_read_pcm_frames_s32__decode_left_side__neon(drflac* pFlac, drflac_uint64 frameCount, drflac_uint32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, drflac_int32* pOutputSamples)
|
|
{
|
|
drflac_uint64 i;
|
|
drflac_uint64 frameCount4 = frameCount >> 2;
|
|
const drflac_uint32* pInputSamples0U32 = (const drflac_uint32*)pInputSamples0;
|
|
const drflac_uint32* pInputSamples1U32 = (const drflac_uint32*)pInputSamples1;
|
|
drflac_uint32 shift0 = unusedBitsPerSample + pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample;
|
|
drflac_uint32 shift1 = unusedBitsPerSample + pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample;
|
|
int32x4_t shift0_4;
|
|
int32x4_t shift1_4;
|
|
|
|
DRFLAC_ASSERT(pFlac->bitsPerSample <= 24);
|
|
|
|
shift0_4 = vdupq_n_s32(shift0);
|
|
shift1_4 = vdupq_n_s32(shift1);
|
|
|
|
for (i = 0; i < frameCount4; ++i) {
|
|
uint32x4_t left;
|
|
uint32x4_t side;
|
|
uint32x4_t right;
|
|
|
|
left = vshlq_u32(vld1q_u32(pInputSamples0U32 + i*4), shift0_4);
|
|
side = vshlq_u32(vld1q_u32(pInputSamples1U32 + i*4), shift1_4);
|
|
right = vsubq_u32(left, side);
|
|
|
|
drflac__vst2q_u32((drflac_uint32*)pOutputSamples + i*8, vzipq_u32(left, right));
|
|
}
|
|
|
|
for (i = (frameCount4 << 2); i < frameCount; ++i) {
|
|
drflac_uint32 left = pInputSamples0U32[i] << shift0;
|
|
drflac_uint32 side = pInputSamples1U32[i] << shift1;
|
|
drflac_uint32 right = left - side;
|
|
|
|
pOutputSamples[i*2+0] = (drflac_int32)left;
|
|
pOutputSamples[i*2+1] = (drflac_int32)right;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
static DRFLAC_INLINE void drflac_read_pcm_frames_s32__decode_left_side(drflac* pFlac, drflac_uint64 frameCount, drflac_uint32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, drflac_int32* pOutputSamples)
|
|
{
|
|
#if defined(DRFLAC_SUPPORT_SSE2)
|
|
if (drflac__gIsSSE2Supported && pFlac->bitsPerSample <= 24) {
|
|
drflac_read_pcm_frames_s32__decode_left_side__sse2(pFlac, frameCount, unusedBitsPerSample, pInputSamples0, pInputSamples1, pOutputSamples);
|
|
} else
|
|
#elif defined(DRFLAC_SUPPORT_NEON)
|
|
if (drflac__gIsNEONSupported && pFlac->bitsPerSample <= 24) {
|
|
drflac_read_pcm_frames_s32__decode_left_side__neon(pFlac, frameCount, unusedBitsPerSample, pInputSamples0, pInputSamples1, pOutputSamples);
|
|
} else
|
|
#endif
|
|
{
|
|
/* Scalar fallback. */
|
|
#if 0
|
|
drflac_read_pcm_frames_s32__decode_left_side__reference(pFlac, frameCount, unusedBitsPerSample, pInputSamples0, pInputSamples1, pOutputSamples);
|
|
#else
|
|
drflac_read_pcm_frames_s32__decode_left_side__scalar(pFlac, frameCount, unusedBitsPerSample, pInputSamples0, pInputSamples1, pOutputSamples);
|
|
#endif
|
|
}
|
|
}
|
|
|
|
|
|
#if 0
|
|
static DRFLAC_INLINE void drflac_read_pcm_frames_s32__decode_right_side__reference(drflac* pFlac, drflac_uint64 frameCount, drflac_uint32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, drflac_int32* pOutputSamples)
|
|
{
|
|
drflac_uint64 i;
|
|
for (i = 0; i < frameCount; ++i) {
|
|
drflac_uint32 side = (drflac_uint32)pInputSamples0[i] << (unusedBitsPerSample + pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample);
|
|
drflac_uint32 right = (drflac_uint32)pInputSamples1[i] << (unusedBitsPerSample + pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample);
|
|
drflac_uint32 left = right + side;
|
|
|
|
pOutputSamples[i*2+0] = (drflac_int32)left;
|
|
pOutputSamples[i*2+1] = (drflac_int32)right;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
static DRFLAC_INLINE void drflac_read_pcm_frames_s32__decode_right_side__scalar(drflac* pFlac, drflac_uint64 frameCount, drflac_uint32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, drflac_int32* pOutputSamples)
|
|
{
|
|
drflac_uint64 i;
|
|
drflac_uint64 frameCount4 = frameCount >> 2;
|
|
const drflac_uint32* pInputSamples0U32 = (const drflac_uint32*)pInputSamples0;
|
|
const drflac_uint32* pInputSamples1U32 = (const drflac_uint32*)pInputSamples1;
|
|
drflac_uint32 shift0 = unusedBitsPerSample + pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample;
|
|
drflac_uint32 shift1 = unusedBitsPerSample + pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample;
|
|
|
|
for (i = 0; i < frameCount4; ++i) {
|
|
drflac_uint32 side0 = pInputSamples0U32[i*4+0] << shift0;
|
|
drflac_uint32 side1 = pInputSamples0U32[i*4+1] << shift0;
|
|
drflac_uint32 side2 = pInputSamples0U32[i*4+2] << shift0;
|
|
drflac_uint32 side3 = pInputSamples0U32[i*4+3] << shift0;
|
|
|
|
drflac_uint32 right0 = pInputSamples1U32[i*4+0] << shift1;
|
|
drflac_uint32 right1 = pInputSamples1U32[i*4+1] << shift1;
|
|
drflac_uint32 right2 = pInputSamples1U32[i*4+2] << shift1;
|
|
drflac_uint32 right3 = pInputSamples1U32[i*4+3] << shift1;
|
|
|
|
drflac_uint32 left0 = right0 + side0;
|
|
drflac_uint32 left1 = right1 + side1;
|
|
drflac_uint32 left2 = right2 + side2;
|
|
drflac_uint32 left3 = right3 + side3;
|
|
|
|
pOutputSamples[i*8+0] = (drflac_int32)left0;
|
|
pOutputSamples[i*8+1] = (drflac_int32)right0;
|
|
pOutputSamples[i*8+2] = (drflac_int32)left1;
|
|
pOutputSamples[i*8+3] = (drflac_int32)right1;
|
|
pOutputSamples[i*8+4] = (drflac_int32)left2;
|
|
pOutputSamples[i*8+5] = (drflac_int32)right2;
|
|
pOutputSamples[i*8+6] = (drflac_int32)left3;
|
|
pOutputSamples[i*8+7] = (drflac_int32)right3;
|
|
}
|
|
|
|
for (i = (frameCount4 << 2); i < frameCount; ++i) {
|
|
drflac_uint32 side = pInputSamples0U32[i] << shift0;
|
|
drflac_uint32 right = pInputSamples1U32[i] << shift1;
|
|
drflac_uint32 left = right + side;
|
|
|
|
pOutputSamples[i*2+0] = (drflac_int32)left;
|
|
pOutputSamples[i*2+1] = (drflac_int32)right;
|
|
}
|
|
}
|
|
|
|
#if defined(DRFLAC_SUPPORT_SSE2)
|
|
static DRFLAC_INLINE void drflac_read_pcm_frames_s32__decode_right_side__sse2(drflac* pFlac, drflac_uint64 frameCount, drflac_uint32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, drflac_int32* pOutputSamples)
|
|
{
|
|
drflac_uint64 i;
|
|
drflac_uint64 frameCount4 = frameCount >> 2;
|
|
const drflac_uint32* pInputSamples0U32 = (const drflac_uint32*)pInputSamples0;
|
|
const drflac_uint32* pInputSamples1U32 = (const drflac_uint32*)pInputSamples1;
|
|
drflac_uint32 shift0 = unusedBitsPerSample + pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample;
|
|
drflac_uint32 shift1 = unusedBitsPerSample + pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample;
|
|
|
|
DRFLAC_ASSERT(pFlac->bitsPerSample <= 24);
|
|
|
|
for (i = 0; i < frameCount4; ++i) {
|
|
__m128i side = _mm_slli_epi32(_mm_loadu_si128((const __m128i*)pInputSamples0 + i), shift0);
|
|
__m128i right = _mm_slli_epi32(_mm_loadu_si128((const __m128i*)pInputSamples1 + i), shift1);
|
|
__m128i left = _mm_add_epi32(right, side);
|
|
|
|
_mm_storeu_si128((__m128i*)(pOutputSamples + i*8 + 0), _mm_unpacklo_epi32(left, right));
|
|
_mm_storeu_si128((__m128i*)(pOutputSamples + i*8 + 4), _mm_unpackhi_epi32(left, right));
|
|
}
|
|
|
|
for (i = (frameCount4 << 2); i < frameCount; ++i) {
|
|
drflac_uint32 side = pInputSamples0U32[i] << shift0;
|
|
drflac_uint32 right = pInputSamples1U32[i] << shift1;
|
|
drflac_uint32 left = right + side;
|
|
|
|
pOutputSamples[i*2+0] = (drflac_int32)left;
|
|
pOutputSamples[i*2+1] = (drflac_int32)right;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
#if defined(DRFLAC_SUPPORT_NEON)
|
|
static DRFLAC_INLINE void drflac_read_pcm_frames_s32__decode_right_side__neon(drflac* pFlac, drflac_uint64 frameCount, drflac_uint32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, drflac_int32* pOutputSamples)
|
|
{
|
|
drflac_uint64 i;
|
|
drflac_uint64 frameCount4 = frameCount >> 2;
|
|
const drflac_uint32* pInputSamples0U32 = (const drflac_uint32*)pInputSamples0;
|
|
const drflac_uint32* pInputSamples1U32 = (const drflac_uint32*)pInputSamples1;
|
|
drflac_uint32 shift0 = unusedBitsPerSample + pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample;
|
|
drflac_uint32 shift1 = unusedBitsPerSample + pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample;
|
|
int32x4_t shift0_4;
|
|
int32x4_t shift1_4;
|
|
|
|
DRFLAC_ASSERT(pFlac->bitsPerSample <= 24);
|
|
|
|
shift0_4 = vdupq_n_s32(shift0);
|
|
shift1_4 = vdupq_n_s32(shift1);
|
|
|
|
for (i = 0; i < frameCount4; ++i) {
|
|
uint32x4_t side;
|
|
uint32x4_t right;
|
|
uint32x4_t left;
|
|
|
|
side = vshlq_u32(vld1q_u32(pInputSamples0U32 + i*4), shift0_4);
|
|
right = vshlq_u32(vld1q_u32(pInputSamples1U32 + i*4), shift1_4);
|
|
left = vaddq_u32(right, side);
|
|
|
|
drflac__vst2q_u32((drflac_uint32*)pOutputSamples + i*8, vzipq_u32(left, right));
|
|
}
|
|
|
|
for (i = (frameCount4 << 2); i < frameCount; ++i) {
|
|
drflac_uint32 side = pInputSamples0U32[i] << shift0;
|
|
drflac_uint32 right = pInputSamples1U32[i] << shift1;
|
|
drflac_uint32 left = right + side;
|
|
|
|
pOutputSamples[i*2+0] = (drflac_int32)left;
|
|
pOutputSamples[i*2+1] = (drflac_int32)right;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
static DRFLAC_INLINE void drflac_read_pcm_frames_s32__decode_right_side(drflac* pFlac, drflac_uint64 frameCount, drflac_uint32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, drflac_int32* pOutputSamples)
|
|
{
|
|
#if defined(DRFLAC_SUPPORT_SSE2)
|
|
if (drflac__gIsSSE2Supported && pFlac->bitsPerSample <= 24) {
|
|
drflac_read_pcm_frames_s32__decode_right_side__sse2(pFlac, frameCount, unusedBitsPerSample, pInputSamples0, pInputSamples1, pOutputSamples);
|
|
} else
|
|
#elif defined(DRFLAC_SUPPORT_NEON)
|
|
if (drflac__gIsNEONSupported && pFlac->bitsPerSample <= 24) {
|
|
drflac_read_pcm_frames_s32__decode_right_side__neon(pFlac, frameCount, unusedBitsPerSample, pInputSamples0, pInputSamples1, pOutputSamples);
|
|
} else
|
|
#endif
|
|
{
|
|
/* Scalar fallback. */
|
|
#if 0
|
|
drflac_read_pcm_frames_s32__decode_right_side__reference(pFlac, frameCount, unusedBitsPerSample, pInputSamples0, pInputSamples1, pOutputSamples);
|
|
#else
|
|
drflac_read_pcm_frames_s32__decode_right_side__scalar(pFlac, frameCount, unusedBitsPerSample, pInputSamples0, pInputSamples1, pOutputSamples);
|
|
#endif
|
|
}
|
|
}
|
|
|
|
|
|
#if 0
|
|
static DRFLAC_INLINE void drflac_read_pcm_frames_s32__decode_mid_side__reference(drflac* pFlac, drflac_uint64 frameCount, drflac_uint32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, drflac_int32* pOutputSamples)
|
|
{
|
|
for (drflac_uint64 i = 0; i < frameCount; ++i) {
|
|
drflac_uint32 mid = pInputSamples0U32[i] << pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample;
|
|
drflac_uint32 side = pInputSamples1U32[i] << pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample;
|
|
|
|
mid = (mid << 1) | (side & 0x01);
|
|
|
|
pOutputSamples[i*2+0] = (drflac_int32)((drflac_uint32)((drflac_int32)(mid + side) >> 1) << unusedBitsPerSample);
|
|
pOutputSamples[i*2+1] = (drflac_int32)((drflac_uint32)((drflac_int32)(mid - side) >> 1) << unusedBitsPerSample);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
static DRFLAC_INLINE void drflac_read_pcm_frames_s32__decode_mid_side__scalar(drflac* pFlac, drflac_uint64 frameCount, drflac_uint32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, drflac_int32* pOutputSamples)
|
|
{
|
|
drflac_uint64 i;
|
|
drflac_uint64 frameCount4 = frameCount >> 2;
|
|
const drflac_uint32* pInputSamples0U32 = (const drflac_uint32*)pInputSamples0;
|
|
const drflac_uint32* pInputSamples1U32 = (const drflac_uint32*)pInputSamples1;
|
|
drflac_int32 shift = unusedBitsPerSample;
|
|
|
|
if (shift > 0) {
|
|
shift -= 1;
|
|
for (i = 0; i < frameCount4; ++i) {
|
|
drflac_uint32 temp0L;
|
|
drflac_uint32 temp1L;
|
|
drflac_uint32 temp2L;
|
|
drflac_uint32 temp3L;
|
|
drflac_uint32 temp0R;
|
|
drflac_uint32 temp1R;
|
|
drflac_uint32 temp2R;
|
|
drflac_uint32 temp3R;
|
|
|
|
drflac_uint32 mid0 = pInputSamples0U32[i*4+0] << pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample;
|
|
drflac_uint32 mid1 = pInputSamples0U32[i*4+1] << pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample;
|
|
drflac_uint32 mid2 = pInputSamples0U32[i*4+2] << pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample;
|
|
drflac_uint32 mid3 = pInputSamples0U32[i*4+3] << pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample;
|
|
|
|
drflac_uint32 side0 = pInputSamples1U32[i*4+0] << pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample;
|
|
drflac_uint32 side1 = pInputSamples1U32[i*4+1] << pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample;
|
|
drflac_uint32 side2 = pInputSamples1U32[i*4+2] << pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample;
|
|
drflac_uint32 side3 = pInputSamples1U32[i*4+3] << pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample;
|
|
|
|
mid0 = (mid0 << 1) | (side0 & 0x01);
|
|
mid1 = (mid1 << 1) | (side1 & 0x01);
|
|
mid2 = (mid2 << 1) | (side2 & 0x01);
|
|
mid3 = (mid3 << 1) | (side3 & 0x01);
|
|
|
|
temp0L = (mid0 + side0) << shift;
|
|
temp1L = (mid1 + side1) << shift;
|
|
temp2L = (mid2 + side2) << shift;
|
|
temp3L = (mid3 + side3) << shift;
|
|
|
|
temp0R = (mid0 - side0) << shift;
|
|
temp1R = (mid1 - side1) << shift;
|
|
temp2R = (mid2 - side2) << shift;
|
|
temp3R = (mid3 - side3) << shift;
|
|
|
|
pOutputSamples[i*8+0] = (drflac_int32)temp0L;
|
|
pOutputSamples[i*8+1] = (drflac_int32)temp0R;
|
|
pOutputSamples[i*8+2] = (drflac_int32)temp1L;
|
|
pOutputSamples[i*8+3] = (drflac_int32)temp1R;
|
|
pOutputSamples[i*8+4] = (drflac_int32)temp2L;
|
|
pOutputSamples[i*8+5] = (drflac_int32)temp2R;
|
|
pOutputSamples[i*8+6] = (drflac_int32)temp3L;
|
|
pOutputSamples[i*8+7] = (drflac_int32)temp3R;
|
|
}
|
|
} else {
|
|
for (i = 0; i < frameCount4; ++i) {
|
|
drflac_uint32 temp0L;
|
|
drflac_uint32 temp1L;
|
|
drflac_uint32 temp2L;
|
|
drflac_uint32 temp3L;
|
|
drflac_uint32 temp0R;
|
|
drflac_uint32 temp1R;
|
|
drflac_uint32 temp2R;
|
|
drflac_uint32 temp3R;
|
|
|
|
drflac_uint32 mid0 = pInputSamples0U32[i*4+0] << pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample;
|
|
drflac_uint32 mid1 = pInputSamples0U32[i*4+1] << pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample;
|
|
drflac_uint32 mid2 = pInputSamples0U32[i*4+2] << pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample;
|
|
drflac_uint32 mid3 = pInputSamples0U32[i*4+3] << pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample;
|
|
|
|
drflac_uint32 side0 = pInputSamples1U32[i*4+0] << pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample;
|
|
drflac_uint32 side1 = pInputSamples1U32[i*4+1] << pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample;
|
|
drflac_uint32 side2 = pInputSamples1U32[i*4+2] << pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample;
|
|
drflac_uint32 side3 = pInputSamples1U32[i*4+3] << pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample;
|
|
|
|
mid0 = (mid0 << 1) | (side0 & 0x01);
|
|
mid1 = (mid1 << 1) | (side1 & 0x01);
|
|
mid2 = (mid2 << 1) | (side2 & 0x01);
|
|
mid3 = (mid3 << 1) | (side3 & 0x01);
|
|
|
|
temp0L = (drflac_uint32)((drflac_int32)(mid0 + side0) >> 1);
|
|
temp1L = (drflac_uint32)((drflac_int32)(mid1 + side1) >> 1);
|
|
temp2L = (drflac_uint32)((drflac_int32)(mid2 + side2) >> 1);
|
|
temp3L = (drflac_uint32)((drflac_int32)(mid3 + side3) >> 1);
|
|
|
|
temp0R = (drflac_uint32)((drflac_int32)(mid0 - side0) >> 1);
|
|
temp1R = (drflac_uint32)((drflac_int32)(mid1 - side1) >> 1);
|
|
temp2R = (drflac_uint32)((drflac_int32)(mid2 - side2) >> 1);
|
|
temp3R = (drflac_uint32)((drflac_int32)(mid3 - side3) >> 1);
|
|
|
|
pOutputSamples[i*8+0] = (drflac_int32)temp0L;
|
|
pOutputSamples[i*8+1] = (drflac_int32)temp0R;
|
|
pOutputSamples[i*8+2] = (drflac_int32)temp1L;
|
|
pOutputSamples[i*8+3] = (drflac_int32)temp1R;
|
|
pOutputSamples[i*8+4] = (drflac_int32)temp2L;
|
|
pOutputSamples[i*8+5] = (drflac_int32)temp2R;
|
|
pOutputSamples[i*8+6] = (drflac_int32)temp3L;
|
|
pOutputSamples[i*8+7] = (drflac_int32)temp3R;
|
|
}
|
|
}
|
|
|
|
for (i = (frameCount4 << 2); i < frameCount; ++i) {
|
|
drflac_uint32 mid = pInputSamples0U32[i] << pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample;
|
|
drflac_uint32 side = pInputSamples1U32[i] << pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample;
|
|
|
|
mid = (mid << 1) | (side & 0x01);
|
|
|
|
pOutputSamples[i*2+0] = (drflac_int32)((drflac_uint32)((drflac_int32)(mid + side) >> 1) << unusedBitsPerSample);
|
|
pOutputSamples[i*2+1] = (drflac_int32)((drflac_uint32)((drflac_int32)(mid - side) >> 1) << unusedBitsPerSample);
|
|
}
|
|
}
|
|
|
|
#if defined(DRFLAC_SUPPORT_SSE2)
|
|
static DRFLAC_INLINE void drflac_read_pcm_frames_s32__decode_mid_side__sse2(drflac* pFlac, drflac_uint64 frameCount, drflac_uint32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, drflac_int32* pOutputSamples)
|
|
{
|
|
drflac_uint64 i;
|
|
drflac_uint64 frameCount4 = frameCount >> 2;
|
|
const drflac_uint32* pInputSamples0U32 = (const drflac_uint32*)pInputSamples0;
|
|
const drflac_uint32* pInputSamples1U32 = (const drflac_uint32*)pInputSamples1;
|
|
drflac_int32 shift = unusedBitsPerSample;
|
|
|
|
DRFLAC_ASSERT(pFlac->bitsPerSample <= 24);
|
|
|
|
if (shift == 0) {
|
|
for (i = 0; i < frameCount4; ++i) {
|
|
__m128i mid;
|
|
__m128i side;
|
|
__m128i left;
|
|
__m128i right;
|
|
|
|
mid = _mm_slli_epi32(_mm_loadu_si128((const __m128i*)pInputSamples0 + i), pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample);
|
|
side = _mm_slli_epi32(_mm_loadu_si128((const __m128i*)pInputSamples1 + i), pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample);
|
|
|
|
mid = _mm_or_si128(_mm_slli_epi32(mid, 1), _mm_and_si128(side, _mm_set1_epi32(0x01)));
|
|
|
|
left = _mm_srai_epi32(_mm_add_epi32(mid, side), 1);
|
|
right = _mm_srai_epi32(_mm_sub_epi32(mid, side), 1);
|
|
|
|
_mm_storeu_si128((__m128i*)(pOutputSamples + i*8 + 0), _mm_unpacklo_epi32(left, right));
|
|
_mm_storeu_si128((__m128i*)(pOutputSamples + i*8 + 4), _mm_unpackhi_epi32(left, right));
|
|
}
|
|
|
|
for (i = (frameCount4 << 2); i < frameCount; ++i) {
|
|
drflac_uint32 mid = pInputSamples0U32[i] << pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample;
|
|
drflac_uint32 side = pInputSamples1U32[i] << pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample;
|
|
|
|
mid = (mid << 1) | (side & 0x01);
