8ec96e9db0
git-svn-id: svn://kolibrios.org@2216 a494cfbc-eb01-0410-851d-a64ba20cac60
940 lines
32 KiB
C
940 lines
32 KiB
C
/******************************************************************************
|
|
*
|
|
* Module Name: dsobject - Dispatcher object management routines
|
|
*
|
|
*****************************************************************************/
|
|
|
|
/******************************************************************************
|
|
*
|
|
* 1. Copyright Notice
|
|
*
|
|
* Some or all of this work - Copyright (c) 1999 - 2011, Intel Corp.
|
|
* All rights reserved.
|
|
*
|
|
* 2. License
|
|
*
|
|
* 2.1. This is your license from Intel Corp. under its intellectual property
|
|
* rights. You may have additional license terms from the party that provided
|
|
* you this software, covering your right to use that party's intellectual
|
|
* property rights.
|
|
*
|
|
* 2.2. Intel grants, free of charge, to any person ("Licensee") obtaining a
|
|
* copy of the source code appearing in this file ("Covered Code") an
|
|
* irrevocable, perpetual, worldwide license under Intel's copyrights in the
|
|
* base code distributed originally by Intel ("Original Intel Code") to copy,
|
|
* make derivatives, distribute, use and display any portion of the Covered
|
|
* Code in any form, with the right to sublicense such rights; and
|
|
*
|
|
* 2.3. Intel grants Licensee a non-exclusive and non-transferable patent
|
|
* license (with the right to sublicense), under only those claims of Intel
|
|
* patents that are infringed by the Original Intel Code, to make, use, sell,
|
|
* offer to sell, and import the Covered Code and derivative works thereof
|
|
* solely to the minimum extent necessary to exercise the above copyright
|
|
* license, and in no event shall the patent license extend to any additions
|
|
* to or modifications of the Original Intel Code. No other license or right
|
|
* is granted directly or by implication, estoppel or otherwise;
|
|
*
|
|
* The above copyright and patent license is granted only if the following
|
|
* conditions are met:
|
|
*
|
|
* 3. Conditions
|
|
*
|
|
* 3.1. Redistribution of Source with Rights to Further Distribute Source.
|
|
* Redistribution of source code of any substantial portion of the Covered
|
|
* Code or modification with rights to further distribute source must include
|
|
* the above Copyright Notice, the above License, this list of Conditions,
|
|
* and the following Disclaimer and Export Compliance provision. In addition,
|
|
* Licensee must cause all Covered Code to which Licensee contributes to
|
|
* contain a file documenting the changes Licensee made to create that Covered
|
|
* Code and the date of any change. Licensee must include in that file the
|
|
* documentation of any changes made by any predecessor Licensee. Licensee
|
|
* must include a prominent statement that the modification is derived,
|
|
* directly or indirectly, from Original Intel Code.
|
|
*
|
|
* 3.2. Redistribution of Source with no Rights to Further Distribute Source.
|
|
* Redistribution of source code of any substantial portion of the Covered
|
|
* Code or modification without rights to further distribute source must
|
|
* include the following Disclaimer and Export Compliance provision in the
|
|
* documentation and/or other materials provided with distribution. In
|
|
* addition, Licensee may not authorize further sublicense of source of any
|
|
* portion of the Covered Code, and must include terms to the effect that the
|
|
* license from Licensee to its licensee is limited to the intellectual
|
|
* property embodied in the software Licensee provides to its licensee, and
|
|
* not to intellectual property embodied in modifications its licensee may
|
|
* make.
|
|
*
|
|
* 3.3. Redistribution of Executable. Redistribution in executable form of any
|
|
* substantial portion of the Covered Code or modification must reproduce the
|
|
* above Copyright Notice, and the following Disclaimer and Export Compliance
|
|
* provision in the documentation and/or other materials provided with the
|
|
* distribution.
|
|
*
|
|
* 3.4. Intel retains all right, title, and interest in and to the Original
|
|
* Intel Code.
|
|
*
|
|
* 3.5. Neither the name Intel nor any other trademark owned or controlled by
|
|
* Intel shall be used in advertising or otherwise to promote the sale, use or
|
|
* other dealings in products derived from or relating to the Covered Code
|
|
* without prior written authorization from Intel.
|
|
*
|
|
* 4. Disclaimer and Export Compliance
|
|
*
|
|
* 4.1. INTEL MAKES NO WARRANTY OF ANY KIND REGARDING ANY SOFTWARE PROVIDED
|
|
* HERE. ANY SOFTWARE ORIGINATING FROM INTEL OR DERIVED FROM INTEL SOFTWARE
|
|
* IS PROVIDED "AS IS," AND INTEL WILL NOT PROVIDE ANY SUPPORT, ASSISTANCE,
|
|
* INSTALLATION, TRAINING OR OTHER SERVICES. INTEL WILL NOT PROVIDE ANY
|
|
* UPDATES, ENHANCEMENTS OR EXTENSIONS. INTEL SPECIFICALLY DISCLAIMS ANY
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY, NONINFRINGEMENT AND FITNESS FOR A
|
|
* PARTICULAR PURPOSE.
