umka/shell.c

4510 lines
137 KiB
C

/*
SPDX-License-Identifier: GPL-2.0-or-later
UMKa - User-Mode KolibriOS developer tools
umka_shell - the shell
Copyright (C) 2017-2023 Ivan Baravy <dunkaist@gmail.com>
Copyright (C) 2021 Magomed Kostoev <mkostoevr@yandex.ru>
*/
#include <assert.h>
#include <errno.h>
#include <inttypes.h>
#include <limits.h>
#include <stdatomic.h>
#include <stdbool.h>
#include <stddef.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <time.h>
#include <unistd.h>
// TODO: Cleanup
#ifndef _WIN32
#include <arpa/inet.h>
#else
#include <winsock2.h>
#include <io.h>
#endif
#include "shell.h"
#include "vdisk.h"
#include "vnet.h"
#include "umka.h"
#include "trace.h"
#include "pci.h"
#include "umkart.h"
#include "lodepng/lodepng.h"
#include "optparse/optparse.h"
#include "isocline/include/isocline.h"
#define MAX_COMMAND_ARGS 42
#define PRINT_BYTES_PER_LINE 32
#define MAX_DIRENTS_TO_READ 100
#define MAX_BYTES_TO_READ (1024*1024)
#define DEFAULT_READDIR_ENCODING UTF8
#define DEFAULT_PATH_ENCODING UTF8
#define SHELL_CMD_BUF_LEN 0x10
enum {
UMKA_CMD_NONE,
UMKA_CMD_SET_MOUSE_DATA,
UMKA_CMD_WAIT_FOR_IDLE,
UMKA_CMD_WAIT_FOR_OS_IDLE,
UMKA_CMD_WAIT_FOR_WINDOW,
UMKA_CMD_SYS_CSLEEP,
UMKA_CMD_SYS_PROCESS_INFO,
UMKA_CMD_SYS_GET_MOUSE_POS_SCREEN,
UMKA_CMD_SYS_LFN,
};
enum {
SHELL_CMD_STATUS_EMPTY,
SHELL_CMD_STATUS_READY,
SHELL_CMD_STATUS_DONE,
};
struct cmd_set_mouse_data_arg {
uint32_t btn_state;
int32_t xmoving;
int32_t ymoving;
int32_t vscroll;
int32_t hscroll;
};
struct cmd_set_mouse_data_ret {
char stub;
};
struct cmd_set_mouse_data {
struct cmd_set_mouse_data_arg arg;
struct cmd_set_mouse_data_ret ret;
};
struct cmd_sys_lfn_arg {
f70or80_t f70or80;
f7080s1arg_t *bufptr;
f7080ret_t *r;
};
struct cmd_sys_lfn_ret {
f7080ret_t status;
};
struct cmd_sys_lfn {
struct cmd_sys_lfn_arg arg;
struct cmd_sys_lfn_ret ret;
};
struct cmd_sys_process_info_arg {
int32_t pid;
void *param;
};
struct cmd_sys_process_info_ret {
char stub;
};
struct cmd_sys_process_info {
struct cmd_sys_process_info_arg arg;
struct cmd_sys_process_info_ret ret;
};
struct cmd_sys_get_mouse_pos_screen_arg {
char stub;
};
struct cmd_sys_get_mouse_pos_screen_ret {
struct point16s pos;
};
struct cmd_sys_get_mouse_pos_screen {
struct cmd_sys_get_mouse_pos_screen_arg arg;
struct cmd_sys_get_mouse_pos_screen_ret ret;
};
struct cmd_sys_csleep_arg {
uint32_t csec;
};
struct cmd_sys_csleep_ret {
char stub;
};
struct cmd_sys_csleep {
struct cmd_sys_csleep_arg arg;
struct cmd_sys_csleep_ret ret;
};
struct cmd_wait_for_window_arg {
char *wnd_title;
};
struct cmd_wait_for_window_ret {
char stub;
};
struct cmd_wait_for_window {
struct cmd_wait_for_window_arg arg;
struct cmd_wait_for_window_ret ret;
};
struct umka_cmd {
atomic_int status;
uint32_t type;
union {
// internal funcs
struct cmd_set_mouse_data set_mouse_data;
struct cmd_wait_for_window wait_for_window;
// syscalls
struct cmd_sys_csleep sys_csleep;
struct cmd_sys_process_info sys_process_info;
struct cmd_sys_lfn sys_lfn;
struct cmd_sys_get_mouse_pos_screen sys_get_mouse_pos_screen;
};
};
struct umka_cmd umka_cmd_buf[SHELL_CMD_BUF_LEN];
char prompt_line[PATH_MAX];
char cur_dir[PATH_MAX] = "/";
const char *last_dir = cur_dir;
bool cur_dir_changed = true;
typedef struct {
char *name;
void (*func) (struct shell_ctx *, int, char **);
} func_table_t;
void
shell_run_cmd_sync(struct shell_ctx *ctx);
static void
shell_run_cmd(struct shell_ctx *ctx) {
struct umka_cmd *cmd = umka_cmd_buf;
atomic_store_explicit(&cmd->status, SHELL_CMD_STATUS_READY,
memory_order_release);
if (atomic_load_explicit(ctx->running, memory_order_acquire) == UMKA_RUNNING_YES) {
pthread_cond_wait(&ctx->cmd_done, &ctx->cmd_mutex);
} else {
shell_run_cmd_sync(ctx);
}
}
static uint32_t
shell_run_cmd_wait_test(void /* struct appdata * with wait_param is in ebx */) {
appdata_t *app;
__asm__ __volatile__ __inline__ ("":"=b"(app)::);
struct umka_cmd *cmd = (struct umka_cmd*)app->wait_param;
return (uint32_t)(atomic_load_explicit(&cmd->status, memory_order_acquire) == SHELL_CMD_STATUS_READY);
}
static void
thread_cmd_runner(void *arg) {
umka_sti();
struct shell_ctx *ctx = arg;
while (1) {
kos_wait_events(shell_run_cmd_wait_test, umka_cmd_buf);
shell_run_cmd_sync(ctx);
}
}
const char *f70_status_name[] = {
"success",
"disk_base",
"unsupported_fs",
"unknown_fs",
"partition",
"file_not_found",
"end_of_file",
"memory_pointer",
"disk_full",
"fs_fail",
"access_denied",
"device",
"out_of_memory"
};
static const char *
get_f70_status_name(int s) {
switch (s) {
case KOS_ERROR_SUCCESS:
// return "";
case KOS_ERROR_DISK_BASE:
case KOS_ERROR_UNSUPPORTED_FS:
case KOS_ERROR_UNKNOWN_FS:
case KOS_ERROR_PARTITION:
case KOS_ERROR_FILE_NOT_FOUND:
case KOS_ERROR_END_OF_FILE:
case KOS_ERROR_MEMORY_POINTER:
case KOS_ERROR_DISK_FULL:
case KOS_ERROR_FS_FAIL:
case KOS_ERROR_ACCESS_DENIED:
case KOS_ERROR_DEVICE:
case KOS_ERROR_OUT_OF_MEMORY:
return f70_status_name[s];
default:
return "unknown";
}
}
static void
convert_f70_file_attr(uint32_t attr, char s[KF_ATTR_CNT+1]) {
s[0] = (attr & KF_READONLY) ? 'r' : '-';
s[1] = (attr & KF_HIDDEN) ? 'h' : '-';
s[2] = (attr & KF_SYSTEM) ? 's' : '-';
s[3] = (attr & KF_LABEL) ? 'l' : '-';
s[4] = (attr & KF_FOLDER) ? 'f' : '-';
s[5] = '\0';
}
static void
print_f70_status(struct shell_ctx *ctx, f7080ret_t *r, int use_ebx) {
fprintf(ctx->fout, "status = %d %s", r->status,
get_f70_status_name(r->status));
if (use_ebx
&& (r->status == KOS_ERROR_SUCCESS || r->status == KOS_ERROR_END_OF_FILE)) {
fprintf(ctx->fout, ", count = %d", r->count);
}
fprintf(ctx->fout, "\n");
}
static bool
parse_uintmax(const char *str, uintmax_t *res) {
char *endptr;
*res = strtoumax(str, &endptr, 0);
bool ok = (str != endptr) && (*endptr == '\0');
return ok;
}
static bool
parse_uint32(struct shell_ctx *ctx, const char *str, uint32_t *res) {
uintmax_t x;
if (parse_uintmax(str, &x) && x <= UINT32_MAX) {
*res = (uint32_t)x;
return true;
} else {
fprintf(ctx->fout, "invalid number: %s\n", str);
return false;
}
}
static bool
parse_uint64(struct shell_ctx *ctx, const char *str, uint64_t *res) {
uintmax_t x;
if (parse_uintmax(str, &x) && x <= UINT64_MAX) {
*res = x;
return true;
} else {
fprintf(ctx->fout, "invalid number: %s\n", str);
return false;
}
}
static struct shell_var *
shell_var_get(struct shell_ctx *ctx, const char *name) {
for (struct shell_var *var = ctx->var; var; var = var->next) {
if (!strcmp(var->name, name)) {
return var;
}
}
return NULL;
}
static bool
shell_parse_sint(struct shell_ctx *ctx, ssize_t *value, const char *s) {
if (s[0] == '$') {
struct shell_var *var = shell_var_get(ctx, s);
if (var) {
*value = var->value.sint;
return true;
}
} else {
*value = strtol(s, NULL, 0);
return true;
}
return false;
}
static bool
shell_parse_uint(struct shell_ctx *ctx, size_t *value, const char *s) {
if (s[0] == '$') {
struct shell_var *var = shell_var_get(ctx, s);
if (var) {
*value = var->value.uint;
return true;
}
} else {
*value = strtoul(s, NULL, 0);
return true;
}
return false;
}
static bool
shell_parse_ptr(struct shell_ctx *ctx, void **value, const char *s) {
if (s[0] == '$') {
struct shell_var *var = shell_var_get(ctx, s);
if (var) {
*value = var->value.ptr;
return true;
}
} else {
*value = (void*)strtoul(s, NULL, 0);
return true;
}
return false;
}
static bool
shell_var_name(struct shell_ctx *ctx, const char *name) {
struct shell_var *var = ctx->var;
if (!var || var->name[0] != '\0') {
return false;
}
if (name[0] != '$' || strlen(name) >= SHELL_VAR_NAME_LEN) {
return false;
}
strcpy(var->name, name);
return true;
}
struct shell_var *
shell_var_new(void) {
struct shell_var *var = (struct shell_var*)malloc(sizeof(struct shell_var));
var->next = NULL;
var->name[0] = '\0';
return var;
}
static struct shell_var *
shell_var_add(struct shell_ctx *ctx) {
struct shell_var *var = ctx->var;
struct shell_var *new_var;
if (!var) {
new_var = shell_var_new();
ctx->var = new_var;
} else {
if (var->name[0] == '\0') {
new_var = var;
} else {
new_var = shell_var_new();
new_var->next = var;
ctx->var = new_var;
}
}
return new_var;
}
static bool
shell_var_add_sint(struct shell_ctx *ctx, ssize_t value) {
struct shell_var *var = shell_var_add(ctx);
if (!var) {
return false;
}
var->type = SHELL_VAR_SINT;
var->value.sint = value;
return true;
}
static bool
shell_var_add_uint(struct shell_ctx *ctx, size_t value) {
struct shell_var *var = shell_var_add(ctx);
if (!var) {
return false;
}
var->type = SHELL_VAR_UINT;
var->value.uint = value;
return true;
}
static bool
shell_var_add_ptr(struct shell_ctx *ctx, void *value) {
struct shell_var *var = shell_var_add(ctx);
if (!var) {
return false;
}
var->type = SHELL_VAR_POINTER;
var->value.ptr = value;
return true;
}
static void
print_bytes(struct shell_ctx *ctx, uint8_t *x, size_t len) {
for (size_t i = 0; i < len; i++) {
if (i % PRINT_BYTES_PER_LINE == 0 && i != 0) {
fprintf(ctx->fout, "\n");
}
fprintf(ctx->fout, "%2.2x", x[i]);
}
fprintf(ctx->fout, "\n");
}
static void
print_hash(struct shell_ctx *ctx, uint8_t *x, size_t len) {
hash_context hash;
hash_oneshot(&hash, x, len);
for (size_t i = 0; i < HASH_SIZE; i++) {
fprintf(ctx->fout, "%2.2x", hash.hash[i]);
}
fprintf(ctx->fout, "\n");
}
void *host_load_file(const char *fname) {
FILE *f = fopen(fname, "rb");
if (!f) {
return NULL;
}
fseek(f, 0, SEEK_END);
size_t fsize = ftell(f);
rewind(f);
void *fdata = malloc(fsize);
fread(fdata, 1, fsize, f);
fclose(f);
return fdata;
}
static const char *
get_last_dir(const char *path) {
const char *last = strrchr(path, '/');
if (!last) {
last = path;
} else if (last != path || last[1] != '\0') {
last++;
}
return last;
}
static void
prompt(struct shell_ctx *ctx) {
if (cur_dir_changed) {
if (ctx->umka->booted) {
COVERAGE_ON();
umka_sys_get_cwd(cur_dir, PATH_MAX);
COVERAGE_OFF();
}
last_dir = get_last_dir(cur_dir);
cur_dir_changed = false;
}
fprintf(ctx->fout, "%s> ", last_dir);
fflush(stdout);
}
static void
completer(ic_completion_env_t *cenv, const char *prefix) {
(void)cenv;
(void)prefix;
}
static void
highlighter(ic_highlight_env_t *henv, const char *input, void *arg) {
(void)henv;
(void)input;
(void)arg;
}
static int
split_args(char *s, char **argv) {
int argc = -1;
for (; (argv[++argc] = strtok(s, " \t\n\r")) != NULL; s = NULL);
return argc;
}
static void
cmd_var(struct shell_ctx *ctx, int argc, char **argv) {
(void)ctx;
const char *usage = \
"usage: var <$name>\n"
" $name variable name, must start with $ sign\n";
if (argc != 2) {
fputs(usage, ctx->fout);
return;
}
bool status = shell_var_name(ctx, argv[1]);
if (!status) {
fprintf(ctx->fout, "fail\n");
}
}
static void
cmd_send_scancode(struct shell_ctx *ctx, int argc, char **argv) {
(void)ctx;
const char *usage = \
"usage: send_scancode <code>...\n"
" code dec or hex number\n";
if (argc < 2) {
fputs(usage, ctx->fout);
return;
}
argc -= 1;
argv += 1;
while (argc) {
char *endptr;
size_t code = strtoul(argv[0], &endptr, 0);
if (*endptr == '\0') {
umka_set_keyboard_data(code);
argc--;
argv++;
} else {
fprintf(ctx->fout, "not an integer: %s\n", argv[0]);
fputs(usage, ctx->fout);
return;
}
}
}
static void
cmd_umka_boot(struct shell_ctx *ctx, int argc, char **argv) {
(void)ctx;
(void)argv;
const char *usage = \
"usage: umka_boot\n";
if (argc != 1) {
fputs(usage, ctx->fout);
return;
}
COVERAGE_ON();
umka_boot();
COVERAGE_OFF();
if (*ctx->running != UMKA_RUNNING_NEVER) {
char *stack = malloc(UMKA_DEFAULT_THREAD_STACK_SIZE);
char *stack_top = stack + UMKA_DEFAULT_THREAD_STACK_SIZE;
size_t tid = umka_new_sys_threads(0, thread_cmd_runner, stack_top, ctx,
"cmd_runner");
(void)tid;
}
}
static void
cmd_umka_set_boot_params(struct shell_ctx *ctx, int argc, char **argv) {
const char *usage = \
"usage: umka_set_boot_params [--x_res <num>] [--y_res <num>]\n"
" --x_res <num> screen width\n"
" --y_res <num> screen height\n"
" --bpp <num> screen bits per pixel\n"
" --pitch <num> screen line length in bytes\n";
argc -= 1;
argv += 1;
while (argc) {
if (!strcmp(argv[0], "--x_res") && argc > 1) {
kos_boot.x_res = strtoul(argv[1], NULL, 0);
kos_boot.pitch = kos_boot.x_res * kos_boot.bpp/8;
argc -= 2;
argv += 2;
continue;
} else if (!strcmp(argv[0], "--y_res") && argc > 1) {
kos_boot.y_res = strtoul(argv[1], NULL, 0);
argc -= 2;
argv += 2;
continue;
} else if (!strcmp(argv[0], "--bpp") && argc > 1) {
kos_boot.bpp = strtoul(argv[1], NULL, 0);
kos_boot.pitch = kos_boot.x_res * kos_boot.bpp/8;
argc -= 2;
argv += 2;
continue;
} else if (!strcmp(argv[0], "--pitch") && argc > 1) {
kos_boot.pitch = strtoul(argv[1], NULL, 0);
argc -= 2;
argv += 2;
continue;
} else {
fprintf(ctx->fout, "bad option: %s\n", argv[0]);
fputs(usage, ctx->fout);
return;
}
}
}
static void
cmd_csleep(struct shell_ctx *ctx, int argc, char **argv) {
const char *usage = \
"usage: csleep\n";
if (argc != 2) {
fputs(usage, ctx->fout);
return;
}
struct umka_cmd *cmd = umka_cmd_buf;
struct cmd_sys_csleep_arg *c = &cmd->sys_csleep.arg;
cmd->type = UMKA_CMD_SYS_CSLEEP;
c->csec = strtoul(argv[1], NULL, 0);
shell_run_cmd(ctx);
atomic_store_explicit(&cmd->status, SHELL_CMD_STATUS_EMPTY,
memory_order_release);
}
static uint32_t
umka_wait_for_idle_test(void) {
return (uint32_t)(atomic_load_explicit(&idle_scheduled, memory_order_acquire));
}
static void