|
|
|
|
pOutputSamples[i*2+0] = (drflac_int32)(mid + side) >> 1;
|
|
pOutputSamples[i*2+1] = (drflac_int32)(mid - side) >> 1;
|
|
}
|
|
} else {
|
|
shift -= 1;
|
|
for (i = 0; i < frameCount4; ++i) {
|
|
__m128i mid;
|
|
__m128i side;
|
|
__m128i left;
|
|
__m128i right;
|
|
|
|
mid = _mm_slli_epi32(_mm_loadu_si128((const __m128i*)pInputSamples0 + i), pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample);
|
|
side = _mm_slli_epi32(_mm_loadu_si128((const __m128i*)pInputSamples1 + i), pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample);
|
|
|
|
mid = _mm_or_si128(_mm_slli_epi32(mid, 1), _mm_and_si128(side, _mm_set1_epi32(0x01)));
|
|
|
|
left = _mm_slli_epi32(_mm_add_epi32(mid, side), shift);
|
|
right = _mm_slli_epi32(_mm_sub_epi32(mid, side), shift);
|
|
|
|
_mm_storeu_si128((__m128i*)(pOutputSamples + i*8 + 0), _mm_unpacklo_epi32(left, right));
|
|
_mm_storeu_si128((__m128i*)(pOutputSamples + i*8 + 4), _mm_unpackhi_epi32(left, right));
|
|
}
|
|
|
|
for (i = (frameCount4 << 2); i < frameCount; ++i) {
|
|
drflac_uint32 mid = pInputSamples0U32[i] << pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample;
|
|
drflac_uint32 side = pInputSamples1U32[i] << pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample;
|
|
|
|
mid = (mid << 1) | (side & 0x01);
|
|
|
|
pOutputSamples[i*2+0] = (drflac_int32)((mid + side) << shift);
|
|
pOutputSamples[i*2+1] = (drflac_int32)((mid - side) << shift);
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
|
|
#if defined(DRFLAC_SUPPORT_NEON)
|
|
static DRFLAC_INLINE void drflac_read_pcm_frames_s32__decode_mid_side__neon(drflac* pFlac, drflac_uint64 frameCount, drflac_uint32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, drflac_int32* pOutputSamples)
|
|
{
|
|
drflac_uint64 i;
|
|
drflac_uint64 frameCount4 = frameCount >> 2;
|
|
const drflac_uint32* pInputSamples0U32 = (const drflac_uint32*)pInputSamples0;
|
|
const drflac_uint32* pInputSamples1U32 = (const drflac_uint32*)pInputSamples1;
|
|
drflac_int32 shift = unusedBitsPerSample;
|
|
int32x4_t wbpsShift0_4; /* wbps = Wasted Bits Per Sample */
|
|
int32x4_t wbpsShift1_4; /* wbps = Wasted Bits Per Sample */
|
|
uint32x4_t one4;
|
|
|
|
DRFLAC_ASSERT(pFlac->bitsPerSample <= 24);
|
|
|
|
wbpsShift0_4 = vdupq_n_s32(pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample);
|
|
wbpsShift1_4 = vdupq_n_s32(pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample);
|
|
one4 = vdupq_n_u32(1);
|
|
|
|
if (shift == 0) {
|
|
for (i = 0; i < frameCount4; ++i) {
|
|
uint32x4_t mid;
|
|
uint32x4_t side;
|
|
int32x4_t left;
|
|
int32x4_t right;
|
|
|
|
mid = vshlq_u32(vld1q_u32(pInputSamples0U32 + i*4), wbpsShift0_4);
|
|
side = vshlq_u32(vld1q_u32(pInputSamples1U32 + i*4), wbpsShift1_4);
|
|
|
|
mid = vorrq_u32(vshlq_n_u32(mid, 1), vandq_u32(side, one4));
|
|
|
|
left = vshrq_n_s32(vreinterpretq_s32_u32(vaddq_u32(mid, side)), 1);
|
|
right = vshrq_n_s32(vreinterpretq_s32_u32(vsubq_u32(mid, side)), 1);
|
|
|
|
drflac__vst2q_s32(pOutputSamples + i*8, vzipq_s32(left, right));
|
|
}
|
|
|
|
for (i = (frameCount4 << 2); i < frameCount; ++i) {
|
|
drflac_uint32 mid = pInputSamples0U32[i] << pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample;
|
|
drflac_uint32 side = pInputSamples1U32[i] << pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample;
|
|
|
|
mid = (mid << 1) | (side & 0x01);
|
|
|
|
pOutputSamples[i*2+0] = (drflac_int32)(mid + side) >> 1;
|
|
pOutputSamples[i*2+1] = (drflac_int32)(mid - side) >> 1;
|
|
}
|
|
} else {
|
|
int32x4_t shift4;
|
|
|
|
shift -= 1;
|
|
shift4 = vdupq_n_s32(shift);
|
|
|
|
for (i = 0; i < frameCount4; ++i) {
|
|
uint32x4_t mid;
|
|
uint32x4_t side;
|
|
int32x4_t left;
|
|
int32x4_t right;
|
|
|
|
mid = vshlq_u32(vld1q_u32(pInputSamples0U32 + i*4), wbpsShift0_4);
|
|
side = vshlq_u32(vld1q_u32(pInputSamples1U32 + i*4), wbpsShift1_4);
|
|
|
|
mid = vorrq_u32(vshlq_n_u32(mid, 1), vandq_u32(side, one4));
|
|
|
|
left = vreinterpretq_s32_u32(vshlq_u32(vaddq_u32(mid, side), shift4));
|
|
right = vreinterpretq_s32_u32(vshlq_u32(vsubq_u32(mid, side), shift4));
|
|
|
|
drflac__vst2q_s32(pOutputSamples + i*8, vzipq_s32(left, right));
|
|
}
|
|
|
|
for (i = (frameCount4 << 2); i < frameCount; ++i) {
|
|
drflac_uint32 mid = pInputSamples0U32[i] << pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample;
|
|
drflac_uint32 side = pInputSamples1U32[i] << pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample;
|
|
|
|
mid = (mid << 1) | (side & 0x01);
|
|
|
|
pOutputSamples[i*2+0] = (drflac_int32)((mid + side) << shift);
|
|
pOutputSamples[i*2+1] = (drflac_int32)((mid - side) << shift);
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
|
|
static DRFLAC_INLINE void drflac_read_pcm_frames_s32__decode_mid_side(drflac* pFlac, drflac_uint64 frameCount, drflac_uint32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, drflac_int32* pOutputSamples)
|
|
{
|
|
#if defined(DRFLAC_SUPPORT_SSE2)
|
|
if (drflac__gIsSSE2Supported && pFlac->bitsPerSample <= 24) {
|
|
drflac_read_pcm_frames_s32__decode_mid_side__sse2(pFlac, frameCount, unusedBitsPerSample, pInputSamples0, pInputSamples1, pOutputSamples);
|
|
} else
|
|
#elif defined(DRFLAC_SUPPORT_NEON)
|
|
if (drflac__gIsNEONSupported && pFlac->bitsPerSample <= 24) {
|
|
drflac_read_pcm_frames_s32__decode_mid_side__neon(pFlac, frameCount, unusedBitsPerSample, pInputSamples0, pInputSamples1, pOutputSamples);
|
|
} else
|
|
#endif
|
|
{
|
|
/* Scalar fallback. */
|
|
#if 0
|
|
drflac_read_pcm_frames_s32__decode_mid_side__reference(pFlac, frameCount, unusedBitsPerSample, pInputSamples0, pInputSamples1, pOutputSamples);
|
|
#else
|
|
drflac_read_pcm_frames_s32__decode_mid_side__scalar(pFlac, frameCount, unusedBitsPerSample, pInputSamples0, pInputSamples1, pOutputSamples);
|
|
#endif
|
|
}
|
|
}
|
|
|
|
|
|
#if 0
|
|
static DRFLAC_INLINE void drflac_read_pcm_frames_s32__decode_independent_stereo__reference(drflac* pFlac, drflac_uint64 frameCount, drflac_uint32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, drflac_int32* pOutputSamples)
|
|
{
|
|
for (drflac_uint64 i = 0; i < frameCount; ++i) {
|
|
pOutputSamples[i*2+0] = (drflac_int32)((drflac_uint32)pInputSamples0[i] << (unusedBitsPerSample + pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample));
|
|
pOutputSamples[i*2+1] = (drflac_int32)((drflac_uint32)pInputSamples1[i] << (unusedBitsPerSample + pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample));
|
|
}
|
|
}
|
|
#endif
|
|
|
|
static DRFLAC_INLINE void drflac_read_pcm_frames_s32__decode_independent_stereo__scalar(drflac* pFlac, drflac_uint64 frameCount, drflac_uint32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, drflac_int32* pOutputSamples)
|
|
{
|
|
drflac_uint64 i;
|
|
drflac_uint64 frameCount4 = frameCount >> 2;
|
|
const drflac_uint32* pInputSamples0U32 = (const drflac_uint32*)pInputSamples0;
|
|
const drflac_uint32* pInputSamples1U32 = (const drflac_uint32*)pInputSamples1;
|
|
drflac_uint32 shift0 = unusedBitsPerSample + pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample;
|
|
drflac_uint32 shift1 = unusedBitsPerSample + pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample;
|
|
|
|
for (i = 0; i < frameCount4; ++i) {
|
|
drflac_uint32 tempL0 = pInputSamples0U32[i*4+0] << shift0;
|
|
drflac_uint32 tempL1 = pInputSamples0U32[i*4+1] << shift0;
|
|
drflac_uint32 tempL2 = pInputSamples0U32[i*4+2] << shift0;
|
|
drflac_uint32 tempL3 = pInputSamples0U32[i*4+3] << shift0;
|
|
|
|
drflac_uint32 tempR0 = pInputSamples1U32[i*4+0] << shift1;
|
|
drflac_uint32 tempR1 = pInputSamples1U32[i*4+1] << shift1;
|
|
drflac_uint32 tempR2 = pInputSamples1U32[i*4+2] << shift1;
|
|
drflac_uint32 tempR3 = pInputSamples1U32[i*4+3] << shift1;
|
|
|
|
pOutputSamples[i*8+0] = (drflac_int32)tempL0;
|
|
pOutputSamples[i*8+1] = (drflac_int32)tempR0;
|
|
pOutputSamples[i*8+2] = (drflac_int32)tempL1;
|
|
pOutputSamples[i*8+3] = (drflac_int32)tempR1;
|
|
pOutputSamples[i*8+4] = (drflac_int32)tempL2;
|
|
pOutputSamples[i*8+5] = (drflac_int32)tempR2;
|
|
pOutputSamples[i*8+6] = (drflac_int32)tempL3;
|
|
pOutputSamples[i*8+7] = (drflac_int32)tempR3;
|
|
}
|
|
|
|
for (i = (frameCount4 << 2); i < frameCount; ++i) {
|
|
pOutputSamples[i*2+0] = (drflac_int32)(pInputSamples0U32[i] << shift0);
|
|
pOutputSamples[i*2+1] = (drflac_int32)(pInputSamples1U32[i] << shift1);
|
|
}
|
|
}
|
|
|
|
#if defined(DRFLAC_SUPPORT_SSE2)
|
|
static DRFLAC_INLINE void drflac_read_pcm_frames_s32__decode_independent_stereo__sse2(drflac* pFlac, drflac_uint64 frameCount, drflac_uint32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, drflac_int32* pOutputSamples)
|
|
{
|
|
drflac_uint64 i;
|
|
drflac_uint64 frameCount4 = frameCount >> 2;
|
|
const drflac_uint32* pInputSamples0U32 = (const drflac_uint32*)pInputSamples0;
|
|
const drflac_uint32* pInputSamples1U32 = (const drflac_uint32*)pInputSamples1;
|
|
drflac_uint32 shift0 = unusedBitsPerSample + pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample;
|
|
drflac_uint32 shift1 = unusedBitsPerSample + pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample;
|
|
|
|
for (i = 0; i < frameCount4; ++i) {
|
|
__m128i left = _mm_slli_epi32(_mm_loadu_si128((const __m128i*)pInputSamples0 + i), shift0);
|
|
__m128i right = _mm_slli_epi32(_mm_loadu_si128((const __m128i*)pInputSamples1 + i), shift1);
|
|
|
|
_mm_storeu_si128((__m128i*)(pOutputSamples + i*8 + 0), _mm_unpacklo_epi32(left, right));
|
|
_mm_storeu_si128((__m128i*)(pOutputSamples + i*8 + 4), _mm_unpackhi_epi32(left, right));
|
|
}
|
|
|
|
for (i = (frameCount4 << 2); i < frameCount; ++i) {
|
|
pOutputSamples[i*2+0] = (drflac_int32)(pInputSamples0U32[i] << shift0);
|
|
pOutputSamples[i*2+1] = (drflac_int32)(pInputSamples1U32[i] << shift1);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
#if defined(DRFLAC_SUPPORT_NEON)
|
|
static DRFLAC_INLINE void drflac_read_pcm_frames_s32__decode_independent_stereo__neon(drflac* pFlac, drflac_uint64 frameCount, drflac_uint32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, drflac_int32* pOutputSamples)
|
|
{
|
|
drflac_uint64 i;
|
|
drflac_uint64 frameCount4 = frameCount >> 2;
|
|
const drflac_uint32* pInputSamples0U32 = (const drflac_uint32*)pInputSamples0;
|
|
const drflac_uint32* pInputSamples1U32 = (const drflac_uint32*)pInputSamples1;
|
|
drflac_uint32 shift0 = unusedBitsPerSample + pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample;
|
|
drflac_uint32 shift1 = unusedBitsPerSample + pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample;
|
|
|
|
int32x4_t shift4_0 = vdupq_n_s32(shift0);
|
|
int32x4_t shift4_1 = vdupq_n_s32(shift1);
|
|
|
|
for (i = 0; i < frameCount4; ++i) {
|
|
int32x4_t left;
|
|
int32x4_t right;
|
|
|
|
left = vreinterpretq_s32_u32(vshlq_u32(vld1q_u32(pInputSamples0U32 + i*4), shift4_0));
|
|
right = vreinterpretq_s32_u32(vshlq_u32(vld1q_u32(pInputSamples1U32 + i*4), shift4_1));
|
|
|
|
drflac__vst2q_s32(pOutputSamples + i*8, vzipq_s32(left, right));
|
|
}
|
|
|
|
for (i = (frameCount4 << 2); i < frameCount; ++i) {
|
|
pOutputSamples[i*2+0] = (drflac_int32)(pInputSamples0U32[i] << shift0);
|
|
pOutputSamples[i*2+1] = (drflac_int32)(pInputSamples1U32[i] << shift1);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
static DRFLAC_INLINE void drflac_read_pcm_frames_s32__decode_independent_stereo(drflac* pFlac, drflac_uint64 frameCount, drflac_uint32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, drflac_int32* pOutputSamples)
|
|
{
|
|
#if defined(DRFLAC_SUPPORT_SSE2)
|
|
if (drflac__gIsSSE2Supported && pFlac->bitsPerSample <= 24) {
|
|
drflac_read_pcm_frames_s32__decode_independent_stereo__sse2(pFlac, frameCount, unusedBitsPerSample, pInputSamples0, pInputSamples1, pOutputSamples);
|
|
} else
|
|
#elif defined(DRFLAC_SUPPORT_NEON)
|
|
if (drflac__gIsNEONSupported && pFlac->bitsPerSample <= 24) {
|
|
drflac_read_pcm_frames_s32__decode_independent_stereo__neon(pFlac, frameCount, unusedBitsPerSample, pInputSamples0, pInputSamples1, pOutputSamples);
|
|
} else
|
|
#endif
|
|
{
|
|
/* Scalar fallback. */
|
|
#if 0
|
|
drflac_read_pcm_frames_s32__decode_independent_stereo__reference(pFlac, frameCount, unusedBitsPerSample, pInputSamples0, pInputSamples1, pOutputSamples);
|
|
#else
|
|
drflac_read_pcm_frames_s32__decode_independent_stereo__scalar(pFlac, frameCount, unusedBitsPerSample, pInputSamples0, pInputSamples1, pOutputSamples);
|
|
#endif
|
|
}
|
|
}
|
|
|
|
|
|
DRFLAC_API drflac_uint64 drflac_read_pcm_frames_s32(drflac* pFlac, drflac_uint64 framesToRead, drflac_int32* pBufferOut)
|
|
{
|
|
drflac_uint64 framesRead;
|
|
drflac_uint32 unusedBitsPerSample;
|
|
|
|
if (pFlac == NULL || framesToRead == 0) {
|
|
return 0;
|
|
}
|
|
|
|
if (pBufferOut == NULL) {
|
|
return drflac__seek_forward_by_pcm_frames(pFlac, framesToRead);
|
|
}
|
|
|
|
DRFLAC_ASSERT(pFlac->bitsPerSample <= 32);
|
|
unusedBitsPerSample = 32 - pFlac->bitsPerSample;
|
|
|
|
framesRead = 0;
|
|
while (framesToRead > 0) {
|
|
/* If we've run out of samples in this frame, go to the next. */
|
|
if (pFlac->currentFLACFrame.pcmFramesRemaining == 0) {
|
|
if (!drflac__read_and_decode_next_flac_frame(pFlac)) {
|
|
break; /* Couldn't read the next frame, so just break from the loop and return. */
|
|
}
|
|
} else {
|
|
unsigned int channelCount = drflac__get_channel_count_from_channel_assignment(pFlac->currentFLACFrame.header.channelAssignment);
|
|
drflac_uint64 iFirstPCMFrame = pFlac->currentFLACFrame.header.blockSizeInPCMFrames - pFlac->currentFLACFrame.pcmFramesRemaining;
|
|
drflac_uint64 frameCountThisIteration = framesToRead;
|
|
|
|
if (frameCountThisIteration > pFlac->currentFLACFrame.pcmFramesRemaining) {
|
|
frameCountThisIteration = pFlac->currentFLACFrame.pcmFramesRemaining;
|
|
}
|
|
|
|
if (channelCount == 2) {
|
|
const drflac_int32* pDecodedSamples0 = pFlac->currentFLACFrame.subframes[0].pSamplesS32 + iFirstPCMFrame;
|
|
const drflac_int32* pDecodedSamples1 = pFlac->currentFLACFrame.subframes[1].pSamplesS32 + iFirstPCMFrame;
|
|
|
|
switch (pFlac->currentFLACFrame.header.channelAssignment)
|
|
{
|
|
case DRFLAC_CHANNEL_ASSIGNMENT_LEFT_SIDE:
|
|
{
|
|
drflac_read_pcm_frames_s32__decode_left_side(pFlac, frameCountThisIteration, unusedBitsPerSample, pDecodedSamples0, pDecodedSamples1, pBufferOut);
|
|
} break;
|
|
|
|
case DRFLAC_CHANNEL_ASSIGNMENT_RIGHT_SIDE:
|
|
{
|
|
drflac_read_pcm_frames_s32__decode_right_side(pFlac, frameCountThisIteration, unusedBitsPerSample, pDecodedSamples0, pDecodedSamples1, pBufferOut);
|
|
} break;
|
|
|
|
case DRFLAC_CHANNEL_ASSIGNMENT_MID_SIDE:
|
|
{
|
|
drflac_read_pcm_frames_s32__decode_mid_side(pFlac, frameCountThisIteration, unusedBitsPerSample, pDecodedSamples0, pDecodedSamples1, pBufferOut);
|
|
} break;
|
|
|
|
case DRFLAC_CHANNEL_ASSIGNMENT_INDEPENDENT:
|
|
default:
|
|
{
|
|
drflac_read_pcm_frames_s32__decode_independent_stereo(pFlac, frameCountThisIteration, unusedBitsPerSample, pDecodedSamples0, pDecodedSamples1, pBufferOut);
|
|
} break;
|
|
}
|
|
} else {
|
|
/* Generic interleaving. */
|
|
drflac_uint64 i;
|
|
for (i = 0; i < frameCountThisIteration; ++i) {
|
|
unsigned int j;
|
|
for (j = 0; j < channelCount; ++j) {
|
|
pBufferOut[(i*channelCount)+j] = (drflac_int32)((drflac_uint32)(pFlac->currentFLACFrame.subframes[j].pSamplesS32[iFirstPCMFrame + i]) << (unusedBitsPerSample + pFlac->currentFLACFrame.subframes[j].wastedBitsPerSample));
|
|
}
|
|
}
|
|
}
|
|
|
|
framesRead += frameCountThisIteration;
|
|
pBufferOut += frameCountThisIteration * channelCount;
|
|
framesToRead -= frameCountThisIteration;
|
|
pFlac->currentPCMFrame += frameCountThisIteration;
|
|
pFlac->currentFLACFrame.pcmFramesRemaining -= (drflac_uint32)frameCountThisIteration;
|
|
}
|
|
}
|
|
|
|
return framesRead;
|
|
}
|
|
|
|
|
|
#if 0
|
|
static DRFLAC_INLINE void drflac_read_pcm_frames_s16__decode_left_side__reference(drflac* pFlac, drflac_uint64 frameCount, drflac_uint32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, drflac_int16* pOutputSamples)
|
|
{
|
|
drflac_uint64 i;
|
|
for (i = 0; i < frameCount; ++i) {
|
|
drflac_uint32 left = (drflac_uint32)pInputSamples0[i] << (unusedBitsPerSample + pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample);
|
|
drflac_uint32 side = (drflac_uint32)pInputSamples1[i] << (unusedBitsPerSample + pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample);
|
|
drflac_uint32 right = left - side;
|
|
|
|
left >>= 16;
|
|
right >>= 16;
|
|
|
|
pOutputSamples[i*2+0] = (drflac_int16)left;
|
|
pOutputSamples[i*2+1] = (drflac_int16)right;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
static DRFLAC_INLINE void drflac_read_pcm_frames_s16__decode_left_side__scalar(drflac* pFlac, drflac_uint64 frameCount, drflac_uint32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, drflac_int16* pOutputSamples)
|
|
{
|
|
drflac_uint64 i;
|
|
drflac_uint64 frameCount4 = frameCount >> 2;
|
|
const drflac_uint32* pInputSamples0U32 = (const drflac_uint32*)pInputSamples0;
|
|
const drflac_uint32* pInputSamples1U32 = (const drflac_uint32*)pInputSamples1;
|
|
drflac_uint32 shift0 = unusedBitsPerSample + pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample;
|
|
drflac_uint32 shift1 = unusedBitsPerSample + pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample;
|
|
|
|
for (i = 0; i < frameCount4; ++i) {
|
|
drflac_uint32 left0 = pInputSamples0U32[i*4+0] << shift0;
|
|
drflac_uint32 left1 = pInputSamples0U32[i*4+1] << shift0;
|
|
drflac_uint32 left2 = pInputSamples0U32[i*4+2] << shift0;
|
|
drflac_uint32 left3 = pInputSamples0U32[i*4+3] << shift0;
|
|
|
|
drflac_uint32 side0 = pInputSamples1U32[i*4+0] << shift1;
|
|
drflac_uint32 side1 = pInputSamples1U32[i*4+1] << shift1;
|
|
drflac_uint32 side2 = pInputSamples1U32[i*4+2] << shift1;
|
|
drflac_uint32 side3 = pInputSamples1U32[i*4+3] << shift1;
|
|
|
|
drflac_uint32 right0 = left0 - side0;
|
|
drflac_uint32 right1 = left1 - side1;
|
|
drflac_uint32 right2 = left2 - side2;
|
|
drflac_uint32 right3 = left3 - side3;
|
|
|
|
left0 >>= 16;
|
|
left1 >>= 16;
|
|
left2 >>= 16;
|
|
left3 >>= 16;
|
|
|
|
right0 >>= 16;
|
|
right1 >>= 16;
|
|
right2 >>= 16;
|
|
right3 >>= 16;
|
|
|
|