|
|
*
|
|
* 4.2. IN NO EVENT SHALL INTEL HAVE ANY LIABILITY TO LICENSEE, ITS LICENSEES
|
|
* OR ANY OTHER THIRD PARTY, FOR ANY LOST PROFITS, LOST DATA, LOSS OF USE OR
|
|
* COSTS OF PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES, OR FOR ANY INDIRECT,
|
|
* SPECIAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THIS AGREEMENT, UNDER ANY
|
|
* CAUSE OF ACTION OR THEORY OF LIABILITY, AND IRRESPECTIVE OF WHETHER INTEL
|
|
* HAS ADVANCE NOTICE OF THE POSSIBILITY OF SUCH DAMAGES. THESE LIMITATIONS
|
|
* SHALL APPLY NOTWITHSTANDING THE FAILURE OF THE ESSENTIAL PURPOSE OF ANY
|
|
* LIMITED REMEDY.
|
|
*
|
|
* 4.3. Licensee shall not export, either directly or indirectly, any of this
|
|
* software or system incorporating such software without first obtaining any
|
|
* required license or other approval from the U. S. Department of Commerce or
|
|
* any other agency or department of the United States Government. In the
|
|
* event Licensee exports any such software from the United States or
|
|
* re-exports any such software from a foreign destination, Licensee shall
|
|
* ensure that the distribution and export/re-export of the software is in
|
|
* compliance with all laws, regulations, orders, or other restrictions of the
|
|
* U.S. Export Administration Regulations. Licensee agrees that neither it nor
|
|
* any of its subsidiaries will export/re-export any technical data, process,
|
|
* software, or service, directly or indirectly, to any country for which the
|
|
* United States government or any agency thereof requires an export license,
|
|
* other governmental approval, or letter of assurance, without first obtaining
|
|
* such license, approval or letter.
|
|
*
|
|
*****************************************************************************/
|
|
|
|
#define __DSOBJECT_C__
|
|
|
|
#include "acpi.h"
|
|
#include "accommon.h"
|
|
#include "acparser.h"
|
|
#include "amlcode.h"
|
|
#include "acdispat.h"
|
|
#include "acnamesp.h"
|
|
#include "acinterp.h"
|
|
|
|
#define _COMPONENT ACPI_DISPATCHER
|
|
ACPI_MODULE_NAME ("dsobject")
|
|
|
|
/* Local prototypes */
|
|
|
|
static ACPI_STATUS
|
|
AcpiDsBuildInternalObject (
|
|
ACPI_WALK_STATE *WalkState,
|
|
ACPI_PARSE_OBJECT *Op,
|
|
ACPI_OPERAND_OBJECT **ObjDescPtr);
|
|
|
|
|
|
#ifndef ACPI_NO_METHOD_EXECUTION
|
|
/*******************************************************************************
|
|
*
|
|
* FUNCTION: AcpiDsBuildInternalObject
|
|
*
|
|
* PARAMETERS: WalkState - Current walk state
|
|
* Op - Parser object to be translated
|
|
* ObjDescPtr - Where the ACPI internal object is returned
|
|
*
|
|
* RETURN: Status
|
|
*
|
|
* DESCRIPTION: Translate a parser Op object to the equivalent namespace object
|
|
* Simple objects are any objects other than a package object!
|
|
*
|
|
******************************************************************************/
|
|
|
|
static ACPI_STATUS
|
|
AcpiDsBuildInternalObject (
|
|
ACPI_WALK_STATE *WalkState,
|
|
ACPI_PARSE_OBJECT *Op,
|
|
ACPI_OPERAND_OBJECT **ObjDescPtr)
|
|
{
|
|
ACPI_OPERAND_OBJECT *ObjDesc;
|
|
ACPI_STATUS Status;
|
|
ACPI_OBJECT_TYPE Type;
|
|
|
|
|
|
ACPI_FUNCTION_TRACE (DsBuildInternalObject);
|
|
|
|
|
|
*ObjDescPtr = NULL;
|
|
if (Op->Common.AmlOpcode == AML_INT_NAMEPATH_OP)
|
|
{
|
|
/*
|
|
* This is a named object reference. If this name was
|
|
* previously looked up in the namespace, it was stored in this op.