umka_wait_for_idle(void) {
atomic_store_explicit(&idle_scheduled, 0, memory_order_release);
kos_wait_events(umka_wait_for_idle_test, NULL);
}
static void
cmd_wait_for_idle(struct shell_ctx *ctx, int argc, char **argv) {
(void)argv;
const char *usage = \
"usage: wait_for_idle\n";
if (argc != 1) {
fputs(usage, ctx->fout);
return;
}
struct umka_cmd *cmd = umka_cmd_buf;
cmd->type = UMKA_CMD_WAIT_FOR_IDLE;
shell_run_cmd(ctx);
atomic_store_explicit(&cmd->status, SHELL_CMD_STATUS_EMPTY,
memory_order_release);
}
static uint32_t
umka_wait_for_os_test(void) {
return (uint32_t)(atomic_load_explicit(&os_scheduled, memory_order_acquire));
}
static void
umka_wait_for_os_idle(void) {
atomic_store_explicit(&os_scheduled, 0, memory_order_release);
kos_wait_events(umka_wait_for_os_test, NULL);
atomic_store_explicit(&idle_scheduled, 0, memory_order_release);
kos_wait_events(umka_wait_for_idle_test, NULL);
}
static void
cmd_wait_for_os_idle(struct shell_ctx *ctx, int argc, char **argv) {
(void)argv;
const char *usage = \
"usage: wait_for_os_idle\n";
if (argc != 1) {
fputs(usage, ctx->fout);
return;
}
struct umka_cmd *cmd = umka_cmd_buf;
cmd->type = UMKA_CMD_WAIT_FOR_OS_IDLE;
shell_run_cmd(ctx);
atomic_store_explicit(&cmd->status, SHELL_CMD_STATUS_EMPTY,
memory_order_release);
}
static uint32_t
umka_wait_for_window_test(void) {
appdata_t *app;
wdata_t *wdata;
__asm__ __volatile__ __inline__ ("":"=b"(app)::);
const char *wnd_title = (const char *)app->wait_param;
for (size_t i = 0; i < 256; i++) {
app = kos_slot_base + i;
wdata = kos_window_data + i;
if (app->state != KOS_TSTATE_FREE && wdata->caption
&& !strcmp(wdata->caption, wnd_title)) {
return 1;
}
}
return 0;
}
static void
umka_wait_for_window(char *wnd_title) {
kos_wait_events(umka_wait_for_window_test, wnd_title);
}
static void
cmd_wait_for_window(struct shell_ctx *ctx, int argc, char **argv) {
(void)argv;
const char *usage = \
"usage: wait_for_window <window_title>\n";
if (argc != 2) {
fputs(usage, ctx->fout);
return;
}
struct umka_cmd *cmd = umka_cmd_buf;
cmd->type = UMKA_CMD_WAIT_FOR_WINDOW;
struct cmd_wait_for_window_arg *c = &cmd->wait_for_window.arg;
c->wnd_title = argv[1];
shell_run_cmd(ctx);
atomic_store_explicit(&cmd->status, SHELL_CMD_STATUS_EMPTY,
memory_order_release);
}
static void
cmd_i40(struct shell_ctx *ctx, int argc, char **argv) {
(void)ctx;
const char *usage = \
"usage: i40 <eax> [ebx [ecx [edx [esi [edi [ebp]]]]]]...\n"
" see '/kernel/docs/sysfuncs.txt' for details\n";
if (argc < 2 || argc > 8) {
fputs(usage, ctx->fout);
return;
}
pushad_t regs = {0, 0, 0, 0, 0, 0, 0, 0};
if (argv[1]) regs.eax = strtoul(argv[1], NULL, 0);
if (argv[2]) regs.ebx = strtoul(argv[2], NULL, 0);
if (argv[3]) regs.ecx = strtoul(argv[3], NULL, 0);
if (argv[4]) regs.edx = strtoul(argv[4], NULL, 0);
if (argv[5]) regs.esi = strtoul(argv[5], NULL, 0);
if (argv[6]) regs.edi = strtoul(argv[6], NULL, 0);
if (argv[7]) regs.ebp = strtoul(argv[7], NULL, 0);
COVERAGE_ON();
umka_i40(&regs);
COVERAGE_OFF();
fprintf(ctx->fout, "eax = %8.8x %" PRIu32 " %" PRIi32 "\n"
"ebx = %8.8x %" PRIu32 " %" PRIi32 "\n",
regs.eax, regs.eax, (int32_t)regs.eax,
regs.ebx, regs.ebx, (int32_t)regs.ebx);
}
static void
bytes_to_kmgtpe(uint64_t *bytes, const char **kmg) {
lldiv_t d;
*kmg = "B";
if (*bytes == 0) {
return;
}
d = lldiv(*bytes, 1024);
if (d.rem != 0) {
return;
}
*bytes = d.quot;
*kmg = "kiB";
d = lldiv(*bytes, 1024);
if (d.rem != 0) {
return;
}
*bytes = d.quot;
*kmg = "MiB";
d = lldiv(*bytes, 1024);
if (d.rem != 0) {
return;
}
*bytes = d.quot;
*kmg = "GiB";
d = lldiv(*bytes, 1024);
if (d.rem != 0) {
return;
}
*bytes = d.quot;
*kmg = "TiB";
d = lldiv(*bytes, 1024);
if (d.rem != 0) {
return;
}
*bytes = d.quot;
*kmg = "PiB";
d = lldiv(*bytes, 1024);
if (d.rem != 0) {
return;
}
*bytes = d.quot;
*kmg = "EiB";
}
static void
disk_list_partitions(struct shell_ctx *ctx, disk_t *d) {
uint64_t kmgtpe_count = d->media_info.sector_size * d->media_info.capacity;
const char *kmgtpe = NULL;
bytes_to_kmgtpe(&kmgtpe_count, &kmgtpe);
fprintf(ctx->fout, "/%s: sector_size=%u, capacity=%" PRIu64 " (%" PRIu64
" %s), num_partitions=%u\n", d->name, d->media_info.sector_size,
d->media_info.capacity, kmgtpe_count, kmgtpe, d->num_partitions);
for (size_t i = 0; i < d->num_partitions; i++) {
partition_t *p = d->partitions[i];
const char *fsname;
if (p->fs_user_functions == xfs_user_functions) {
fsname = "xfs";
} else if (p->fs_user_functions == ext_user_functions) {
fsname = "ext";
} else if (p->fs_user_functions == fat_user_functions) {
fsname = "fat";
} else if (p->fs_user_functions == exfat_user_functions) {
fsname = "exfat";
} else if (p->fs_user_functions == ntfs_user_functions) {
fsname = "ntfs";
} else {
fsname = "???";
}
kmgtpe_count = d->media_info.sector_size * p->first_sector;
bytes_to_kmgtpe(&kmgtpe_count, &kmgtpe);
fprintf(ctx->fout, "/%s/%d: fs=%s, start=%" PRIu64 " (%" PRIu64 " %s)",
d->name, i+1, fsname, p->first_sector, kmgtpe_count, kmgtpe);
kmgtpe_count = d->media_info.sector_size * p->length;
bytes_to_kmgtpe(&kmgtpe_count, &kmgtpe);
fprintf(ctx->fout, ", length=%" PRIu64 " (%" PRIu64 " %s)\n",
p->length, kmgtpe_count, kmgtpe);
}
}
static void
cmd_ramdisk_init(struct shell_ctx *ctx, int argc, char **argv) {
(void)ctx;
const char *usage = \
"usage: ramdisk_init <file>\n"
" <file> absolute or relative path\n";
if (argc != 2) {
fputs(usage, ctx->fout);
return;
}
const char *fname = argv[1];
FILE *f = fopen(fname, "rb");
if (!f) {
fprintf(ctx->fout, "[!] can't open file '%s': %s\n", fname, strerror(errno));
return;
}
fseek(f, 0, SEEK_END);
size_t fsize = ftell(f);
if (fsize > RAMDISK_MAX_LEN) {
fprintf(ctx->fout, "[!] file '%s' is too big, max size is %d bytes\n",
fname, RAMDISK_MAX_LEN);
return;
}
rewind(f);
fread(kos_ramdisk, fsize, 1, f);
fclose(f);
COVERAGE_ON();
void *ramdisk = kos_ramdisk_init();
COVERAGE_OFF();
disk_list_partitions(ctx, ramdisk);
}
static void
cmd_disk_add(struct shell_ctx *ctx, int argc, char **argv) {
const char *usage = \
"usage: disk_add <file> <name> [option]...\n"
" <file> absolute or relative path\n"
" <name> disk name, e.g. hd0 or rd\n"
" -c cache size size of disk cache in bytes\n";
if (argc < 3) {
fputs(usage, ctx->fout);
return;
}
size_t cache_size = 0;
int adjust_cache_size = 0;
int opt;
optparse_init(&ctx->opts, argv);
const char *file_name = optparse_arg(&ctx->opts);
const char *disk_name = optparse_arg(&ctx->opts);
while ((opt = optparse(&ctx->opts, "c:")) != -1) {
switch (opt) {
case 'c':
cache_size = strtoul(ctx->opts.optarg, NULL, 0);
adjust_cache_size = 1;
break;
default:
fputs(usage, ctx->fout);
return;
}
}
struct vdisk *umka_disk = vdisk_init(file_name, adjust_cache_size,
cache_size, ctx->io);
if (umka_disk) {
COVERAGE_ON();
disk_t *disk = disk_add(&umka_disk->diskfunc, disk_name, umka_disk, 0);
COVERAGE_OFF();
if (disk) {
COVERAGE_ON();
disk_media_changed(disk, 1);
COVERAGE_OFF();
disk_list_partitions(ctx, disk);
return;
}
}
fprintf(ctx->fout, "umka: can't add file '%s' as disk '%s'\n", file_name, disk_name);
return;
}
static void
disk_del_by_name(struct shell_ctx *ctx, const char *name) {
for(disk_t *d = disk_list.next; d != &disk_list; d = d->next) {
if (!strcmp(d->name, name)) {
COVERAGE_ON();
disk_del(d);
COVERAGE_OFF();
return;
}
}
fprintf(ctx->fout, "umka: can't find disk '%s'\n", name);
}
static void
cmd_disk_del(struct shell_ctx *ctx, int argc, char **argv) {
(void)ctx;
const char *usage = \
"usage: disk_del <name>\n"
" name disk name, i.e. rd or hd0\n";
if (argc != 2) {
fputs(usage, ctx->fout);
return;
}
const char *name = argv[1];
disk_del_by_name(ctx, name);
return;
}
static void
cmd_pwd(struct shell_ctx *ctx, int argc, char **argv) {
(void)ctx;
const char *usage = \
"usage: pwd\n";
if (argc != 1) {
fputs(usage, ctx->fout);
return;
}
(void)argv;
bool quoted = false;
const char *quote = quoted ? "'" : "";
COVERAGE_ON();
umka_sys_get_cwd(cur_dir, PATH_MAX);
COVERAGE_OFF();
fprintf(ctx->fout, "%s%s%s\n", quote, cur_dir, quote);
}
static void
cmd_set_pixel(struct shell_ctx *ctx, int argc, char **argv) {
(void)ctx;
const char *usage = \
"usage: set_pixel <x> <y> <color> [-i]\n"
" x x window coordinate\n"
" y y window coordinate\n"
" color argb in hex\n"
" -i inverted color\n";
if (argc < 4) {
fputs(usage, ctx->fout);
return;
}
size_t x = strtoul(argv[1], NULL, 0);
size_t y = strtoul(argv[2], NULL, 0);
uint32_t color = strtoul(argv[3], NULL, 16);
int invert = (argc == 5) && !strcmp(argv[4], "-i");
COVERAGE_ON();
umka_sys_set_pixel(x, y, color, invert);
COVERAGE_OFF();
}
static void
cmd_write_text(struct shell_ctx *ctx, int argc, char **argv) {
(void)ctx;
const char *usage = \
"usage: write_text <x> <y> <color> <string> <asciiz> <fill_bg>"
" <font_and_enc> <draw_to_buf> <scale_factor> <length>"
" <bg_color_or_buf>\n"
" x x window coordinate\n"
" y y window coordinate\n"
" color argb in hex\n"
" string escape spaces\n"
" asciiz 1 if the string is zero-terminated\n"
" fill_bg fill text background with specified color\n"
" font_and_enc font size and string encoding\n"
" draw_to_buf draw to the buffer pointed to by the next param\n"
" length length of the string if it is non-asciiz\n"
" bg_color_or_buf argb or pointer\n";
if (argc != 12) {
fputs(usage, ctx->fout);
return;
}
size_t x = strtoul(argv[1], NULL, 0);
size_t y = strtoul(argv[2], NULL, 0);
uint32_t color = strtoul(argv[3], NULL, 16);
const char *string = argv[4];
int asciiz = strtoul(argv[5], NULL, 0);
int fill_background = strtoul(argv[6], NULL, 0);
int font_and_encoding = strtoul(argv[7], NULL, 0);
int draw_to_buffer = strtoul(argv[8], NULL, 0);
int scale_factor = strtoul(argv[9], NULL, 0);
int length = strtoul(argv[10], NULL, 0);
int background_color_or_buffer = strtoul(argv[11], NULL, 0);
COVERAGE_ON();
umka_sys_write_text(x, y, color, asciiz, fill_background, font_and_encoding,
draw_to_buffer, scale_factor, string, length,
background_color_or_buffer);
COVERAGE_OFF();
}
static void
cmd_get_key(struct shell_ctx *ctx, int argc, char **argv) {
(void)ctx;
(void)argv;
const char *usage = \
"usage: get_key\n";
if (argc > 1) {
fputs(usage, ctx->fout);
return;
}
fprintf(ctx->fout, "0x%8.8" PRIx32 "\n", umka_get_key());
}
static void
cmd_dump_key_buff(struct shell_ctx *ctx, int argc, char **argv) {
(void)ctx;
const char *usage = \
"usage: dump_key_buff [count]\n"
" count how many items to dump (all by default)\n";
if (argc > 2) {
fputs(usage, ctx->fout);
return;
}
int count = INT_MAX;
if (argc > 1) {
count = strtol(argv[1], NULL, 0);
}
for (int i = 0; i < count && i < kos_key_count; i++) {
fprintf(ctx->fout, "%3i 0x%2.2x 0x%2.2x\n", i, kos_key_buff[i],
kos_key_buff[120+2+i]);
}
}
static void
cmd_dump_win_stack(struct shell_ctx *ctx, int argc, char **argv) {
(void)ctx;
const char *usage = \
"usage: dump_win_stack [count]\n"
" count how many items to dump\n";
if (argc > 2) {
fputs(usage, ctx->fout);
return;
}
int depth = 5;
if (argc > 1) {
depth = strtol(argv[1], NULL, 0);
}
for (int i = 0; i < depth; i++) {
fprintf(ctx->fout, "%3i: %3u\n", i, kos_win_stack[i]);
}
}
static void
cmd_dump_win_pos(struct shell_ctx *ctx, int argc, char **argv) {
(void)ctx;
const char *usage = \
"usage: dump_win_pos [count]\n"
" count how many items to dump\n";
if (argc < 1) {
fputs(usage, ctx->fout);
return;
}
int depth = 5;
if (argc > 1) {
depth = strtol(argv[1], NULL, 0);
}
for (int i = 0; i < depth; i++) {
fprintf(ctx->fout, "%3i: %3u\n", i, kos_win_pos[i]);
}
}
static void
cmd_dump_win_map(struct shell_ctx *ctx, int argc, char **argv) {
(void)ctx;
(void)argv;
// TODO: area
const char *usage = \
"usage: dump_win_map\n";
if (argc < 0) {
fputs(usage, ctx->fout);
return;
}
for (size_t y = 0; y < kos_display.height; y++) {
for (size_t x = 0; x < kos_display.width; x++) {
fprintf(ctx->fout, "%c",
kos_display.win_map[y * kos_display.width + x] + '0');
}
fprintf(ctx->fout, "\n");
}
}
static void
cmd_dump_wdata(struct shell_ctx *ctx, int argc, char **argv) {
(void)ctx;
const char *usage = \
"usage: dump_wdata <index>\n"
" index index into wdata array to dump\n"
" -p print fields that are pointers\n";
if (argc < 2) {
fputs(usage, ctx->fout);
return;
}
int show_pointers = 0;
int idx = strtol(argv[1], NULL, 0);
if (argc > 2 && !strcmp(argv[2], "-p")) {
show_pointers = 1;
}
wdata_t *w = kos_window_data + idx;
fprintf(ctx->fout, "captionEncoding: %u\n", w->caption_encoding);
fprintf(ctx->fout, "caption: %s\n", w->caption);
fprintf(ctx->fout, "clientbox (ltwh): %u %u %u %u\n", w->clientbox.left,
w->clientbox.top, w->clientbox.width, w->clientbox.height);
fprintf(ctx->fout, "draw_bgr_x: %u\n", w->draw_bgr_x);
fprintf(ctx->fout, "draw_bgr_y: %u\n", w->draw_bgr_y);
fprintf(ctx->fout, "thread: %u\n", (uintptr_t)(w->thread - kos_slot_base));
if (show_pointers) {
fprintf(ctx->fout, "thread: %p\n", (void*)w->thread);
fprintf(ctx->fout, "cursor: %p\n", (void*)w->cursor);
}
}
static void
cmd_dump_appdata(struct shell_ctx *ctx, int argc, char **argv) {
(void)ctx;
const char *usage = \
"usage: dump_appdata <index> [-p]\n"
" index index into appdata array to dump\n"
" -p print fields that are pointers\n";
if (argc < 2) {
fputs(usage, ctx->fout);
return;
}
int show_pointers = 0;
int idx = strtol(argv[1], NULL, 0);
if (argc > 2 && !strcmp(argv[2], "-p")) {