pOutputSamples[i*8+0] = (drflac_int16)left0;
|
|
pOutputSamples[i*8+1] = (drflac_int16)right0;
|
|
pOutputSamples[i*8+2] = (drflac_int16)left1;
|
|
pOutputSamples[i*8+3] = (drflac_int16)right1;
|
|
pOutputSamples[i*8+4] = (drflac_int16)left2;
|
|
pOutputSamples[i*8+5] = (drflac_int16)right2;
|
|
pOutputSamples[i*8+6] = (drflac_int16)left3;
|
|
pOutputSamples[i*8+7] = (drflac_int16)right3;
|
|
}
|
|
|
|
for (i = (frameCount4 << 2); i < frameCount; ++i) {
|
|
drflac_uint32 left = pInputSamples0U32[i] << shift0;
|
|
drflac_uint32 side = pInputSamples1U32[i] << shift1;
|
|
drflac_uint32 right = left - side;
|
|
|
|
left >>= 16;
|
|
right >>= 16;
|
|
|
|
pOutputSamples[i*2+0] = (drflac_int16)left;
|
|
pOutputSamples[i*2+1] = (drflac_int16)right;
|
|
}
|
|
}
|
|
|
|
#if defined(DRFLAC_SUPPORT_SSE2)
|
|
static DRFLAC_INLINE void drflac_read_pcm_frames_s16__decode_left_side__sse2(drflac* pFlac, drflac_uint64 frameCount, drflac_uint32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, drflac_int16* pOutputSamples)
|
|
{
|
|
drflac_uint64 i;
|
|
drflac_uint64 frameCount4 = frameCount >> 2;
|
|
const drflac_uint32* pInputSamples0U32 = (const drflac_uint32*)pInputSamples0;
|
|
const drflac_uint32* pInputSamples1U32 = (const drflac_uint32*)pInputSamples1;
|
|
drflac_uint32 shift0 = unusedBitsPerSample + pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample;
|
|
drflac_uint32 shift1 = unusedBitsPerSample + pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample;
|
|
|
|
DRFLAC_ASSERT(pFlac->bitsPerSample <= 24);
|
|
|
|
for (i = 0; i < frameCount4; ++i) {
|
|
__m128i left = _mm_slli_epi32(_mm_loadu_si128((const __m128i*)pInputSamples0 + i), shift0);
|
|
__m128i side = _mm_slli_epi32(_mm_loadu_si128((const __m128i*)pInputSamples1 + i), shift1);
|
|
__m128i right = _mm_sub_epi32(left, side);
|
|
|
|
left = _mm_srai_epi32(left, 16);
|
|
right = _mm_srai_epi32(right, 16);
|
|
|
|
_mm_storeu_si128((__m128i*)(pOutputSamples + i*8), drflac__mm_packs_interleaved_epi32(left, right));
|
|
}
|
|
|
|
for (i = (frameCount4 << 2); i < frameCount; ++i) {
|
|
drflac_uint32 left = pInputSamples0U32[i] << shift0;
|
|
drflac_uint32 side = pInputSamples1U32[i] << shift1;
|
|
drflac_uint32 right = left - side;
|
|
|
|
left >>= 16;
|
|
right >>= 16;
|
|
|
|
pOutputSamples[i*2+0] = (drflac_int16)left;
|
|
pOutputSamples[i*2+1] = (drflac_int16)right;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
#if defined(DRFLAC_SUPPORT_NEON)
|
|
static DRFLAC_INLINE void drflac_read_pcm_frames_s16__decode_left_side__neon(drflac* pFlac, drflac_uint64 frameCount, drflac_uint32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, drflac_int16* pOutputSamples)
|
|
{
|
|
drflac_uint64 i;
|
|
drflac_uint64 frameCount4 = frameCount >> 2;
|
|
const drflac_uint32* pInputSamples0U32 = (const drflac_uint32*)pInputSamples0;
|
|
const drflac_uint32* pInputSamples1U32 = (const drflac_uint32*)pInputSamples1;
|
|
drflac_uint32 shift0 = unusedBitsPerSample + pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample;
|
|
drflac_uint32 shift1 = unusedBitsPerSample + pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample;
|
|
int32x4_t shift0_4;
|
|
int32x4_t shift1_4;
|
|
|
|
DRFLAC_ASSERT(pFlac->bitsPerSample <= 24);
|
|
|
|
shift0_4 = vdupq_n_s32(shift0);
|
|
shift1_4 = vdupq_n_s32(shift1);
|
|
|
|
for (i = 0; i < frameCount4; ++i) {
|
|
uint32x4_t left;
|
|
uint32x4_t side;
|
|
uint32x4_t right;
|
|
|
|
left = vshlq_u32(vld1q_u32(pInputSamples0U32 + i*4), shift0_4);
|
|
side = vshlq_u32(vld1q_u32(pInputSamples1U32 + i*4), shift1_4);
|
|
right = vsubq_u32(left, side);
|
|
|
|
left = vshrq_n_u32(left, 16);
|
|
right = vshrq_n_u32(right, 16);
|
|
|
|
drflac__vst2q_u16((drflac_uint16*)pOutputSamples + i*8, vzip_u16(vmovn_u32(left), vmovn_u32(right)));
|
|
}
|
|
|
|
for (i = (frameCount4 << 2); i < frameCount; ++i) {
|
|
drflac_uint32 left = pInputSamples0U32[i] << shift0;
|
|
drflac_uint32 side = pInputSamples1U32[i] << shift1;
|
|
drflac_uint32 right = left - side;
|
|
|
|
left >>= 16;
|
|
right >>= 16;
|
|
|
|
pOutputSamples[i*2+0] = (drflac_int16)left;
|
|
pOutputSamples[i*2+1] = (drflac_int16)right;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
static DRFLAC_INLINE void drflac_read_pcm_frames_s16__decode_left_side(drflac* pFlac, drflac_uint64 frameCount, drflac_uint32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, drflac_int16* pOutputSamples)
|
|
{
|
|
#if defined(DRFLAC_SUPPORT_SSE2)
|
|
if (drflac__gIsSSE2Supported && pFlac->bitsPerSample <= 24) {
|
|
drflac_read_pcm_frames_s16__decode_left_side__sse2(pFlac, frameCount, unusedBitsPerSample, pInputSamples0, pInputSamples1, pOutputSamples);
|
|
} else
|
|
#elif defined(DRFLAC_SUPPORT_NEON)
|
|
if (drflac__gIsNEONSupported && pFlac->bitsPerSample <= 24) {
|
|
drflac_read_pcm_frames_s16__decode_left_side__neon(pFlac, frameCount, unusedBitsPerSample, pInputSamples0, pInputSamples1, pOutputSamples);
|
|
} else
|
|
#endif
|
|
{
|
|
/* Scalar fallback. */
|
|
#if 0
|
|
drflac_read_pcm_frames_s16__decode_left_side__reference(pFlac, frameCount, unusedBitsPerSample, pInputSamples0, pInputSamples1, pOutputSamples);
|
|
#else
|
|
drflac_read_pcm_frames_s16__decode_left_side__scalar(pFlac, frameCount, unusedBitsPerSample, pInputSamples0, pInputSamples1, pOutputSamples);
|
|
#endif
|
|
}
|
|
}
|
|
|
|
|
|
#if 0
|
|
static DRFLAC_INLINE void drflac_read_pcm_frames_s16__decode_right_side__reference(drflac* pFlac, drflac_uint64 frameCount, drflac_uint32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, drflac_int16* pOutputSamples)
|
|
{
|
|
drflac_uint64 i;
|
|
for (i = 0; i < frameCount; ++i) {
|
|
drflac_uint32 side = (drflac_uint32)pInputSamples0[i] << (unusedBitsPerSample + pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample);
|
|
drflac_uint32 right = (drflac_uint32)pInputSamples1[i] << (unusedBitsPerSample + pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample);
|
|
drflac_uint32 left = right + side;
|
|
|
|
left >>= 16;
|
|
right >>= 16;
|
|
|
|
pOutputSamples[i*2+0] = (drflac_int16)left;
|
|
pOutputSamples[i*2+1] = (drflac_int16)right;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
static DRFLAC_INLINE void drflac_read_pcm_frames_s16__decode_right_side__scalar(drflac* pFlac, drflac_uint64 frameCount, drflac_uint32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, drflac_int16* pOutputSamples)
|
|
{
|
|
drflac_uint64 i;
|
|
drflac_uint64 frameCount4 = frameCount >> 2;
|
|
const drflac_uint32* pInputSamples0U32 = (const drflac_uint32*)pInputSamples0;
|
|
const drflac_uint32* pInputSamples1U32 = (const drflac_uint32*)pInputSamples1;
|
|
drflac_uint32 shift0 = unusedBitsPerSample + pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample;
|
|
drflac_uint32 shift1 = unusedBitsPerSample + pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample;
|
|
|
|
for (i = 0; i < frameCount4; ++i) {
|
|
drflac_uint32 side0 = pInputSamples0U32[i*4+0] << shift0;
|
|
drflac_uint32 side1 = pInputSamples0U32[i*4+1] << shift0;
|
|
drflac_uint32 side2 = pInputSamples0U32[i*4+2] << shift0;
|
|
drflac_uint32 side3 = pInputSamples0U32[i*4+3] << shift0;
|
|
|
|
drflac_uint32 right0 = pInputSamples1U32[i*4+0] << shift1;
|
|
drflac_uint32 right1 = pInputSamples1U32[i*4+1] << shift1;
|
|
drflac_uint32 right2 = pInputSamples1U32[i*4+2] << shift1;
|
|
drflac_uint32 right3 = pInputSamples1U32[i*4+3] << shift1;
|
|
|
|
drflac_uint32 left0 = right0 + side0;
|
|
drflac_uint32 left1 = right1 + side1;
|
|
drflac_uint32 left2 = right2 + side2;
|
|
drflac_uint32 left3 = right3 + side3;
|
|
|
|
left0 >>= 16;
|
|
left1 >>= 16;
|
|
left2 >>= 16;
|
|
left3 >>= 16;
|
|
|
|
right0 >>= 16;
|
|
right1 >>= 16;
|
|
right2 >>= 16;
|
|
right3 >>= 16;
|
|
|
|
pOutputSamples[i*8+0] = (drflac_int16)left0;
|
|
pOutputSamples[i*8+1] = (drflac_int16)right0;
|
|
pOutputSamples[i*8+2] = (drflac_int16)left1;
|
|
pOutputSamples[i*8+3] = (drflac_int16)right1;
|
|
pOutputSamples[i*8+4] = (drflac_int16)left2;
|
|
pOutputSamples[i*8+5] = (drflac_int16)right2;
|
|
pOutputSamples[i*8+6] = (drflac_int16)left3;
|
|
pOutputSamples[i*8+7] = (drflac_int16)right3;
|
|
}
|
|
|
|
for (i = (frameCount4 << 2); i < frameCount; ++i) {
|
|
drflac_uint32 side = pInputSamples0U32[i] << shift0;
|
|
drflac_uint32 right = pInputSamples1U32[i] << shift1;
|
|
drflac_uint32 left = right + side;
|
|
|
|
left >>= 16;
|
|
right >>= 16;
|
|
|
|
pOutputSamples[i*2+0] = (drflac_int16)left;
|
|
pOutputSamples[i*2+1] = (drflac_int16)right;
|
|
}
|
|
}
|
|
|
|
#if defined(DRFLAC_SUPPORT_SSE2)
|
|
static DRFLAC_INLINE void drflac_read_pcm_frames_s16__decode_right_side__sse2(drflac* pFlac, drflac_uint64 frameCount, drflac_uint32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, drflac_int16* pOutputSamples)
|
|
{
|
|
drflac_uint64 i;
|
|
drflac_uint64 frameCount4 = frameCount >> 2;
|
|
const drflac_uint32* pInputSamples0U32 = (const drflac_uint32*)pInputSamples0;
|
|
const drflac_uint32* pInputSamples1U32 = (const drflac_uint32*)pInputSamples1;
|
|
drflac_uint32 shift0 = unusedBitsPerSample + pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample;
|
|
drflac_uint32 shift1 = unusedBitsPerSample + pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample;
|
|
|
|
DRFLAC_ASSERT(pFlac->bitsPerSample <= 24);
|
|
|
|
for (i = 0; i < frameCount4; ++i) {
|
|
__m128i side = _mm_slli_epi32(_mm_loadu_si128((const __m128i*)pInputSamples0 + i), shift0);
|
|
__m128i right = _mm_slli_epi32(_mm_loadu_si128((const __m128i*)pInputSamples1 + i), shift1);
|
|
__m128i left = _mm_add_epi32(right, side);
|
|
|
|
left = _mm_srai_epi32(left, 16);
|
|
right = _mm_srai_epi32(right, 16);
|
|
|
|
_mm_storeu_si128((__m128i*)(pOutputSamples + i*8), drflac__mm_packs_interleaved_epi32(left, right));
|
|
}
|
|
|
|
for (i = (frameCount4 << 2); i < frameCount; ++i) {
|
|
drflac_uint32 side = pInputSamples0U32[i] << shift0;
|
|
drflac_uint32 right = pInputSamples1U32[i] << shift1;
|
|
drflac_uint32 left = right + side;
|
|
|
|
left >>= 16;
|
|
right >>= 16;
|
|
|
|
pOutputSamples[i*2+0] = (drflac_int16)left;
|
|
pOutputSamples[i*2+1] = (drflac_int16)right;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
#if defined(DRFLAC_SUPPORT_NEON)
|
|
static DRFLAC_INLINE void drflac_read_pcm_frames_s16__decode_right_side__neon(drflac* pFlac, drflac_uint64 frameCount, drflac_uint32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, drflac_int16* pOutputSamples)
|
|
{
|
|
drflac_uint64 i;
|
|
drflac_uint64 frameCount4 = frameCount >> 2;
|
|
const drflac_uint32* pInputSamples0U32 = (const drflac_uint32*)pInputSamples0;
|
|
const drflac_uint32* pInputSamples1U32 = (const drflac_uint32*)pInputSamples1;
|
|
drflac_uint32 shift0 = unusedBitsPerSample + pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample;
|
|
drflac_uint32 shift1 = unusedBitsPerSample + pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample;
|
|
int32x4_t shift0_4;
|
|
int32x4_t shift1_4;
|
|
|
|
DRFLAC_ASSERT(pFlac->bitsPerSample <= 24);
|
|
|
|
shift0_4 = vdupq_n_s32(shift0);
|
|
shift1_4 = vdupq_n_s32(shift1);
|
|
|
|
for (i = 0; i < frameCount4; ++i) {
|
|
uint32x4_t side;
|
|
uint32x4_t right;
|
|
uint32x4_t left;
|
|
|
|
side = vshlq_u32(vld1q_u32(pInputSamples0U32 + i*4), shift0_4);
|
|
right = vshlq_u32(vld1q_u32(pInputSamples1U32 + i*4), shift1_4);
|
|
left = vaddq_u32(right, side);
|
|
|
|
left = vshrq_n_u32(left, 16);
|
|
right = vshrq_n_u32(right, 16);
|
|
|
|
drflac__vst2q_u16((drflac_uint16*)pOutputSamples + i*8, vzip_u16(vmovn_u32(left), vmovn_u32(right)));
|
|
}
|
|
|
|
for (i = (frameCount4 << 2); i < frameCount; ++i) {
|
|
drflac_uint32 side = pInputSamples0U32[i] << shift0;
|
|
drflac_uint32 right = pInputSamples1U32[i] << shift1;
|
|
drflac_uint32 left = right + side;
|
|
|
|
left >>= 16;
|
|
right >>= 16;
|
|
|
|
pOutputSamples[i*2+0] = (drflac_int16)left;
|
|
pOutputSamples[i*2+1] = (drflac_int16)right;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
static DRFLAC_INLINE void drflac_read_pcm_frames_s16__decode_right_side(drflac* pFlac, drflac_uint64 frameCount, drflac_uint32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, drflac_int16* pOutputSamples)
|
|
{
|
|
#if defined(DRFLAC_SUPPORT_SSE2)
|
|
if (drflac__gIsSSE2Supported && pFlac->bitsPerSample <= 24) {
|
|
drflac_read_pcm_frames_s16__decode_right_side__sse2(pFlac, frameCount, unusedBitsPerSample, pInputSamples0, pInputSamples1, pOutputSamples);
|
|
} else
|
|
#elif defined(DRFLAC_SUPPORT_NEON)
|
|
if (drflac__gIsNEONSupported && pFlac->bitsPerSample <= 24) {
|
|
drflac_read_pcm_frames_s16__decode_right_side__neon(pFlac, frameCount, unusedBitsPerSample, pInputSamples0, pInputSamples1, pOutputSamples);
|
|
} else
|
|
#endif
|
|
{
|
|
/* Scalar fallback. */
|
|
#if 0
|
|
drflac_read_pcm_frames_s16__decode_right_side__reference(pFlac, frameCount, unusedBitsPerSample, pInputSamples0, pInputSamples1, pOutputSamples);
|
|
#else
|
|
drflac_read_pcm_frames_s16__decode_right_side__scalar(pFlac, frameCount, unusedBitsPerSample, pInputSamples0, pInputSamples1, pOutputSamples);
|
|
#endif
|
|
}
|
|
}
|
|
|
|
|
|
#if 0
|
|
static DRFLAC_INLINE void drflac_read_pcm_frames_s16__decode_mid_side__reference(drflac* pFlac, drflac_uint64 frameCount, drflac_uint32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, drflac_int16* pOutputSamples)
|
|
{
|
|
for (drflac_uint64 i = 0; i < frameCount; ++i) {
|
|
drflac_uint32 mid = (drflac_uint32)pInputSamples0[i] << pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample;
|
|
drflac_uint32 side = (drflac_uint32)pInputSamples1[i] << pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample;
|
|
|
|
mid = (mid << 1) | (side & 0x01);
|
|
|
|
pOutputSamples[i*2+0] = (drflac_int16)(((drflac_uint32)((drflac_int32)(mid + side) >> 1) << unusedBitsPerSample) >> 16);
|
|
pOutputSamples[i*2+1] = (drflac_int16)(((drflac_uint32)((drflac_int32)(mid - side) >> 1) << unusedBitsPerSample) >> 16);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
static DRFLAC_INLINE void drflac_read_pcm_frames_s16__decode_mid_side__scalar(drflac* pFlac, drflac_uint64 frameCount, drflac_uint32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, drflac_int16* pOutputSamples)
|
|
{
|
|
drflac_uint64 i;
|
|
drflac_uint64 frameCount4 = frameCount >> 2;
|
|
const drflac_uint32* pInputSamples0U32 = (const drflac_uint32*)pInputSamples0;
|
|
const drflac_uint32* pInputSamples1U32 = (const drflac_uint32*)pInputSamples1;
|
|
drflac_uint32 shift = unusedBitsPerSample;
|
|
|
|
if (shift > 0) {
|
|
shift -= 1;
|
|
for (i = 0; i < frameCount4; ++i) {
|
|
drflac_uint32 temp0L;
|
|
drflac_uint32 temp1L;
|
|
drflac_uint32 temp2L;
|
|
drflac_uint32 temp3L;
|
|
drflac_uint32 temp0R;
|
|
drflac_uint32 temp1R;
|
|
drflac_uint32 temp2R;
|
|
drflac_uint32 temp3R;
|
|
|
|
drflac_uint32 mid0 = pInputSamples0U32[i*4+0] << pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample;
|
|
drflac_uint32 mid1 = pInputSamples0U32[i*4+1] << pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample;
|
|
drflac_uint32 mid2 = pInputSamples0U32[i*4+2] << pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample;
|
|
drflac_uint32 mid3 = pInputSamples0U32[i*4+3] << pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample;
|
|
|
|
drflac_uint32 side0 = pInputSamples1U32[i*4+0] << pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample;
|
|
drflac_uint32 side1 = pInputSamples1U32[i*4+1] << pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample;
|
|
drflac_uint32 side2 = pInputSamples1U32[i*4+2] << pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample;
|
|
drflac_uint32 side3 = pInputSamples1U32[i*4+3] << pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample;
|
|
|
|
mid0 = (mid0 << 1) | (side0 & 0x01);
|
|
mid1 = (mid1 << 1) | (side1 & 0x01);
|
|
mid2 = (mid2 << 1) | (side2 & 0x01);
|
|
mid3 = (mid3 << 1) | (side3 & 0x01);
|
|
|
|
temp0L = (mid0 + side0) << shift;
|
|
temp1L = (mid1 + side1) << shift;
|
|
temp2L = (mid2 + side2) << shift;
|
|
temp3L = (mid3 + side3) << shift;
|
|
|
|
temp0R = (mid0 - side0) << shift;
|
|
temp1R = (mid1 - side1) << shift;
|
|
temp2R = (mid2 - side2) << shift;
|
|
temp3R = (mid3 - side3) << shift;
|
|
|
|
temp0L >>= 16;
|
|
temp1L >>= 16;
|
|
temp2L >>= 16;
|
|
temp3L >>= 16;
|
|
|
|
temp0R >>= 16;
|
|
temp1R >>= 16;
|
|
temp2R >>= 16;
|
|
temp3R >>= 16;
|
|
|
|
pOutputSamples[i*8+0] = (drflac_int16)temp0L;
|
|
pOutputSamples[i*8+1] = (drflac_int16)temp0R;
|
|
pOutputSamples[i*8+2] = (drflac_int16)temp1L;
|
|
pOutputSamples[i*8+3] = (drflac_int16)temp1R;
|
|
pOutputSamples[i*8+4] = (drflac_int16)temp2L;
|
|
pOutputSamples[i*8+5] = (drflac_int16)temp2R;
|
|
pOutputSamples[i*8+6] = (drflac_int16)temp3L;
|
|
pOutputSamples[i*8+7] = (drflac_int16)temp3R;
|
|
}
|
|
} else {
|
|
for (i = 0; i < frameCount4; ++i) {
|
|
drflac_uint32 temp0L;
|
|
drflac_uint32 temp1L;
|
|
drflac_uint32 temp2L;
|
|
drflac_uint32 temp3L;
|
|
drflac_uint32 temp0R;
|
|
drflac_uint32 temp1R;
|
|
drflac_uint32 temp2R;
|
|
drflac_uint32 temp3R;
|
|
|
|
drflac_uint32 mid0 = pInputSamples0U32[i*4+0] << pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample;
|
|
drflac_uint32 mid1 = pInputSamples0U32[i*4+1] << pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample;
|
|
drflac_uint32 mid2 = pInputSamples0U32[i*4+2] << pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample;
|
|
drflac_uint32 mid3 = pInputSamples0U32[i*4+3] << pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample;
|
|
|
|
drflac_uint32 side0 = pInputSamples1U32[i*4+0] << pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample;
|
|
drflac_uint32 side1 = pInputSamples1U32[i*4+1] << pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample;
|
|
drflac_uint32 side2 = pInputSamples1U32[i*4+2] << pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample;
|
|
drflac_uint32 side3 = pInputSamples1U32[i*4+3] << pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample;
|
|
|
|
mid0 = (mid0 << 1) | (side0 & 0x01);
|
|
mid1 = (mid1 << 1) | (side1 & 0x01);
|
|
mid2 = (mid2 << 1) | (side2 & 0x01);
|
|
mid3 = (mid3 << 1) | (side3 & 0x01);
|
|
|
|
temp0L = ((drflac_int32)(mid0 + side0) >> 1);