|
|
* Otherwise, go ahead and look it up now
|
|
*/
|
|
if (!Op->Common.Node)
|
|
{
|
|
Status = AcpiNsLookup (WalkState->ScopeInfo,
|
|
Op->Common.Value.String,
|
|
ACPI_TYPE_ANY, ACPI_IMODE_EXECUTE,
|
|
ACPI_NS_SEARCH_PARENT | ACPI_NS_DONT_OPEN_SCOPE, NULL,
|
|
ACPI_CAST_INDIRECT_PTR (ACPI_NAMESPACE_NODE, &(Op->Common.Node)));
|
|
if (ACPI_FAILURE (Status))
|
|
{
|
|
/* Check if we are resolving a named reference within a package */
|
|
|
|
if ((Status == AE_NOT_FOUND) && (AcpiGbl_EnableInterpreterSlack) &&
|
|
|
|
((Op->Common.Parent->Common.AmlOpcode == AML_PACKAGE_OP) ||
|
|
(Op->Common.Parent->Common.AmlOpcode == AML_VAR_PACKAGE_OP)))
|
|
{
|
|
/*
|
|
* We didn't find the target and we are populating elements
|
|
* of a package - ignore if slack enabled. Some ASL code
|
|
* contains dangling invalid references in packages and
|
|
* expects that no exception will be issued. Leave the
|
|
* element as a null element. It cannot be used, but it
|
|
* can be overwritten by subsequent ASL code - this is
|
|
* typically the case.
|
|
*/
|
|
ACPI_DEBUG_PRINT ((ACPI_DB_INFO,
|
|
"Ignoring unresolved reference in package [%4.4s]\n",
|
|
WalkState->ScopeInfo->Scope.Node->Name.Ascii));
|
|
|
|
return_ACPI_STATUS (AE_OK);
|
|
}
|
|
else
|
|
{
|
|
ACPI_ERROR_NAMESPACE (Op->Common.Value.String, Status);
|
|
}
|
|
|
|
return_ACPI_STATUS (Status);
|
|
}
|
|
}
|
|
|
|
/* Special object resolution for elements of a package */
|
|
|
|
if ((Op->Common.Parent->Common.AmlOpcode == AML_PACKAGE_OP) ||
|
|
(Op->Common.Parent->Common.AmlOpcode == AML_VAR_PACKAGE_OP))
|
|
{
|
|
/*
|
|
* Attempt to resolve the node to a value before we insert it into
|
|
* the package. If this is a reference to a common data type,
|
|
* resolve it immediately. According to the ACPI spec, package
|
|
* elements can only be "data objects" or method references.
|
|
* Attempt to resolve to an Integer, Buffer, String or Package.
|
|
* If cannot, return the named reference (for things like Devices,
|
|
* Methods, etc.) Buffer Fields and Fields will resolve to simple
|
|
* objects (int/buf/str/pkg).
|
|
*
|
|
* NOTE: References to things like Devices, Methods, Mutexes, etc.
|
|
* will remain as named references. This behavior is not described
|
|
* in the ACPI spec, but it appears to be an oversight.
|
|
*/
|
|
ObjDesc = ACPI_CAST_PTR (ACPI_OPERAND_OBJECT, Op->Common.Node);
|
|
|
|
Status = AcpiExResolveNodeToValue (
|
|
ACPI_CAST_INDIRECT_PTR (ACPI_NAMESPACE_NODE, &ObjDesc),
|
|
WalkState);
|
|
if (ACPI_FAILURE (Status))
|
|
{
|
|
return_ACPI_STATUS (Status);
|
|
}
|
|
|
|
/*
|
|
* Special handling for Alias objects. We need to setup the type
|
|
* and the Op->Common.Node to point to the Alias target. Note,
|
|
* Alias has at most one level of indirection internally.
|
|
*/
|
|
Type = Op->Common.Node->Type;
|
|
if (Type == ACPI_TYPE_LOCAL_ALIAS)
|
|
{
|
|
Type = ObjDesc->Common.Type;
|
|
Op->Common.Node = ACPI_CAST_PTR (ACPI_NAMESPACE_NODE,
|
|
Op->Common.Node->Object);
|
|
}
|
|
|
|
switch (Type)
|
|
{
|
|
/*
|
|
* For these types, we need the actual node, not the subobject.
|
|
* However, the subobject did not get an extra reference count above.
|
|
*
|
|
* TBD: should ExResolveNodeToValue be changed to fix this?
|
|
*/
|
|
case ACPI_TYPE_DEVICE:
|
|
case ACPI_TYPE_THERMAL:
|
|
|
|
AcpiUtAddReference (Op->Common.Node->Object);
|
|
|
|
/*lint -fallthrough */
|
|
/*
|
|
* For these types, we need the actual node, not the subobject.
|
|
* The subobject got an extra reference count in ExResolveNodeToValue.
|
|
*/
|
|
case ACPI_TYPE_MUTEX:
|
|
case ACPI_TYPE_METHOD:
|
|
case ACPI_TYPE_POWER:
|
|
case ACPI_TYPE_PROCESSOR:
|
|
case ACPI_TYPE_EVENT:
|
|
case ACPI_TYPE_REGION:
|
|
|
|
/* We will create a reference object for these types below */
|
|
break;
|
|
|
|
default:
|
|
/*
|
|
* All other types - the node was resolved to an actual
|
|
* object, we are done.