show_pointers = 1;
}
appdata_t *a = kos_slot_base + idx;
fprintf(ctx->fout, "app_name: %s\n", a->app_name);
if (show_pointers) {
fprintf(ctx->fout, "process: %p\n", (void*)a->process);
fprintf(ctx->fout, "fpu_state: %p\n", (void*)a->fpu_state);
fprintf(ctx->fout, "exc_handler: %p\n", (void*)a->exc_handler);
}
fprintf(ctx->fout, "except_mask: %" PRIx32 "\n", a->except_mask);
if (show_pointers) {
fprintf(ctx->fout, "pl0_stack: %p\n", (void*)a->pl0_stack);
fprintf(ctx->fout, "fd_ev: %p\n", (void*)a->fd_ev);
fprintf(ctx->fout, "bk_ev: %p\n", (void*)a->bk_ev);
fprintf(ctx->fout, "fd_obj: %p\n", (void*)a->fd_obj);
fprintf(ctx->fout, "bk_obj: %p\n", (void*)a->bk_obj);
fprintf(ctx->fout, "saved_esp: %p\n", (void*)a->saved_esp);
}
fprintf(ctx->fout, "dbg_state: %u\n", a->dbg_state);
fprintf(ctx->fout, "cur_dir: %s\n", a->cur_dir);
fprintf(ctx->fout, "event_mask: %" PRIx32 "\n", a->event_mask);
fprintf(ctx->fout, "tid: %" PRId32 "\n", a->tid);
fprintf(ctx->fout, "state: 0x%" PRIx8 "\n", a->state);
fprintf(ctx->fout, "wnd_number: %" PRIu8 "\n", a->wnd_number);
fprintf(ctx->fout, "terminate_protection: %u\n", a->terminate_protection);
fprintf(ctx->fout, "keyboard_mode: %u\n", a->keyboard_mode);
fprintf(ctx->fout, "exec_params: %s\n", a->exec_params);
fprintf(ctx->fout, "priority: %u\n", a->priority);
fprintf(ctx->fout, "in_schedule: prev");
if (show_pointers) {
fprintf(ctx->fout, " %p", (void*)a->in_schedule.prev);
}
fprintf(ctx->fout, " (%u), next", (appdata_t*)a->in_schedule.prev - kos_slot_base);
if (show_pointers) {
fprintf(ctx->fout, " %p", (void*)a->in_schedule.next);
}
fprintf(ctx->fout, " (%u)\n", (appdata_t*)a->in_schedule.next - kos_slot_base);
}
static void
cmd_switch_to_thread(struct shell_ctx *ctx, int argc, char **argv) {
(void)ctx;
const char *usage = \
"usage: switch_to_thread <tid>\n"
" <tid> thread id to switch to\n";
if (argc != 2) {
fputs(usage, ctx->fout);
return;
}
uint8_t tid = strtoul(argv[1], NULL, 0);
kos_current_slot_idx = tid;
kos_current_slot = kos_slot_base + tid;
}
static void
cmd_get(struct shell_ctx *ctx, int argc, char **argv) {
(void)ctx;
const char *usage = \
"usage: get <var>\n"
" <var> variable to get\n";
if (argc != 2) {
fputs(usage, ctx->fout);
return;
}
const char *var = argv[1];
if (!strcmp(var, "redraw_background")) {
fprintf(ctx->fout, "%i\n", kos_redraw_background);
} else if (!strcmp(var, "key_count")) {
fprintf(ctx->fout, "%i\n", kos_key_count);
} else if (!strcmp(var, "syslang")) {
fprintf(ctx->fout, "%i\n", kos_syslang);
} else if (!strcmp(var, "keyboard")) {
fprintf(ctx->fout, "%i\n", kos_keyboard);
} else if (!strcmp(var, "keyboard_mode")) {
fprintf(ctx->fout, "%i\n", kos_keyboard_mode);
} else {
fprintf(ctx->fout, "no such variable: %s\n", var);
fputs(usage, ctx->fout);
return;
}
}
static void
cmd_set(struct shell_ctx *ctx, int argc, char **argv) {
(void)ctx;
const char *usage = \
"usage: set <var> <value>\n"
" <var> variable to set\n"
" <value> decimal or hex value\n";
if (argc != 3) {
fputs(usage, ctx->fout);
return;
}
const char *var = argv[1];
const char *val_str = argv[2];
char *endptr;
ssize_t value = strtol(val_str, &endptr, 0);
if (*endptr != '\0') {
fprintf(ctx->fout, "integer required: %s\n", val_str);
return;
}
if (!strcmp(var, "redraw_background")) {
kos_redraw_background = value;
} else if (!strcmp(var, "syslang")) {
kos_syslang = value;
} else if (!strcmp(var, "keyboard")) {
kos_keyboard = value;
} else if (!strcmp(var, "keyboard_mode")) {
kos_keyboard_mode = value;
} else {
fprintf(ctx->fout, "bad option: %s\n", argv[1]);
fputs(usage, ctx->fout);
return;
}
}
static void
cmd_new_sys_thread(struct shell_ctx *ctx, int argc, char **argv) {
(void)ctx;
(void)argv;
// FIXME
const char *usage = \
"usage: new_sys_thread\n";
if (!argc) {
fputs(usage, ctx->fout);
return;
}
size_t tid = kos_new_sys_threads(0, NULL, NULL);
fprintf(ctx->fout, "tid: %u\n", tid);
}
static void
cmd_mouse_move(struct shell_ctx *ctx, int argc, char **argv) {
(void)ctx;
const char *usage = \
"usage: mouse_move [-l] [-m] [-r] [-x {+|-|=}<value>]"
" [-y {+|-|=}<value>] [-h {+|-}<value>] [-v {+|-}<value>]\n"
" -l left button is held\n"
" -m middle button is held\n"
" -r right button is held\n"
" -x increase, decrease or set x coordinate\n"
" -y increase, decrease or set y coordinate\n"
" -h scroll horizontally\n"
" -v scroll vertically\n";
if (!argc) {
fputs(usage, ctx->fout);
return;
}
int lbheld = 0, mbheld = 0, rbheld = 0, xabs = 0, yabs = 0;
int32_t xmoving = 0, ymoving = 0, hscroll = 0, vscroll = 0;
int opt;
optparse_init(&ctx->opts, argv);
while ((opt = optparse(&ctx->opts, "lmrx:y:h:v:")) != -1) {
switch (opt) {
case 'l':
lbheld = 1;
break;
case 'm':
mbheld = 1;
break;
case 'r':
rbheld = 1;
break;
case 'x':
switch (*ctx->opts.optarg++) {
case '=':
xabs = 1;
__attribute__ ((fallthrough));
case '+':
xmoving = strtol(ctx->opts.optarg, NULL, 0);
break;
case '-':
xmoving = -strtol(ctx->opts.optarg, NULL, 0);
break;
default:
fputs(usage, ctx->fout);
return;
}
break;
case 'y':
switch (*ctx->opts.optarg++) {
case '=':
yabs = 1;
__attribute__ ((fallthrough));
case '+':
ymoving = strtol(ctx->opts.optarg, NULL, 0);
break;
case '-':
ymoving = -strtol(ctx->opts.optarg, NULL, 0);
break;
default:
fputs(usage, ctx->fout);
return;
}
break;
case 'h':
if ((ctx->opts.optarg[0] != '+') && (ctx->opts.optarg[0] != '-')) {
fputs(usage, ctx->fout);
return;
}
hscroll = strtol(ctx->opts.optarg, NULL, 0);
break;
case 'v':
if ((ctx->opts.optarg[0] != '+') && (ctx->opts.optarg[0] != '-')) {
fputs(usage, ctx->fout);
return;
}
vscroll = strtol(ctx->opts.optarg, NULL, 0);
break;
default:
fputs(usage, ctx->fout);
return;
}
}
uint32_t btn_state = lbheld + (rbheld << 1) + (mbheld << 2) + (yabs << 30)
+ (xabs << 31);
struct umka_cmd *cmd = umka_cmd_buf;
struct cmd_set_mouse_data_arg *c = &cmd->set_mouse_data.arg;
cmd->type = UMKA_CMD_SET_MOUSE_DATA;
c->btn_state = btn_state;
c->xmoving = xmoving;
c->ymoving = ymoving;
c->vscroll = vscroll;
c->hscroll = hscroll;
shell_run_cmd(ctx);
atomic_store_explicit(&cmd->status, SHELL_CMD_STATUS_EMPTY,
memory_order_release);
}
static void
cmd_process_info(struct shell_ctx *ctx, int argc, char **argv) {
const char *usage = \
"usage: process_info <pid>\n"
" pid process id to dump, -1 for self\n";
if (argc != 2) {
fputs(usage, ctx->fout);
return;
}
process_information_t info;
ssize_t pid;
shell_parse_sint(ctx, &pid, argv[1]);
COVERAGE_ON();
umka_sys_process_info(pid, &info);
COVERAGE_OFF();
fprintf(ctx->fout, "cpu_usage: %u\n", info.cpu_usage);
fprintf(ctx->fout, "window_stack_position: %u\n", info.window_stack_position);
fprintf(ctx->fout, "window_stack_value: %u\n", info.window_stack_value);
fprintf(ctx->fout, "process_name: %s\n", info.process_name);
fprintf(ctx->fout, "memory_start: 0x%.8" PRIx32 "\n", info.memory_start);
fprintf(ctx->fout, "used_memory: %u (0x%x)\n", info.used_memory,
info.used_memory);
fprintf(ctx->fout, "pid: %u\n", info.pid);
fprintf(ctx->fout, "box: %u %u %u %u\n", info.box.left, info.box.top,
info.box.width, info.box.height);
fprintf(ctx->fout, "slot_state: %u\n", info.slot_state);
fprintf(ctx->fout, "client_box: %u %u %u %u\n", info.client_box.left,
info.client_box.top, info.client_box.width, info.client_box.height);
fprintf(ctx->fout, "wnd_state: 0x%.2" PRIx8 "\n", info.wnd_state);
}
static void
cmd_check_for_event(struct shell_ctx *ctx, int argc, char **argv) {
(void)ctx;
(void)argv;
const char *usage = \
"usage: check_for_event\n";
if (argc != 1) {
fputs(usage, ctx->fout);
return;
}
COVERAGE_ON();
uint32_t event = umka_sys_check_for_event();
COVERAGE_OFF();
fprintf(ctx->fout, "%" PRIu32 "\n", event);
}
static void
cmd_display_number(struct shell_ctx *ctx, int argc, char **argv) {
(void)ctx;
const char *usage = \
"usage: display_number <is_pointer> <base> <num_digits> <is_qword>"
" <show_lead_zeros> <num_or_ptr> <x> <y> <color> <fill_bg> <font>"
" <draw_to_buf> <scale_factor> <bg_color_or_buf>\n"
" is_pointer if num_or_ptr argument is a pointer\n"
" base 0 - dec, 1 - hex, 2 - bin\n"
" num_digits how many digits to print\n"
" is_qword if 1, is_pointer = 1 and num_or_ptr is pointer\n"
" show_lead_zeros 0/1\n"
" num_or_ptr number itself or a pointer to it\n"
" x x window coord\n"
" y y window coord\n"
" color argb in hex\n"
" fill_bg 0/1\n"
" font 0 = 6x9, 1 = 8x16\n"
" draw_to_buf 0/1\n"
" scale_factor 0 = x1, ..., 7 = x8\n"
" bg_color_or_buf depending on flags fill_bg and draw_to_buf\n";
if (argc != 15) {
fputs(usage, ctx->fout);
return;
}
int is_pointer = strtoul(argv[1], NULL, 0);
int base = strtoul(argv[2], NULL, 0);
if (base == 10) base = 0;
else if (base == 16) base = 1;
else if (base == 2) base = 2;
else base = 0;
size_t digits_to_display = strtoul(argv[3], NULL, 0);
int is_qword = strtoul(argv[4], NULL, 0);
int show_leading_zeros = strtoul(argv[5], NULL, 0);
uintptr_t number_or_pointer = strtoul(argv[6], NULL, 0);
size_t x = strtoul(argv[7], NULL, 0);
size_t y = strtoul(argv[8], NULL, 0);
uint32_t color = strtoul(argv[9], NULL, 16);
int fill_background = strtoul(argv[10], NULL, 0);
int font = strtoul(argv[11], NULL, 0);
int draw_to_buffer = strtoul(argv[12], NULL, 0);
int scale_factor = strtoul(argv[13], NULL, 0);
uintptr_t background_color_or_buffer = strtoul(argv[14], NULL, 16);
COVERAGE_ON();
umka_sys_display_number(is_pointer, base, digits_to_display, is_qword,
show_leading_zeros, number_or_pointer, x, y, color,
fill_background, font, draw_to_buffer, scale_factor,
background_color_or_buffer);
COVERAGE_OFF();
}
static void
cmd_set_window_colors(struct shell_ctx *ctx, int argc, char **argv) {
(void)ctx;
const char *usage = \
"usage: set_window_colors <frame> <grab> <work_3d_dark> <work_3d_light>"
" <grab_text> <work> <work_button> <work_button_text> <work_text>"
" <work_graph>\n"
" * all colors are in hex\n";
if (argc != (1 + sizeof(system_colors_t)/4)) {
fputs(usage, ctx->fout);
return;
}
system_colors_t colors;
colors.frame = strtoul(argv[1], NULL, 16);
colors.grab = strtoul(argv[2], NULL, 16);
colors.work_3d_dark = strtoul(argv[3], NULL, 16);
colors.work_3d_light = strtoul(argv[4], NULL, 16);
colors.grab_text = strtoul(argv[5], NULL, 16);
colors.work = strtoul(argv[6], NULL, 16);
colors.work_button = strtoul(argv[7], NULL, 16);
colors.work_button_text = strtoul(argv[8], NULL, 16);
colors.work_text = strtoul(argv[9], NULL, 16);
colors.work_graph = strtoul(argv[10], NULL, 16);
COVERAGE_ON();
umka_sys_set_window_colors(&colors);
COVERAGE_OFF();
}
static void
cmd_get_window_colors(struct shell_ctx *ctx, int argc, char **argv) {
(void)ctx;
(void)argv;
const char *usage = \
"usage: get_window_colors\n";
if (argc != 1) {
fputs(usage, ctx->fout);
return;
}
system_colors_t colors;
memset(&colors, 0xaa, sizeof(colors));
COVERAGE_ON();
umka_sys_get_window_colors(&colors);
COVERAGE_OFF();
fprintf(ctx->fout, "0x%.8" PRIx32 " frame\n", colors.frame);
fprintf(ctx->fout, "0x%.8" PRIx32 " grab\n", colors.grab);
fprintf(ctx->fout, "0x%.8" PRIx32 " work_3d_dark\n", colors.work_3d_dark);
fprintf(ctx->fout, "0x%.8" PRIx32 " work_3d_light\n", colors.work_3d_light);
fprintf(ctx->fout, "0x%.8" PRIx32 " grab_text\n", colors.grab_text);
fprintf(ctx->fout, "0x%.8" PRIx32 " work\n", colors.work);
fprintf(ctx->fout, "0x%.8" PRIx32 " work_button\n", colors.work_button);
fprintf(ctx->fout, "0x%.8" PRIx32 " work_button_text\n",
colors.work_button_text);
fprintf(ctx->fout, "0x%.8" PRIx32 " work_text\n", colors.work_text);
fprintf(ctx->fout, "0x%.8" PRIx32 " work_graph\n", colors.work_graph);
}
static void
cmd_get_skin_height(struct shell_ctx *ctx, int argc, char **argv) {
(void)ctx;
(void)argv;
const char *usage = \
"usage: get_skin_height\n";
if (argc != 1) {
fputs(usage, ctx->fout);
return;
}
COVERAGE_ON();
uint32_t skin_height = umka_sys_get_skin_height();
COVERAGE_OFF();
fprintf(ctx->fout, "%" PRIu32 "\n", skin_height);
}
static void
cmd_get_screen_area(struct shell_ctx *ctx, int argc, char **argv) {
(void)ctx;
(void)argv;
const char *usage = \
"usage: get_screen_area\n";
if (argc != 1) {
fputs(usage, ctx->fout);
return;
}
rect_t wa;
COVERAGE_ON();
umka_sys_get_screen_area(&wa);
COVERAGE_OFF();
fprintf(ctx->fout, "%" PRIu32 " left\n", wa.left);
fprintf(ctx->fout, "%" PRIu32 " top\n", wa.top);
fprintf(ctx->fout, "%" PRIu32 " right\n", wa.right);
fprintf(ctx->fout, "%" PRIu32 " bottom\n", wa.bottom);
}
static void
cmd_set_screen_area(struct shell_ctx *ctx, int argc, char **argv) {
(void)ctx;
const char *usage = \
"usage: set_screen_area <left> <top> <right> <bottom>\n"
" left left x coord\n"
" top top y coord\n"
" right right x coord (not length!)\n"
" bottom bottom y coord\n";
if (argc != 5) {
fputs(usage, ctx->fout);
return;
}
rect_t wa;
wa.left = strtoul(argv[1], NULL, 0);
wa.top = strtoul(argv[2], NULL, 0);
wa.right = strtoul(argv[3], NULL, 0);
wa.bottom = strtoul(argv[4], NULL, 0);
COVERAGE_ON();
umka_sys_set_screen_area(&wa);
COVERAGE_OFF();
}
static void
cmd_get_skin_margins(struct shell_ctx *ctx, int argc, char **argv) {
(void)ctx;
(void)argv;
const char *usage = \
"usage: get_skin_margins\n";
if (argc != 1) {
fputs(usage, ctx->fout);
return;
}
rect_t wa;
COVERAGE_ON();
umka_sys_get_skin_margins(&wa);
COVERAGE_OFF();
fprintf(ctx->fout, "%" PRIu32 " left\n", wa.left);