|
|
temp1L = ((drflac_int32)(mid1 + side1) >> 1);
|
|
temp2L = ((drflac_int32)(mid2 + side2) >> 1);
|
|
temp3L = ((drflac_int32)(mid3 + side3) >> 1);
|
|
|
|
temp0R = ((drflac_int32)(mid0 - side0) >> 1);
|
|
temp1R = ((drflac_int32)(mid1 - side1) >> 1);
|
|
temp2R = ((drflac_int32)(mid2 - side2) >> 1);
|
|
temp3R = ((drflac_int32)(mid3 - side3) >> 1);
|
|
|
|
temp0L >>= 16;
|
|
temp1L >>= 16;
|
|
temp2L >>= 16;
|
|
temp3L >>= 16;
|
|
|
|
temp0R >>= 16;
|
|
temp1R >>= 16;
|
|
temp2R >>= 16;
|
|
temp3R >>= 16;
|
|
|
|
pOutputSamples[i*8+0] = (drflac_int16)temp0L;
|
|
pOutputSamples[i*8+1] = (drflac_int16)temp0R;
|
|
pOutputSamples[i*8+2] = (drflac_int16)temp1L;
|
|
pOutputSamples[i*8+3] = (drflac_int16)temp1R;
|
|
pOutputSamples[i*8+4] = (drflac_int16)temp2L;
|
|
pOutputSamples[i*8+5] = (drflac_int16)temp2R;
|
|
pOutputSamples[i*8+6] = (drflac_int16)temp3L;
|
|
pOutputSamples[i*8+7] = (drflac_int16)temp3R;
|
|
}
|
|
}
|
|
|
|
for (i = (frameCount4 << 2); i < frameCount; ++i) {
|
|
drflac_uint32 mid = pInputSamples0U32[i] << pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample;
|
|
drflac_uint32 side = pInputSamples1U32[i] << pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample;
|
|
|
|
mid = (mid << 1) | (side & 0x01);
|
|
|
|
pOutputSamples[i*2+0] = (drflac_int16)(((drflac_uint32)((drflac_int32)(mid + side) >> 1) << unusedBitsPerSample) >> 16);
|
|
pOutputSamples[i*2+1] = (drflac_int16)(((drflac_uint32)((drflac_int32)(mid - side) >> 1) << unusedBitsPerSample) >> 16);
|
|
}
|
|
}
|
|
|
|
#if defined(DRFLAC_SUPPORT_SSE2)
|
|
static DRFLAC_INLINE void drflac_read_pcm_frames_s16__decode_mid_side__sse2(drflac* pFlac, drflac_uint64 frameCount, drflac_uint32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, drflac_int16* pOutputSamples)
|
|
{
|
|
drflac_uint64 i;
|
|
drflac_uint64 frameCount4 = frameCount >> 2;
|
|
const drflac_uint32* pInputSamples0U32 = (const drflac_uint32*)pInputSamples0;
|
|
const drflac_uint32* pInputSamples1U32 = (const drflac_uint32*)pInputSamples1;
|
|
drflac_uint32 shift = unusedBitsPerSample;
|
|
|
|
DRFLAC_ASSERT(pFlac->bitsPerSample <= 24);
|
|
|
|
if (shift == 0) {
|
|
for (i = 0; i < frameCount4; ++i) {
|
|
__m128i mid;
|
|
__m128i side;
|
|
__m128i left;
|
|
__m128i right;
|
|
|
|
mid = _mm_slli_epi32(_mm_loadu_si128((const __m128i*)pInputSamples0 + i), pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample);
|
|
side = _mm_slli_epi32(_mm_loadu_si128((const __m128i*)pInputSamples1 + i), pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample);
|
|
|
|
mid = _mm_or_si128(_mm_slli_epi32(mid, 1), _mm_and_si128(side, _mm_set1_epi32(0x01)));
|
|
|
|
left = _mm_srai_epi32(_mm_add_epi32(mid, side), 1);
|
|
right = _mm_srai_epi32(_mm_sub_epi32(mid, side), 1);
|
|
|
|
left = _mm_srai_epi32(left, 16);
|
|
right = _mm_srai_epi32(right, 16);
|
|
|
|
_mm_storeu_si128((__m128i*)(pOutputSamples + i*8), drflac__mm_packs_interleaved_epi32(left, right));
|
|
}
|
|
|
|
for (i = (frameCount4 << 2); i < frameCount; ++i) {
|
|
drflac_uint32 mid = pInputSamples0U32[i] << pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample;
|
|
drflac_uint32 side = pInputSamples1U32[i] << pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample;
|
|
|
|
mid = (mid << 1) | (side & 0x01);
|
|
|
|
pOutputSamples[i*2+0] = (drflac_int16)(((drflac_int32)(mid + side) >> 1) >> 16);
|
|
pOutputSamples[i*2+1] = (drflac_int16)(((drflac_int32)(mid - side) >> 1) >> 16);
|
|
}
|
|
} else {
|
|
shift -= 1;
|
|
for (i = 0; i < frameCount4; ++i) {
|
|
__m128i mid;
|
|
__m128i side;
|
|
__m128i left;
|
|
__m128i right;
|
|
|
|
mid = _mm_slli_epi32(_mm_loadu_si128((const __m128i*)pInputSamples0 + i), pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample);
|
|
side = _mm_slli_epi32(_mm_loadu_si128((const __m128i*)pInputSamples1 + i), pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample);
|
|
|
|
mid = _mm_or_si128(_mm_slli_epi32(mid, 1), _mm_and_si128(side, _mm_set1_epi32(0x01)));
|
|
|
|
left = _mm_slli_epi32(_mm_add_epi32(mid, side), shift);
|
|
right = _mm_slli_epi32(_mm_sub_epi32(mid, side), shift);
|
|
|
|
left = _mm_srai_epi32(left, 16);
|
|
right = _mm_srai_epi32(right, 16);
|
|
|
|
_mm_storeu_si128((__m128i*)(pOutputSamples + i*8), drflac__mm_packs_interleaved_epi32(left, right));
|
|
}
|
|
|
|
for (i = (frameCount4 << 2); i < frameCount; ++i) {
|
|
drflac_uint32 mid = pInputSamples0U32[i] << pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample;
|
|
drflac_uint32 side = pInputSamples1U32[i] << pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample;
|
|
|
|
mid = (mid << 1) | (side & 0x01);
|
|
|
|
pOutputSamples[i*2+0] = (drflac_int16)(((mid + side) << shift) >> 16);
|
|
pOutputSamples[i*2+1] = (drflac_int16)(((mid - side) << shift) >> 16);
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
|
|
#if defined(DRFLAC_SUPPORT_NEON)
|
|
static DRFLAC_INLINE void drflac_read_pcm_frames_s16__decode_mid_side__neon(drflac* pFlac, drflac_uint64 frameCount, drflac_uint32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, drflac_int16* pOutputSamples)
|
|
{
|
|
drflac_uint64 i;
|
|
drflac_uint64 frameCount4 = frameCount >> 2;
|
|
const drflac_uint32* pInputSamples0U32 = (const drflac_uint32*)pInputSamples0;
|
|
const drflac_uint32* pInputSamples1U32 = (const drflac_uint32*)pInputSamples1;
|
|
drflac_uint32 shift = unusedBitsPerSample;
|
|
int32x4_t wbpsShift0_4; /* wbps = Wasted Bits Per Sample */
|
|
int32x4_t wbpsShift1_4; /* wbps = Wasted Bits Per Sample */
|
|
|
|
DRFLAC_ASSERT(pFlac->bitsPerSample <= 24);
|
|
|
|
wbpsShift0_4 = vdupq_n_s32(pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample);
|
|
wbpsShift1_4 = vdupq_n_s32(pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample);
|
|
|
|
if (shift == 0) {
|
|
for (i = 0; i < frameCount4; ++i) {
|
|
uint32x4_t mid;
|
|
uint32x4_t side;
|
|
int32x4_t left;
|
|
int32x4_t right;
|
|
|
|
mid = vshlq_u32(vld1q_u32(pInputSamples0U32 + i*4), wbpsShift0_4);
|
|
side = vshlq_u32(vld1q_u32(pInputSamples1U32 + i*4), wbpsShift1_4);
|
|
|
|
mid = vorrq_u32(vshlq_n_u32(mid, 1), vandq_u32(side, vdupq_n_u32(1)));
|
|
|
|
left = vshrq_n_s32(vreinterpretq_s32_u32(vaddq_u32(mid, side)), 1);
|
|
right = vshrq_n_s32(vreinterpretq_s32_u32(vsubq_u32(mid, side)), 1);
|
|
|
|
left = vshrq_n_s32(left, 16);
|
|
right = vshrq_n_s32(right, 16);
|
|
|
|
drflac__vst2q_s16(pOutputSamples + i*8, vzip_s16(vmovn_s32(left), vmovn_s32(right)));
|
|
}
|
|
|
|
for (i = (frameCount4 << 2); i < frameCount; ++i) {
|
|
drflac_uint32 mid = pInputSamples0U32[i] << pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample;
|
|
drflac_uint32 side = pInputSamples1U32[i] << pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample;
|
|
|
|
mid = (mid << 1) | (side & 0x01);
|
|
|
|
pOutputSamples[i*2+0] = (drflac_int16)(((drflac_int32)(mid + side) >> 1) >> 16);
|
|
pOutputSamples[i*2+1] = (drflac_int16)(((drflac_int32)(mid - side) >> 1) >> 16);
|
|
}
|
|
} else {
|
|
int32x4_t shift4;
|
|
|
|
shift -= 1;
|
|
shift4 = vdupq_n_s32(shift);
|
|
|
|
for (i = 0; i < frameCount4; ++i) {
|
|
uint32x4_t mid;
|
|
uint32x4_t side;
|
|
int32x4_t left;
|
|
int32x4_t right;
|
|
|
|
mid = vshlq_u32(vld1q_u32(pInputSamples0U32 + i*4), wbpsShift0_4);
|
|
side = vshlq_u32(vld1q_u32(pInputSamples1U32 + i*4), wbpsShift1_4);
|
|
|
|
mid = vorrq_u32(vshlq_n_u32(mid, 1), vandq_u32(side, vdupq_n_u32(1)));
|
|
|
|
left = vreinterpretq_s32_u32(vshlq_u32(vaddq_u32(mid, side), shift4));
|
|
right = vreinterpretq_s32_u32(vshlq_u32(vsubq_u32(mid, side), shift4));
|
|
|
|
left = vshrq_n_s32(left, 16);
|
|
right = vshrq_n_s32(right, 16);
|
|
|
|
drflac__vst2q_s16(pOutputSamples + i*8, vzip_s16(vmovn_s32(left), vmovn_s32(right)));
|
|
}
|
|
|
|
for (i = (frameCount4 << 2); i < frameCount; ++i) {
|
|
drflac_uint32 mid = pInputSamples0U32[i] << pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample;
|
|
drflac_uint32 side = pInputSamples1U32[i] << pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample;
|
|
|
|
mid = (mid << 1) | (side & 0x01);
|
|
|
|
pOutputSamples[i*2+0] = (drflac_int16)(((mid + side) << shift) >> 16);
|
|
pOutputSamples[i*2+1] = (drflac_int16)(((mid - side) << shift) >> 16);
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
|
|
static DRFLAC_INLINE void drflac_read_pcm_frames_s16__decode_mid_side(drflac* pFlac, drflac_uint64 frameCount, drflac_uint32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, drflac_int16* pOutputSamples)
|
|
{
|
|
#if defined(DRFLAC_SUPPORT_SSE2)
|
|
if (drflac__gIsSSE2Supported && pFlac->bitsPerSample <= 24) {
|
|
drflac_read_pcm_frames_s16__decode_mid_side__sse2(pFlac, frameCount, unusedBitsPerSample, pInputSamples0, pInputSamples1, pOutputSamples);
|
|
} else
|
|
#elif defined(DRFLAC_SUPPORT_NEON)
|
|
if (drflac__gIsNEONSupported && pFlac->bitsPerSample <= 24) {
|
|
drflac_read_pcm_frames_s16__decode_mid_side__neon(pFlac, frameCount, unusedBitsPerSample, pInputSamples0, pInputSamples1, pOutputSamples);
|
|
} else
|
|
#endif
|
|
{
|
|
/* Scalar fallback. */
|
|
#if 0
|
|
drflac_read_pcm_frames_s16__decode_mid_side__reference(pFlac, frameCount, unusedBitsPerSample, pInputSamples0, pInputSamples1, pOutputSamples);
|
|
#else
|
|
drflac_read_pcm_frames_s16__decode_mid_side__scalar(pFlac, frameCount, unusedBitsPerSample, pInputSamples0, pInputSamples1, pOutputSamples);
|
|
#endif
|
|
}
|
|
}
|
|
|
|
|
|
#if 0
|
|
static DRFLAC_INLINE void drflac_read_pcm_frames_s16__decode_independent_stereo__reference(drflac* pFlac, drflac_uint64 frameCount, drflac_uint32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, drflac_int16* pOutputSamples)
|
|
{
|
|
for (drflac_uint64 i = 0; i < frameCount; ++i) {
|
|
pOutputSamples[i*2+0] = (drflac_int16)((drflac_int32)((drflac_uint32)pInputSamples0[i] << (unusedBitsPerSample + pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample)) >> 16);
|
|
pOutputSamples[i*2+1] = (drflac_int16)((drflac_int32)((drflac_uint32)pInputSamples1[i] << (unusedBitsPerSample + pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample)) >> 16);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
static DRFLAC_INLINE void drflac_read_pcm_frames_s16__decode_independent_stereo__scalar(drflac* pFlac, drflac_uint64 frameCount, drflac_uint32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, drflac_int16* pOutputSamples)
|
|
{
|
|
drflac_uint64 i;
|
|
drflac_uint64 frameCount4 = frameCount >> 2;
|
|
const drflac_uint32* pInputSamples0U32 = (const drflac_uint32*)pInputSamples0;
|
|
const drflac_uint32* pInputSamples1U32 = (const drflac_uint32*)pInputSamples1;
|
|
drflac_uint32 shift0 = unusedBitsPerSample + pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample;
|
|
drflac_uint32 shift1 = unusedBitsPerSample + pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample;
|
|
|
|
for (i = 0; i < frameCount4; ++i) {
|
|
drflac_uint32 tempL0 = pInputSamples0U32[i*4+0] << shift0;
|
|
drflac_uint32 tempL1 = pInputSamples0U32[i*4+1] << shift0;
|
|
drflac_uint32 tempL2 = pInputSamples0U32[i*4+2] << shift0;
|
|
drflac_uint32 tempL3 = pInputSamples0U32[i*4+3] << shift0;
|
|
|
|
drflac_uint32 tempR0 = pInputSamples1U32[i*4+0] << shift1;
|
|
drflac_uint32 tempR1 = pInputSamples1U32[i*4+1] << shift1;
|
|
drflac_uint32 tempR2 = pInputSamples1U32[i*4+2] << shift1;
|
|
drflac_uint32 tempR3 = pInputSamples1U32[i*4+3] << shift1;
|
|
|
|
tempL0 >>= 16;
|
|
tempL1 >>= 16;
|
|
tempL2 >>= 16;
|
|
tempL3 >>= 16;
|
|
|
|
tempR0 >>= 16;
|
|
tempR1 >>= 16;
|
|
tempR2 >>= 16;
|
|
tempR3 >>= 16;
|
|
|
|
pOutputSamples[i*8+0] = (drflac_int16)tempL0;
|
|
pOutputSamples[i*8+1] = (drflac_int16)tempR0;
|
|
pOutputSamples[i*8+2] = (drflac_int16)tempL1;
|
|
pOutputSamples[i*8+3] = (drflac_int16)tempR1;
|
|
pOutputSamples[i*8+4] = (drflac_int16)tempL2;
|
|
pOutputSamples[i*8+5] = (drflac_int16)tempR2;
|
|
pOutputSamples[i*8+6] = (drflac_int16)tempL3;
|
|
pOutputSamples[i*8+7] = (drflac_int16)tempR3;
|
|
}
|
|
|
|
for (i = (frameCount4 << 2); i < frameCount; ++i) {
|
|
pOutputSamples[i*2+0] = (drflac_int16)((pInputSamples0U32[i] << shift0) >> 16);
|
|
pOutputSamples[i*2+1] = (drflac_int16)((pInputSamples1U32[i] << shift1) >> 16);
|
|
}
|
|
}
|
|
|
|
#if defined(DRFLAC_SUPPORT_SSE2)
|
|
static DRFLAC_INLINE void drflac_read_pcm_frames_s16__decode_independent_stereo__sse2(drflac* pFlac, drflac_uint64 frameCount, drflac_uint32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, drflac_int16* pOutputSamples)
|
|
{
|
|
drflac_uint64 i;
|
|
drflac_uint64 frameCount4 = frameCount >> 2;
|
|
const drflac_uint32* pInputSamples0U32 = (const drflac_uint32*)pInputSamples0;
|
|
const drflac_uint32* pInputSamples1U32 = (const drflac_uint32*)pInputSamples1;
|
|
drflac_uint32 shift0 = unusedBitsPerSample + pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample;
|
|
drflac_uint32 shift1 = unusedBitsPerSample + pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample;
|
|
|
|
for (i = 0; i < frameCount4; ++i) {
|
|
__m128i left = _mm_slli_epi32(_mm_loadu_si128((const __m128i*)pInputSamples0 + i), shift0);
|
|
__m128i right = _mm_slli_epi32(_mm_loadu_si128((const __m128i*)pInputSamples1 + i), shift1);
|
|
|
|
left = _mm_srai_epi32(left, 16);
|
|
right = _mm_srai_epi32(right, 16);
|
|
|
|
/* At this point we have results. We can now pack and interleave these into a single __m128i object and then store the in the output buffer. */
|
|
_mm_storeu_si128((__m128i*)(pOutputSamples + i*8), drflac__mm_packs_interleaved_epi32(left, right));
|
|
}
|
|
|
|
for (i = (frameCount4 << 2); i < frameCount; ++i) {
|
|
pOutputSamples[i*2+0] = (drflac_int16)((pInputSamples0U32[i] << shift0) >> 16);
|
|
pOutputSamples[i*2+1] = (drflac_int16)((pInputSamples1U32[i] << shift1) >> 16);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
#if defined(DRFLAC_SUPPORT_NEON)
|
|
static DRFLAC_INLINE void drflac_read_pcm_frames_s16__decode_independent_stereo__neon(drflac* pFlac, drflac_uint64 frameCount, drflac_uint32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, drflac_int16* pOutputSamples)
|
|
{
|
|
drflac_uint64 i;
|
|
drflac_uint64 frameCount4 = frameCount >> 2;
|
|
const drflac_uint32* pInputSamples0U32 = (const drflac_uint32*)pInputSamples0;
|
|
const drflac_uint32* pInputSamples1U32 = (const drflac_uint32*)pInputSamples1;
|
|
drflac_uint32 shift0 = unusedBitsPerSample + pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample;
|
|
drflac_uint32 shift1 = unusedBitsPerSample + pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample;
|
|
|
|
int32x4_t shift0_4 = vdupq_n_s32(shift0);
|
|
int32x4_t shift1_4 = vdupq_n_s32(shift1);
|
|
|
|
for (i = 0; i < frameCount4; ++i) {
|
|
int32x4_t left;
|
|
int32x4_t right;
|
|
|
|
left = vreinterpretq_s32_u32(vshlq_u32(vld1q_u32(pInputSamples0U32 + i*4), shift0_4));
|
|
right = vreinterpretq_s32_u32(vshlq_u32(vld1q_u32(pInputSamples1U32 + i*4), shift1_4));
|
|
|
|
left = vshrq_n_s32(left, 16);
|
|
right = vshrq_n_s32(right, 16);
|
|
|
|
drflac__vst2q_s16(pOutputSamples + i*8, vzip_s16(vmovn_s32(left), vmovn_s32(right)));
|
|
}
|
|
|
|
for (i = (frameCount4 << 2); i < frameCount; ++i) {
|
|
pOutputSamples[i*2+0] = (drflac_int16)((pInputSamples0U32[i] << shift0) >> 16);
|
|
pOutputSamples[i*2+1] = (drflac_int16)((pInputSamples1U32[i] << shift1) >> 16);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
static DRFLAC_INLINE void drflac_read_pcm_frames_s16__decode_independent_stereo(drflac* pFlac, drflac_uint64 frameCount, drflac_uint32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, drflac_int16* pOutputSamples)
|
|
{
|
|
#if defined(DRFLAC_SUPPORT_SSE2)
|
|
if (drflac__gIsSSE2Supported && pFlac->bitsPerSample <= 24) {
|
|
drflac_read_pcm_frames_s16__decode_independent_stereo__sse2(pFlac, frameCount, unusedBitsPerSample, pInputSamples0, pInputSamples1, pOutputSamples);
|
|
} else
|
|
#elif defined(DRFLAC_SUPPORT_NEON)
|
|
if (drflac__gIsNEONSupported && pFlac->bitsPerSample <= 24) {
|
|
drflac_read_pcm_frames_s16__decode_independent_stereo__neon(pFlac, frameCount, unusedBitsPerSample, pInputSamples0, pInputSamples1, pOutputSamples);
|
|
} else
|
|
#endif
|
|
{
|
|
/* Scalar fallback. */
|
|
#if 0
|
|
drflac_read_pcm_frames_s16__decode_independent_stereo__reference(pFlac, frameCount, unusedBitsPerSample, pInputSamples0, pInputSamples1, pOutputSamples);
|
|
#else
|
|
drflac_read_pcm_frames_s16__decode_independent_stereo__scalar(pFlac, frameCount, unusedBitsPerSample, pInputSamples0, pInputSamples1, pOutputSamples);
|
|
#endif
|
|
}
|
|
}
|
|
|
|
DRFLAC_API drflac_uint64 drflac_read_pcm_frames_s16(drflac* pFlac, drflac_uint64 framesToRead, drflac_int16* pBufferOut)
|
|
{
|
|
drflac_uint64 framesRead;
|
|
drflac_uint32 unusedBitsPerSample;
|
|
|
|
if (pFlac == NULL || framesToRead == 0) {
|
|
return 0;
|
|
}
|
|
|
|
if (pBufferOut == NULL) {
|
|
return drflac__seek_forward_by_pcm_frames(pFlac, framesToRead);
|
|
}
|
|
|
|
DRFLAC_ASSERT(pFlac->bitsPerSample <= 32);
|
|
unusedBitsPerSample = 32 - pFlac->bitsPerSample;
|
|
|
|
framesRead = 0;
|
|
while (framesToRead > 0) {
|
|
/* If we've run out of samples in this frame, go to the next. */
|
|
if (pFlac->currentFLACFrame.pcmFramesRemaining == 0) {
|
|
if (!drflac__read_and_decode_next_flac_frame(pFlac)) {
|
|
break; /* Couldn't read the next frame, so just break from the loop and return. */
|
|
}
|
|
} else {
|
|
unsigned int channelCount = drflac__get_channel_count_from_channel_assignment(pFlac->currentFLACFrame.header.channelAssignment);
|
|
drflac_uint64 iFirstPCMFrame = pFlac->currentFLACFrame.header.blockSizeInPCMFrames - pFlac->currentFLACFrame.pcmFramesRemaining;
|
|
drflac_uint64 frameCountThisIteration = framesToRead;
|
|
|
|
if (frameCountThisIteration > pFlac->currentFLACFrame.pcmFramesRemaining) {
|
|
frameCountThisIteration = pFlac->currentFLACFrame.pcmFramesRemaining;
|
|
}
|
|
|
|
if (channelCount == 2) {
|
|
const drflac_int32* pDecodedSamples0 = pFlac->currentFLACFrame.subframes[0].pSamplesS32 + iFirstPCMFrame;
|
|
const drflac_int32* pDecodedSamples1 = pFlac->currentFLACFrame.subframes[1].pSamplesS32 + iFirstPCMFrame;
|
|
|
|
switch (pFlac->currentFLACFrame.header.channelAssignment)