|
|
*/
|
|
goto Exit;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Create and init a new internal ACPI object */
|
|
|
|
ObjDesc = AcpiUtCreateInternalObject (
|
|
(AcpiPsGetOpcodeInfo (Op->Common.AmlOpcode))->ObjectType);
|
|
if (!ObjDesc)
|
|
{
|
|
return_ACPI_STATUS (AE_NO_MEMORY);
|
|
}
|
|
|
|
Status = AcpiDsInitObjectFromOp (WalkState, Op, Op->Common.AmlOpcode,
|
|
&ObjDesc);
|
|
if (ACPI_FAILURE (Status))
|
|
{
|
|
AcpiUtRemoveReference (ObjDesc);
|
|
return_ACPI_STATUS (Status);
|
|
}
|
|
|
|
Exit:
|
|
*ObjDescPtr = ObjDesc;
|
|
return_ACPI_STATUS (Status);
|
|
}
|
|
|
|
|
|
/*******************************************************************************
|
|
*
|
|
* FUNCTION: AcpiDsBuildInternalBufferObj
|
|
*
|
|
* PARAMETERS: WalkState - Current walk state
|
|
* Op - Parser object to be translated
|
|
* BufferLength - Length of the buffer
|
|
* ObjDescPtr - Where the ACPI internal object is returned
|
|
*
|
|
* RETURN: Status
|
|
*
|
|
* DESCRIPTION: Translate a parser Op package object to the equivalent
|
|
* namespace object
|
|
*
|
|
******************************************************************************/
|
|
|
|
ACPI_STATUS
|
|
AcpiDsBuildInternalBufferObj (
|
|
ACPI_WALK_STATE *WalkState,
|
|
ACPI_PARSE_OBJECT *Op,
|
|
UINT32 BufferLength,
|
|
ACPI_OPERAND_OBJECT **ObjDescPtr)
|
|
{
|
|
ACPI_PARSE_OBJECT *Arg;
|
|
ACPI_OPERAND_OBJECT *ObjDesc;
|
|
ACPI_PARSE_OBJECT *ByteList;
|
|
UINT32 ByteListLength = 0;
|
|
|
|
|
|
ACPI_FUNCTION_TRACE (DsBuildInternalBufferObj);
|
|
|
|
|
|
/*
|
|
* If we are evaluating a Named buffer object "Name (xxxx, Buffer)".
|
|
* The buffer object already exists (from the NS node), otherwise it must
|
|
* be created.
|
|
*/
|
|
ObjDesc = *ObjDescPtr;
|
|
if (!ObjDesc)
|
|
{
|
|
/* Create a new buffer object */
|
|
|
|
ObjDesc = AcpiUtCreateInternalObject (ACPI_TYPE_BUFFER);
|
|
*ObjDescPtr = ObjDesc;
|
|
if (!ObjDesc)
|
|
{
|
|
return_ACPI_STATUS (AE_NO_MEMORY);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Second arg is the buffer data (optional) ByteList can be either
|
|
* individual bytes or a string initializer. In either case, a
|
|
* ByteList appears in the AML.
|
|
*/
|
|
Arg = Op->Common.Value.Arg; /* skip first arg */
|
|
|
|
ByteList = Arg->Named.Next;
|
|
if (ByteList)
|
|
{
|
|
if (ByteList->Common.AmlOpcode != AML_INT_BYTELIST_OP)
|
|
{
|
|
ACPI_ERROR ((AE_INFO,
|
|
"Expecting bytelist, found AML opcode 0x%X in op %p",
|
|
ByteList->Common.AmlOpcode, ByteList));
|
|
|
|
AcpiUtRemoveReference (ObjDesc);
|
|
return (AE_TYPE);
|
|
}
|
|
|
|
ByteListLength = (UINT32) ByteList->Common.Value.Integer;
|
|
}
|
|
|
|
/*
|
|
* The buffer length (number of bytes) will be the larger of:
|
|
* 1) The specified buffer length and
|
|
* 2) The length of the initializer byte list
|
|
*/
|
|
ObjDesc->Buffer.Length = BufferLength;
|
|
if (ByteListLength > BufferLength)
|
|
{
|
|
ObjDesc->Buffer.Length = ByteListLength;
|
|
}
|
|
|
|
/* Allocate the buffer */
|
|
|
|
if (ObjDesc->Buffer.Length == 0)
|
|
{
|
|
ObjDesc->Buffer.Pointer = NULL;
|
|
ACPI_DEBUG_PRINT ((ACPI_DB_EXEC,
|
|
"Buffer defined with zero length in AML, creating\n"));
|
|
}
|
|
else
|
|
{
|
|
ObjDesc->Buffer.Pointer = ACPI_ALLOCATE_ZEROED (
|
|
ObjDesc->Buffer.Length);
|
|
if (!ObjDesc->Buffer.Pointer)
|
|
{
|
|
AcpiUtDeleteObjectDesc (ObjDesc);
|
|
return_ACPI_STATUS (AE_NO_MEMORY);
|
|
}
|
|
|
|
/* Initialize buffer from the ByteList (if present) */
|
|
|
|
if (ByteList)
|
|
{
|
|
ACPI_MEMCPY (ObjDesc->Buffer.Pointer, ByteList->Named.Data,
|
|
ByteListLength);
|
|
}
|
|
}
|
|
|
|
ObjDesc->Buffer.Flags |= AOPOBJ_DATA_VALID;
|
|
Op->Common.Node = ACPI_CAST_PTR (ACPI_NAMESPACE_NODE, ObjDesc);
|
|
return_ACPI_STATUS (AE_OK);
|
|
}
|
|
|
|
|
|
/*******************************************************************************
|
|
*
|
|
* FUNCTION: AcpiDsBuildInternalPackageObj
|
|
*
|
|
* PARAMETERS: WalkState - Current walk state
|
|
* Op - Parser object to be translated
|
|
* ElementCount - Number of elements in the package - this is
|
|
* the NumElements argument to Package()
|
|
* ObjDescPtr - Where the ACPI internal object is returned
|
|
*
|
|
* RETURN: Status
|
|
*
|
|
* DESCRIPTION: Translate a parser Op package object to the equivalent
|
|
* namespace object
|
|
*
|
|
* NOTE: The number of elements in the package will be always be the NumElements
|
|
* count, regardless of the number of elements in the package list. If
|
|
* NumElements is smaller, only that many package list elements are used.