fprintf(ctx->fout, "%" PRIu32 " top\n", wa.top);
fprintf(ctx->fout, "%" PRIu32 " right\n", wa.right);
fprintf(ctx->fout, "%" PRIu32 " bottom\n", wa.bottom);
}
static void
cmd_set_button_style(struct shell_ctx *ctx, int argc, char **argv) {
(void)ctx;
const char *usage = \
"usage: set_button_style <style>\n"
" style 0 - flat, 1 - 3d\n";
if (argc != 2) {
fputs(usage, ctx->fout);
return;
}
uint32_t style = strtoul(argv[1], NULL, 0);
COVERAGE_ON();
umka_sys_set_button_style(style);
COVERAGE_OFF();
}
static void
cmd_set_skin(struct shell_ctx *ctx, int argc, char **argv) {
(void)ctx;
const char *usage = \
"usage: set_skin <path>\n"
" path i.e. /rd/1/DEFAULT.SKN\n";
if (argc != 2) {
fputs(usage, ctx->fout);
return;
}
const char *path = argv[1];
COVERAGE_ON();
int32_t status = umka_sys_set_skin(path);
COVERAGE_OFF();
fprintf(ctx->fout, "status: %" PRIi32 "\n", status);
}
char *lang_id_map[] = {"en", "fi", "ge", "ru", "fr", "et", "ua", "it", "be",
"sp", "ca"};
static void
cmd_get_keyboard_layout(struct shell_ctx *ctx, int argc, char **argv) {
(void)ctx;
const char *usage = \
"usage: get_keyboard_layout <-t type> [-f file]\n"
" -t type layout type: 1 - normal, 2 - shift, 3 - alt\n"
" -f file file name to save layout to\n";
if (argc < 3) {
fputs(usage, ctx->fout);
return;
}
int type = -1;
if (!strcmp(argv[1], "-t")) {
const char *type_str = argv[2];
char *endptr;
type = strtol(type_str, &endptr, 0);
if (*endptr != '\0') {
if (!strcmp(type_str, "normal")) {
type = 1;
} else if (!strcmp(type_str, "shift")) {
type = 2;
} else if (!strcmp(type_str, "alt")) {
type = 3;
} else {
fprintf(ctx->fout, "no such layout type: %s\n", type_str);
fputs(usage, ctx->fout);
return;
}
}
}
uint8_t layout[KOS_LAYOUT_SIZE];
COVERAGE_ON();
umka_sys_get_keyboard_layout(type, layout);
COVERAGE_OFF();
if (argc == 3) {
#define NUM_COLS 16 // produces nice output, 80 chars
for (size_t row = 0; row < KOS_LAYOUT_SIZE/NUM_COLS; row++) {
for (size_t col = 0; col < NUM_COLS; col++) {
fprintf(ctx->fout, " 0x%2.2x", layout[row*NUM_COLS+col]);
}
fprintf(ctx->fout, "\n");
}
#undef COLS
} else if (argc == 5 && !strcmp(argv[3], "-f")) {
const char *fname = argv[4];
FILE *f = fopen(fname, "wb");
if (!f) {
fprintf(ctx->fout, "can't open file for writing: %s\n", fname);
fputs(usage, ctx->fout);
return;
}
size_t nread = fwrite(layout, 1, KOS_LAYOUT_SIZE, f);
fclose(f);
if (nread != KOS_LAYOUT_SIZE) {
fprintf(ctx->fout, "can't write %i bytes of layout, only %i\n",
KOS_LAYOUT_SIZE, nread);
fputs(usage, ctx->fout);
return;
}
} else {
fputs(usage, ctx->fout);
return;
}
}
static void
cmd_set_keyboard_layout(struct shell_ctx *ctx, int argc, char **argv) {
(void)ctx;
const char *usage = \
"usage: set_keyboard_layout <-t type> <-f file|code{128}>\n"
" -t type layout type: 1 - normal, 2 - shift, 3 - alt\n"
" -f file file name to read layout from\n"
" code i-th ASCII code for the scancode i\n";
if (argc != 5 && argc != 131) {
fputs(usage, ctx->fout);
return;
}
int type;
if (!strcmp(argv[1], "-t")) {
const char *type_str = argv[2];
char *endptr;
type = strtol(type_str, &endptr, 0);
if (*endptr != '\0') {
if (!strcmp(type_str, "normal")) {
type = 1;
} else if (!strcmp(type_str, "shift")) {
type = 2;
} else if (!strcmp(type_str, "alt")) {
type = 3;
} else {
fprintf(ctx->fout, "no such layout type: %s\n", type_str);
fputs(usage, ctx->fout);
return;
}
}
}
uint8_t layout[KOS_LAYOUT_SIZE];
if (!strcmp(argv[3], "-f") && argc == 5) {
const char *fname = argv[4];
FILE *f = fopen(fname, "rb");
if (!f) {
fprintf(ctx->fout, "can't open file: %s\n", fname);
fputs(usage, ctx->fout);
return;
}
size_t nread = fread(layout, 1, KOS_LAYOUT_SIZE, f);
fclose(f);
if (nread != KOS_LAYOUT_SIZE) {
fprintf(ctx->fout, "can't read %i bytes of layout, only %i\n",
KOS_LAYOUT_SIZE, nread);
fputs(usage, ctx->fout);
return;
}
} else {
char *endptr;
char **ascii_codes = argv + 4;
for (size_t i = 0; i < KOS_LAYOUT_SIZE; i++) {
long code = strtol(ascii_codes[i], &endptr, 0);
if (*endptr != '\0' || code > 0xff) {
fprintf(ctx->fout, "bad number: %s\n", ascii_codes[i]);
fputs(usage, ctx->fout);
return;
}
layout[i] = code;
}
}
COVERAGE_ON();
int status = umka_sys_set_keyboard_layout(type, layout);
COVERAGE_OFF();
fprintf(ctx->fout, "status: %i\n", status);
}
static void
cmd_get_keyboard_lang(struct shell_ctx *ctx, int argc, char **argv) {
(void)ctx;
(void)argv;
const char *usage = \
"usage: get_keyboard_lang\n";
if (argc != 1) {
fputs(usage, ctx->fout);
return;
}
COVERAGE_ON();
int lang = umka_sys_get_keyboard_lang();
COVERAGE_OFF();
if (lang >= KOS_LANG_FIRST && lang <= KOS_LANG_LAST) {
fprintf(ctx->fout, "%i - %s\n", lang, lang_id_map[lang - KOS_LANG_FIRST]);
} else {
fprintf(ctx->fout, "invalid lang: %i\n", lang);
}
shell_var_add_sint(ctx, lang);
}
static void
cmd_get_system_lang(struct shell_ctx *ctx, int argc, char **argv) {
(void)ctx;
(void)argv;
const char *usage = \
"usage: get_system_lang\n";
if (argc != 1) {
fputs(usage, ctx->fout);
return;
}
COVERAGE_ON();
int lang = umka_sys_get_system_lang();
COVERAGE_OFF();
if (lang >= KOS_LANG_FIRST && lang <= KOS_LANG_LAST) {
fprintf(ctx->fout, "%i - %s\n", lang, lang_id_map[lang - KOS_LANG_FIRST]);
} else {
fprintf(ctx->fout, "invalid lang: %i\n", lang);
}
shell_var_add_uint(ctx, lang);
}
static void
cmd_set_keyboard_lang(struct shell_ctx *ctx, int argc, char **argv) {
(void)ctx;
const char *usage = \
"usage: set_keyboard_lang <lang_id>\n"
" lang_id number or a two-digit code:\n"
" 1 - en, 2 - fi, 3 - ge, 4 - ru, 5 - fr, 6 - et,\n"
" 7 - ua, 8 - it, 9 - be, 10 - sp, 11 - ca\n";
if (argc != 2) {
fputs(usage, ctx->fout);
return;
}
char *endptr;
const char *lang_str = argv[1];
int lang = strtol(lang_str, &endptr, 0);
if (*endptr != '\0') {
for (lang = 0; lang < KOS_LANG_LAST; lang++) {
if (!strcmp(lang_str, lang_id_map[lang])) {
break;
}
}
if (lang == KOS_LANG_LAST) {
fprintf(ctx->fout, "no such lang: %s\n", lang_str);
fputs(usage, ctx->fout);
return;
}
lang += KOS_LANG_FIRST;
}
COVERAGE_ON();
umka_sys_set_keyboard_lang(lang);
COVERAGE_OFF();
}
static void
cmd_set_system_lang(struct shell_ctx *ctx, int argc, char **argv) {
(void)ctx;
const char *usage = \
"usage: set_system_lang <lang_id>\n"
" lang_id number or a two-digit code:\n"
" 1 - en, 2 - fi, 3 - ge, 4 - ru, 5 - fr, 6 - et,\n"
" 7 - ua, 8 - it, 9 - be, 10 - sp, 11 - ca\n";
if (argc != 2) {
fputs(usage, ctx->fout);
return;
}
char *endptr;
const char *lang_str = argv[1];
int lang = strtol(lang_str, &endptr, 0);
if (*endptr != '\0') {
for (lang = 0; lang < KOS_LANG_LAST; lang++) {
if (!strcmp(lang_str, lang_id_map[lang])) {
break;
}
}
if (lang == KOS_LANG_LAST) {
fprintf(ctx->fout, "no such lang: %s\n", lang_str);
fputs(usage, ctx->fout);
return;
}
lang += KOS_LANG_FIRST; // not zero-based
}
COVERAGE_ON();
umka_sys_set_system_lang(lang);
COVERAGE_OFF();
}
static void
cmd_get_keyboard_mode(struct shell_ctx *ctx, int argc, char **argv) {
(void)ctx;
(void)argv;
const char *usage = \
"usage: get_keyboard_mode\n";
if (argc != 1) {
fputs(usage, ctx->fout);
return;
}
const char *names[] = {"ASCII", "scancodes"};
COVERAGE_ON();
int type = umka_sys_get_keyboard_mode();
COVERAGE_OFF();
fprintf(ctx->fout, "keyboard_mode: %i - %s\n", type,
type < 2 ? names[type] : "invalid!");
}
static void
cmd_set_keyboard_mode(struct shell_ctx *ctx, int argc, char **argv) {
(void)ctx;
const char *usage = \
"usage: set_keyboard_mode <mode>\n"
" mode 0 - ASCII, 1 - scancodes\n";
if (argc != 2) {
fputs(usage, ctx->fout);
return;
}
int type = strtol(argv[1], NULL, 0);
COVERAGE_ON();
umka_sys_set_keyboard_mode(type);
COVERAGE_OFF();
}
static void
cmd_get_font_smoothing(struct shell_ctx *ctx, int argc, char **argv) {
(void)ctx;
(void)argv;
const char *usage = \
"usage: get_font_smoothing\n";
if (argc != 1) {
fputs(usage, ctx->fout);
return;
}
const char *names[] = {"off", "anti-aliasing", "subpixel"};
COVERAGE_ON();
int type = umka_sys_get_font_smoothing();
COVERAGE_OFF();
fprintf(ctx->fout, "font smoothing: %i - %s\n", type, names[type]);
}
static void
cmd_set_font_smoothing(struct shell_ctx *ctx, int argc, char **argv) {
(void)ctx;
const char *usage = \
"usage: set_font_smoothing <mode>\n"
" mode 0 - off, 1 - gray AA, 2 - subpixel AA\n";
if (argc != 2) {
fputs(usage, ctx->fout);
return;
}
int type = strtol(argv[1], NULL, 0);
COVERAGE_ON();
umka_sys_set_font_smoothing(type);
COVERAGE_OFF();
}
static void
cmd_get_font_size(struct shell_ctx *ctx, int argc, char **argv) {
(void)ctx;
const char *usage = \
"usage: get_font_size\n";
if (argc != 1) {
fputs(usage, ctx->fout);
return;
}
(void)argv;
COVERAGE_ON();
size_t size = umka_sys_get_font_size();
COVERAGE_OFF();
fprintf(ctx->fout, "%upx\n", size);
}
static void
cmd_set_font_size(struct shell_ctx *ctx, int argc, char **argv) {
(void)ctx;
const char *usage = \
"usage: set_font_size <size>\n"
" size in pixels\n";
if (argc != 2) {
fputs(usage, ctx->fout);
return;
}
uint32_t size = strtoul(argv[1], NULL, 0);
COVERAGE_ON();
umka_sys_set_font_size(size);
COVERAGE_OFF();
}
static void
cmd_set_mouse_pos_screen(struct shell_ctx *ctx, int argc, char **argv) {
(void)ctx;
const char *usage = \
"usage: set_mouse_pos_screen <x> <y>\n"
" x in pixels\n"
" y in pixels\n";
if (argc != 3) {
fputs(usage, ctx->fout);
return;
}
struct point16s pos;
pos.x = strtol(argv[1], NULL, 0);
pos.y = strtol(argv[2], NULL, 0);
COVERAGE_ON();
umka_sys_set_mouse_pos_screen(pos);
COVERAGE_OFF();
}
static void
cmd_get_mouse_pos_screen(struct shell_ctx *ctx, int argc, char **argv) {
(void)ctx;
(void)argv;
const char *usage = \
"usage: get_mouse_pos_screen\n";
if (argc != 1) {
fputs(usage, ctx->fout);
return;
}
COVERAGE_ON();
struct point16s pos = umka_sys_get_mouse_pos_screen();
COVERAGE_OFF();
fprintf(ctx->fout, "x y: %" PRIi16 " %" PRIi16 "\n", pos.x, pos.y);
}
static void
cmd_get_mouse_pos_window(struct shell_ctx *ctx, int argc, char **argv) {
(void)ctx;
(void)argv;
const char *usage = \
"usage: get_mouse_pos_window\n";
if (argc != 1) {
fputs(usage, ctx->fout);
return;
}
COVERAGE_ON();
struct point16s pos = umka_sys_get_mouse_pos_window();
COVERAGE_OFF();
if (pos.y < 0) {
pos.x++;
}
fprintf(ctx->fout, "x y: %" PRIi16 " %" PRIi16 "\n", pos.x, pos.y);
}
static void
cmd_get_mouse_buttons_state(struct shell_ctx *ctx, int argc, char **argv) {
(void)ctx;
(void)argv;
const char *usage = \
"usage: get_mouse_buttons_state\n";
if (argc != 1) {
fputs(usage, ctx->fout);
return;
}
COVERAGE_ON();
struct mouse_state m = umka_sys_get_mouse_buttons_state();
COVERAGE_OFF();
fprintf(ctx->fout, "buttons held (left right middle 4th 5th): %u %u %u %u %u\n",
m.bl_held, m.br_held, m.bm_held, m.b4_held, m.b5_held);
}
static void
cmd_get_mouse_buttons_state_events(struct shell_ctx *ctx, int argc, char **argv) {
(void)ctx;
(void)argv;
const char *usage = \
"usage: get_mouse_buttons_state_events\n";
if (argc != 1) {
fputs(usage, ctx->fout);
return;
}
COVERAGE_ON();
struct mouse_state_events m = umka_sys_get_mouse_buttons_state_events();
COVERAGE_OFF();
fprintf(ctx->fout, "buttons held (left right middle 4th 5th): %u %u %u %u %u\n",
m.st.bl_held, m.st.br_held, m.st.bm_held, m.st.b4_held,
m.st.b5_held);
fprintf(ctx->fout, "buttons pressed (left right middle): %u %u %u\n",
m.ev.bl_pressed, m.ev.br_pressed, m.ev.bm_pressed);
fprintf(ctx->fout, "buttons released (left right middle): %u %u %u\n",
m.ev.bl_released, m.ev.br_released, m.ev.bm_released);
fprintf(ctx->fout, "left button double click: %u\n", m.ev.bl_dbclick);
fprintf(ctx->fout, "scrolls used (vertical horizontal): %u %u\n",
m.ev.vscroll_used, m.ev.hscroll_used);
}
static void
cmd_button(struct shell_ctx *ctx, int argc, char **argv) {
const char *usage = \
"usage: button <x> <xsize> <y> <ysize> <id> <color> <draw_button>"
" <draw_frame>\n"
" x x\n"
" xsize may be size-1, check it\n"
" y y\n"
" ysize may be size-1, check it\n"
" id 24-bit\n"
" color hex\n"
" draw_button 0/1\n"
" draw_frame 0/1\n";
if (argc != 9) {
fputs(usage, ctx->fout);
return;
}
size_t x;
shell_parse_uint(ctx, &x, argv[1]);
size_t xsize = strtoul(argv[2], NULL, 0);
size_t y = strtoul(argv[3], NULL, 0);
size_t ysize = strtoul(argv[4], NULL, 0);
uint32_t button_id = strtoul(argv[5], NULL, 0);
uint32_t color = strtoul(argv[6], NULL, 16);
int draw_button = strtoul(argv[7], NULL, 0);
int draw_frame = strtoul(argv[8], NULL, 0);
COVERAGE_ON();
umka_sys_button(x, xsize, y, ysize, button_id, draw_button, draw_frame,
color);
COVERAGE_OFF();
}
static void
cmd_kos_sys_misc_init_heap(struct shell_ctx *ctx, int argc, char **argv) {
(void)argv;
const char *usage = \
"usage: kos_sys_misc_init_heap\n";
if (argc != 1) {
fputs(usage, ctx->fout);
return;
}
COVERAGE_ON();
size_t heap_size = kos_sys_misc_init_heap();
COVERAGE_OFF();
fprintf(ctx->fout, "heap size = %u\n", heap_size);
}
static void
cmd_kos_sys_misc_load_file(struct shell_ctx *ctx, int argc, char **argv) {
const char *usage = \
"usage: kos_sys_misc_load_file <filename> [-h] [-p]\n"
" file file in kolibri fs, e.g. /sys/pew/blah\n"
" -h dump bytes in hex\n"
" -p print pointers\n";
if (argc < 2) {
fputs(usage, ctx->fout);
return;
}
const char *fname = argv[1];
int show_hash = 0;
int show_pointers = 0;
optparse_init(&ctx->opts, argv+1);
int opt;
while ((opt = optparse(&ctx->opts, "hp")) != -1) {