|
|
{
|
|
case DRFLAC_CHANNEL_ASSIGNMENT_LEFT_SIDE:
|
|
{
|
|
drflac_read_pcm_frames_s16__decode_left_side(pFlac, frameCountThisIteration, unusedBitsPerSample, pDecodedSamples0, pDecodedSamples1, pBufferOut);
|
|
} break;
|
|
|
|
case DRFLAC_CHANNEL_ASSIGNMENT_RIGHT_SIDE:
|
|
{
|
|
drflac_read_pcm_frames_s16__decode_right_side(pFlac, frameCountThisIteration, unusedBitsPerSample, pDecodedSamples0, pDecodedSamples1, pBufferOut);
|
|
} break;
|
|
|
|
case DRFLAC_CHANNEL_ASSIGNMENT_MID_SIDE:
|
|
{
|
|
drflac_read_pcm_frames_s16__decode_mid_side(pFlac, frameCountThisIteration, unusedBitsPerSample, pDecodedSamples0, pDecodedSamples1, pBufferOut);
|
|
} break;
|
|
|
|
case DRFLAC_CHANNEL_ASSIGNMENT_INDEPENDENT:
|
|
default:
|
|
{
|
|
drflac_read_pcm_frames_s16__decode_independent_stereo(pFlac, frameCountThisIteration, unusedBitsPerSample, pDecodedSamples0, pDecodedSamples1, pBufferOut);
|
|
} break;
|
|
}
|
|
} else {
|
|
/* Generic interleaving. */
|
|
drflac_uint64 i;
|
|
for (i = 0; i < frameCountThisIteration; ++i) {
|
|
unsigned int j;
|
|
for (j = 0; j < channelCount; ++j) {
|
|
drflac_int32 sampleS32 = (drflac_int32)((drflac_uint32)(pFlac->currentFLACFrame.subframes[j].pSamplesS32[iFirstPCMFrame + i]) << (unusedBitsPerSample + pFlac->currentFLACFrame.subframes[j].wastedBitsPerSample));
|
|
pBufferOut[(i*channelCount)+j] = (drflac_int16)(sampleS32 >> 16);
|
|
}
|
|
}
|
|
}
|
|
|
|
framesRead += frameCountThisIteration;
|
|
pBufferOut += frameCountThisIteration * channelCount;
|
|
framesToRead -= frameCountThisIteration;
|
|
pFlac->currentPCMFrame += frameCountThisIteration;
|
|
pFlac->currentFLACFrame.pcmFramesRemaining -= (drflac_uint32)frameCountThisIteration;
|
|
}
|
|
}
|
|
|
|
return framesRead;
|
|
}
|
|
|
|
|
|
#if 0
|
|
static DRFLAC_INLINE void drflac_read_pcm_frames_f32__decode_left_side__reference(drflac* pFlac, drflac_uint64 frameCount, drflac_uint32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, float* pOutputSamples)
|
|
{
|
|
drflac_uint64 i;
|
|
for (i = 0; i < frameCount; ++i) {
|
|
drflac_uint32 left = (drflac_uint32)pInputSamples0[i] << (unusedBitsPerSample + pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample);
|
|
drflac_uint32 side = (drflac_uint32)pInputSamples1[i] << (unusedBitsPerSample + pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample);
|
|
drflac_uint32 right = left - side;
|
|
|
|
pOutputSamples[i*2+0] = (float)((drflac_int32)left / 2147483648.0);
|
|
pOutputSamples[i*2+1] = (float)((drflac_int32)right / 2147483648.0);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
static DRFLAC_INLINE void drflac_read_pcm_frames_f32__decode_left_side__scalar(drflac* pFlac, drflac_uint64 frameCount, drflac_uint32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, float* pOutputSamples)
|
|
{
|
|
drflac_uint64 i;
|
|
drflac_uint64 frameCount4 = frameCount >> 2;
|
|
const drflac_uint32* pInputSamples0U32 = (const drflac_uint32*)pInputSamples0;
|
|
const drflac_uint32* pInputSamples1U32 = (const drflac_uint32*)pInputSamples1;
|
|
drflac_uint32 shift0 = unusedBitsPerSample + pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample;
|
|
drflac_uint32 shift1 = unusedBitsPerSample + pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample;
|
|
|
|
float factor = 1 / 2147483648.0;
|
|
|
|
for (i = 0; i < frameCount4; ++i) {
|
|
drflac_uint32 left0 = pInputSamples0U32[i*4+0] << shift0;
|
|
drflac_uint32 left1 = pInputSamples0U32[i*4+1] << shift0;
|
|
drflac_uint32 left2 = pInputSamples0U32[i*4+2] << shift0;
|
|
drflac_uint32 left3 = pInputSamples0U32[i*4+3] << shift0;
|
|
|
|
drflac_uint32 side0 = pInputSamples1U32[i*4+0] << shift1;
|
|
drflac_uint32 side1 = pInputSamples1U32[i*4+1] << shift1;
|
|
drflac_uint32 side2 = pInputSamples1U32[i*4+2] << shift1;
|
|
drflac_uint32 side3 = pInputSamples1U32[i*4+3] << shift1;
|
|
|
|
drflac_uint32 right0 = left0 - side0;
|
|
drflac_uint32 right1 = left1 - side1;
|
|
drflac_uint32 right2 = left2 - side2;
|
|
drflac_uint32 right3 = left3 - side3;
|
|
|
|
pOutputSamples[i*8+0] = (drflac_int32)left0 * factor;
|
|
pOutputSamples[i*8+1] = (drflac_int32)right0 * factor;
|
|
pOutputSamples[i*8+2] = (drflac_int32)left1 * factor;
|
|
pOutputSamples[i*8+3] = (drflac_int32)right1 * factor;
|
|
pOutputSamples[i*8+4] = (drflac_int32)left2 * factor;
|
|
pOutputSamples[i*8+5] = (drflac_int32)right2 * factor;
|
|
pOutputSamples[i*8+6] = (drflac_int32)left3 * factor;
|
|
pOutputSamples[i*8+7] = (drflac_int32)right3 * factor;
|
|
}
|
|
|
|
for (i = (frameCount4 << 2); i < frameCount; ++i) {
|
|
drflac_uint32 left = pInputSamples0U32[i] << shift0;
|
|
drflac_uint32 side = pInputSamples1U32[i] << shift1;
|
|
drflac_uint32 right = left - side;
|
|
|
|
pOutputSamples[i*2+0] = (drflac_int32)left * factor;
|
|
pOutputSamples[i*2+1] = (drflac_int32)right * factor;
|
|
}
|
|
}
|
|
|
|
#if defined(DRFLAC_SUPPORT_SSE2)
|
|
static DRFLAC_INLINE void drflac_read_pcm_frames_f32__decode_left_side__sse2(drflac* pFlac, drflac_uint64 frameCount, drflac_uint32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, float* pOutputSamples)
|
|
{
|
|
drflac_uint64 i;
|
|
drflac_uint64 frameCount4 = frameCount >> 2;
|
|
const drflac_uint32* pInputSamples0U32 = (const drflac_uint32*)pInputSamples0;
|
|
const drflac_uint32* pInputSamples1U32 = (const drflac_uint32*)pInputSamples1;
|
|
drflac_uint32 shift0 = (unusedBitsPerSample + pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample) - 8;
|
|
drflac_uint32 shift1 = (unusedBitsPerSample + pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample) - 8;
|
|
__m128 factor;
|
|
|
|
DRFLAC_ASSERT(pFlac->bitsPerSample <= 24);
|
|
|
|
factor = _mm_set1_ps(1.0f / 8388608.0f);
|
|
|
|
for (i = 0; i < frameCount4; ++i) {
|
|
__m128i left = _mm_slli_epi32(_mm_loadu_si128((const __m128i*)pInputSamples0 + i), shift0);
|
|
__m128i side = _mm_slli_epi32(_mm_loadu_si128((const __m128i*)pInputSamples1 + i), shift1);
|
|
__m128i right = _mm_sub_epi32(left, side);
|
|
__m128 leftf = _mm_mul_ps(_mm_cvtepi32_ps(left), factor);
|
|
__m128 rightf = _mm_mul_ps(_mm_cvtepi32_ps(right), factor);
|
|
|
|
_mm_storeu_ps(pOutputSamples + i*8 + 0, _mm_unpacklo_ps(leftf, rightf));
|
|
_mm_storeu_ps(pOutputSamples + i*8 + 4, _mm_unpackhi_ps(leftf, rightf));
|
|
}
|
|
|
|
for (i = (frameCount4 << 2); i < frameCount; ++i) {
|
|
drflac_uint32 left = pInputSamples0U32[i] << shift0;
|
|
drflac_uint32 side = pInputSamples1U32[i] << shift1;
|
|
drflac_uint32 right = left - side;
|
|
|
|
pOutputSamples[i*2+0] = (drflac_int32)left / 8388608.0f;
|
|
pOutputSamples[i*2+1] = (drflac_int32)right / 8388608.0f;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
#if defined(DRFLAC_SUPPORT_NEON)
|
|
static DRFLAC_INLINE void drflac_read_pcm_frames_f32__decode_left_side__neon(drflac* pFlac, drflac_uint64 frameCount, drflac_uint32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, float* pOutputSamples)
|
|
{
|
|
drflac_uint64 i;
|
|
drflac_uint64 frameCount4 = frameCount >> 2;
|
|
const drflac_uint32* pInputSamples0U32 = (const drflac_uint32*)pInputSamples0;
|
|
const drflac_uint32* pInputSamples1U32 = (const drflac_uint32*)pInputSamples1;
|
|
drflac_uint32 shift0 = (unusedBitsPerSample + pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample) - 8;
|
|
drflac_uint32 shift1 = (unusedBitsPerSample + pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample) - 8;
|
|
float32x4_t factor4;
|
|
int32x4_t shift0_4;
|
|
int32x4_t shift1_4;
|
|
|
|
DRFLAC_ASSERT(pFlac->bitsPerSample <= 24);
|
|
|
|
factor4 = vdupq_n_f32(1.0f / 8388608.0f);
|
|
shift0_4 = vdupq_n_s32(shift0);
|
|
shift1_4 = vdupq_n_s32(shift1);
|
|
|
|
for (i = 0; i < frameCount4; ++i) {
|
|
uint32x4_t left;
|
|
uint32x4_t side;
|
|
uint32x4_t right;
|
|
float32x4_t leftf;
|
|
float32x4_t rightf;
|
|
|
|
left = vshlq_u32(vld1q_u32(pInputSamples0U32 + i*4), shift0_4);
|
|
side = vshlq_u32(vld1q_u32(pInputSamples1U32 + i*4), shift1_4);
|
|
right = vsubq_u32(left, side);
|
|
leftf = vmulq_f32(vcvtq_f32_s32(vreinterpretq_s32_u32(left)), factor4);
|
|
rightf = vmulq_f32(vcvtq_f32_s32(vreinterpretq_s32_u32(right)), factor4);
|
|
|
|
drflac__vst2q_f32(pOutputSamples + i*8, vzipq_f32(leftf, rightf));
|
|
}
|
|
|
|
for (i = (frameCount4 << 2); i < frameCount; ++i) {
|
|
drflac_uint32 left = pInputSamples0U32[i] << shift0;
|
|
drflac_uint32 side = pInputSamples1U32[i] << shift1;
|
|
drflac_uint32 right = left - side;
|
|
|
|
pOutputSamples[i*2+0] = (drflac_int32)left / 8388608.0f;
|
|
pOutputSamples[i*2+1] = (drflac_int32)right / 8388608.0f;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
static DRFLAC_INLINE void drflac_read_pcm_frames_f32__decode_left_side(drflac* pFlac, drflac_uint64 frameCount, drflac_uint32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, float* pOutputSamples)
|
|
{
|
|
#if defined(DRFLAC_SUPPORT_SSE2)
|
|
if (drflac__gIsSSE2Supported && pFlac->bitsPerSample <= 24) {
|
|
drflac_read_pcm_frames_f32__decode_left_side__sse2(pFlac, frameCount, unusedBitsPerSample, pInputSamples0, pInputSamples1, pOutputSamples);
|
|
} else
|
|
#elif defined(DRFLAC_SUPPORT_NEON)
|
|
if (drflac__gIsNEONSupported && pFlac->bitsPerSample <= 24) {
|
|
drflac_read_pcm_frames_f32__decode_left_side__neon(pFlac, frameCount, unusedBitsPerSample, pInputSamples0, pInputSamples1, pOutputSamples);
|
|
} else
|
|
#endif
|
|
{
|
|
/* Scalar fallback. */
|
|
#if 0
|
|
drflac_read_pcm_frames_f32__decode_left_side__reference(pFlac, frameCount, unusedBitsPerSample, pInputSamples0, pInputSamples1, pOutputSamples);
|
|
#else
|
|
drflac_read_pcm_frames_f32__decode_left_side__scalar(pFlac, frameCount, unusedBitsPerSample, pInputSamples0, pInputSamples1, pOutputSamples);
|
|
#endif
|
|
}
|
|
}
|
|
|
|
|
|
#if 0
|
|
static DRFLAC_INLINE void drflac_read_pcm_frames_f32__decode_right_side__reference(drflac* pFlac, drflac_uint64 frameCount, drflac_uint32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, float* pOutputSamples)
|
|
{
|
|
drflac_uint64 i;
|
|
for (i = 0; i < frameCount; ++i) {
|
|
drflac_uint32 side = (drflac_uint32)pInputSamples0[i] << (unusedBitsPerSample + pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample);
|
|
drflac_uint32 right = (drflac_uint32)pInputSamples1[i] << (unusedBitsPerSample + pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample);
|
|
drflac_uint32 left = right + side;
|
|
|
|
pOutputSamples[i*2+0] = (float)((drflac_int32)left / 2147483648.0);
|
|
pOutputSamples[i*2+1] = (float)((drflac_int32)right / 2147483648.0);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
static DRFLAC_INLINE void drflac_read_pcm_frames_f32__decode_right_side__scalar(drflac* pFlac, drflac_uint64 frameCount, drflac_uint32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, float* pOutputSamples)
|
|
{
|
|
drflac_uint64 i;
|
|
drflac_uint64 frameCount4 = frameCount >> 2;
|
|
const drflac_uint32* pInputSamples0U32 = (const drflac_uint32*)pInputSamples0;
|
|
const drflac_uint32* pInputSamples1U32 = (const drflac_uint32*)pInputSamples1;
|
|
drflac_uint32 shift0 = unusedBitsPerSample + pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample;
|
|
drflac_uint32 shift1 = unusedBitsPerSample + pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample;
|
|
float factor = 1 / 2147483648.0;
|
|
|
|
for (i = 0; i < frameCount4; ++i) {
|
|
drflac_uint32 side0 = pInputSamples0U32[i*4+0] << shift0;
|
|
drflac_uint32 side1 = pInputSamples0U32[i*4+1] << shift0;
|
|
drflac_uint32 side2 = pInputSamples0U32[i*4+2] << shift0;
|
|
drflac_uint32 side3 = pInputSamples0U32[i*4+3] << shift0;
|
|
|
|
drflac_uint32 right0 = pInputSamples1U32[i*4+0] << shift1;
|
|
drflac_uint32 right1 = pInputSamples1U32[i*4+1] << shift1;
|
|
drflac_uint32 right2 = pInputSamples1U32[i*4+2] << shift1;
|
|
drflac_uint32 right3 = pInputSamples1U32[i*4+3] << shift1;
|
|
|
|
drflac_uint32 left0 = right0 + side0;
|
|
drflac_uint32 left1 = right1 + side1;
|
|
drflac_uint32 left2 = right2 + side2;
|
|
drflac_uint32 left3 = right3 + side3;
|
|
|
|
pOutputSamples[i*8+0] = (drflac_int32)left0 * factor;
|
|
pOutputSamples[i*8+1] = (drflac_int32)right0 * factor;
|
|
pOutputSamples[i*8+2] = (drflac_int32)left1 * factor;
|
|
pOutputSamples[i*8+3] = (drflac_int32)right1 * factor;
|
|
pOutputSamples[i*8+4] = (drflac_int32)left2 * factor;
|
|
pOutputSamples[i*8+5] = (drflac_int32)right2 * factor;
|
|
pOutputSamples[i*8+6] = (drflac_int32)left3 * factor;
|
|
pOutputSamples[i*8+7] = (drflac_int32)right3 * factor;
|
|
}
|
|
|
|
for (i = (frameCount4 << 2); i < frameCount; ++i) {
|
|
drflac_uint32 side = pInputSamples0U32[i] << shift0;
|
|
drflac_uint32 right = pInputSamples1U32[i] << shift1;
|
|
drflac_uint32 left = right + side;
|
|
|
|
pOutputSamples[i*2+0] = (drflac_int32)left * factor;
|
|
pOutputSamples[i*2+1] = (drflac_int32)right * factor;
|
|
}
|
|
}
|
|
|
|
#if defined(DRFLAC_SUPPORT_SSE2)
|
|
static DRFLAC_INLINE void drflac_read_pcm_frames_f32__decode_right_side__sse2(drflac* pFlac, drflac_uint64 frameCount, drflac_uint32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, float* pOutputSamples)
|
|
{
|
|
drflac_uint64 i;
|
|
drflac_uint64 frameCount4 = frameCount >> 2;
|
|
const drflac_uint32* pInputSamples0U32 = (const drflac_uint32*)pInputSamples0;
|
|
const drflac_uint32* pInputSamples1U32 = (const drflac_uint32*)pInputSamples1;
|
|
drflac_uint32 shift0 = (unusedBitsPerSample + pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample) - 8;
|
|
drflac_uint32 shift1 = (unusedBitsPerSample + pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample) - 8;
|
|
__m128 factor;
|
|
|
|
DRFLAC_ASSERT(pFlac->bitsPerSample <= 24);
|
|
|
|
factor = _mm_set1_ps(1.0f / 8388608.0f);
|
|
|
|
for (i = 0; i < frameCount4; ++i) {
|
|
__m128i side = _mm_slli_epi32(_mm_loadu_si128((const __m128i*)pInputSamples0 + i), shift0);
|
|
__m128i right = _mm_slli_epi32(_mm_loadu_si128((const __m128i*)pInputSamples1 + i), shift1);
|
|
__m128i left = _mm_add_epi32(right, side);
|
|
__m128 leftf = _mm_mul_ps(_mm_cvtepi32_ps(left), factor);
|
|
__m128 rightf = _mm_mul_ps(_mm_cvtepi32_ps(right), factor);
|
|
|
|
_mm_storeu_ps(pOutputSamples + i*8 + 0, _mm_unpacklo_ps(leftf, rightf));
|
|
_mm_storeu_ps(pOutputSamples + i*8 + 4, _mm_unpackhi_ps(leftf, rightf));
|
|
}
|
|
|
|
for (i = (frameCount4 << 2); i < frameCount; ++i) {
|
|
drflac_uint32 side = pInputSamples0U32[i] << shift0;
|
|
drflac_uint32 right = pInputSamples1U32[i] << shift1;
|
|
drflac_uint32 left = right + side;
|
|
|
|
pOutputSamples[i*2+0] = (drflac_int32)left / 8388608.0f;
|
|
pOutputSamples[i*2+1] = (drflac_int32)right / 8388608.0f;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
#if defined(DRFLAC_SUPPORT_NEON)
|
|
static DRFLAC_INLINE void drflac_read_pcm_frames_f32__decode_right_side__neon(drflac* pFlac, drflac_uint64 frameCount, drflac_uint32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, float* pOutputSamples)
|
|
{
|
|
drflac_uint64 i;
|
|
drflac_uint64 frameCount4 = frameCount >> 2;
|
|
const drflac_uint32* pInputSamples0U32 = (const drflac_uint32*)pInputSamples0;
|
|
const drflac_uint32* pInputSamples1U32 = (const drflac_uint32*)pInputSamples1;
|
|
drflac_uint32 shift0 = (unusedBitsPerSample + pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample) - 8;
|
|
drflac_uint32 shift1 = (unusedBitsPerSample + pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample) - 8;
|
|
float32x4_t factor4;
|
|
int32x4_t shift0_4;
|
|
int32x4_t shift1_4;
|
|
|
|
DRFLAC_ASSERT(pFlac->bitsPerSample <= 24);
|
|
|
|
factor4 = vdupq_n_f32(1.0f / 8388608.0f);
|
|
shift0_4 = vdupq_n_s32(shift0);
|
|
shift1_4 = vdupq_n_s32(shift1);
|
|
|
|
for (i = 0; i < frameCount4; ++i) {
|
|
uint32x4_t side;
|
|
uint32x4_t right;
|
|
uint32x4_t left;
|
|
float32x4_t leftf;
|
|
float32x4_t rightf;
|
|
|
|
side = vshlq_u32(vld1q_u32(pInputSamples0U32 + i*4), shift0_4);
|
|
right = vshlq_u32(vld1q_u32(pInputSamples1U32 + i*4), shift1_4);
|
|
left = vaddq_u32(right, side);
|
|
leftf = vmulq_f32(vcvtq_f32_s32(vreinterpretq_s32_u32(left)), factor4);
|
|
rightf = vmulq_f32(vcvtq_f32_s32(vreinterpretq_s32_u32(right)), factor4);
|
|
|
|
drflac__vst2q_f32(pOutputSamples + i*8, vzipq_f32(leftf, rightf));
|
|
}
|
|
|
|
for (i = (frameCount4 << 2); i < frameCount; ++i) {
|
|
drflac_uint32 side = pInputSamples0U32[i] << shift0;
|
|
drflac_uint32 right = pInputSamples1U32[i] << shift1;
|
|
drflac_uint32 left = right + side;
|
|
|
|
pOutputSamples[i*2+0] = (drflac_int32)left / 8388608.0f;
|
|
pOutputSamples[i*2+1] = (drflac_int32)right / 8388608.0f;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
static DRFLAC_INLINE void drflac_read_pcm_frames_f32__decode_right_side(drflac* pFlac, drflac_uint64 frameCount, drflac_uint32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, float* pOutputSamples)
|
|
{
|
|
#if defined(DRFLAC_SUPPORT_SSE2)
|
|
if (drflac__gIsSSE2Supported && pFlac->bitsPerSample <= 24) {
|
|
drflac_read_pcm_frames_f32__decode_right_side__sse2(pFlac, frameCount, unusedBitsPerSample, pInputSamples0, pInputSamples1, pOutputSamples);
|
|
} else
|
|
#elif defined(DRFLAC_SUPPORT_NEON)
|
|
if (drflac__gIsNEONSupported && pFlac->bitsPerSample <= 24) {
|
|
drflac_read_pcm_frames_f32__decode_right_side__neon(pFlac, frameCount, unusedBitsPerSample, pInputSamples0, pInputSamples1, pOutputSamples);
|
|
} else
|
|
#endif
|
|
{
|
|
/* Scalar fallback. */
|
|
#if 0
|
|
drflac_read_pcm_frames_f32__decode_right_side__reference(pFlac, frameCount, unusedBitsPerSample, pInputSamples0, pInputSamples1, pOutputSamples);
|
|
#else
|
|
drflac_read_pcm_frames_f32__decode_right_side__scalar(pFlac, frameCount, unusedBitsPerSample, pInputSamples0, pInputSamples1, pOutputSamples);
|
|
#endif
|
|
}
|
|
}
|
|
|
|
|
|
#if 0
|
|
static DRFLAC_INLINE void drflac_read_pcm_frames_f32__decode_mid_side__reference(drflac* pFlac, drflac_uint64 frameCount, drflac_uint32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, float* pOutputSamples)
|
|
{
|
|
for (drflac_uint64 i = 0; i < frameCount; ++i) {
|
|
drflac_uint32 mid = (drflac_uint32)pInputSamples0[i] << pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample;
|
|