|
|
* if NumElements is larger, the Package object is padded out with
|
|
* objects of type Uninitialized (as per ACPI spec.)
|
|
*
|
|
* Even though the ASL compilers do not allow NumElements to be smaller
|
|
* than the Package list length (for the fixed length package opcode), some
|
|
* BIOS code modifies the AML on the fly to adjust the NumElements, and
|
|
* this code compensates for that. This also provides compatibility with
|
|
* other AML interpreters.
|
|
*
|
|
******************************************************************************/
|
|
|
|
ACPI_STATUS
|
|
AcpiDsBuildInternalPackageObj (
|
|
ACPI_WALK_STATE *WalkState,
|
|
ACPI_PARSE_OBJECT *Op,
|
|
UINT32 ElementCount,
|
|
ACPI_OPERAND_OBJECT **ObjDescPtr)
|
|
{
|
|
ACPI_PARSE_OBJECT *Arg;
|
|
ACPI_PARSE_OBJECT *Parent;
|
|
ACPI_OPERAND_OBJECT *ObjDesc = NULL;
|
|
ACPI_STATUS Status = AE_OK;
|
|
UINT32 i;
|
|
UINT16 Index;
|
|
UINT16 ReferenceCount;
|
|
|
|
|
|
ACPI_FUNCTION_TRACE (DsBuildInternalPackageObj);
|
|
|
|
|
|
/* Find the parent of a possibly nested package */
|
|
|
|
Parent = Op->Common.Parent;
|
|
while ((Parent->Common.AmlOpcode == AML_PACKAGE_OP) ||
|
|
(Parent->Common.AmlOpcode == AML_VAR_PACKAGE_OP))
|
|
{
|
|
Parent = Parent->Common.Parent;
|
|
}
|
|
|
|
/*
|
|
* If we are evaluating a Named package object "Name (xxxx, Package)",
|
|
* the package object already exists, otherwise it must be created.
|
|
*/
|
|
ObjDesc = *ObjDescPtr;
|
|
if (!ObjDesc)
|
|
{
|
|
ObjDesc = AcpiUtCreateInternalObject (ACPI_TYPE_PACKAGE);
|
|
*ObjDescPtr = ObjDesc;
|
|
if (!ObjDesc)
|
|
{
|
|
return_ACPI_STATUS (AE_NO_MEMORY);
|
|
}
|
|
|
|
ObjDesc->Package.Node = Parent->Common.Node;
|
|
}
|
|
|
|
/*
|
|
* Allocate the element array (array of pointers to the individual
|
|
* objects) based on the NumElements parameter. Add an extra pointer slot
|
|
* so that the list is always null terminated.
|
|
*/
|
|
ObjDesc->Package.Elements = ACPI_ALLOCATE_ZEROED (
|
|
((ACPI_SIZE) ElementCount + 1) * sizeof (void *));
|
|
|
|
if (!ObjDesc->Package.Elements)
|
|
{
|
|
AcpiUtDeleteObjectDesc (ObjDesc);
|
|
return_ACPI_STATUS (AE_NO_MEMORY);
|
|
}
|
|
|
|
ObjDesc->Package.Count = ElementCount;
|
|
|
|
/*
|
|
* Initialize the elements of the package, up to the NumElements count.
|
|
* Package is automatically padded with uninitialized (NULL) elements
|
|
* if NumElements is greater than the package list length. Likewise,
|
|
* Package is truncated if NumElements is less than the list length.