switch (opt) {
case 'h':
show_hash = 1;
break;
case 'p':
show_pointers = 1;
break;
default:
fputs(usage, ctx->fout);
return;
}
}
COVERAGE_ON();
struct sys_load_file_ret ret = kos_sys_misc_load_file(fname);
COVERAGE_OFF();
if (show_pointers) {
fprintf(ctx->fout, "file data = %p\n", ret.fdata);
} else {
fprintf(ctx->fout, "file data = %s\n", ret.fdata ? "non-zero" : "0");
}
if (show_hash) {
print_hash(ctx, ret.fdata, ret.fsize);
}
fprintf(ctx->fout, "file size = %u\n", ret.fsize);
shell_var_add_ptr(ctx, ret.fdata);
}
static void
cmd_load_cursor_from_file(struct shell_ctx *ctx, int argc, char **argv) {
const char *usage = \
"usage: load_cursor_from_file <file>\n"
" file file in .cur format in kolibri fs\n";
if (argc != 2) {
fputs(usage, ctx->fout);
return;
}
int show_pointers = 0;
COVERAGE_ON();
void *handle = umka_sys_load_cursor_from_file(argv[1]);
COVERAGE_OFF();
if (show_pointers) {
fprintf(ctx->fout, "handle = %p\n", handle);
} else {
fprintf(ctx->fout, "handle = %s\n", handle ? "non-zero" : "0");
}
shell_var_add_ptr(ctx, handle);
}
static void
cmd_load_cursor_from_mem(struct shell_ctx *ctx, int argc, char **argv) {
const char *usage = \
"usage: load_cursor_from_mem <file>\n"
" file file in .cur format in host fs\n";
if (argc != 2) {
fputs(usage, ctx->fout);
return;
}
int show_pointers = 0;
const char *fname = argv[1];
void *fdata = host_load_file(fname);
if (!fdata) {
fprintf(ctx->fout, "[umka] Can't load file: %s\n", fname);
return;
}
COVERAGE_ON();
void *handle = umka_sys_load_cursor_from_mem(fdata);
COVERAGE_OFF();
free(fdata);
if (show_pointers) {
fprintf(ctx->fout, "handle = %p\n", handle);
} else {
fprintf(ctx->fout, "handle = %s\n", handle ? "non-zero" : "0");
}
shell_var_add_ptr(ctx, handle);
}
static void
cmd_set_cursor(struct shell_ctx *ctx, int argc, char **argv) {
const char *usage = \
"usage: set_cursor <handle>\n"
" handle as returned by load_cursor* functions\n";
if (argc != 2) {
fputs(usage, ctx->fout);
return;
}
int show_pointers = 0;
void *handle;
shell_parse_ptr(ctx, &handle, argv[1]);
COVERAGE_ON();
handle = umka_sys_set_cursor(handle);
COVERAGE_OFF();
if (show_pointers) {
fprintf(ctx->fout, "prev handle = %p\n", handle);
} else {
fprintf(ctx->fout, "prev handle = %s\n", handle ? "non-zero" : "0");
}
shell_var_add_ptr(ctx, handle);
}
static void
cmd_put_image(struct shell_ctx *ctx, int argc, char **argv) {
(void)ctx;
const char *usage = \
"usage: put_image <file> <xsize> <ysize> <x> <y>\n"
" file file with rgb triplets\n"
" xsize x size\n"
" ysize y size\n"
" x x coord\n"
" y y coord\n";
if (argc != 6) {
fputs(usage, ctx->fout);
return;
}
FILE *f = fopen(argv[1], "rb");
fseek(f, 0, SEEK_END);
size_t fsize = ftell(f);
rewind(f);
uint8_t *image = (uint8_t*)malloc(fsize);
fread(image, fsize, 1, f);
fclose(f);
size_t xsize = strtoul(argv[2], NULL, 0);
size_t ysize = strtoul(argv[3], NULL, 0);
size_t x = strtoul(argv[4], NULL, 0);
size_t y = strtoul(argv[5], NULL, 0);
COVERAGE_ON();
umka_sys_put_image(image, xsize, ysize, x, y);
COVERAGE_OFF();
free(image);
}
static void
cmd_put_image_palette(struct shell_ctx *ctx, int argc, char **argv) {
(void)ctx;
const char *usage = \
"usage: put_image_palette <file> <xsize> <ysize> <x> <y> <bpp>"
" <row_offset>\n"
" file path/to/file, contents according tp bpp argument\n"
" xsize x size\n"
" ysize y size\n"
" x x coord\n"
" y y coord\n"
" bpp bits per pixel\n"
" row_offset in bytes\n";
if (argc != 8) {
fputs(usage, ctx->fout);
return;
}
FILE *f = fopen(argv[1], "rb");
fseek(f, 0, SEEK_END);
size_t fsize = ftell(f);
rewind(f);
uint8_t *image = (uint8_t*)malloc(fsize);
fread(image, fsize, 1, f);
fclose(f);
size_t xsize = strtoul(argv[2], NULL, 0);
size_t ysize = strtoul(argv[3], NULL, 0);
size_t x = strtoul(argv[4], NULL, 0);
size_t y = strtoul(argv[5], NULL, 0);
size_t bpp = strtoul(argv[6], NULL, 0);
void *palette = NULL;
size_t row_offset = strtoul(argv[7], NULL, 0);
COVERAGE_ON();
umka_sys_put_image_palette(image, xsize, ysize, x, y, bpp, palette,
row_offset);
COVERAGE_OFF();
free(image);
}
static void
cmd_draw_rect(struct shell_ctx *ctx, int argc, char **argv) {
(void)ctx;
const char *usage = \
"usage: draw_rect <x> <xsize> <y> <ysize> <color> [-g]\n"
" x x coord\n"
" xsize x size\n"
" y y coord\n"
" ysize y size\n"
" color in hex\n"
" -g 0/1 - gradient\n";
if (argc < 6) {
fputs(usage, ctx->fout);
return;
}
size_t x = strtoul(argv[1], NULL, 0);
size_t xsize = strtoul(argv[2], NULL, 0);
size_t y = strtoul(argv[3], NULL, 0);
size_t ysize = strtoul(argv[4], NULL, 0);
uint32_t color = strtoul(argv[5], NULL, 16);
int gradient = (argc == 7) && !strcmp(argv[6], "-g");
COVERAGE_ON();
umka_sys_draw_rect(x, xsize, y, ysize, color, gradient);
COVERAGE_OFF();
}
static void
cmd_get_screen_size(struct shell_ctx *ctx, int argc, char **argv) {
(void)ctx;
(void)argv;
const char *usage = \
"usage: get_screen_size\n";
if (argc != 1) {
fputs(usage, ctx->fout);
return;
}
uint32_t xsize, ysize;
COVERAGE_ON();
umka_sys_get_screen_size(&xsize, &ysize);
COVERAGE_OFF();
fprintf(ctx->fout, "%" PRIu32 "x%" PRIu32 "\n", xsize, ysize);
}
static void
cmd_draw_line(struct shell_ctx *ctx, int argc, char **argv) {
(void)ctx;
const char *usage = \
"usage: draw_line <xbegin> <xend> <ybegin> <yend> <color> [-i]\n"
" xbegin x left coord\n"
" xend x right coord\n"
" ybegin y top coord\n"
" yend y bottom coord\n"
" color hex\n"
" -i inverted color\n";
if (argc < 6) {
fputs(usage, ctx->fout);
return;
}
size_t x = strtoul(argv[1], NULL, 0);
size_t xend = strtoul(argv[2], NULL, 0);
size_t y = strtoul(argv[3], NULL, 0);
size_t yend = strtoul(argv[4], NULL, 0);
uint32_t color = strtoul(argv[5], NULL, 16);
int invert = (argc == 7) && !strcmp(argv[6], "-i");
COVERAGE_ON();
umka_sys_draw_line(x, xend, y, yend, color, invert);
COVERAGE_OFF();
}
static void
cmd_set_window_caption(struct shell_ctx *ctx, int argc, char **argv) {
(void)ctx;
const char *usage = \
"usage: set_window_caption <caption> <encoding>\n"
" caption asciiz string\n"
" encoding 1 = cp866, 2 = UTF-16LE, 3 = UTF-8\n";
if (argc != 3) {
fputs(usage, ctx->fout);
return;
}
const char *caption = argv[1];
int encoding = strtoul(argv[2], NULL, 0);
COVERAGE_ON();
umka_sys_set_window_caption(caption, encoding);
COVERAGE_OFF();
}
static void
cmd_draw_window(struct shell_ctx *ctx, int argc, char **argv) {
(void)ctx;
const char *usage = \
"usage: draw_window <x> <xsize> <y> <ysize> <color> <has_caption>"
" <client_relative> <fill_workarea> <gradient_fill> <movable>"
" <style> <caption>\n"
" x x coord\n"
" xsize x size\n"
" y y coord\n"
" ysize y size\n"
" color hex\n"
" has_caption 0/1\n"
" client_relative 0/1\n"
" fill_workarea 0/1\n"
" gradient_fill 0/1\n"
" movable 0/1\n"
" style 1 - draw nothing, 3 - skinned, 4 - skinned fixed\n"
" caption asciiz\n";
if (argc != 13) {
fputs(usage, ctx->fout);
return;
}
size_t x = strtoul(argv[1], NULL, 0);
size_t xsize = strtoul(argv[2], NULL, 0);
size_t y = strtoul(argv[3], NULL, 0);
size_t ysize = strtoul(argv[4], NULL, 0);
uint32_t color = strtoul(argv[5], NULL, 16);
int has_caption = strtoul(argv[6], NULL, 0);
int client_relative = strtoul(argv[7], NULL, 0);
int fill_workarea = strtoul(argv[8], NULL, 0);
int gradient_fill = strtoul(argv[9], NULL, 0);
int movable = strtoul(argv[10], NULL, 0);
int style = strtoul(argv[11], NULL, 0);
const char *caption = argv[12];
COVERAGE_ON();
umka_sys_draw_window(x, xsize, y, ysize, color, has_caption,
client_relative, fill_workarea, gradient_fill, movable,
style, caption);
COVERAGE_OFF();
}
static void
cmd_window_redraw(struct shell_ctx *ctx, int argc, char **argv) {
(void)ctx;
const char *usage = \
"usage: window_redraw <1|2>\n"
" 1 begin\n"
" 2 end\n";
if (argc != 2) {
fputs(usage, ctx->fout);
return;
}
int begin_end = strtoul(argv[1], NULL, 0);
COVERAGE_ON();
umka_sys_window_redraw(begin_end);
COVERAGE_OFF();
}
static void
cmd_move_window(struct shell_ctx *ctx, int argc, char **argv) {
(void)ctx;
const char *usage = \
"usage: move_window <x> <y> <xsize> <ysize>\n"
" x new x coord\n"
" y new y coord\n"
" xsize x size -1\n"
" ysize y size -1\n";
if (argc != 5) {
fputs(usage, ctx->fout);
return;
}
size_t x = strtoul(argv[1], NULL, 0);
size_t y = strtoul(argv[2], NULL, 0);
ssize_t xsize = strtol(argv[3], NULL, 0);
ssize_t ysize = strtol(argv[4], NULL, 0);
COVERAGE_ON();
umka_sys_move_window(x, y, xsize, ysize);
COVERAGE_OFF();
}
static void
cmd_blit_bitmap(struct shell_ctx *ctx, int argc, char **argv) {
(void)ctx;
const char *usage = \
"usage: blit_bitmap <dstx> <dsty> <dstxsize> <dstysize> <srcx> <srcy>"
" <srcxsize> <srcysize> <operation> <background> <transparent>"
" <client_relative> <row_length>\n"
" dstx dst rect x offset, window-relative\n"
" dsty dst rect y offset, window-relative\n"
" dstxsize dst rect width\n"
" dstysize dst rect height\n"
" srcx src rect x offset, window-relative\n"
" srcy src rect y offset, window-relative\n"
" srcxsize src rect width\n"
" srcysize src rect height\n"
" operation 0 - copy\n"
" background 0/1 - blit into background surface\n"
" transparent 0/1\n"
" client_relative 0/1\n"
" row_length in bytes\n";
if (argc != 15) {
fputs(usage, ctx->fout);
return;
}
const char *fname = argv[1];
FILE *f = fopen(fname, "rb");
if (!f) {
fprintf(ctx->fout, "[!] can't open file '%s': %s\n", fname, strerror(errno));
return;
}
fseek(f, 0, SEEK_END);
size_t fsize = ftell(f);
rewind(f);
uint8_t *image = (uint8_t*)malloc(fsize);
fread(image, fsize, 1, f);
fclose(f);
size_t dstx = strtoul(argv[2], NULL, 0);
size_t dsty = strtoul(argv[3], NULL, 0);
size_t dstxsize = strtoul(argv[4], NULL, 0);
size_t dstysize = strtoul(argv[5], NULL, 0);
size_t srcx = strtoul(argv[6], NULL, 0);
size_t srcy = strtoul(argv[7], NULL, 0);
size_t srcxsize = strtoul(argv[8], NULL, 0);
size_t srcysize = strtoul(argv[9], NULL, 0);
int operation = strtoul(argv[10], NULL, 0);
int background = strtoul(argv[11], NULL, 0);
int transparent = strtoul(argv[12], NULL, 0);
int client_relative = strtoul(argv[13], NULL, 0);
int row_length = strtoul(argv[14], NULL, 0);
uint32_t params[] = {dstx, dsty, dstxsize, dstysize, srcx, srcy, srcxsize,
srcysize, (uintptr_t)image, row_length};
COVERAGE_ON();
umka_sys_blit_bitmap(operation, background, transparent, client_relative,
params);
COVERAGE_OFF();
free(image);
}
static void
cmd_write_devices_dat(struct shell_ctx *ctx, int argc, char **argv) {
(void)ctx;
const char *usage = \
"usage: write_devices_dat <file>\n"
" file path/to/devices.dat\n";
if (argc != 2) {
fputs(usage, ctx->fout);
return;
}
COVERAGE_ON();
dump_devices_dat(argv[1]);
COVERAGE_OFF();
}
static void
cmd_scrot(struct shell_ctx *ctx, int argc, char **argv) {
(void)ctx;
const char *usage = \
"usage: scrot <file>\n"
" file path/to/file in png format\n";
if (argc != 2) {
fputs(usage, ctx->fout);
return;
}
uint32_t *lfb32 = (uint32_t*)kos_lfb_base;
lfb32 = malloc(4*kos_display.width*kos_display.height);
copy_display_to_rgb888(lfb32);
uint8_t *from = (uint8_t*)lfb32;
for (size_t y = 0; y < kos_display.height; y++) {
for (size_t x = 0; x < kos_display.width; x++) {
uint32_t p = 0;
p += (uint32_t)from[y*kos_display.width*4+x*4 + 0] << 16;
p += (uint32_t)from[y*kos_display.width*4+x*4 + 1] << 8;
p += (uint32_t)from[y*kos_display.width*4+x*4 + 2] << 0;
p += 0xff000000;
((uint32_t*)from)[y*kos_display.width+x] = p;
}
}
unsigned error = lodepng_encode32_file(argv[1], (void*)lfb32,
kos_display.width,
kos_display.height);
if (error) {
fprintf(ctx->fout, "error %u: %s\n", error, lodepng_error_text(error));
}
free(lfb32);
}
static void
cmd_cd(struct shell_ctx *ctx, int argc, char **argv) {
(void)ctx;
const char *usage = \
"usage: cd <path>\n"
" path path/to/dir\n";
if (argc != 2) {
fputs(usage, ctx->fout);
return;
}
COVERAGE_ON();
umka_sys_set_cwd(argv[1]);
COVERAGE_OFF();
cur_dir_changed = true;
}
static void
ls_range(struct shell_ctx *ctx, f7080s1arg_t *fX0, f70or80_t f70or80) {
f7080ret_t r;
size_t bdfe_len = (fX0->encoding == CP866) ? BDFE_LEN_CP866 :
BDFE_LEN_UNICODE;
uint32_t requested = fX0->size;
if (fX0->size > MAX_DIRENTS_TO_READ) {
fX0->size = MAX_DIRENTS_TO_READ;
}
for (; requested; requested -= fX0->size) {
if (fX0->size > requested) {
fX0->size = requested;
}
COVERAGE_ON();
umka_sys_lfn(fX0, &r, f70or80);
COVERAGE_OFF();
fX0->offset += fX0->size;
print_f70_status(ctx, &r, 1);
f7080s1info_t *dir = fX0->buf;
int ok = (r.count <= fX0->size);
ok &= (dir->cnt == r.count);
ok &= (r.status == KOS_ERROR_SUCCESS && r.count == fX0->size)
|| (r.status == KOS_ERROR_END_OF_FILE && r.count < fX0->size);
assert(ok);
if (!ok)
break;
bdfe_t *bdfe = dir->bdfes;
for (size_t i = 0; i < dir->cnt; i++) {
char fattr[KF_ATTR_CNT+1];
convert_f70_file_attr(bdfe->attr, fattr);
fprintf(ctx->fout, "%s %s\n", fattr, bdfe->name);
bdfe = (bdfe_t*)((uintptr_t)bdfe + bdfe_len);
}
if (r.status == KOS_ERROR_END_OF_FILE) {
break;
}
}
}
static void
ls_all(struct shell_ctx *ctx, f7080s1arg_t *fX0, f70or80_t f70or80) {
f7080ret_t r;
size_t bdfe_len = (fX0->encoding == CP866) ? BDFE_LEN_CP866 :
BDFE_LEN_UNICODE;
while (true) {
struct umka_cmd *cmd = umka_cmd_buf;
struct cmd_sys_lfn_arg *c = &cmd->sys_lfn.arg;
cmd->type = UMKA_CMD_SYS_LFN;
c->f70or80 = f70or80;
c->bufptr = fX0;
c->r = &r;
shell_run_cmd(ctx);