drflac_uint32 side = (drflac_uint32)pInputSamples1[i] << pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample;
|
|
|
|
mid = (mid << 1) | (side & 0x01);
|
|
|
|
pOutputSamples[i*2+0] = (float)((((drflac_int32)(mid + side) >> 1) << (unusedBitsPerSample)) / 2147483648.0);
|
|
pOutputSamples[i*2+1] = (float)((((drflac_int32)(mid - side) >> 1) << (unusedBitsPerSample)) / 2147483648.0);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
static DRFLAC_INLINE void drflac_read_pcm_frames_f32__decode_mid_side__scalar(drflac* pFlac, drflac_uint64 frameCount, drflac_uint32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, float* pOutputSamples)
|
|
{
|
|
drflac_uint64 i;
|
|
drflac_uint64 frameCount4 = frameCount >> 2;
|
|
const drflac_uint32* pInputSamples0U32 = (const drflac_uint32*)pInputSamples0;
|
|
const drflac_uint32* pInputSamples1U32 = (const drflac_uint32*)pInputSamples1;
|
|
drflac_uint32 shift = unusedBitsPerSample;
|
|
float factor = 1 / 2147483648.0;
|
|
|
|
if (shift > 0) {
|
|
shift -= 1;
|
|
for (i = 0; i < frameCount4; ++i) {
|
|
drflac_uint32 temp0L;
|
|
drflac_uint32 temp1L;
|
|
drflac_uint32 temp2L;
|
|
drflac_uint32 temp3L;
|
|
drflac_uint32 temp0R;
|
|
drflac_uint32 temp1R;
|
|
drflac_uint32 temp2R;
|
|
drflac_uint32 temp3R;
|
|
|
|
drflac_uint32 mid0 = pInputSamples0U32[i*4+0] << pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample;
|
|
drflac_uint32 mid1 = pInputSamples0U32[i*4+1] << pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample;
|
|
drflac_uint32 mid2 = pInputSamples0U32[i*4+2] << pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample;
|
|
drflac_uint32 mid3 = pInputSamples0U32[i*4+3] << pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample;
|
|
|
|
drflac_uint32 side0 = pInputSamples1U32[i*4+0] << pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample;
|
|
drflac_uint32 side1 = pInputSamples1U32[i*4+1] << pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample;
|
|
drflac_uint32 side2 = pInputSamples1U32[i*4+2] << pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample;
|
|
drflac_uint32 side3 = pInputSamples1U32[i*4+3] << pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample;
|
|
|
|
mid0 = (mid0 << 1) | (side0 & 0x01);
|
|
mid1 = (mid1 << 1) | (side1 & 0x01);
|
|
mid2 = (mid2 << 1) | (side2 & 0x01);
|
|
mid3 = (mid3 << 1) | (side3 & 0x01);
|
|
|
|
temp0L = (mid0 + side0) << shift;
|
|
temp1L = (mid1 + side1) << shift;
|
|
temp2L = (mid2 + side2) << shift;
|
|
temp3L = (mid3 + side3) << shift;
|
|
|
|
temp0R = (mid0 - side0) << shift;
|
|
temp1R = (mid1 - side1) << shift;
|
|
temp2R = (mid2 - side2) << shift;
|
|
temp3R = (mid3 - side3) << shift;
|
|
|
|
pOutputSamples[i*8+0] = (drflac_int32)temp0L * factor;
|
|
pOutputSamples[i*8+1] = (drflac_int32)temp0R * factor;
|
|
pOutputSamples[i*8+2] = (drflac_int32)temp1L * factor;
|
|
pOutputSamples[i*8+3] = (drflac_int32)temp1R * factor;
|
|
pOutputSamples[i*8+4] = (drflac_int32)temp2L * factor;
|
|
pOutputSamples[i*8+5] = (drflac_int32)temp2R * factor;
|
|
pOutputSamples[i*8+6] = (drflac_int32)temp3L * factor;
|
|
pOutputSamples[i*8+7] = (drflac_int32)temp3R * factor;
|
|
}
|
|
} else {
|
|
for (i = 0; i < frameCount4; ++i) {
|
|
drflac_uint32 temp0L;
|
|
drflac_uint32 temp1L;
|
|
drflac_uint32 temp2L;
|
|
drflac_uint32 temp3L;
|
|
drflac_uint32 temp0R;
|
|
drflac_uint32 temp1R;
|
|
drflac_uint32 temp2R;
|
|
drflac_uint32 temp3R;
|
|
|
|
drflac_uint32 mid0 = pInputSamples0U32[i*4+0] << pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample;
|
|
drflac_uint32 mid1 = pInputSamples0U32[i*4+1] << pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample;
|
|
drflac_uint32 mid2 = pInputSamples0U32[i*4+2] << pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample;
|
|
drflac_uint32 mid3 = pInputSamples0U32[i*4+3] << pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample;
|
|
|
|
drflac_uint32 side0 = pInputSamples1U32[i*4+0] << pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample;
|
|
drflac_uint32 side1 = pInputSamples1U32[i*4+1] << pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample;
|
|
drflac_uint32 side2 = pInputSamples1U32[i*4+2] << pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample;
|
|
drflac_uint32 side3 = pInputSamples1U32[i*4+3] << pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample;
|
|
|
|
mid0 = (mid0 << 1) | (side0 & 0x01);
|
|
mid1 = (mid1 << 1) | (side1 & 0x01);
|
|
mid2 = (mid2 << 1) | (side2 & 0x01);
|
|
mid3 = (mid3 << 1) | (side3 & 0x01);
|
|
|
|
temp0L = (drflac_uint32)((drflac_int32)(mid0 + side0) >> 1);
|
|
temp1L = (drflac_uint32)((drflac_int32)(mid1 + side1) >> 1);
|
|
temp2L = (drflac_uint32)((drflac_int32)(mid2 + side2) >> 1);
|
|
temp3L = (drflac_uint32)((drflac_int32)(mid3 + side3) >> 1);
|
|
|
|
temp0R = (drflac_uint32)((drflac_int32)(mid0 - side0) >> 1);
|
|
temp1R = (drflac_uint32)((drflac_int32)(mid1 - side1) >> 1);
|
|
temp2R = (drflac_uint32)((drflac_int32)(mid2 - side2) >> 1);
|
|
temp3R = (drflac_uint32)((drflac_int32)(mid3 - side3) >> 1);
|
|
|
|
pOutputSamples[i*8+0] = (drflac_int32)temp0L * factor;
|
|
pOutputSamples[i*8+1] = (drflac_int32)temp0R * factor;
|
|
pOutputSamples[i*8+2] = (drflac_int32)temp1L * factor;
|
|
pOutputSamples[i*8+3] = (drflac_int32)temp1R * factor;
|
|
pOutputSamples[i*8+4] = (drflac_int32)temp2L * factor;
|
|
pOutputSamples[i*8+5] = (drflac_int32)temp2R * factor;
|
|
pOutputSamples[i*8+6] = (drflac_int32)temp3L * factor;
|
|
pOutputSamples[i*8+7] = (drflac_int32)temp3R * factor;
|
|
}
|
|
}
|
|
|
|
for (i = (frameCount4 << 2); i < frameCount; ++i) {
|
|
drflac_uint32 mid = pInputSamples0U32[i] << pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample;
|
|
drflac_uint32 side = pInputSamples1U32[i] << pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample;
|
|
|
|
mid = (mid << 1) | (side & 0x01);
|
|
|
|
pOutputSamples[i*2+0] = (drflac_int32)((drflac_uint32)((drflac_int32)(mid + side) >> 1) << unusedBitsPerSample) * factor;
|
|
pOutputSamples[i*2+1] = (drflac_int32)((drflac_uint32)((drflac_int32)(mid - side) >> 1) << unusedBitsPerSample) * factor;
|
|
}
|
|
}
|
|
|
|
#if defined(DRFLAC_SUPPORT_SSE2)
|
|
static DRFLAC_INLINE void drflac_read_pcm_frames_f32__decode_mid_side__sse2(drflac* pFlac, drflac_uint64 frameCount, drflac_uint32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, float* pOutputSamples)
|
|
{
|
|
drflac_uint64 i;
|
|
drflac_uint64 frameCount4 = frameCount >> 2;
|
|
const drflac_uint32* pInputSamples0U32 = (const drflac_uint32*)pInputSamples0;
|
|
const drflac_uint32* pInputSamples1U32 = (const drflac_uint32*)pInputSamples1;
|
|
drflac_uint32 shift = unusedBitsPerSample - 8;
|
|
float factor;
|
|
__m128 factor128;
|
|
|
|
DRFLAC_ASSERT(pFlac->bitsPerSample <= 24);
|
|
|
|
factor = 1.0f / 8388608.0f;
|
|
factor128 = _mm_set1_ps(factor);
|
|
|
|
if (shift == 0) {
|
|
for (i = 0; i < frameCount4; ++i) {
|
|
__m128i mid;
|
|
__m128i side;
|
|
__m128i tempL;
|
|
__m128i tempR;
|
|
__m128 leftf;
|
|
__m128 rightf;
|
|
|
|
mid = _mm_slli_epi32(_mm_loadu_si128((const __m128i*)pInputSamples0 + i), pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample);
|
|
side = _mm_slli_epi32(_mm_loadu_si128((const __m128i*)pInputSamples1 + i), pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample);
|
|
|
|
mid = _mm_or_si128(_mm_slli_epi32(mid, 1), _mm_and_si128(side, _mm_set1_epi32(0x01)));
|
|
|
|
tempL = _mm_srai_epi32(_mm_add_epi32(mid, side), 1);
|
|
tempR = _mm_srai_epi32(_mm_sub_epi32(mid, side), 1);
|
|
|
|
leftf = _mm_mul_ps(_mm_cvtepi32_ps(tempL), factor128);
|
|
rightf = _mm_mul_ps(_mm_cvtepi32_ps(tempR), factor128);
|
|
|
|
_mm_storeu_ps(pOutputSamples + i*8 + 0, _mm_unpacklo_ps(leftf, rightf));
|
|
_mm_storeu_ps(pOutputSamples + i*8 + 4, _mm_unpackhi_ps(leftf, rightf));
|
|
}
|
|
|
|
for (i = (frameCount4 << 2); i < frameCount; ++i) {
|
|
drflac_uint32 mid = pInputSamples0U32[i] << pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample;
|
|
drflac_uint32 side = pInputSamples1U32[i] << pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample;
|
|
|
|
mid = (mid << 1) | (side & 0x01);
|
|
|
|
pOutputSamples[i*2+0] = ((drflac_int32)(mid + side) >> 1) * factor;
|
|
pOutputSamples[i*2+1] = ((drflac_int32)(mid - side) >> 1) * factor;
|
|
}
|
|
} else {
|
|
shift -= 1;
|
|
for (i = 0; i < frameCount4; ++i) {
|
|
__m128i mid;
|
|
__m128i side;
|
|
__m128i tempL;
|
|
__m128i tempR;
|
|
__m128 leftf;
|
|
__m128 rightf;
|
|
|
|
mid = _mm_slli_epi32(_mm_loadu_si128((const __m128i*)pInputSamples0 + i), pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample);
|
|
side = _mm_slli_epi32(_mm_loadu_si128((const __m128i*)pInputSamples1 + i), pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample);
|
|
|
|
mid = _mm_or_si128(_mm_slli_epi32(mid, 1), _mm_and_si128(side, _mm_set1_epi32(0x01)));
|
|
|
|
tempL = _mm_slli_epi32(_mm_add_epi32(mid, side), shift);
|
|
tempR = _mm_slli_epi32(_mm_sub_epi32(mid, side), shift);
|
|
|
|
leftf = _mm_mul_ps(_mm_cvtepi32_ps(tempL), factor128);
|
|
rightf = _mm_mul_ps(_mm_cvtepi32_ps(tempR), factor128);
|
|
|
|
_mm_storeu_ps(pOutputSamples + i*8 + 0, _mm_unpacklo_ps(leftf, rightf));
|
|
_mm_storeu_ps(pOutputSamples + i*8 + 4, _mm_unpackhi_ps(leftf, rightf));
|
|
}
|
|
|
|
for (i = (frameCount4 << 2); i < frameCount; ++i) {
|
|
drflac_uint32 mid = pInputSamples0U32[i] << pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample;
|
|
drflac_uint32 side = pInputSamples1U32[i] << pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample;
|
|
|
|
mid = (mid << 1) | (side & 0x01);
|
|
|
|
pOutputSamples[i*2+0] = (drflac_int32)((mid + side) << shift) * factor;
|
|
pOutputSamples[i*2+1] = (drflac_int32)((mid - side) << shift) * factor;
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
|
|
#if defined(DRFLAC_SUPPORT_NEON)
|
|
static DRFLAC_INLINE void drflac_read_pcm_frames_f32__decode_mid_side__neon(drflac* pFlac, drflac_uint64 frameCount, drflac_uint32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, float* pOutputSamples)
|
|
{
|
|
drflac_uint64 i;
|
|
drflac_uint64 frameCount4 = frameCount >> 2;
|
|
const drflac_uint32* pInputSamples0U32 = (const drflac_uint32*)pInputSamples0;
|
|
const drflac_uint32* pInputSamples1U32 = (const drflac_uint32*)pInputSamples1;
|
|
drflac_uint32 shift = unusedBitsPerSample - 8;
|
|
float factor;
|
|
float32x4_t factor4;
|
|
int32x4_t shift4;
|
|
int32x4_t wbps0_4; /* Wasted Bits Per Sample */
|
|
int32x4_t wbps1_4; /* Wasted Bits Per Sample */
|
|
|
|
DRFLAC_ASSERT(pFlac->bitsPerSample <= 24);
|
|
|
|
factor = 1.0f / 8388608.0f;
|
|
factor4 = vdupq_n_f32(factor);
|
|
wbps0_4 = vdupq_n_s32(pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample);
|
|
wbps1_4 = vdupq_n_s32(pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample);
|
|
|
|
if (shift == 0) {
|
|
for (i = 0; i < frameCount4; ++i) {
|
|
int32x4_t lefti;
|
|
int32x4_t righti;
|
|
float32x4_t leftf;
|
|
float32x4_t rightf;
|
|
|
|
uint32x4_t mid = vshlq_u32(vld1q_u32(pInputSamples0U32 + i*4), wbps0_4);
|
|
uint32x4_t side = vshlq_u32(vld1q_u32(pInputSamples1U32 + i*4), wbps1_4);
|
|
|
|
mid = vorrq_u32(vshlq_n_u32(mid, 1), vandq_u32(side, vdupq_n_u32(1)));
|
|
|
|
lefti = vshrq_n_s32(vreinterpretq_s32_u32(vaddq_u32(mid, side)), 1);
|
|
righti = vshrq_n_s32(vreinterpretq_s32_u32(vsubq_u32(mid, side)), 1);
|
|
|
|
leftf = vmulq_f32(vcvtq_f32_s32(lefti), factor4);
|
|
rightf = vmulq_f32(vcvtq_f32_s32(righti), factor4);
|
|
|
|
drflac__vst2q_f32(pOutputSamples + i*8, vzipq_f32(leftf, rightf));
|
|
}
|
|
|
|
for (i = (frameCount4 << 2); i < frameCount; ++i) {
|
|
drflac_uint32 mid = pInputSamples0U32[i] << pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample;
|
|
drflac_uint32 side = pInputSamples1U32[i] << pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample;
|
|
|
|
mid = (mid << 1) | (side & 0x01);
|
|
|
|
pOutputSamples[i*2+0] = ((drflac_int32)(mid + side) >> 1) * factor;
|
|
pOutputSamples[i*2+1] = ((drflac_int32)(mid - side) >> 1) * factor;
|
|
}
|
|
} else {
|
|
shift -= 1;
|
|
shift4 = vdupq_n_s32(shift);
|
|
for (i = 0; i < frameCount4; ++i) {
|
|
uint32x4_t mid;
|
|
uint32x4_t side;
|
|
int32x4_t lefti;
|
|
int32x4_t righti;
|
|
float32x4_t leftf;
|
|
float32x4_t rightf;
|
|
|
|
mid = vshlq_u32(vld1q_u32(pInputSamples0U32 + i*4), wbps0_4);
|
|
side = vshlq_u32(vld1q_u32(pInputSamples1U32 + i*4), wbps1_4);
|
|
|
|
mid = vorrq_u32(vshlq_n_u32(mid, 1), vandq_u32(side, vdupq_n_u32(1)));
|
|
|
|
lefti = vreinterpretq_s32_u32(vshlq_u32(vaddq_u32(mid, side), shift4));
|
|
righti = vreinterpretq_s32_u32(vshlq_u32(vsubq_u32(mid, side), shift4));
|
|
|
|
leftf = vmulq_f32(vcvtq_f32_s32(lefti), factor4);
|
|
rightf = vmulq_f32(vcvtq_f32_s32(righti), factor4);
|
|
|
|
drflac__vst2q_f32(pOutputSamples + i*8, vzipq_f32(leftf, rightf));
|
|
}
|
|
|
|
for (i = (frameCount4 << 2); i < frameCount; ++i) {
|
|
drflac_uint32 mid = pInputSamples0U32[i] << pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample;
|
|
drflac_uint32 side = pInputSamples1U32[i] << pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample;
|
|
|
|
mid = (mid << 1) | (side & 0x01);
|
|
|
|
pOutputSamples[i*2+0] = (drflac_int32)((mid + side) << shift) * factor;
|
|
pOutputSamples[i*2+1] = (drflac_int32)((mid - side) << shift) * factor;
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
|
|
static DRFLAC_INLINE void drflac_read_pcm_frames_f32__decode_mid_side(drflac* pFlac, drflac_uint64 frameCount, drflac_uint32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, float* pOutputSamples)
|
|
{
|
|
#if defined(DRFLAC_SUPPORT_SSE2)
|
|
if (drflac__gIsSSE2Supported && pFlac->bitsPerSample <= 24) {
|
|
drflac_read_pcm_frames_f32__decode_mid_side__sse2(pFlac, frameCount, unusedBitsPerSample, pInputSamples0, pInputSamples1, pOutputSamples);
|
|
} else
|
|
#elif defined(DRFLAC_SUPPORT_NEON)
|
|
if (drflac__gIsNEONSupported && pFlac->bitsPerSample <= 24) {
|
|
drflac_read_pcm_frames_f32__decode_mid_side__neon(pFlac, frameCount, unusedBitsPerSample, pInputSamples0, pInputSamples1, pOutputSamples);
|
|
} else
|
|
#endif
|
|
{
|
|
/* Scalar fallback. */
|
|
#if 0
|
|
drflac_read_pcm_frames_f32__decode_mid_side__reference(pFlac, frameCount, unusedBitsPerSample, pInputSamples0, pInputSamples1, pOutputSamples);
|
|
#else
|
|
drflac_read_pcm_frames_f32__decode_mid_side__scalar(pFlac, frameCount, unusedBitsPerSample, pInputSamples0, pInputSamples1, pOutputSamples);
|
|
#endif
|
|
}
|
|
}
|
|
|
|
#if 0
|
|
static DRFLAC_INLINE void drflac_read_pcm_frames_f32__decode_independent_stereo__reference(drflac* pFlac, drflac_uint64 frameCount, drflac_uint32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, float* pOutputSamples)
|
|
{
|
|
for (drflac_uint64 i = 0; i < frameCount; ++i) {
|
|
pOutputSamples[i*2+0] = (float)((drflac_int32)((drflac_uint32)pInputSamples0[i] << (unusedBitsPerSample + pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample)) / 2147483648.0);
|
|
pOutputSamples[i*2+1] = (float)((drflac_int32)((drflac_uint32)pInputSamples1[i] << (unusedBitsPerSample + pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample)) / 2147483648.0);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
static DRFLAC_INLINE void drflac_read_pcm_frames_f32__decode_independent_stereo__scalar(drflac* pFlac, drflac_uint64 frameCount, drflac_uint32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, float* pOutputSamples)
|
|
{
|
|
drflac_uint64 i;
|
|
drflac_uint64 frameCount4 = frameCount >> 2;
|
|
const drflac_uint32* pInputSamples0U32 = (const drflac_uint32*)pInputSamples0;
|
|
const drflac_uint32* pInputSamples1U32 = (const drflac_uint32*)pInputSamples1;
|
|
drflac_uint32 shift0 = unusedBitsPerSample + pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample;
|
|
drflac_uint32 shift1 = unusedBitsPerSample + pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample;
|
|
float factor = 1 / 2147483648.0;
|
|
|
|
for (i = 0; i < frameCount4; ++i) {
|
|
drflac_uint32 tempL0 = pInputSamples0U32[i*4+0] << shift0;
|
|
drflac_uint32 tempL1 = pInputSamples0U32[i*4+1] << shift0;
|
|
drflac_uint32 tempL2 = pInputSamples0U32[i*4+2] << shift0;
|
|
drflac_uint32 tempL3 = pInputSamples0U32[i*4+3] << shift0;
|
|
|
|
drflac_uint32 tempR0 = pInputSamples1U32[i*4+0] << shift1;
|
|
drflac_uint32 tempR1 = pInputSamples1U32[i*4+1] << shift1;
|
|
drflac_uint32 tempR2 = pInputSamples1U32[i*4+2] << shift1;
|
|
drflac_uint32 tempR3 = pInputSamples1U32[i*4+3] << shift1;
|
|
|
|
pOutputSamples[i*8+0] = (drflac_int32)tempL0 * factor;
|
|
pOutputSamples[i*8+1] = (drflac_int32)tempR0 * factor;
|
|
pOutputSamples[i*8+2] = (drflac_int32)tempL1 * factor;
|
|
pOutputSamples[i*8+3] = (drflac_int32)tempR1 * factor;
|
|
pOutputSamples[i*8+4] = (drflac_int32)tempL2 * factor;
|
|
pOutputSamples[i*8+5] = (drflac_int32)tempR2 * factor;
|
|
pOutputSamples[i*8+6] = (drflac_int32)tempL3 * factor;
|
|
pOutputSamples[i*8+7] = (drflac_int32)tempR3 * factor;
|
|
}
|
|
|
|
for (i = (frameCount4 << 2); i < frameCount; ++i) {
|
|
pOutputSamples[i*2+0] = (drflac_int32)(pInputSamples0U32[i] << shift0) * factor;
|
|
pOutputSamples[i*2+1] = (drflac_int32)(pInputSamples1U32[i] << shift1) * factor;
|
|
}
|
|
}
|
|
|
|
#if defined(DRFLAC_SUPPORT_SSE2)
|
|
static DRFLAC_INLINE void drflac_read_pcm_frames_f32__decode_independent_stereo__sse2(drflac* pFlac, drflac_uint64 frameCount, drflac_uint32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, float* pOutputSamples)
|
|
{
|
|
drflac_uint64 i;
|
|
drflac_uint64 frameCount4 = frameCount >> 2;
|
|
const drflac_uint32* pInputSamples0U32 = (const drflac_uint32*)pInputSamples0;
|
|
const drflac_uint32* pInputSamples1U32 = (const drflac_uint32*)pInputSamples1;
|
|
drflac_uint32 shift0 = (unusedBitsPerSample + pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample) - 8;
|
|
drflac_uint32 shift1 = (unusedBitsPerSample + pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample) - 8;
|
|
|
|
float factor = 1.0f / 8388608.0f;
|
|
__m128 factor128 = _mm_set1_ps(factor);
|
|
|
|
for (i = 0; i < frameCount4; ++i) {
|
|
__m128i lefti;
|
|
__m128i righti;
|
|
__m128 leftf;
|
|
__m128 rightf;
|
|
|