|
|
*/
|
|
Arg = Op->Common.Value.Arg;
|
|
Arg = Arg->Common.Next;
|
|
for (i = 0; Arg && (i < ElementCount); i++)
|
|
{
|
|
if (Arg->Common.AmlOpcode == AML_INT_RETURN_VALUE_OP)
|
|
{
|
|
if (Arg->Common.Node->Type == ACPI_TYPE_METHOD)
|
|
{
|
|
/*
|
|
* A method reference "looks" to the parser to be a method
|
|
* invocation, so we special case it here
|
|
*/
|
|
Arg->Common.AmlOpcode = AML_INT_NAMEPATH_OP;
|
|
Status = AcpiDsBuildInternalObject (WalkState, Arg,
|
|
&ObjDesc->Package.Elements[i]);
|
|
}
|
|
else
|
|
{
|
|
/* This package element is already built, just get it */
|
|
|
|
ObjDesc->Package.Elements[i] =
|
|
ACPI_CAST_PTR (ACPI_OPERAND_OBJECT, Arg->Common.Node);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
Status = AcpiDsBuildInternalObject (WalkState, Arg,
|
|
&ObjDesc->Package.Elements[i]);
|
|
}
|
|
|
|
if (*ObjDescPtr)
|
|
{
|
|
/* Existing package, get existing reference count */
|
|
|
|
ReferenceCount = (*ObjDescPtr)->Common.ReferenceCount;
|
|
if (ReferenceCount > 1)
|
|
{
|
|
/* Make new element ref count match original ref count */
|
|
|
|
for (Index = 0; Index < (ReferenceCount - 1); Index++)
|
|
{
|
|
AcpiUtAddReference ((ObjDesc->Package.Elements[i]));
|
|
}
|
|
}
|
|
}
|
|
|
|
Arg = Arg->Common.Next;
|
|
}
|
|
|
|
/* Check for match between NumElements and actual length of PackageList */
|
|
|
|
if (Arg)
|
|
{
|
|
/*
|
|
* NumElements was exhausted, but there are remaining elements in the
|
|
* PackageList. Truncate the package to NumElements.
|
|
*
|
|
* Note: technically, this is an error, from ACPI spec: "It is an error
|
|
* for NumElements to be less than the number of elements in the
|
|
* PackageList". However, we just print a message and
|
|
* no exception is returned. This provides Windows compatibility. Some
|
|
* BIOSs will alter the NumElements on the fly, creating this type
|
|
* of ill-formed package object.
|
|
*/
|
|
while (Arg)
|
|
{
|
|
/*
|
|
* We must delete any package elements that were created earlier
|
|
* and are not going to be used because of the package truncation.
|
|
*/
|
|
if (Arg->Common.Node)
|
|
{
|
|
AcpiUtRemoveReference (
|
|
ACPI_CAST_PTR (ACPI_OPERAND_OBJECT, Arg->Common.Node));
|
|
Arg->Common.Node = NULL;
|
|
}
|
|
|
|
/* Find out how many elements there really are */
|
|
|
|
i++;
|
|
Arg = Arg->Common.Next;
|
|
}
|
|
|
|
ACPI_INFO ((AE_INFO,
|
|
"Actual Package length (%u) is larger than NumElements field (%u), truncated\n",
|
|
i, ElementCount));
|
|
}
|
|
else if (i < ElementCount)
|
|
{
|
|
/*
|
|
* Arg list (elements) was exhausted, but we did not reach NumElements count.
|
|
* Note: this is not an error, the package is padded out with NULLs.
|
|
*/
|
|
ACPI_DEBUG_PRINT ((ACPI_DB_INFO,
|
|
"Package List length (%u) smaller than NumElements count (%u), padded with null elements\n",
|
|
i, ElementCount));
|
|
}
|
|
|
|
ObjDesc->Package.Flags |= AOPOBJ_DATA_VALID;
|
|
Op->Common.Node = ACPI_CAST_PTR (ACPI_NAMESPACE_NODE, ObjDesc);
|
|
return_ACPI_STATUS (Status);
|
|
}
|
|
|
|
|
|
/*******************************************************************************
|
|
*
|
|
* FUNCTION: AcpiDsCreateNode
|
|
*
|
|
* PARAMETERS: WalkState - Current walk state
|
|
* Node - NS Node to be initialized
|
|
* Op - Parser object to be translated
|
|
*
|
|
* RETURN: Status
|
|
*
|
|
* DESCRIPTION: Create the object to be associated with a namespace node
|
|
*
|
|
******************************************************************************/
|
|
|
|
ACPI_STATUS
|
|
AcpiDsCreateNode (
|
|