atomic_store_explicit(&cmd->status, SHELL_CMD_STATUS_EMPTY,
memory_order_release);
print_f70_status(ctx, &r, 1);
assert((r.status == ERROR_SUCCESS && r.count == fX0->size)
|| (r.status == ERROR_END_OF_FILE && r.count < fX0->size));
f7080s1info_t *dir = fX0->buf;
fX0->offset += dir->cnt;
int ok = (r.count <= fX0->size);
ok &= (dir->cnt == r.count);
ok &= (r.status == KOS_ERROR_SUCCESS && r.count == fX0->size)
|| (r.status == KOS_ERROR_END_OF_FILE && r.count < fX0->size);
assert(ok);
if (!ok)
break;
fprintf(ctx->fout, "total = %"PRIi32"\n", dir->total_cnt);
bdfe_t *bdfe = dir->bdfes;
for (size_t i = 0; i < dir->cnt; i++) {
char fattr[KF_ATTR_CNT+1];
convert_f70_file_attr(bdfe->attr, fattr);
fprintf(ctx->fout, "%s %s\n", fattr, bdfe->name);
bdfe = (bdfe_t*)((uintptr_t)bdfe + bdfe_len);
}
if (r.status == KOS_ERROR_END_OF_FILE) {
break;
}
}
}
static fs_enc_t
parse_encoding(const char *str) {
fs_enc_t enc;
if (!strcmp(str, "default")) {
enc = DEFAULT_ENCODING;
} else if (!strcmp(str, "cp866")) {
enc = CP866;
} else if (!strcmp(str, "utf16")) {
enc = UTF16;
} else if (!strcmp(str, "utf8")) {
enc = UTF8;
} else {
enc = INVALID_ENCODING;
}
return enc;
}
static void
cmd_exec(struct shell_ctx *ctx, int argc, char **argv) {
(void)ctx;
const char *usage = \
"usage: exec <file>\n"
" file executable to run\n";
if (!argc) {
fputs(usage, ctx->fout);
return;
}
f7080s7arg_t fX0 = {.sf = 7};
f7080ret_t r;
int opt = 1;
fX0.u.f70.zero = 0;
fX0.u.f70.path = argv[opt++];
fX0.flags = 0;
fX0.params = "test";
COVERAGE_ON();
umka_sys_lfn(&fX0, &r, F70);
COVERAGE_OFF();
if (r.status < 0) {
r.status = -r.status;
} else {
fprintf(ctx->fout, "pid: %" PRIu32 "\n", r.status);
r.status = 0;
}
print_f70_status(ctx, &r, 1);
}
static void
cmd_ls(struct shell_ctx *ctx, int argc, char **argv, const char *usage,
f70or80_t f70or80) {
(void)ctx;
if (!argc) {
fputs(usage, ctx->fout);
return;
}
int opt;
const char *optstring = (f70or80 == F70) ? "f:c:e:" : "f:c:e:p:";
const char *path = ".";
uint32_t readdir_enc = DEFAULT_READDIR_ENCODING;
uint32_t path_enc = DEFAULT_PATH_ENCODING;
uint32_t from_idx = 0, count = MAX_DIRENTS_TO_READ;
optparse_init(&ctx->opts, argv);
if (argc > 1 && argv[1][0] != '-') {
path = optparse_arg(&ctx->opts);
}
while ((opt = optparse(&ctx->opts, optstring)) != -1) {
switch (opt) {
case 'f':
from_idx = strtoul(ctx->opts.optarg, NULL, 0);
break;
case 'c':
count = strtoul(ctx->opts.optarg, NULL, 0);
break;
case 'e':
readdir_enc = parse_encoding(ctx->opts.optarg);
break;
case 'p':
path_enc = parse_encoding(ctx->opts.optarg);
break;
default:
fputs(usage, ctx->fout);
return;
}
}
size_t bdfe_len = (readdir_enc <= CP866) ? BDFE_LEN_CP866 :
BDFE_LEN_UNICODE;
f7080s1info_t *dir = (f7080s1info_t*)malloc(sizeof(f7080s1info_t) +
bdfe_len * MAX_DIRENTS_TO_READ);
f7080s1arg_t fX0 = {.sf = 1, .offset = from_idx, .encoding = readdir_enc,
.size = count, .buf = dir};
if (f70or80 == F70) {
fX0.u.f70.zero = 0;
fX0.u.f70.path = path;
} else {
fX0.u.f80.path_encoding = path_enc;
fX0.u.f80.path = path;
}
if (count != MAX_DIRENTS_TO_READ) {
ls_range(ctx, &fX0, f70or80);
} else {
ls_all(ctx, &fX0, f70or80);
}
free(dir);
return;
}
static void
cmd_ls70(struct shell_ctx *ctx, int argc, char **argv) {
const char *usage = \
"usage: ls70 [dir] [option]...\n"
" -f number index of the first dir entry to read\n"
" -c number number of dir entries to read\n"
" -e encoding cp866|utf16|utf8\n"
" return directory listing in this encoding\n";
cmd_ls(ctx, argc, argv, usage, F70);
}
static void
cmd_ls80(struct shell_ctx *ctx, int argc, char **argv) {
const char *usage = \
"usage: ls80 [dir] [option]...\n"
" -f number index of the first dir entry to read\n"
" -c number number of dir entries to read\n"
" -e encoding cp866|utf16|utf8\n"
" return directory listing in this encoding\n"
" -p encoding cp866|utf16|utf8\n"
" path to dir is specified in this encoding\n";
cmd_ls(ctx, argc, argv, usage, F80);
}
static void
cmd_stat(struct shell_ctx *ctx, int argc, char **argv, f70or80_t f70or80) {
const char *usage = \
"usage: stat <file> [-c] [-m] [-a]\n"
" file path/to/file\n"
" [-c] force show creation time\n"
" [-m] force show modification time\n"
" [-a] force show access time\n";
if (argc < 2) {
fputs(usage, ctx->fout);
return;
}
optparse_init(&ctx->opts, argv);
bool force_ctime = false, force_mtime = false, force_atime = false;
f7080s5arg_t fX0 = {.sf = 5, .flags = 0};
f7080ret_t r;
bdfe_t file;
fX0.buf = &file;
if (f70or80 == F70) {
fX0.u.f70.zero = 0;
fX0.u.f70.path = optparse_arg(&ctx->opts);
} else {
fX0.u.f80.path_encoding = DEFAULT_PATH_ENCODING;
fX0.u.f80.path = optparse_arg(&ctx->opts);
}
COVERAGE_ON();
umka_sys_lfn(&fX0, &r, f70or80);
COVERAGE_OFF();
print_f70_status(ctx, &r, 0);
if (r.status != KOS_ERROR_SUCCESS)
return;
char fattr[KF_ATTR_CNT+1];
convert_f70_file_attr(file.attr, fattr);
fprintf(ctx->fout, "attr: %s\n", fattr);
if ((file.attr & KF_FOLDER) == 0) { // don't show size for dirs
fprintf(ctx->fout, "size: %llu\n", file.size);
}
int opt;
while ((opt = optparse(&ctx->opts, "cma")) != -1) {
switch (opt) {
case 'c':
force_ctime = true;
break;
case 'm':
force_mtime = true;
break;
case 'a':
force_atime = true;
break;
default:
fputs(usage, ctx->fout);
return;
}
}
time_t time;
struct tm *t;
if (!ctx->reproducible || force_atime) {
time = kos_time_to_epoch(&file.atime);
t = localtime(&time);
fprintf(ctx->fout, "atime: %4.4i.%2.2i.%2.2i %2.2i:%2.2i:%2.2i\n",
t->tm_year + 1900, t->tm_mon + 1, t->tm_mday,
t->tm_hour, t->tm_min, t->tm_sec);
}
if (!ctx->reproducible || force_mtime) {
time = kos_time_to_epoch(&file.mtime);
t = localtime(&time);
fprintf(ctx->fout, "mtime: %4.4i.%2.2i.%2.2i %2.2i:%2.2i:%2.2i\n",
t->tm_year + 1900, t->tm_mon + 1, t->tm_mday,
t->tm_hour, t->tm_min, t->tm_sec);
}
if (!ctx->reproducible || force_ctime) {
time = kos_time_to_epoch(&file.ctime);
t = localtime(&time);
fprintf(ctx->fout, "ctime: %4.4i.%2.2i.%2.2i %2.2i:%2.2i:%2.2i\n",
t->tm_year + 1900, t->tm_mon + 1, t->tm_mday,
t->tm_hour, t->tm_min, t->tm_sec);
}
return;
}
static void
cmd_stat70(struct shell_ctx *ctx, int argc, char **argv) {
cmd_stat(ctx, argc, argv, F70);
}
static void
cmd_stat80(struct shell_ctx *ctx, int argc, char **argv) {
cmd_stat(ctx, argc, argv, F80);
}
static void
cmd_read(struct shell_ctx *ctx, int argc, char **argv, f70or80_t f70or80,
const char *usage) {
(void)ctx;
if (argc < 3) {
fputs(usage, ctx->fout);
return;
}
f7080s0arg_t fX0 = {.sf = 0};
f7080ret_t r;
bool dump_bytes = false, dump_hash = false;
int opt = 1;
if (f70or80 == F70) {
fX0.u.f70.zero = 0;
fX0.u.f70.path = argv[opt++];
} else {
fX0.u.f80.path_encoding = DEFAULT_PATH_ENCODING;
fX0.u.f80.path = argv[opt++];
}
if ((opt >= argc) || !parse_uint64(ctx, argv[opt++], &fX0.offset))
return;
if ((opt >= argc) || !parse_uint32(ctx, argv[opt++], &fX0.count))
return;
for (; opt < argc; opt++) {
if (!strcmp(argv[opt], "-b")) {
dump_bytes = true;
} else if (!strcmp(argv[opt], "-h")) {
dump_hash = true;
} else if (!strcmp(argv[opt], "-e")) {
if (f70or80 == F70) {
fprintf(ctx->fout, "f70 doesn't accept encoding parameter,"
" use f80\n");
return;
}
} else {
fprintf(ctx->fout, "invalid option: '%s'\n", argv[opt]);
return;
}
}
fX0.buf = (uint8_t*)malloc(fX0.count);
COVERAGE_ON();
umka_sys_lfn(&fX0, &r, f70or80);
COVERAGE_OFF();
print_f70_status(ctx, &r, 1);
if (r.status == KOS_ERROR_SUCCESS || r.status == KOS_ERROR_END_OF_FILE) {
if (dump_bytes)
print_bytes(ctx, fX0.buf, r.count);
if (dump_hash)
print_hash(ctx, fX0.buf, r.count);
}
free(fX0.buf);
return;
}
static void
cmd_read70(struct shell_ctx *ctx, int argc, char **argv) {
const char *usage = \
"usage: read70 <file> <offset> <length> [-b] [-h]\n"
" file path/to/file\n"
" offset in bytes\n"
" length in bytes\n"
" -b dump bytes in hex\n"
" -h print hash of data read\n";
cmd_read(ctx, argc, argv, F70, usage);
}
static void
cmd_read80(struct shell_ctx *ctx, int argc, char **argv) {
const char *usage = \
"usage: read80 <file> <offset> <length> [-b] [-h]"
" [-e cp866|utf8|utf16]\n"
" file path/to/file\n"
" offset in bytes\n"
" length in bytes\n"
" -b dump bytes in hex\n"
" -h print hash of data read\n"
" -e encoding\n";
cmd_read(ctx, argc, argv, F80, usage);
}
static void
cmd_acpi_preload_table(struct shell_ctx *ctx, int argc, char **argv) {
(void)ctx;
const char *usage = \
"usage: acpi_preload_table <file>\n"
" file path/to/local/file.aml\n";
if (argc != 2) {
fputs(usage, ctx->fout);
return;
}
FILE *f = fopen(argv[1], "rb");
if (!f) {
fprintf(ctx->fout, "[umka] can't open file: %s\n", argv[1]);
return;
}
fseek(f, 0, SEEK_END);
size_t fsize = ftell(f);
rewind(f);
uint8_t *table = (uint8_t*)malloc(fsize);
fread(table, fsize, 1, f);
fclose(f);
fprintf(ctx->fout, "table #%zu\n", kos_acpi_ssdt_cnt);
kos_acpi_ssdt_base[kos_acpi_ssdt_cnt] = table;
kos_acpi_ssdt_size[kos_acpi_ssdt_cnt] = fsize;
kos_acpi_ssdt_cnt++;
}
static void
cmd_acpi_enable(struct shell_ctx *ctx, int argc, char **argv) {
(void)ctx;
const char *usage = \
"usage: acpi_enable\n";
if (argc != 1) {
fputs(usage, ctx->fout);
return;
}
(void)argv;
COVERAGE_ON();
kos_enable_acpi();
COVERAGE_OFF();
}
static void
cmd_acpi_get_node_cnt(struct shell_ctx *ctx, int argc, char **argv) {
(void)ctx;
(void)argv;
const char *usage = \
"usage: acpi_get_node_cnt\n";
if (argc != 1) {
fputs(usage, ctx->fout);
return;
}
uint32_t cnt = kos_acpi_count_nodes(acpi_ctx);
fprintf(ctx->fout, "nodes in namespace: %" PRIu32 "\n", cnt);
}
static void
cmd_acpi_get_node_alloc_cnt(struct shell_ctx *ctx, int argc, char **argv) {
(void)ctx;
(void)argv;
const char *usage = \
"usage: acpi_get_node_alloc_cnt\n";
if (argc != 1) {
fputs(usage, ctx->fout);
return;
}
fprintf(ctx->fout, "nodes allocated: %" PRIu32 "\n", kos_acpi_node_alloc_cnt);
}
static void
cmd_acpi_get_node_free_cnt(struct shell_ctx *ctx, int argc, char **argv) {
(void)ctx;
(void)argv;
const char *usage = \
"usage: acpi_get_node_free_cnt\n";
if (argc != 1) {
fputs(usage, ctx->fout);
return;
}
fprintf(ctx->fout, "nodes freed: %" PRIu32 "\n", kos_acpi_node_free_cnt);
}
static void
cmd_acpi_set_usage(struct shell_ctx *ctx, int argc, char **argv) {
(void)ctx;
const char *usage = \
"usage: acpi_set_usage <num>\n"
" num one of ACPI_USAGE_* constants\n";
if (argc != 2) {
fputs(usage, ctx->fout);
return;
}
uint32_t acpi_usage = strtoul(argv[1], NULL, 0);
kos_acpi_usage = acpi_usage;
}
static void
cmd_acpi_get_usage(struct shell_ctx *ctx, int argc, char **argv) {
(void)ctx;
(void)argv;
const char *usage = \
"usage: acpi_get_usage\n";
if (argc != 1) {
fputs(usage, ctx->fout);
return;
}
fprintf(ctx->fout, "ACPI usage: %" PRIu32 "\n", kos_acpi_usage);
}
static void
cmd_acpi_call(struct shell_ctx *ctx, int argc, char **argv) {
(void)ctx;
const char *usage = \
"usage: acpi_call <method> [args...]\n"
" method name of acpi method to call, e.g. \\_SB_PCI0_PRT\n";
if (argc > 2) {
puts("arguments are not supported / not implemented!");
fputs(usage, ctx->fout);
return;
}
if (argc < 2) {
fputs(usage, ctx->fout);
return;
}
const char *method = argv[1];
fprintf(ctx->fout, "calling acpi method: '%s'\n", method);
COVERAGE_ON();
kos_acpi_call_name(acpi_ctx, method);
COVERAGE_OFF();
fprintf(ctx->fout, "acpi method returned\n");
}
static void
cmd_pci_set_path(struct shell_ctx *ctx, int argc, char **argv) {
(void)ctx;
const char *usage = \
"usage: pci_set_path <path>\n"
" path where aaaa:bb:cc.d dirs are\n";
if (argc != 2) {
fputs(usage, ctx->fout);
return;
}
strcpy(pci_path, argv[1]);
}
static void
cmd_pci_get_path(struct shell_ctx *ctx, int argc, char **argv) {
(void)ctx;
(void)argv;
const char *usage = \
"usage: pci_get_path\n";
if (argc != 1) {
fputs(usage, ctx->fout);
return;
}
fprintf(ctx->fout, "pci path: %s\n", pci_path);
}
static void
cmd_load_dll(struct shell_ctx *ctx, int argc, char **argv) {
(void)ctx;
const char *usage = \
"usage: load_dll <path>\n"
" path /path/to/library.obj in KolibriOS fs\n";
if (argc != 2) {
fputs(usage, ctx->fout);
return;
}
COVERAGE_ON();
void *export = umka_sys_load_dll(argv[1]);
COVERAGE_OFF();
// if (ctx->reproducible)
fprintf(ctx->fout, "### export: %p\n", export);
}
static void
cmd_stack_init(struct shell_ctx *ctx, int argc, char **argv) {
(void)ctx;
(void)argv;
const char *usage = \
"usage: stack_init\n";
if (argc != 1) {
fputs(usage, ctx->fout);
return;
}
COVERAGE_ON();
umka_stack_init();
COVERAGE_OFF();
}
static void
cmd_net_add_device(struct shell_ctx *ctx, int argc, char **argv) {
(void)ctx;
(void)argv;
const char *usage = \
"usage: net_add_device <devtype>\n"
" devtype null, file or tap\n";
if (argc > 2) {
fputs(usage, ctx->fout);
return;
}
int devtype = VNET_DEVTYPE_NULL;
const char *devtypestr = argv[1];
if (devtypestr) {
if (!strcmp(devtypestr, "null")) {
devtype = VNET_DEVTYPE_NULL;
} else if (!strcmp(devtypestr, "file")) {
devtype = VNET_DEVTYPE_FILE;
} else if (!strcmp(devtypestr, "tap")) {
devtype = VNET_DEVTYPE_TAP;
} else {
fprintf(ctx->fout, "bad device type: %s\n", devtypestr);
return;
}
}
struct vnet *vnet = vnet_init(devtype, ctx->running); // TODO: list like block devices
COVERAGE_ON();
int32_t dev_num = kos_net_add_device(&vnet->eth.net);
COVERAGE_OFF();
fprintf(ctx->fout, "device number: %" PRIi32 "\n", dev_num);
}
static void