|
lefti = _mm_slli_epi32(_mm_loadu_si128((const __m128i*)pInputSamples0 + i), shift0);
|
|
righti = _mm_slli_epi32(_mm_loadu_si128((const __m128i*)pInputSamples1 + i), shift1);
|
|
|
|
leftf = _mm_mul_ps(_mm_cvtepi32_ps(lefti), factor128);
|
|
rightf = _mm_mul_ps(_mm_cvtepi32_ps(righti), factor128);
|
|
|
|
_mm_storeu_ps(pOutputSamples + i*8 + 0, _mm_unpacklo_ps(leftf, rightf));
|
|
_mm_storeu_ps(pOutputSamples + i*8 + 4, _mm_unpackhi_ps(leftf, rightf));
|
|
}
|
|
|
|
for (i = (frameCount4 << 2); i < frameCount; ++i) {
|
|
pOutputSamples[i*2+0] = (drflac_int32)(pInputSamples0U32[i] << shift0) * factor;
|
|
pOutputSamples[i*2+1] = (drflac_int32)(pInputSamples1U32[i] << shift1) * factor;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
#if defined(DRFLAC_SUPPORT_NEON)
|
|
static DRFLAC_INLINE void drflac_read_pcm_frames_f32__decode_independent_stereo__neon(drflac* pFlac, drflac_uint64 frameCount, drflac_uint32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, float* pOutputSamples)
|
|
{
|
|
drflac_uint64 i;
|
|
drflac_uint64 frameCount4 = frameCount >> 2;
|
|
const drflac_uint32* pInputSamples0U32 = (const drflac_uint32*)pInputSamples0;
|
|
const drflac_uint32* pInputSamples1U32 = (const drflac_uint32*)pInputSamples1;
|
|
drflac_uint32 shift0 = (unusedBitsPerSample + pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample) - 8;
|
|
drflac_uint32 shift1 = (unusedBitsPerSample + pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample) - 8;
|
|
|
|
float factor = 1.0f / 8388608.0f;
|
|
float32x4_t factor4 = vdupq_n_f32(factor);
|
|
int32x4_t shift0_4 = vdupq_n_s32(shift0);
|
|
int32x4_t shift1_4 = vdupq_n_s32(shift1);
|
|
|
|
for (i = 0; i < frameCount4; ++i) {
|
|
int32x4_t lefti;
|
|
int32x4_t righti;
|
|
float32x4_t leftf;
|
|
float32x4_t rightf;
|
|
|
|
lefti = vreinterpretq_s32_u32(vshlq_u32(vld1q_u32(pInputSamples0U32 + i*4), shift0_4));
|
|
righti = vreinterpretq_s32_u32(vshlq_u32(vld1q_u32(pInputSamples1U32 + i*4), shift1_4));
|
|
|
|
leftf = vmulq_f32(vcvtq_f32_s32(lefti), factor4);
|
|
rightf = vmulq_f32(vcvtq_f32_s32(righti), factor4);
|
|
|
|
drflac__vst2q_f32(pOutputSamples + i*8, vzipq_f32(leftf, rightf));
|
|
}
|
|
|
|
for (i = (frameCount4 << 2); i < frameCount; ++i) {
|
|
pOutputSamples[i*2+0] = (drflac_int32)(pInputSamples0U32[i] << shift0) * factor;
|
|
pOutputSamples[i*2+1] = (drflac_int32)(pInputSamples1U32[i] << shift1) * factor;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
static DRFLAC_INLINE void drflac_read_pcm_frames_f32__decode_independent_stereo(drflac* pFlac, drflac_uint64 frameCount, drflac_uint32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, float* pOutputSamples)
|
|
{
|
|
#if defined(DRFLAC_SUPPORT_SSE2)
|
|
if (drflac__gIsSSE2Supported && pFlac->bitsPerSample <= 24) {
|
|
drflac_read_pcm_frames_f32__decode_independent_stereo__sse2(pFlac, frameCount, unusedBitsPerSample, pInputSamples0, pInputSamples1, pOutputSamples);
|
|
} else
|
|
#elif defined(DRFLAC_SUPPORT_NEON)
|
|
if (drflac__gIsNEONSupported && pFlac->bitsPerSample <= 24) {
|
|
drflac_read_pcm_frames_f32__decode_independent_stereo__neon(pFlac, frameCount, unusedBitsPerSample, pInputSamples0, pInputSamples1, pOutputSamples);
|
|
} else
|
|
#endif
|
|
{
|
|
/* Scalar fallback. */
|
|
#if 0
|
|
drflac_read_pcm_frames_f32__decode_independent_stereo__reference(pFlac, frameCount, unusedBitsPerSample, pInputSamples0, pInputSamples1, pOutputSamples);
|
|
#else
|
|
drflac_read_pcm_frames_f32__decode_independent_stereo__scalar(pFlac, frameCount, unusedBitsPerSample, pInputSamples0, pInputSamples1, pOutputSamples);
|
|
#endif
|
|
}
|
|
}
|
|
|
|
DRFLAC_API drflac_uint64 drflac_read_pcm_frames_f32(drflac* pFlac, drflac_uint64 framesToRead, float* pBufferOut)
|
|
{
|
|
drflac_uint64 framesRead;
|
|
drflac_uint32 unusedBitsPerSample;
|
|
|
|
if (pFlac == NULL || framesToRead == 0) {
|
|
return 0;
|
|
}
|
|
|
|
if (pBufferOut == NULL) {
|
|
return drflac__seek_forward_by_pcm_frames(pFlac, framesToRead);
|
|
}
|
|
|
|
DRFLAC_ASSERT(pFlac->bitsPerSample <= 32);
|
|
unusedBitsPerSample = 32 - pFlac->bitsPerSample;
|
|
|
|
framesRead = 0;
|
|
while (framesToRead > 0) {
|
|
/* If we've run out of samples in this frame, go to the next. */
|
|
if (pFlac->currentFLACFrame.pcmFramesRemaining == 0) {
|
|
if (!drflac__read_and_decode_next_flac_frame(pFlac)) {
|
|
break; /* Couldn't read the next frame, so just break from the loop and return. */
|
|
}
|
|
} else {
|
|
unsigned int channelCount = drflac__get_channel_count_from_channel_assignment(pFlac->currentFLACFrame.header.channelAssignment);
|
|
drflac_uint64 iFirstPCMFrame = pFlac->currentFLACFrame.header.blockSizeInPCMFrames - pFlac->currentFLACFrame.pcmFramesRemaining;
|
|
drflac_uint64 frameCountThisIteration = framesToRead;
|
|
|
|
if (frameCountThisIteration > pFlac->currentFLACFrame.pcmFramesRemaining) {
|
|
frameCountThisIteration = pFlac->currentFLACFrame.pcmFramesRemaining;
|
|
}
|
|
|
|
if (channelCount == 2) {
|
|
const drflac_int32* pDecodedSamples0 = pFlac->currentFLACFrame.subframes[0].pSamplesS32 + iFirstPCMFrame;
|
|
const drflac_int32* pDecodedSamples1 = pFlac->currentFLACFrame.subframes[1].pSamplesS32 + iFirstPCMFrame;
|
|
|
|
switch (pFlac->currentFLACFrame.header.channelAssignment)
|
|
{
|
|
case DRFLAC_CHANNEL_ASSIGNMENT_LEFT_SIDE:
|
|
{
|
|
drflac_read_pcm_frames_f32__decode_left_side(pFlac, frameCountThisIteration, unusedBitsPerSample, pDecodedSamples0, pDecodedSamples1, pBufferOut);
|
|
} break;
|
|
|
|
case DRFLAC_CHANNEL_ASSIGNMENT_RIGHT_SIDE:
|
|
{
|
|
drflac_read_pcm_frames_f32__decode_right_side(pFlac, frameCountThisIteration, unusedBitsPerSample, pDecodedSamples0, pDecodedSamples1, pBufferOut);
|
|
} break;
|
|
|
|
case DRFLAC_CHANNEL_ASSIGNMENT_MID_SIDE:
|
|
{
|
|
drflac_read_pcm_frames_f32__decode_mid_side(pFlac, frameCountThisIteration, unusedBitsPerSample, pDecodedSamples0, pDecodedSamples1, pBufferOut);
|
|
} break;
|
|
|
|
case DRFLAC_CHANNEL_ASSIGNMENT_INDEPENDENT:
|
|
default:
|
|
{
|
|
drflac_read_pcm_frames_f32__decode_independent_stereo(pFlac, frameCountThisIteration, unusedBitsPerSample, pDecodedSamples0, pDecodedSamples1, pBufferOut);
|
|
} break;
|
|
}
|
|
} else {
|
|
/* Generic interleaving. */
|
|
drflac_uint64 i;
|
|
for (i = 0; i < frameCountThisIteration; ++i) {
|
|
unsigned int j;
|
|
for (j = 0; j < channelCount; ++j) {
|
|
drflac_int32 sampleS32 = (drflac_int32)((drflac_uint32)(pFlac->currentFLACFrame.subframes[j].pSamplesS32[iFirstPCMFrame + i]) << (unusedBitsPerSample + pFlac->currentFLACFrame.subframes[j].wastedBitsPerSample));
|
|
pBufferOut[(i*channelCount)+j] = (float)(sampleS32 / 2147483648.0);
|
|
}
|
|
}
|
|
}
|
|
|
|
framesRead += frameCountThisIteration;
|
|
pBufferOut += frameCountThisIteration * channelCount;
|
|
framesToRead -= frameCountThisIteration;
|
|
pFlac->currentPCMFrame += frameCountThisIteration;
|
|
pFlac->currentFLACFrame.pcmFramesRemaining -= (unsigned int)frameCountThisIteration;
|
|
}
|
|
}
|
|
|
|
return framesRead;
|
|
}
|
|
|
|
|
|
DRFLAC_API drflac_bool32 drflac_seek_to_pcm_frame(drflac* pFlac, drflac_uint64 pcmFrameIndex)
|
|
{
|
|
if (pFlac == NULL) {
|
|
return DRFLAC_FALSE;
|
|
}
|
|
|
|
/* Don't do anything if we're already on the seek point. */
|
|
if (pFlac->currentPCMFrame == pcmFrameIndex) {
|
|
return DRFLAC_TRUE;
|
|
}
|
|
|
|
/*
|
|
If we don't know where the first frame begins then we can't seek. This will happen when the STREAMINFO block was not present
|
|
when the decoder was opened.
|
|
*/
|
|
if (pFlac->firstFLACFramePosInBytes == 0) {
|
|
return DRFLAC_FALSE;
|
|
}
|
|
|
|
if (pcmFrameIndex == 0) {
|
|
pFlac->currentPCMFrame = 0;
|
|
return drflac__seek_to_first_frame(pFlac);
|
|
} else {
|
|
drflac_bool32 wasSuccessful = DRFLAC_FALSE;
|
|
|
|
/* Clamp the sample to the end. */
|
|
if (pcmFrameIndex > pFlac->totalPCMFrameCount) {
|
|
pcmFrameIndex = pFlac->totalPCMFrameCount;
|
|
}
|
|
|
|
/* If the target sample and the current sample are in the same frame we just move the position forward. */
|
|
if (pcmFrameIndex > pFlac->currentPCMFrame) {
|
|
/* Forward. */
|
|
drflac_uint32 offset = (drflac_uint32)(pcmFrameIndex - pFlac->currentPCMFrame);
|
|
if (pFlac->currentFLACFrame.pcmFramesRemaining > offset) {
|
|
pFlac->currentFLACFrame.pcmFramesRemaining -= offset;
|
|
pFlac->currentPCMFrame = pcmFrameIndex;
|
|
return DRFLAC_TRUE;
|
|
}
|
|
} else {
|
|
/* Backward. */
|
|
drflac_uint32 offsetAbs = (drflac_uint32)(pFlac->currentPCMFrame - pcmFrameIndex);
|
|
drflac_uint32 currentFLACFramePCMFrameCount = pFlac->currentFLACFrame.header.blockSizeInPCMFrames;
|
|
drflac_uint32 currentFLACFramePCMFramesConsumed = currentFLACFramePCMFrameCount - pFlac->currentFLACFrame.pcmFramesRemaining;
|
|
if (currentFLACFramePCMFramesConsumed > offsetAbs) {
|
|
pFlac->currentFLACFrame.pcmFramesRemaining += offsetAbs;
|
|
pFlac->currentPCMFrame = pcmFrameIndex;
|
|
return DRFLAC_TRUE;
|
|
}
|
|
}
|
|
|
|
/*
|
|
Different techniques depending on encapsulation. Using the native FLAC seektable with Ogg encapsulation is a bit awkward so
|
|
we'll instead use Ogg's natural seeking facility.
|
|
*/
|
|
#ifndef DR_FLAC_NO_OGG
|
|
if (pFlac->container == drflac_container_ogg)
|
|
{
|
|
wasSuccessful = drflac_ogg__seek_to_pcm_frame(pFlac, pcmFrameIndex);
|
|
}
|
|
else
|
|
#endif
|
|
{
|
|
/* First try seeking via the seek table. If this fails, fall back to a brute force seek which is much slower. */
|
|
if (/*!wasSuccessful && */!pFlac->_noSeekTableSeek) {
|
|
wasSuccessful = drflac__seek_to_pcm_frame__seek_table(pFlac, pcmFrameIndex);
|
|
}
|
|
|
|
#if !defined(DR_FLAC_NO_CRC)
|
|
/* Fall back to binary search if seek table seeking fails. This requires the length of the stream to be known. */
|
|
if (!wasSuccessful && !pFlac->_noBinarySearchSeek && pFlac->totalPCMFrameCount > 0) {
|
|
wasSuccessful = drflac__seek_to_pcm_frame__binary_search(pFlac, pcmFrameIndex);
|
|
}
|
|
#endif
|
|
|
|
/* Fall back to brute force if all else fails. */
|
|
if (!wasSuccessful && !pFlac->_noBruteForceSeek) {
|
|
wasSuccessful = drflac__seek_to_pcm_frame__brute_force(pFlac, pcmFrameIndex);
|
|
}
|
|
}
|
|
|
|
pFlac->currentPCMFrame = pcmFrameIndex;
|
|
return wasSuccessful;
|
|
}
|
|
}
|
|
|
|
|
|
|
|
/* High Level APIs */
|
|
|
|
#if defined(SIZE_MAX)
|
|
#define DRFLAC_SIZE_MAX SIZE_MAX
|
|
#else
|
|
#if defined(DRFLAC_64BIT)
|
|
#define DRFLAC_SIZE_MAX ((drflac_uint64)0xFFFFFFFFFFFFFFFF)
|
|
#else
|
|
#define DRFLAC_SIZE_MAX 0xFFFFFFFF
|
|
#endif
|
|
#endif
|
|
|
|
|
|
/* Using a macro as the definition of the drflac__full_decode_and_close_*() API family. Sue me. */
|
|
#define DRFLAC_DEFINE_FULL_READ_AND_CLOSE(extension, type) \
|
|
static type* drflac__full_read_and_close_ ## extension (drflac* pFlac, unsigned int* channelsOut, unsigned int* sampleRateOut, drflac_uint64* totalPCMFrameCountOut)\
|
|
{ \
|
|
type* pSampleData = NULL; \
|
|
drflac_uint64 totalPCMFrameCount; \
|
|
\
|
|
DRFLAC_ASSERT(pFlac != NULL); \
|
|
\
|
|
totalPCMFrameCount = pFlac->totalPCMFrameCount; \
|
|
\
|
|
if (totalPCMFrameCount == 0) { \
|
|
type buffer[4096]; \
|
|
drflac_uint64 pcmFramesRead; \
|
|
size_t sampleDataBufferSize = sizeof(buffer); \
|
|
\
|
|
pSampleData = (type*)drflac__malloc_from_callbacks(sampleDataBufferSize, &pFlac->allocationCallbacks); \
|
|
if (pSampleData == NULL) { \
|
|
goto on_error; \
|
|
} \
|
|
\
|
|
while ((pcmFramesRead = (drflac_uint64)drflac_read_pcm_frames_##extension(pFlac, sizeof(buffer)/sizeof(buffer[0])/pFlac->channels, buffer)) > 0) { \
|
|
if (((totalPCMFrameCount + pcmFramesRead) * pFlac->channels * sizeof(type)) > sampleDataBufferSize) { \
|
|
type* pNewSampleData; \
|
|
size_t newSampleDataBufferSize; \
|
|
\
|
|
newSampleDataBufferSize = sampleDataBufferSize * 2; \
|
|
pNewSampleData = (type*)drflac__realloc_from_callbacks(pSampleData, newSampleDataBufferSize, sampleDataBufferSize, &pFlac->allocationCallbacks); \
|
|
if (pNewSampleData == NULL) { \
|
|
drflac__free_from_callbacks(pSampleData, &pFlac->allocationCallbacks); \
|
|
goto on_error; \
|
|
} \
|
|
\
|
|
sampleDataBufferSize = newSampleDataBufferSize; \
|
|
pSampleData = pNewSampleData; \
|
|
} \
|
|
\
|
|
DRFLAC_COPY_MEMORY(pSampleData + (totalPCMFrameCount*pFlac->channels), buffer, (size_t)(pcmFramesRead*pFlac->channels*sizeof(type))); \
|
|
totalPCMFrameCount += pcmFramesRead; \
|
|
} \
|
|
\
|
|
/* At this point everything should be decoded, but we just want to fill the unused part buffer with silence - need to \
|
|
protect those ears from random noise! */ \
|
|
DRFLAC_ZERO_MEMORY(pSampleData + (totalPCMFrameCount*pFlac->channels), (size_t)(sampleDataBufferSize - totalPCMFrameCount*pFlac->channels*sizeof(type))); \
|
|
} else { \
|
|
drflac_uint64 dataSize = totalPCMFrameCount*pFlac->channels*sizeof(type); \
|
|
if (dataSize > DRFLAC_SIZE_MAX) { \
|
|
goto on_error; /* The decoded data is too big. */ \
|
|
} \
|
|
\
|
|
pSampleData = (type*)drflac__malloc_from_callbacks((size_t)dataSize, &pFlac->allocationCallbacks); /* <-- Safe cast as per the check above. */ \
|
|
if (pSampleData == NULL) { \
|
|
goto on_error; \
|
|
} \
|
|
\
|
|
totalPCMFrameCount = drflac_read_pcm_frames_##extension(pFlac, pFlac->totalPCMFrameCount, pSampleData); \
|
|
} \
|
|
\
|
|
if (sampleRateOut) *sampleRateOut = pFlac->sampleRate; \
|
|
if (channelsOut) *channelsOut = pFlac->channels; \
|
|
if (totalPCMFrameCountOut) *totalPCMFrameCountOut = totalPCMFrameCount; \
|
|
\
|
|
drflac_close(pFlac); \
|
|
return pSampleData; \
|
|
\
|
|
on_error: \
|
|
drflac_close(pFlac); \
|
|
return NULL; \
|
|
}
|
|
|
|
DRFLAC_DEFINE_FULL_READ_AND_CLOSE(s32, drflac_int32)
|
|
DRFLAC_DEFINE_FULL_READ_AND_CLOSE(s16, drflac_int16)
|
|
DRFLAC_DEFINE_FULL_READ_AND_CLOSE(f32, float)
|
|
|
|
DRFLAC_API drflac_int32* drflac_open_and_read_pcm_frames_s32(drflac_read_proc onRead, drflac_seek_proc onSeek, void* pUserData, unsigned int* channelsOut, unsigned int* sampleRateOut, drflac_uint64* totalPCMFrameCountOut, const drflac_allocation_callbacks* pAllocationCallbacks)
|
|
{
|
|
drflac* pFlac;
|
|
|
|
if (channelsOut) {
|
|
*channelsOut = 0;
|
|
}
|
|
if (sampleRateOut) {
|
|
*sampleRateOut = 0;
|
|
}
|
|
if (totalPCMFrameCountOut) {
|
|
*totalPCMFrameCountOut = 0;
|
|
}
|
|
|
|
pFlac = drflac_open(onRead, onSeek, pUserData, pAllocationCallbacks);
|
|
if (pFlac == NULL) {
|
|
return NULL;
|
|
}
|
|
|
|
return drflac__full_read_and_close_s32(pFlac, channelsOut, sampleRateOut, totalPCMFrameCountOut);
|
|
}
|
|
|
|
DRFLAC_API drflac_int16* drflac_open_and_read_pcm_frames_s16(drflac_read_proc onRead, drflac_seek_proc onSeek, void* pUserData, unsigned int* channelsOut, unsigned int* sampleRateOut, drflac_uint64* totalPCMFrameCountOut, const drflac_allocation_callbacks* pAllocationCallbacks)
|
|
{
|
|
drflac* pFlac;
|
|
|
|
if (channelsOut) {
|
|
*channelsOut = 0;
|
|
}
|
|
if (sampleRateOut) {
|
|
*sampleRateOut = 0;
|
|
}
|
|
if (totalPCMFrameCountOut) {
|
|
*totalPCMFrameCountOut = 0;
|
|
}
|
|
|
|
pFlac = drflac_open(onRead, onSeek, pUserData, pAllocationCallbacks);
|
|
if (pFlac == NULL) {
|
|
return NULL;
|
|
}
|
|
|
|
return drflac__full_read_and_close_s16(pFlac, channelsOut, sampleRateOut, totalPCMFrameCountOut);
|
|
}
|
|
|
|
DRFLAC_API float* drflac_open_and_read_pcm_frames_f32(drflac_read_proc onRead, drflac_seek_proc onSeek, void* pUserData, unsigned int* channelsOut, unsigned int* sampleRateOut, drflac_uint64* totalPCMFrameCountOut, const drflac_allocation_callbacks* pAllocationCallbacks)
|
|
{
|
|
drflac* pFlac;
|
|
|
|
if (channelsOut) {
|
|
*channelsOut = 0;
|
|
}
|
|
if (sampleRateOut) {
|
|
*sampleRateOut = 0;
|
|
}
|
|
if (totalPCMFrameCountOut) {
|
|
*totalPCMFrameCountOut = 0;
|
|
}
|
|
|
|
pFlac = drflac_open(onRead, onSeek, pUserData, pAllocationCallbacks);
|
|
if (pFlac == NULL) {
|
|
return NULL;
|
|
}
|
|
|
|
return drflac__full_read_and_close_f32(pFlac, channelsOut, sampleRateOut, totalPCMFrameCountOut);
|
|
}
|
|
|
|
#ifndef DR_FLAC_NO_STDIO
|
|
DRFLAC_API drflac_int32* drflac_open_file_and_read_pcm_frames_s32(const char* filename, unsigned int* channels, unsigned int* sampleRate, drflac_uint64* totalPCMFrameCount, const drflac_allocation_callbacks* pAllocationCallbacks)
|
|
{
|
|
drflac* pFlac;
|
|
|
|
if (sampleRate) {
|
|
*sampleRate = 0;
|
|
}
|
|
if (channels) {
|
|
*channels = 0;
|
|
}
|
|
if (totalPCMFrameCount) {
|
|
*totalPCMFrameCount = 0;
|
|
}
|
|
|
|
pFlac = drflac_open_file(filename, pAllocationCallbacks);
|
|
if (pFlac == NULL) {
|
|
return NULL;
|
|
}
|
|
|
|
return drflac__full_read_and_close_s32(pFlac, channels, sampleRate, totalPCMFrameCount);
|
|
}
|
|
|
|
DRFLAC_API drflac_int16* drflac_open_file_and_read_pcm_frames_s16(const char* filename, unsigned int* channels, unsigned int* sampleRate, drflac_uint64* totalPCMFrameCount, const drflac_allocation_callbacks* pAllocationCallbacks)
|
|
{
|
|
drflac* pFlac;
|
|
|
|
if (sampleRate) {
|
|
*sampleRate = 0;
|
|
}
|
|
if (channels) {
|
|
*channels = 0;
|
|
}
|
|
if (totalPCMFrameCount) {
|
|
*totalPCMFrameCount = 0;
|
|
}
|
|
|
|
pFlac = drflac_open_file(filename, pAllocationCallbacks);
|
|
if (pFlac == NULL) {
|
|
return NULL;
|
|
}
|
|
|
|
return drflac__full_read_and_close_s16(pFlac, channels, sampleRate, totalPCMFrameCount);
|
|
}
|
|
|
|
DRFLAC_API float* drflac_open_file_and_read_pcm_frames_f32(const char* filename, unsigned int* channels, unsigned int* sampleRate, drflac_uint64* totalPCMFrameCount, const drflac_allocation_callbacks* pAllocationCallbacks)
|
|
{
|
|
drflac* pFlac;
|
|
|
|
if (sampleRate) {
|
|
*sampleRate = 0;
|
|
}
|
|
if (channels) {
|
|
*channels = 0;
|
|
}
|
|
if (totalPCMFrameCount) {
|
|
*totalPCMFrameCount = 0;
|
|
}
|
|
|
|
pFlac = drflac_open_file(filename, pAllocationCallbacks);
|
|
if (pFlac == NULL) {
|
|
return NULL;
|
|
}
|
|
|
|
return drflac__full_read_and_close_f32(pFlac, channels, sampleRate, totalPCMFrameCount);
|
|
}
|
|
#endif
|
|
|
|
DRFLAC_API drflac_int32* drflac_open_memory_and_read_pcm_frames_s32(const void* data, size_t dataSize, unsigned int* channels, unsigned int* sampleRate, drflac_uint64* totalPCMFrameCount, const drflac_allocation_callbacks* pAllocationCallbacks)