ACPI_WALK_STATE *WalkState,
|
|
ACPI_NAMESPACE_NODE *Node,
|
|
ACPI_PARSE_OBJECT *Op)
|
|
{
|
|
ACPI_STATUS Status;
|
|
ACPI_OPERAND_OBJECT *ObjDesc;
|
|
|
|
|
|
ACPI_FUNCTION_TRACE_PTR (DsCreateNode, Op);
|
|
|
|
|
|
/*
|
|
* Because of the execution pass through the non-control-method
|
|
* parts of the table, we can arrive here twice. Only init
|
|
* the named object node the first time through
|
|
*/
|
|
if (AcpiNsGetAttachedObject (Node))
|
|
{
|
|
return_ACPI_STATUS (AE_OK);
|
|
}
|
|
|
|
if (!Op->Common.Value.Arg)
|
|
{
|
|
/* No arguments, there is nothing to do */
|
|
|
|
return_ACPI_STATUS (AE_OK);
|
|
}
|
|
|
|
/* Build an internal object for the argument(s) */
|
|
|
|
Status = AcpiDsBuildInternalObject (WalkState, Op->Common.Value.Arg,
|
|
&ObjDesc);
|
|
if (ACPI_FAILURE (Status))
|
|
{
|
|
return_ACPI_STATUS (Status);
|
|
}
|
|
|
|
/* Re-type the object according to its argument */
|
|
|
|
Node->Type = ObjDesc->Common.Type;
|
|
|
|
/* Attach obj to node */
|
|
|
|
Status = AcpiNsAttachObject (Node, ObjDesc, Node->Type);
|
|
|
|
/* Remove local reference to the object */
|
|
|
|
AcpiUtRemoveReference (ObjDesc);
|
|
return_ACPI_STATUS (Status);
|
|
}
|
|
|
|
#endif /* ACPI_NO_METHOD_EXECUTION */
|
|
|
|
|
|
/*******************************************************************************
|
|
*
|
|
* FUNCTION: AcpiDsInitObjectFromOp
|
|
*
|
|
* PARAMETERS: WalkState - Current walk state
|
|
* Op - Parser op used to init the internal object
|
|
* Opcode - AML opcode associated with the object
|
|
* RetObjDesc - Namespace object to be initialized
|
|
*
|
|
* RETURN: Status
|
|
*
|
|
* DESCRIPTION: Initialize a namespace object from a parser Op and its
|
|
* associated arguments. The namespace object is a more compact
|
|
* representation of the Op and its arguments.
|
|
*
|
|
******************************************************************************/
|
|
|
|
ACPI_STATUS
|
|
AcpiDsInitObjectFromOp (
|
|
ACPI_WALK_STATE *WalkState,
|
|
ACPI_PARSE_OBJECT *Op,
|
|
UINT16 Opcode,
|
|
ACPI_OPERAND_OBJECT **RetObjDesc)
|
|
{
|
|
const ACPI_OPCODE_INFO *OpInfo;
|
|
ACPI_OPERAND_OBJECT *ObjDesc;
|
|
ACPI_STATUS Status = AE_OK;
|
|
|
|
|
|
ACPI_FUNCTION_TRACE (DsInitObjectFromOp);
|
|
|
|
|
|
ObjDesc = *RetObjDesc;
|
|
OpInfo = AcpiPsGetOpcodeInfo (Opcode);
|
|
if (OpInfo->Class == AML_CLASS_UNKNOWN)
|
|
{
|
|
/* Unknown opcode */
|
|
|
|
return_ACPI_STATUS (AE_TYPE);
|
|
}
|
|
|
|
/* Perform per-object initialization */
|
|
|
|
switch (ObjDesc->Common.Type)
|
|
{
|
|
case ACPI_TYPE_BUFFER:
|
|
|
|
/*
|
|
* Defer evaluation of Buffer TermArg operand
|
|
*/
|
|
ObjDesc->Buffer.Node = ACPI_CAST_PTR (ACPI_NAMESPACE_NODE,
|
|
WalkState->Operands[0]);
|
|
ObjDesc->Buffer.AmlStart = Op->Named.Data;
|
|
ObjDesc->Buffer.AmlLength = Op->Named.Length;
|
|
break;
|
|
|
|
|
|
case ACPI_TYPE_PACKAGE:
|
|
|
|
/*
|
|
* Defer evaluation of Package TermArg operand
|
|
*/
|
|
ObjDesc->Package.Node = ACPI_CAST_PTR (ACPI_NAMESPACE_NODE,
|
|
WalkState->Operands[0]);
|
|
ObjDesc->Package.AmlStart = Op->Named.Data;
|
|
ObjDesc->Package.AmlLength = Op->Named.Length;
|
|
break;
|
|
|
|
|
|
case ACPI_TYPE_INTEGER:
|
|
|
|
switch (OpInfo->Type)
|
|
{
|
|
case AML_TYPE_CONSTANT:
|
|
/*
|
|
* Resolve AML Constants here - AND ONLY HERE!
|
|
* All constants are integers.
|
|
* We mark the integer with a flag that indicates that it started
|
|
* life as a constant -- so that stores to constants will perform
|
|
* as expected (noop). ZeroOp is used as a placeholder for optional
|
|
* target operands.