cmd_net_get_dev_count(struct shell_ctx *ctx, int argc, char **argv) {
(void)ctx;
const char *usage = \
"usage: net_get_dev_count\n";
if (argc != 1) {
fputs(usage, ctx->fout);
return;
}
(void)argv;
COVERAGE_ON();
uint32_t count = umka_sys_net_get_dev_count();
COVERAGE_OFF();
fprintf(ctx->fout, "active network devices: %u\n", count);
}
static void
cmd_net_get_dev_type(struct shell_ctx *ctx, int argc, char **argv) {
(void)ctx;
const char *usage = \
"usage: net_get_dev_type <dev_num>\n"
" dev_num device number as returned by net_add_device\n";
if (argc != 2) {
fputs(usage, ctx->fout);
return;
}
uint8_t dev_num = strtoul(argv[1], NULL, 0);
COVERAGE_ON();
int32_t dev_type = umka_sys_net_get_dev_type(dev_num);
COVERAGE_OFF();
fprintf(ctx->fout, "status: %s\n", dev_type == -1 ? "fail" : "ok");
if (dev_type != -1) {
fprintf(ctx->fout, "type of network device #%" PRIu8 ": %i\n",
dev_num, dev_type);
}
}
static void
cmd_net_get_dev_name(struct shell_ctx *ctx, int argc, char **argv) {
(void)ctx;
const char *usage = \
"usage: net_get_dev_name <dev_num>\n"
" dev_num device number as returned by net_add_device\n";
if (argc != 2) {
fputs(usage, ctx->fout);
return;
}
char dev_name[64];
uint8_t dev_num = strtoul(argv[1], NULL, 0);
COVERAGE_ON();
int32_t status = umka_sys_net_get_dev_name(dev_num, dev_name);
COVERAGE_OFF();
fprintf(ctx->fout, "status: %s\n", status == -1 ? "fail" : "ok");
if (status != -1) {
fprintf(ctx->fout, "name of network device #%" PRIu8 ": %s\n",
dev_num, dev_name);
}
}
static void
cmd_net_dev_reset(struct shell_ctx *ctx, int argc, char **argv) {
(void)ctx;
const char *usage = \
"usage: net_dev_reset <dev_num>\n"
" dev_num device number as returned by net_add_device\n";
if (argc != 2) {
fputs(usage, ctx->fout);
return;
}
uint8_t dev_num = strtoul(argv[1], NULL, 0);
COVERAGE_ON();
int32_t status = umka_sys_net_dev_reset(dev_num);
COVERAGE_OFF();
fprintf(ctx->fout, "status: %s\n", status == -1 ? "fail" : "ok");
}
static void
cmd_net_dev_stop(struct shell_ctx *ctx, int argc, char **argv) {
(void)ctx;
const char *usage = \
"usage: net_dev_stop <dev_num>\n"
" dev_num device number as returned by net_add_device\n";
if (argc != 2) {
fputs(usage, ctx->fout);
return;
}
uint8_t dev_num = strtoul(argv[1], NULL, 0);
COVERAGE_ON();
int32_t status = umka_sys_net_dev_stop(dev_num);
COVERAGE_OFF();
fprintf(ctx->fout, "status: %s\n", status == -1 ? "fail" : "ok");
}
static void
cmd_net_get_dev(struct shell_ctx *ctx, int argc, char **argv) {
(void)ctx;
const char *usage = \
"usage: net_get_dev <dev_num>\n"
" dev_num device number as returned by net_add_device\n";
if (argc != 2) {
fputs(usage, ctx->fout);
return;
}
uint8_t dev_num = strtoul(argv[1], NULL, 0);
COVERAGE_ON();
intptr_t dev = umka_sys_net_get_dev(dev_num);
COVERAGE_OFF();
fprintf(ctx->fout, "status: %s\n", dev == -1 ? "fail" : "ok");
if (!ctx->reproducible && dev != -1) {
fprintf(ctx->fout, "address of net dev #%" PRIu8 ": 0x%x\n", dev_num, dev);
}
}
static void
cmd_net_get_packet_tx_count(struct shell_ctx *ctx, int argc, char **argv) {
(void)ctx;
const char *usage = \
"usage: net_get_packet_tx_count <dev_num>\n"
" dev_num device number as returned by net_add_device\n";
if (argc != 2) {
fputs(usage, ctx->fout);
return;
}
uint8_t dev_num = strtoul(argv[1], NULL, 0);
COVERAGE_ON();
uint32_t count = umka_sys_net_get_packet_tx_count(dev_num);
COVERAGE_OFF();
fprintf(ctx->fout, "status: %s\n", count == UINT32_MAX ? "fail" : "ok");
if (count != UINT32_MAX) {
fprintf(ctx->fout, "packet tx count of net dev #%" PRIu8 ": %" PRIu32 "\n",
dev_num, count);
}
}
static void
cmd_net_get_packet_rx_count(struct shell_ctx *ctx, int argc, char **argv) {
(void)ctx;
const char *usage = \
"usage: net_get_packet_rx_count <dev_num>\n"
" dev_num device number as returned by net_add_device\n";
if (argc != 2) {
fputs(usage, ctx->fout);
return;
}
uint8_t dev_num = strtoul(argv[1], NULL, 0);
COVERAGE_ON();
uint32_t count = umka_sys_net_get_packet_rx_count(dev_num);
COVERAGE_OFF();
fprintf(ctx->fout, "status: %s\n", count == UINT32_MAX ? "fail" : "ok");
if (count != UINT32_MAX) {
fprintf(ctx->fout, "packet rx count of net dev #%" PRIu8 ": %" PRIu32 "\n",
dev_num, count);
}
}
static void
cmd_net_get_byte_tx_count(struct shell_ctx *ctx, int argc, char **argv) {
(void)ctx;
const char *usage = \
"usage: net_get_byte_tx_count <dev_num>\n"
" dev_num device number as returned by net_add_device\n";
if (argc != 2) {
fputs(usage, ctx->fout);
return;
}
uint8_t dev_num = strtoul(argv[1], NULL, 0);
COVERAGE_ON();
uint32_t count = umka_sys_net_get_byte_tx_count(dev_num);
COVERAGE_OFF();
fprintf(ctx->fout, "status: %s\n", count == UINT32_MAX ? "fail" : "ok");
if (count != UINT32_MAX) {
fprintf(ctx->fout, "byte tx count of net dev #%" PRIu8 ": %" PRIu32 "\n",
dev_num, count);
}
}
static void
cmd_net_get_byte_rx_count(struct shell_ctx *ctx, int argc, char **argv) {
(void)ctx;
const char *usage = \
"usage: net_get_byte_rx_count <dev_num>\n"
" dev_num device number as returned by net_add_device\n";
if (argc != 2) {
fputs(usage, ctx->fout);
return;
}
uint8_t dev_num = strtoul(argv[1], NULL, 0);
COVERAGE_ON();
uint32_t count = umka_sys_net_get_byte_rx_count(dev_num);
COVERAGE_OFF();
fprintf(ctx->fout, "status: %s\n", count == UINT32_MAX ? "fail" : "ok");
if (count != UINT32_MAX) {
fprintf(ctx->fout, "byte rx count of net dev #%" PRIu8 ": %" PRIu32 "\n",
dev_num, count);
}
}
static void
print_link_status_names(struct shell_ctx *ctx, uint32_t status) {
switch (status & 0x3) {
case ETH_LINK_DOWN:
fprintf(ctx->fout, "ETH_LINK_DOWN");
break;
case ETH_LINK_UNKNOWN:
fprintf(ctx->fout, "ETH_LINK_UNKNOWN");
break;
case ETH_LINK_FD:
fprintf(ctx->fout, "ETH_LINK_FD");
break;
default:
fprintf(ctx->fout, "ERROR");
break;
}
switch(status & ~3u) {
case ETH_LINK_1G:
fprintf(ctx->fout, " + ETH_LINK_1G");
break;
case ETH_LINK_100M:
fprintf(ctx->fout, " + ETH_LINK_100M");
break;
case ETH_LINK_10M:
fprintf(ctx->fout, " + ETH_LINK_10M");
break;
default:
fprintf(ctx->fout, " + UNKNOWN");
break;
}
}
static void
cmd_net_get_link_status(struct shell_ctx *ctx, int argc, char **argv) {
(void)ctx;
const char *usage = \
"usage: net_get_link_status <dev_num>\n"
" dev_num device number as returned by net_add_device\n";
if (argc != 2) {
fputs(usage, ctx->fout);
return;
}
uint8_t dev_num = strtoul(argv[1], NULL, 0);
COVERAGE_ON();
uint32_t status = umka_sys_net_get_link_status(dev_num);
COVERAGE_OFF();
fprintf(ctx->fout, "status: %s\n", status == UINT32_MAX ? "fail" : "ok");
if (status != UINT32_MAX) {
fprintf(ctx->fout, "link status of net dev #%" PRIu8 ": %" PRIu32 " ",
dev_num, status);
print_link_status_names(ctx, status);
fprintf(ctx->fout, "\n");
}
}
static void
cmd_net_open_socket(struct shell_ctx *ctx, int argc, char **argv) {
(void)ctx;
const char *usage = \
"usage: net_open_socket <domain> <type> <protocol>\n"
" domain domain\n"
" type type\n"
" protocol protocol\n";
if (argc != 4) {
fputs(usage, ctx->fout);
return;
}
uint32_t domain = strtoul(argv[1], NULL, 0);
uint32_t type = strtoul(argv[2], NULL, 0);
uint32_t protocol = strtoul(argv[3], NULL, 0);
COVERAGE_ON();
f75ret_t r = umka_sys_net_open_socket(domain, type, protocol);
COVERAGE_OFF();
fprintf(ctx->fout, "value: 0x%" PRIx32 "\n", r.value);
fprintf(ctx->fout, "errorcode: 0x%" PRIx32 "\n", r.errorcode);
// UINT32_MAX
}
static void
cmd_net_close_socket(struct shell_ctx *ctx, int argc, char **argv) {
(void)ctx;
const char *usage = \
"usage: net_close_socket <socknum>\n"
" socknum socket number\n";
if (argc != 2) {
fputs(usage, ctx->fout);
return;
}
uint32_t fd = strtoul(argv[1], NULL, 0);
COVERAGE_ON();
f75ret_t r = umka_sys_net_close_socket(fd);
COVERAGE_OFF();
fprintf(ctx->fout, "value: 0x%" PRIx32 "\n", r.value);
fprintf(ctx->fout, "errorcode: 0x%" PRIx32 "\n", r.errorcode);
}
static void
cmd_net_bind(struct shell_ctx *ctx, int argc, char **argv) {
(void)ctx;
const char *usage = \
"usage: net_bind <fd> <port> <ip>\n"
" fd socket number\n"
" port port\n"
" addr addr\n";
if (argc != 4) {
fputs(usage, ctx->fout);
return;
}
uint32_t fd = strtoul(argv[1], NULL, 0);
uint16_t port = strtoul(argv[2], NULL, 0);
char *addr_str = argv[3];
uint32_t addr = inet_addr(addr_str);
struct sockaddr_in sa;
memset(&sa, 0, sizeof(sa));
sa.sin_family = AF_INET4;
sa.sin_port = htons(port);
sa.sin_addr.s_addr = addr;
fprintf(ctx->fout, "sockaddr at %p\n", (void*)&sa);
COVERAGE_ON();
f75ret_t r = umka_sys_net_bind(fd, &sa, sizeof(struct sockaddr_in));
COVERAGE_OFF();
fprintf(ctx->fout, "value: 0x%" PRIx32 "\n", r.value);
fprintf(ctx->fout, "errorcode: 0x%" PRIx32 "\n", r.errorcode);
}
static void
cmd_net_listen(struct shell_ctx *ctx, int argc, char **argv) {
(void)ctx;
const char *usage = \
"usage: net_listen <fd> <backlog>\n"
" fd socket number\n"
" backlog max queue length\n";
if (argc != 3) {
fputs(usage, ctx->fout);
return;
}
uint32_t fd = strtoul(argv[1], NULL, 0);
uint32_t backlog = strtoul(argv[2], NULL, 0);
COVERAGE_ON();
f75ret_t r = umka_sys_net_listen(fd, backlog);
COVERAGE_OFF();
fprintf(ctx->fout, "value: 0x%" PRIx32 "\n", r.value);
fprintf(ctx->fout, "errorcode: 0x%" PRIx32 "\n", r.errorcode);
}
static void
cmd_net_connect(struct shell_ctx *ctx, int argc, char **argv) {
(void)ctx;
const char *usage = \
"usage: net_connect <fd> <port> <ip>\n"
" fd socket number\n"
" port port\n"
" addr addr\n";
if (argc != 4) {
fputs(usage, ctx->fout);
return;
}
uint32_t fd = strtoul(argv[1], NULL, 0);
uint16_t port = strtoul(argv[2], NULL, 0);
char *addr_str = argv[3];
uint32_t addr = inet_addr(addr_str);
struct sockaddr_in sa;
memset(&sa, 0, sizeof(sa));
sa.sin_family = AF_INET4;
sa.sin_port = htons(port);
sa.sin_addr.s_addr = addr;
fprintf(ctx->fout, "sockaddr at %p\n", (void*)&sa);
COVERAGE_ON();
f75ret_t r = umka_sys_net_connect(fd, &sa, sizeof(struct sockaddr_in));
COVERAGE_OFF();
fprintf(ctx->fout, "value: 0x%" PRIx32 "\n", r.value);
fprintf(ctx->fout, "errorcode: 0x%" PRIx32 "\n", r.errorcode);
}
static void
cmd_net_accept(struct shell_ctx *ctx, int argc, char **argv) {
(void)ctx;
const char *usage = \
"usage: net_accept <fd> <port> <ip>\n"
" fd socket number\n"
" port port\n"
" addr addr\n";
if (argc != 4) {
fputs(usage, ctx->fout);
return;
}
uint32_t fd = strtoul(argv[1], NULL, 0);
uint16_t port = strtoul(argv[2], NULL, 0);
char *addr_str = argv[3];
uint32_t addr = inet_addr(addr_str);
struct sockaddr_in sa;
memset(&sa, 0, sizeof(sa));
sa.sin_family = AF_INET4;
sa.sin_port = htons(port);
sa.sin_addr.s_addr = addr;
fprintf(ctx->fout, "sockaddr at %p\n", (void*)&sa);
COVERAGE_ON();
f75ret_t r = umka_sys_net_accept(fd, &sa, sizeof(struct sockaddr_in));
COVERAGE_OFF();
fprintf(ctx->fout, "value: 0x%" PRIx32 "\n", r.value);
fprintf(ctx->fout, "errorcode: 0x%" PRIx32 "\n", r.errorcode);
}
static void
cmd_net_eth_read_mac(struct shell_ctx *ctx, int argc, char **argv) {
(void)ctx;
const char *usage = \
"usage: net_eth_read_mac <dev_num>\n"
" dev_num device number as returned by net_add_device\n";
if (argc != 2) {
fputs(usage, ctx->fout);
return;
}
uint32_t dev_num = strtoul(argv[1], NULL, 0);
COVERAGE_ON();
f76ret_t r = umka_sys_net_eth_read_mac(dev_num);
COVERAGE_OFF();
if (r.eax == UINT32_MAX) {
fprintf(ctx->fout, "status: fail\n");
} else {
fprintf(ctx->fout, "%2.2x:%2.2x:%2.2x:%2.2x:%2.2x:%2.2x\n",
(uint8_t)(r.ebx >> 0), (uint8_t)(r.ebx >> 8),
(uint8_t)(r.eax >> 0), (uint8_t)(r.eax >> 8),
(uint8_t)(r.eax >> 16), (uint8_t)(r.eax >> 24));
}
}
static void
cmd_net_ipv4_get_addr(struct shell_ctx *ctx, int argc, char **argv) {
(void)ctx;
const char *usage = \
"usage: net_ipv4_get_addr <dev_num>\n"
" dev_num device number as returned by net_add_device\n";
if (argc != 2) {
fputs(usage, ctx->fout);
return;
}
uint32_t dev_num = strtoul(argv[1], NULL, 0);
COVERAGE_ON();
f76ret_t r = umka_sys_net_ipv4_get_addr(dev_num);
COVERAGE_OFF();
if (r.eax == UINT32_MAX) {
fprintf(ctx->fout, "status: fail\n");
} else {
fprintf(ctx->fout, "%d.%d.%d.%d\n",
(uint8_t)(r.eax >> 0), (uint8_t)(r.eax >> 8),
(uint8_t)(r.eax >> 16), (uint8_t)(r.eax >> 24));
}
}
static void
cmd_net_ipv4_set_addr(struct shell_ctx *ctx, int argc, char **argv) {
(void)ctx;
const char *usage = \
"usage: net_ipv4_set_addr <dev_num> <addr>\n"
" dev_num device number as returned by net_add_device\n"
" addr a.b.c.d\n";
if (argc != 3) {
fputs(usage, ctx->fout);
return;
}
uint32_t dev_num = strtoul(argv[1], NULL, 0);
char *addr_str = argv[2];
uint32_t addr = inet_addr(addr_str);
COVERAGE_ON();
f76ret_t r = umka_sys_net_ipv4_set_addr(dev_num, addr);
COVERAGE_OFF();
if (r.eax == UINT32_MAX) {
fprintf(ctx->fout, "status: fail\n");
} else {
fprintf(ctx->fout, "status: ok\n");
}
}
static void
cmd_net_ipv4_get_dns(struct shell_ctx *ctx, int argc, char **argv) {
(void)ctx;
const char *usage = \
"usage: net_ipv4_get_dns <dev_num>\n"
" dev_num device number as returned by net_add_device\n";
if (argc != 2) {
fputs(usage, ctx->fout);
return;
}
uint32_t dev_num = strtoul(argv[1], NULL, 0);
COVERAGE_ON();
f76ret_t r = umka_sys_net_ipv4_get_dns(dev_num);
COVERAGE_OFF();
if (r.eax == UINT32_MAX) {
fprintf(ctx->fout, "status: fail\n");
} else {
fprintf(ctx->fout, "%d.%d.%d.%d\n",
(uint8_t)(r.eax >> 0), (uint8_t)(r.eax >> 8),
(uint8_t)(r.eax >> 16), (uint8_t)(r.eax >> 24));