|
|
{
|
|
drflac* pFlac;
|
|
|
|
if (sampleRate) {
|
|
*sampleRate = 0;
|
|
}
|
|
if (channels) {
|
|
*channels = 0;
|
|
}
|
|
if (totalPCMFrameCount) {
|
|
*totalPCMFrameCount = 0;
|
|
}
|
|
|
|
pFlac = drflac_open_memory(data, dataSize, pAllocationCallbacks);
|
|
if (pFlac == NULL) {
|
|
return NULL;
|
|
}
|
|
|
|
return drflac__full_read_and_close_s32(pFlac, channels, sampleRate, totalPCMFrameCount);
|
|
}
|
|
|
|
DRFLAC_API drflac_int16* drflac_open_memory_and_read_pcm_frames_s16(const void* data, size_t dataSize, unsigned int* channels, unsigned int* sampleRate, drflac_uint64* totalPCMFrameCount, const drflac_allocation_callbacks* pAllocationCallbacks)
|
|
{
|
|
drflac* pFlac;
|
|
|
|
if (sampleRate) {
|
|
*sampleRate = 0;
|
|
}
|
|
if (channels) {
|
|
*channels = 0;
|
|
}
|
|
if (totalPCMFrameCount) {
|
|
*totalPCMFrameCount = 0;
|
|
}
|
|
|
|
pFlac = drflac_open_memory(data, dataSize, pAllocationCallbacks);
|
|
if (pFlac == NULL) {
|
|
return NULL;
|
|
}
|
|
|
|
return drflac__full_read_and_close_s16(pFlac, channels, sampleRate, totalPCMFrameCount);
|
|
}
|
|
|
|
DRFLAC_API float* drflac_open_memory_and_read_pcm_frames_f32(const void* data, size_t dataSize, unsigned int* channels, unsigned int* sampleRate, drflac_uint64* totalPCMFrameCount, const drflac_allocation_callbacks* pAllocationCallbacks)
|
|
{
|
|
drflac* pFlac;
|
|
|
|
if (sampleRate) {
|
|
*sampleRate = 0;
|
|
}
|
|
if (channels) {
|
|
*channels = 0;
|
|
}
|
|
if (totalPCMFrameCount) {
|
|
*totalPCMFrameCount = 0;
|
|
}
|
|
|
|
pFlac = drflac_open_memory(data, dataSize, pAllocationCallbacks);
|
|
if (pFlac == NULL) {
|
|
return NULL;
|
|
}
|
|
|
|
return drflac__full_read_and_close_f32(pFlac, channels, sampleRate, totalPCMFrameCount);
|
|
}
|
|
|
|
|
|
DRFLAC_API void drflac_free(void* p, const drflac_allocation_callbacks* pAllocationCallbacks)
|
|
{
|
|
if (pAllocationCallbacks != NULL) {
|
|
drflac__free_from_callbacks(p, pAllocationCallbacks);
|
|
} else {
|
|
drflac__free_default(p, NULL);
|
|
}
|
|
}
|
|
|
|
|
|
|
|
|
|
DRFLAC_API void drflac_init_vorbis_comment_iterator(drflac_vorbis_comment_iterator* pIter, drflac_uint32 commentCount, const void* pComments)
|
|
{
|
|
if (pIter == NULL) {
|
|
return;
|
|
}
|
|
|
|
pIter->countRemaining = commentCount;
|
|
pIter->pRunningData = (const char*)pComments;
|
|
}
|
|
|
|
DRFLAC_API const char* drflac_next_vorbis_comment(drflac_vorbis_comment_iterator* pIter, drflac_uint32* pCommentLengthOut)
|
|
{
|
|
drflac_int32 length;
|
|
const char* pComment;
|
|
|
|
/* Safety. */
|
|
if (pCommentLengthOut) {
|
|
*pCommentLengthOut = 0;
|
|
}
|
|
|
|
if (pIter == NULL || pIter->countRemaining == 0 || pIter->pRunningData == NULL) {
|
|
return NULL;
|
|
}
|
|
|
|
length = drflac__le2host_32(*(const drflac_uint32*)pIter->pRunningData);
|
|
pIter->pRunningData += 4;
|
|
|
|
pComment = pIter->pRunningData;
|
|
pIter->pRunningData += length;
|
|
pIter->countRemaining -= 1;
|
|
|
|
if (pCommentLengthOut) {
|
|
*pCommentLengthOut = length;
|
|
}
|
|
|
|
return pComment;
|
|
}
|
|
|
|
|
|
|
|
|
|
DRFLAC_API void drflac_init_cuesheet_track_iterator(drflac_cuesheet_track_iterator* pIter, drflac_uint32 trackCount, const void* pTrackData)
|
|
{
|
|
if (pIter == NULL) {
|
|
return;
|
|
}
|
|
|
|
pIter->countRemaining = trackCount;
|
|
pIter->pRunningData = (const char*)pTrackData;
|
|
}
|
|
|
|
DRFLAC_API drflac_bool32 drflac_next_cuesheet_track(drflac_cuesheet_track_iterator* pIter, drflac_cuesheet_track* pCuesheetTrack)
|
|
{
|
|
drflac_cuesheet_track cuesheetTrack;
|
|
const char* pRunningData;
|
|
drflac_uint64 offsetHi;
|
|
drflac_uint64 offsetLo;
|
|
|
|
if (pIter == NULL || pIter->countRemaining == 0 || pIter->pRunningData == NULL) {
|
|
return DRFLAC_FALSE;
|
|
}
|
|
|
|
pRunningData = pIter->pRunningData;
|
|
|
|
offsetHi = drflac__be2host_32(*(const drflac_uint32*)pRunningData); pRunningData += 4;
|
|
offsetLo = drflac__be2host_32(*(const drflac_uint32*)pRunningData); pRunningData += 4;
|
|
cuesheetTrack.offset = offsetLo | (offsetHi << 32);
|
|
cuesheetTrack.trackNumber = pRunningData[0]; pRunningData += 1;
|
|
DRFLAC_COPY_MEMORY(cuesheetTrack.ISRC, pRunningData, sizeof(cuesheetTrack.ISRC)); pRunningData += 12;
|
|
cuesheetTrack.isAudio = (pRunningData[0] & 0x80) != 0;
|
|
cuesheetTrack.preEmphasis = (pRunningData[0] & 0x40) != 0; pRunningData += 14;
|
|
cuesheetTrack.indexCount = pRunningData[0]; pRunningData += 1;
|
|
cuesheetTrack.pIndexPoints = (const drflac_cuesheet_track_index*)pRunningData; pRunningData += cuesheetTrack.indexCount * sizeof(drflac_cuesheet_track_index);
|
|
|
|
pIter->pRunningData = pRunningData;
|
|
pIter->countRemaining -= 1;
|
|
|
|
if (pCuesheetTrack) {
|
|
*pCuesheetTrack = cuesheetTrack;
|
|
}
|
|
|
|
return DRFLAC_TRUE;
|
|
}
|
|
|
|
#if defined(__GNUC__)
|
|
#pragma GCC diagnostic pop
|
|
#endif
|
|
#endif /* DR_FLAC_IMPLEMENTATION */
|
|
|
|
|
|
/*
|
|
REVISION HISTORY
|
|
================
|
|
v0.12.13 - 2020-05-16
|
|
- Add compile-time and run-time version querying.
|
|
- DRFLAC_VERSION_MINOR
|
|
- DRFLAC_VERSION_MAJOR
|
|
- DRFLAC_VERSION_REVISION
|
|
- DRFLAC_VERSION_STRING
|
|
- drflac_version()
|
|
- drflac_version_string()
|
|
|
|
v0.12.12 - 2020-04-30
|
|
- Fix compilation errors with VC6.
|
|
|
|
v0.12.11 - 2020-04-19
|
|
- Fix some pedantic warnings.
|
|
- Fix some undefined behaviour warnings.
|
|
|
|
v0.12.10 - 2020-04-10
|
|
- Fix some bugs when trying to seek with an invalid seek table.
|
|
|
|
v0.12.9 - 2020-04-05
|
|
- Fix warnings.
|
|
|
|
v0.12.8 - 2020-04-04
|
|
- Add drflac_open_file_w() and drflac_open_file_with_metadata_w().
|
|
- Fix some static analysis warnings.
|
|
- Minor documentation updates.
|
|
|
|
v0.12.7 - 2020-03-14
|
|
- Fix compilation errors with VC6.
|
|
|
|
v0.12.6 - 2020-03-07
|
|
- Fix compilation error with Visual Studio .NET 2003.
|
|
|
|
v0.12.5 - 2020-01-30
|
|
- Silence some static analysis warnings.
|
|
|
|
v0.12.4 - 2020-01-29
|
|
- Silence some static analysis warnings.
|
|
|
|
v0.12.3 - 2019-12-02
|
|
- Fix some warnings when compiling with GCC and the -Og flag.
|
|
- Fix a crash in out-of-memory situations.
|
|
- Fix potential integer overflow bug.
|
|
- Fix some static analysis warnings.
|
|
- Fix a possible crash when using custom memory allocators without a custom realloc() implementation.
|
|
- Fix a bug with binary search seeking where the bits per sample is not a multiple of 8.
|
|
|
|
v0.12.2 - 2019-10-07
|
|
- Internal code clean up.
|
|
|
|
v0.12.1 - 2019-09-29
|
|
- Fix some Clang Static Analyzer warnings.
|
|
- Fix an unused variable warning.
|
|
|
|
v0.12.0 - 2019-09-23
|
|
- API CHANGE: Add support for user defined memory allocation routines. This system allows the program to specify their own memory allocation
|
|
routines with a user data pointer for client-specific contextual data. This adds an extra parameter to the end of the following APIs:
|
|
- drflac_open()
|
|
- drflac_open_relaxed()
|
|
- drflac_open_with_metadata()
|
|
- drflac_open_with_metadata_relaxed()
|
|
- drflac_open_file()
|
|
- drflac_open_file_with_metadata()
|
|
- drflac_open_memory()
|
|
- drflac_open_memory_with_metadata()
|
|
- drflac_open_and_read_pcm_frames_s32()
|
|
- drflac_open_and_read_pcm_frames_s16()
|
|
- drflac_open_and_read_pcm_frames_f32()
|
|
- drflac_open_file_and_read_pcm_frames_s32()
|
|
- drflac_open_file_and_read_pcm_frames_s16()
|
|
- drflac_open_file_and_read_pcm_frames_f32()
|
|
- drflac_open_memory_and_read_pcm_frames_s32()
|
|
- drflac_open_memory_and_read_pcm_frames_s16()
|
|
- drflac_open_memory_and_read_pcm_frames_f32()
|
|
Set this extra parameter to NULL to use defaults which is the same as the previous behaviour. Setting this NULL will use
|
|
DRFLAC_MALLOC, DRFLAC_REALLOC and DRFLAC_FREE.
|
|
- Remove deprecated APIs:
|
|
- drflac_read_s32()
|
|
- drflac_read_s16()
|
|
- drflac_read_f32()
|
|
- drflac_seek_to_sample()
|
|
- drflac_open_and_decode_s32()
|
|
- drflac_open_and_decode_s16()
|
|
- drflac_open_and_decode_f32()
|
|
- drflac_open_and_decode_file_s32()
|
|
- drflac_open_and_decode_file_s16()
|
|
- drflac_open_and_decode_file_f32()
|
|
- drflac_open_and_decode_memory_s32()
|
|
- drflac_open_and_decode_memory_s16()
|
|
- drflac_open_and_decode_memory_f32()
|
|
- Remove drflac.totalSampleCount which is now replaced with drflac.totalPCMFrameCount. You can emulate drflac.totalSampleCount
|
|
by doing pFlac->totalPCMFrameCount*pFlac->channels.
|
|
- Rename drflac.currentFrame to drflac.currentFLACFrame to remove ambiguity with PCM frames.
|
|
- Fix errors when seeking to the end of a stream.
|
|
- Optimizations to seeking.
|
|
- SSE improvements and optimizations.
|
|
- ARM NEON optimizations.
|
|
- Optimizations to drflac_read_pcm_frames_s16().
|
|
- Optimizations to drflac_read_pcm_frames_s32().
|
|
|
|
v0.11.10 - 2019-06-26
|
|
- Fix a compiler error.
|
|
|
|
v0.11.9 - 2019-06-16
|
|
- Silence some ThreadSanitizer warnings.
|
|
|
|
v0.11.8 - 2019-05-21
|
|
- Fix warnings.
|
|
|
|
v0.11.7 - 2019-05-06
|
|
- C89 fixes.
|
|
|
|
v0.11.6 - 2019-05-05
|
|
- Add support for C89.
|
|
- Fix a compiler warning when CRC is disabled.
|
|
- Change license to choice of public domain or MIT-0.
|
|
|
|
v0.11.5 - 2019-04-19
|
|
- Fix a compiler error with GCC.
|
|
|
|
v0.11.4 - 2019-04-17
|
|
- Fix some warnings with GCC when compiling with -std=c99.
|
|
|
|
v0.11.3 - 2019-04-07
|
|
- Silence warnings with GCC.
|
|
|
|
v0.11.2 - 2019-03-10
|
|
- Fix a warning.
|
|
|
|
v0.11.1 - 2019-02-17
|
|
- Fix a potential bug with seeking.
|
|
|
|
v0.11.0 - 2018-12-16
|
|
- API CHANGE: Deprecated drflac_read_s32(), drflac_read_s16() and drflac_read_f32() and replaced them with
|
|
drflac_read_pcm_frames_s32(), drflac_read_pcm_frames_s16() and drflac_read_pcm_frames_f32(). The new APIs take
|
|
and return PCM frame counts instead of sample counts. To upgrade you will need to change the input count by
|
|
dividing it by the channel count, and then do the same with the return value.
|
|
- API_CHANGE: Deprecated drflac_seek_to_sample() and replaced with drflac_seek_to_pcm_frame(). Same rules as
|
|
the changes to drflac_read_*() apply.
|
|
- API CHANGE: Deprecated drflac_open_and_decode_*() and replaced with drflac_open_*_and_read_*(). Same rules as
|
|
the changes to drflac_read_*() apply.
|
|
- Optimizations.
|
|
|
|
v0.10.0 - 2018-09-11
|
|
- Remove the DR_FLAC_NO_WIN32_IO option and the Win32 file IO functionality. If you need to use Win32 file IO you
|
|
need to do it yourself via the callback API.
|
|
- Fix the clang build.
|
|
- Fix undefined behavior.
|
|
- Fix errors with CUESHEET metdata blocks.
|
|
- Add an API for iterating over each cuesheet track in the CUESHEET metadata block. This works the same way as the
|
|
Vorbis comment API.
|
|
- Other miscellaneous bug fixes, mostly relating to invalid FLAC streams.
|
|
- Minor optimizations.
|
|
|
|
v0.9.11 - 2018-08-29
|
|
- Fix a bug with sample reconstruction.
|
|
|
|
v0.9.10 - 2018-08-07
|
|
- Improve 64-bit detection.
|
|
|
|
v0.9.9 - 2018-08-05
|
|
- Fix C++ build on older versions of GCC.
|
|
|
|
v0.9.8 - 2018-07-24
|
|
- Fix compilation errors.
|
|
|
|
v0.9.7 - 2018-07-05
|
|
- Fix a warning.
|
|
|
|
v0.9.6 - 2018-06-29
|
|
- Fix some typos.
|
|
|
|
v0.9.5 - 2018-06-23
|
|
- Fix some warnings.
|
|
|
|
v0.9.4 - 2018-06-14
|
|
- Optimizations to seeking.
|
|
- Clean up.
|
|
|
|
v0.9.3 - 2018-05-22
|
|
- Bug fix.
|
|
|
|
v0.9.2 - 2018-05-12
|
|
- Fix a compilation error due to a missing break statement.
|
|
|
|
v0.9.1 - 2018-04-29
|
|
- Fix compilation error with Clang.
|
|
|
|
v0.9 - 2018-04-24
|
|
- Fix Clang build.
|
|
- Start using major.minor.revision versioning.
|
|
|
|
v0.8g - 2018-04-19
|
|
- Fix build on non-x86/x64 architectures.
|
|
|
|
v0.8f - 2018-02-02
|
|
- Stop pretending to support changing rate/channels mid stream.
|
|
|
|
v0.8e - 2018-02-01
|
|
- Fix a crash when the block size of a frame is larger than the maximum block size defined by the FLAC stream.
|
|
- Fix a crash the the Rice partition order is invalid.
|
|
|
|
v0.8d - 2017-09-22
|
|
- Add support for decoding streams with ID3 tags. ID3 tags are just skipped.
|
|
|
|
v0.8c - 2017-09-07
|
|
- Fix warning on non-x86/x64 architectures.
|
|
|
|
v0.8b - 2017-08-19
|
|
- Fix build on non-x86/x64 architectures.
|
|
|
|
v0.8a - 2017-08-13
|
|
- A small optimization for the Clang build.
|
|
|
|
v0.8 - 2017-08-12
|
|
- API CHANGE: Rename dr_* types to drflac_*.
|
|
- Optimizations. This brings dr_flac back to about the same class of efficiency as the reference implementation.
|
|
- Add support for custom implementations of malloc(), realloc(), etc.
|
|
- Add CRC checking to Ogg encapsulated streams.
|
|
- Fix VC++ 6 build. This is only for the C++ compiler. The C compiler is not currently supported.
|
|
- Bug fixes.
|
|
|
|
v0.7 - 2017-07-23
|
|
- Add support for opening a stream without a header block. To do this, use drflac_open_relaxed() / drflac_open_with_metadata_relaxed().
|
|
|
|
v0.6 - 2017-07-22
|
|
- Add support for recovering from invalid frames. With this change, dr_flac will simply skip over invalid frames as if they
|
|
never existed. Frames are checked against their sync code, the CRC-8 of the frame header and the CRC-16 of the whole frame.
|
|
|
|
v0.5 - 2017-07-16
|
|
- Fix typos.
|
|
- Change drflac_bool* types to unsigned.
|
|
- Add CRC checking. This makes dr_flac slower, but can be disabled with #define DR_FLAC_NO_CRC.
|
|
|
|
v0.4f - 2017-03-10
|
|
- Fix a couple of bugs with the bitstreaming code.
|
|
|
|
v0.4e - 2017-02-17
|
|
- Fix some warnings.
|
|
|
|
v0.4d - 2016-12-26
|
|
- Add support for 32-bit floating-point PCM decoding.
|
|
- Use drflac_int* and drflac_uint* sized types to improve compiler support.
|
|
- Minor improvements to documentation.
|
|
|
|
v0.4c - 2016-12-26
|
|
- Add support for signed 16-bit integer PCM decoding.
|
|
|
|
v0.4b - 2016-10-23
|
|
- A minor change to drflac_bool8 and drflac_bool32 types.
|
|
|
|
v0.4a - 2016-10-11
|
|
- Rename drBool32 to drflac_bool32 for styling consistency.
|
|
|
|
v0.4 - 2016-09-29
|
|
- API/ABI CHANGE: Use fixed size 32-bit booleans instead of the built-in bool type.
|
|
- API CHANGE: Rename drflac_open_and_decode*() to drflac_open_and_decode*_s32().
|
|
- API CHANGE: Swap the order of "channels" and "sampleRate" parameters in drflac_open_and_decode*(). Rationale for this is to
|
|
keep it consistent with drflac_audio.
|
|
|
|
v0.3f - 2016-09-21
|
|
- Fix a warning with GCC.
|
|
|
|
v0.3e - 2016-09-18
|
|
- Fixed a bug where GCC 4.3+ was not getting properly identified.
|
|
- Fixed a few typos.
|
|
- Changed date formats to ISO 8601 (YYYY-MM-DD).
|
|
|
|
v0.3d - 2016-06-11
|
|
- Minor clean up.
|
|
|
|
v0.3c - 2016-05-28
|
|
- Fixed compilation error.
|
|
|
|
v0.3b - 2016-05-16
|
|
- Fixed Linux/GCC build.
|
|
- Updated documentation.
|
|
|
|
v0.3a - 2016-05-15
|
|
- Minor fixes to documentation.
|
|
|
|
v0.3 - 2016-05-11
|
|
- Optimizations. Now at about parity with the reference implementation on 32-bit builds.
|
|
- Lots of clean up.
|
|
|
|
v0.2b - 2016-05-10
|
|
- Bug fixes.
|
|
|
|
v0.2a - 2016-05-10
|
|
- Made drflac_open_and_decode() more robust.
|
|
- Removed an unused debugging variable
|
|
|
|
v0.2 - 2016-05-09
|
|
- Added support for Ogg encapsulation.
|
|
- API CHANGE. Have the onSeek callback take a third argument which specifies whether or not the seek
|
|
should be relative to the start or the current position. Also changes the seeking rules such that
|
|
seeking offsets will never be negative.
|
|
- Have drflac_open_and_decode() fail gracefully if the stream has an unknown total sample count.
|
|
|
|
v0.1b - 2016-05-07
|
|
- Properly close the file handle in drflac_open_file() and family when the decoder fails to initialize.
|
|
- Removed a stale comment.
|
|
|
|
v0.1a - 2016-05-05
|
|
- Minor formatting changes.
|
|
- Fixed a warning on the GCC build.
|
|
|
|
v0.1 - 2016-05-03
|
|
- Initial versioned release.
|
|
*/
|
|
|
|
/*
|
|
This software is available as a choice of the following licenses. Choose
|
|
whichever you prefer.
|
|
|
|
===============================================================================
|
|
ALTERNATIVE 1 - Public Domain (www.unlicense.org)
|
|
===============================================================================
|
|
This is free and unencumbered software released into the public domain.
|
|
|
|
Anyone is free to copy, modify, publish, use, compile, sell, or distribute this
|
|
software, either in source code form or as a compiled binary, for any purpose,
|
|
commercial or non-commercial, and by any means.
|
|
|
|
In jurisdictions that recognize copyright laws, the author or authors of this
|
|
software dedicate any and all copyright interest in the software to the public
|
|
domain. We make this dedication for the benefit of the public at large and to
|
|
the detriment of our heirs and successors. We intend this dedication to be an
|
|
overt act of relinquishment in perpetuity of all present and future rights to
|
|
this software under copyright law.
|
|
|
|
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
AUTHORS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
|
|
ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
|
|
WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
|
|
|
|
For more information, please refer to <http://unlicense.org/>
|
|
|
|
===============================================================================
|
|
ALTERNATIVE 2 - MIT No Attribution
|
|
===============================================================================
|
|
Copyright 2020 David Reid
|
|
|
|
Permission is hereby granted, free of charge, to any person obtaining a copy of
|
|
this software and associated documentation files (the "Software"), to deal in
|
|
the Software without restriction, including without limitation the rights to
|
|
use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies
|
|
of the Software, and to permit persons to whom the Software is furnished to do
|
|
so.
|
|
|
|
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
|
SOFTWARE.
|
|
*/
|