|
|
*/
|
|
ObjDesc->Common.Flags = AOPOBJ_AML_CONSTANT;
|
|
|
|
switch (Opcode)
|
|
{
|
|
case AML_ZERO_OP:
|
|
|
|
ObjDesc->Integer.Value = 0;
|
|
break;
|
|
|
|
case AML_ONE_OP:
|
|
|
|
ObjDesc->Integer.Value = 1;
|
|
break;
|
|
|
|
case AML_ONES_OP:
|
|
|
|
ObjDesc->Integer.Value = ACPI_UINT64_MAX;
|
|
|
|
/* Truncate value if we are executing from a 32-bit ACPI table */
|
|
|
|
#ifndef ACPI_NO_METHOD_EXECUTION
|
|
AcpiExTruncateFor32bitTable (ObjDesc);
|
|
#endif
|
|
break;
|
|
|
|
case AML_REVISION_OP:
|
|
|
|
ObjDesc->Integer.Value = ACPI_CA_VERSION;
|
|
break;
|
|
|
|
default:
|
|
|
|
ACPI_ERROR ((AE_INFO,
|
|
"Unknown constant opcode 0x%X", Opcode));
|
|
Status = AE_AML_OPERAND_TYPE;
|
|
break;
|
|
}
|
|
break;
|
|
|
|
|
|
case AML_TYPE_LITERAL:
|
|
|
|
ObjDesc->Integer.Value = Op->Common.Value.Integer;
|
|
#ifndef ACPI_NO_METHOD_EXECUTION
|
|
AcpiExTruncateFor32bitTable (ObjDesc);
|
|
#endif
|
|
break;
|
|
|
|
|
|
default:
|
|
ACPI_ERROR ((AE_INFO, "Unknown Integer type 0x%X",
|
|
OpInfo->Type));
|
|
Status = AE_AML_OPERAND_TYPE;
|
|
break;
|
|
}
|
|
break;
|
|
|
|
|
|
case ACPI_TYPE_STRING:
|
|
|
|
ObjDesc->String.Pointer = Op->Common.Value.String;
|
|
ObjDesc->String.Length = (UINT32) ACPI_STRLEN (Op->Common.Value.String);
|
|
|
|
/*
|
|
* The string is contained in the ACPI table, don't ever try
|
|
* to delete it
|
|
*/
|
|
ObjDesc->Common.Flags |= AOPOBJ_STATIC_POINTER;
|
|
break;
|
|
|
|
|
|
case ACPI_TYPE_METHOD:
|
|
break;
|
|
|
|
|
|
case ACPI_TYPE_LOCAL_REFERENCE:
|
|
|
|
switch (OpInfo->Type)
|
|
{
|
|
case AML_TYPE_LOCAL_VARIABLE:
|
|
|
|
/* Local ID (0-7) is (AML opcode - base AML_LOCAL_OP) */
|
|
|
|
ObjDesc->Reference.Value = ((UINT32) Opcode) - AML_LOCAL_OP;
|
|
ObjDesc->Reference.Class = ACPI_REFCLASS_LOCAL;
|
|
|
|
#ifndef ACPI_NO_METHOD_EXECUTION
|
|
Status = AcpiDsMethodDataGetNode (ACPI_REFCLASS_LOCAL,
|
|
ObjDesc->Reference.Value, WalkState,
|
|
ACPI_CAST_INDIRECT_PTR (ACPI_NAMESPACE_NODE,
|
|
&ObjDesc->Reference.Object));
|
|
#endif
|
|
break;
|
|
|
|
|
|
case AML_TYPE_METHOD_ARGUMENT:
|
|
|
|
/* Arg ID (0-6) is (AML opcode - base AML_ARG_OP) */
|
|
|
|
ObjDesc->Reference.Value = ((UINT32) Opcode) - AML_ARG_OP;
|
|
ObjDesc->Reference.Class = ACPI_REFCLASS_ARG;
|
|
|
|
#ifndef ACPI_NO_METHOD_EXECUTION
|
|
Status = AcpiDsMethodDataGetNode (ACPI_REFCLASS_ARG,
|
|
ObjDesc->Reference.Value, WalkState,
|
|
ACPI_CAST_INDIRECT_PTR (ACPI_NAMESPACE_NODE,
|
|
&ObjDesc->Reference.Object));
|
|
#endif
|
|
break;
|
|
|
|
default: /* Object name or Debug object */
|
|
|
|
switch (Op->Common.AmlOpcode)
|
|
{
|
|
case AML_INT_NAMEPATH_OP:
|
|
|
|
/* Node was saved in Op */
|
|
|
|
ObjDesc->Reference.Node = Op->Common.Node;
|
|
ObjDesc->Reference.Object = Op->Common.Node->Object;
|
|
ObjDesc->Reference.Class = ACPI_REFCLASS_NAME;
|
|
break;
|
|
|
|
case AML_DEBUG_OP:
|
|
|
|
ObjDesc->Reference.Class = ACPI_REFCLASS_DEBUG;
|
|
break;
|
|
|
|
default:
|
|
|
|
ACPI_ERROR ((AE_INFO,
|
|
"Unimplemented reference type for AML opcode: 0x%4.4X", Opcode));
|
|
return_ACPI_STATUS (AE_AML_OPERAND_TYPE);
|
|
}
|
|
break;
|
|
}
|
|
break;
|
|
|
|
|
|
default:
|
|
|
|
ACPI_ERROR ((AE_INFO, "Unimplemented data type: 0x%X",
|
|
ObjDesc->Common.Type));
|
|
|
|
Status = AE_AML_OPERAND_TYPE;
|
|
break;
|
|
}
|
|
|
|
return_ACPI_STATUS (Status);
|
|
}
|
|
|
|
|