}
}
static void
cmd_net_ipv4_set_dns(struct shell_ctx *ctx, int argc, char **argv) {
(void)ctx;
const char *usage = \
"usage: net_ipv4_set_dns <dev_num> <dns>\n"
" dev_num device number as returned by net_add_device\n"
" dns a.b.c.d\n";
if (argc != 3) {
fputs(usage, ctx->fout);
return;
}
uint32_t dev_num = strtoul(argv[1], NULL, 0);
uint32_t dns = inet_addr(argv[2]);
COVERAGE_ON();
f76ret_t r = umka_sys_net_ipv4_set_dns(dev_num, dns);
COVERAGE_OFF();
if (r.eax == UINT32_MAX) {
fprintf(ctx->fout, "status: fail\n");
} else {
fprintf(ctx->fout, "status: ok\n");
}
}
static void
cmd_net_ipv4_get_subnet(struct shell_ctx *ctx, int argc, char **argv) {
(void)ctx;
const char *usage = \
"usage: net_ipv4_get_subnet <dev_num>\n"
" dev_num device number as returned by net_add_device\n";
if (argc != 2) {
fputs(usage, ctx->fout);
return;
}
uint32_t dev_num = strtoul(argv[1], NULL, 0);
COVERAGE_ON();
f76ret_t r = umka_sys_net_ipv4_get_subnet(dev_num);
COVERAGE_OFF();
if (r.eax == UINT32_MAX) {
fprintf(ctx->fout, "status: fail\n");
} else {
fprintf(ctx->fout, "%d.%d.%d.%d\n",
(uint8_t)(r.eax >> 0), (uint8_t)(r.eax >> 8),
(uint8_t)(r.eax >> 16), (uint8_t)(r.eax >> 24));
}
}
static void
cmd_net_ipv4_set_subnet(struct shell_ctx *ctx, int argc, char **argv) {
(void)ctx;
const char *usage = \
"usage: net_ipv4_set_subnet <dev_num> <subnet>\n"
" dev_num device number as returned by net_add_device\n"
" subnet a.b.c.d\n";
if (argc != 3) {
fputs(usage, ctx->fout);
return;
}
uint32_t dev_num = strtoul(argv[1], NULL, 0);
char *subnet_str = argv[2];
uint32_t subnet = inet_addr(subnet_str);
COVERAGE_ON();
f76ret_t r = umka_sys_net_ipv4_set_subnet(dev_num, subnet);
COVERAGE_OFF();
if (r.eax == UINT32_MAX) {
fprintf(ctx->fout, "status: fail\n");
} else {
fprintf(ctx->fout, "status: ok\n");
}
}
static void
cmd_net_ipv4_get_gw(struct shell_ctx *ctx, int argc, char **argv) {
(void)ctx;
const char *usage = \
"usage: net_ipv4_get_gw <dev_num>\n"
" dev_num device number as returned by net_add_device\n";
if (argc != 2) {
fputs(usage, ctx->fout);
return;
}
uint32_t dev_num = strtoul(argv[1], NULL, 0);
COVERAGE_ON();
f76ret_t r = umka_sys_net_ipv4_get_gw(dev_num);
COVERAGE_OFF();
if (r.eax == UINT32_MAX) {
fprintf(ctx->fout, "status: fail\n");
} else {
fprintf(ctx->fout, "%d.%d.%d.%d\n",
(uint8_t)(r.eax >> 0), (uint8_t)(r.eax >> 8),
(uint8_t)(r.eax >> 16), (uint8_t)(r.eax >> 24));
}
}
static void
cmd_net_ipv4_set_gw(struct shell_ctx *ctx, int argc, char **argv) {
(void)ctx;
const char *usage = \
"usage: net_ipv4_set_gw <dev_num> <gw>\n"
" dev_num device number as returned by net_add_device\n"
" gw a.b.c.d\n";
if (argc != 3) {
fputs(usage, ctx->fout);
return;
}
uint32_t dev_num = strtoul(argv[1], NULL, 0);
char *gw_str = argv[2];
uint32_t gw = inet_addr(gw_str);
COVERAGE_ON();
f76ret_t r = umka_sys_net_ipv4_set_gw(dev_num, gw);
COVERAGE_OFF();
if (r.eax == UINT32_MAX) {
fprintf(ctx->fout, "status: fail\n");
} else {
fprintf(ctx->fout, "status: ok\n");
}
}
static void
cmd_net_arp_get_count(struct shell_ctx *ctx, int argc, char **argv) {
(void)ctx;
const char *usage = \
"usage: net_arp_get_count <dev_num>\n"
" dev_num device number as returned by net_add_device\n";
if (argc != 2) {
fputs(usage, ctx->fout);
return;
}
uint32_t dev_num = strtoul(argv[1], NULL, 0);
COVERAGE_ON();
f76ret_t r = umka_sys_net_arp_get_count(dev_num);
COVERAGE_OFF();
if (r.eax == UINT32_MAX) {
fprintf(ctx->fout, "status: fail\n");
} else {
fprintf(ctx->fout, "%" PRIi32 "\n", r.eax);
}
}
static void
cmd_net_arp_get_entry(struct shell_ctx *ctx, int argc, char **argv) {
(void)ctx;
const char *usage = \
"usage: net_arp_get_entry <dev_num> <arp_num>\n"
" dev_num device number as returned by net_add_device\n"
" arp_num arp number as returned by net_add_device\n";
if (argc != 3) {
fputs(usage, ctx->fout);
return;
}
uint32_t dev_num = strtoul(argv[1], NULL, 0);
uint32_t arp_num = strtoul(argv[2], NULL, 0);
arp_entry_t arp;
COVERAGE_ON();
f76ret_t r = umka_sys_net_arp_get_entry(dev_num, arp_num, &arp);
COVERAGE_OFF();
if (r.eax == UINT32_MAX) {
fprintf(ctx->fout, "status: fail\n");
} else {
fprintf(ctx->fout, "arp #%u: IP %d.%d.%d.%d, "
"mac %2.2" SCNu8 ":%2.2" SCNu8 ":%2.2" SCNu8
":%2.2" SCNu8 ":%2.2" SCNu8 ":%2.2" SCNu8 ", "
"status %" PRIu16 ", "
"ttl %" PRIu16 "\n",
arp_num,
(uint8_t)(arp.ip >> 0), (uint8_t)(arp.ip >> 8),
(uint8_t)(arp.ip >> 16), (uint8_t)(arp.ip >> 24),
arp.mac[0], arp.mac[1], arp.mac[2],
arp.mac[3], arp.mac[4], arp.mac[5],
arp.status, arp.ttl);
}
}
static void
cmd_net_arp_add_entry(struct shell_ctx *ctx, int argc, char **argv) {
(void)ctx;
const char *usage = \
"usage: net_arp_add_entry <dev_num> <addr> <mac> <status> <ttl>\n"
" dev_num device number as returned by net_add_device\n"
" addr IP addr\n"
" mac ethernet addr\n"
" status see ARP.inc\n"
" ttl Time to live\n";
if (argc != 6) {
fputs(usage, ctx->fout);
return;
}
arp_entry_t arp;
uint32_t dev_num = strtoul(argv[1], NULL, 0);
arp.ip = inet_addr(argv[2]);
sscanf(argv[3], "%" SCNu8 ":%" SCNu8 ":%" SCNu8
":%" SCNu8 ":%" SCNu8 ":%" SCNu8,
arp.mac+0, arp.mac+1, arp.mac+2,
arp.mac+3, arp.mac+4, arp.mac+5);
arp.status = strtoul(argv[4], NULL, 0);
arp.ttl = strtoul(argv[5], NULL, 0);
COVERAGE_ON();
f76ret_t r = umka_sys_net_arp_add_entry(dev_num, &arp);
COVERAGE_OFF();
if (r.eax == UINT32_MAX) {
fprintf(ctx->fout, "status: fail\n");
}
}
static void
cmd_net_arp_del_entry(struct shell_ctx *ctx, int argc, char **argv) {
(void)ctx;
const char *usage = \
"usage: net_arp_del_entry <dev_num> <arp_num>\n"
" dev_num device number as returned by net_add_device\n"
" arp_num arp number as returned by net_add_device\n";
if (argc != 3) {
fputs(usage, ctx->fout);
return;
}
uint32_t dev_num = strtoul(argv[1], NULL, 0);
int32_t arp_num = strtoul(argv[2], NULL, 0);
COVERAGE_ON();
f76ret_t r = umka_sys_net_arp_del_entry(dev_num, arp_num);
COVERAGE_OFF();
if (r.eax == UINT32_MAX) {
fprintf(ctx->fout, "status: fail\n");
}
}
static void
cmd_osloop(struct shell_ctx *ctx, int argc, char **argv) {
(void)ctx;
(void)argv;
const char *usage = \
"usage: osloop\n";
if (argc != 1) {
fputs(usage, ctx->fout);
return;
}
COVERAGE_ON();
umka_osloop();
COVERAGE_OFF();
}
static void
cmd_bg_set_size(struct shell_ctx *ctx, int argc, char **argv) {
(void)ctx;
const char *usage = \
"usage: bg_set_size <xsize> <ysize>\n"
" xsize in pixels\n"
" ysize in pixels\n";
if (argc != 3) {
fputs(usage, ctx->fout);
return;
}
uint32_t xsize = strtoul(argv[1], NULL, 0);
uint32_t ysize = strtoul(argv[2], NULL, 0);
COVERAGE_ON();
umka_sys_bg_set_size(xsize, ysize);
COVERAGE_OFF();
}
static void
cmd_bg_put_pixel(struct shell_ctx *ctx, int argc, char **argv) {
(void)ctx;
const char *usage = \
"usage: bg_put_pixel <offset> <color>\n"
" offset in bytes, (x+y*xsize)*3\n"
" color in hex\n";
if (argc != 3) {
fputs(usage, ctx->fout);
return;
}
size_t offset = strtoul(argv[1], NULL, 0);
uint32_t color = strtoul(argv[2], NULL, 0);
COVERAGE_ON();
umka_sys_bg_put_pixel(offset, color);
COVERAGE_OFF();
}
static void
cmd_bg_redraw(struct shell_ctx *ctx, int argc, char **argv) {
(void)ctx;
(void)argv;
const char *usage = \
"usage: bg_redraw\n";
if (argc != 1) {
fputs(usage, ctx->fout);
return;
}
COVERAGE_ON();
umka_sys_bg_redraw();
COVERAGE_OFF();
}
static void
cmd_bg_set_mode(struct shell_ctx *ctx, int argc, char **argv) {
(void)ctx;
const char *usage = \
"usage: bg_set_mode <mode>\n"
" mode 1 = tile, 2 = stretch\n";
if (argc != 3) {
fputs(usage, ctx->fout);
return;
}
uint32_t mode = strtoul(argv[1], NULL, 0);
COVERAGE_ON();
umka_sys_bg_set_mode(mode);
COVERAGE_OFF();
}
static void
cmd_bg_put_img(struct shell_ctx *ctx, int argc, char **argv) {
(void)ctx;
const char *usage = \
"usage: bg_put_img <image> <offset>\n"
" image file\n"
" offset in bytes, (x+y*xsize)*3\n";
if (argc != 4) {
fputs(usage, ctx->fout);
return;
}
FILE *f = fopen(argv[1], "rb");
fseek(f, 0, SEEK_END);
size_t fsize = ftell(f);
rewind(f);
uint8_t *image = (uint8_t*)malloc(fsize);
fread(image, fsize, 1, f);
fclose(f);
size_t offset = strtoul(argv[2], NULL, 0);
COVERAGE_ON();
umka_sys_bg_put_img(image, offset, fsize);
COVERAGE_OFF();
}
static void
cmd_board_get(struct shell_ctx *ctx, int argc, char **argv) {
(void)argv;
const char *usage = \
"usage: board_get [<-l|-a>] [-n]\n";
if (argc > 2) {
fputs(usage, ctx->fout);
return;
}
optparse_init(&ctx->opts, argv);
int flush = 0;
int line = 0;
int force_newline = 0;
int opt;
while ((opt = optparse(&ctx->opts, "fln")) != -1) {
switch (opt) {
case 'f':
flush = 1;
__attribute__((fallthrough)); // TODO: use [[fallthrough]]; (C23)
case 'l':
line = 1;
break;
case 'n':
force_newline = 1;
break;
default:
fputs(usage, ctx->fout);
return;
}
}
if (!line) {
COVERAGE_ON();
struct board_get_ret c = umka_sys_board_get();
COVERAGE_OFF();
if (!c.status) {
fprintf(ctx->fout, "(empty)\n");
} else {
fprintf(ctx->fout, "%c\n", c.value);
}
} else {
struct board_get_ret c;
do {
COVERAGE_ON();
c = umka_sys_board_get();
COVERAGE_OFF();
if (c.status && (c.value != '\r')) {
fputc(c.value, ctx->fout);
}
} while (c.status && ((c.value != '\n') || flush));
if (force_newline) {
fputc('\n', ctx->fout);
}
}
}
static void
cmd_board_put(struct shell_ctx *ctx, int argc, char **argv) {
(void)argv;
const char *usage = \
"usage: board_put <char>\n";
if (argc != 2) {
fputs(usage, ctx->fout);
return;
}
char c = argv[1][0];
if (c == '\\') {
switch ((c = argv[1][1])) {
case 'n':
c = '\n';
break;
case 'r':
c = '\r';
break;
case 't':
c = '\t';
break;
default:
fprintf(ctx->fout, "unknown escape symbol: '%c'\n", c);
c = '?';
break;
}
}
COVERAGE_ON();
umka_sys_board_put(c);
COVERAGE_OFF();
}
static void
cmd_bg_map(struct shell_ctx *ctx, int argc, char **argv) {
(void)argv;
const char *usage = \
"usage: bg_map\n";
if (argc != 1) {
fputs(usage, ctx->fout);
return;
}
COVERAGE_ON();
void *addr = umka_sys_bg_map();
COVERAGE_OFF();
fprintf(ctx->fout, "%p\n", addr);
}
static void
cmd_bg_unmap(struct shell_ctx *ctx, int argc, char **argv) {
(void)ctx;
const char *usage = \
"usage: bg_unmap <addr>\n"
" addr return value of bg_map\n";
if (argc != 2) {
fputs(usage, ctx->fout);
return;
}
void *addr = (void*)strtoul(argv[1], NULL, 0);
COVERAGE_ON();
uint32_t status = umka_sys_bg_unmap(addr);
COVERAGE_OFF();
fprintf(ctx->fout, "status = %d\n", status);
}
static void
cmd_help(struct shell_ctx *ctx, int argc, char **argv);
func_table_t cmd_cmds[] = {
{ "send_scancode", cmd_send_scancode },
{ "umka_boot", cmd_umka_boot },
{ "umka_set_boot_params", cmd_umka_set_boot_params },
{ "acpi_call", cmd_acpi_call },
{ "acpi_enable", cmd_acpi_enable },
{ "acpi_get_usage", cmd_acpi_get_usage },
{ "acpi_preload_table", cmd_acpi_preload_table },
{ "acpi_set_usage", cmd_acpi_set_usage },
{ "acpi_get_node_alloc_cnt", cmd_acpi_get_node_alloc_cnt },
{ "acpi_get_node_free_cnt", cmd_acpi_get_node_free_cnt },
{ "acpi_get_node_cnt", cmd_acpi_get_node_cnt },
{ "board_get", cmd_board_get },
{ "board_put", cmd_board_put },
{ "bg_map", cmd_bg_map },
{ "bg_put_img", cmd_bg_put_img },
{ "bg_put_pixel", cmd_bg_put_pixel },
{ "bg_redraw", cmd_bg_redraw },
{ "bg_set_mode", cmd_bg_set_mode },
{ "bg_set_size", cmd_bg_set_size },
{ "bg_unmap", cmd_bg_unmap },
{ "blit_bitmap", cmd_blit_bitmap },
{ "button", cmd_button },
{ "cd", cmd_cd },
{ "set", cmd_set },
{ "get", cmd_get },
{ "get_key", cmd_get_key },
{ "disk_add", cmd_disk_add },
{ "disk_del", cmd_disk_del },
{ "display_number", cmd_display_number },
{ "draw_line", cmd_draw_line },
{ "draw_rect", cmd_draw_rect },
{ "draw_window", cmd_draw_window },
{ "dump_appdata", cmd_dump_appdata },
{ "dump_key_buff", cmd_dump_key_buff },
{ "dump_wdata", cmd_dump_wdata },
{ "dump_win_pos", cmd_dump_win_pos },
{ "dump_win_stack", cmd_dump_win_stack },
{ "dump_win_map", cmd_dump_win_map },
{ "exec", cmd_exec },
{ "get_font_size", cmd_get_font_size },
{ "get_font_smoothing", cmd_get_font_smoothing },
{ "get_keyboard_lang", cmd_get_keyboard_lang },
{ "get_keyboard_layout", cmd_get_keyboard_layout },
{ "get_keyboard_mode", cmd_get_keyboard_mode },
{ "get_mouse_buttons_state", cmd_get_mouse_buttons_state },
{ "get_mouse_buttons_state_events", cmd_get_mouse_buttons_state_events },
{ "get_mouse_pos_screen", cmd_get_mouse_pos_screen },
{ "get_mouse_pos_window", cmd_get_mouse_pos_window },
{ "get_screen_area", cmd_get_screen_area },
{ "get_screen_size", cmd_get_screen_size },
{ "get_skin_height", cmd_get_skin_height },
{ "get_skin_margins", cmd_get_skin_margins },
{ "get_system_lang", cmd_get_system_lang },
{ "get_window_colors", cmd_get_window_colors },
{ "help", cmd_help },
{ "i40", cmd_i40 },
// f68
{ "kos_sys_misc_init_heap", cmd_kos_sys_misc_init_heap }, // 11
{ "kos_sys_misc_load_file", cmd_kos_sys_misc_load_file }, // 27
{ "load_cursor_from_file", cmd_load_cursor_from_file },
{ "load_cursor_from_mem", cmd_load_cursor_from_mem },
{ "load_dll", cmd_load_dll },
{ "ls70", cmd_ls70 },
{ "ls80", cmd_ls80 },
{ "move_window", cmd_move_window },
{ "mouse_move", cmd_mouse_move },
{ "stack_init", cmd_stack_init },
{ "net_accept", cmd_net_accept },
{ "net_add_device", cmd_net_add_device },
{ "net_arp_add_entry", cmd_net_arp_add_entry },
{ "net_arp_del_entry", cmd_net_arp_del_entry },
{ "net_arp_get_count", cmd_net_arp_get_count },
{ "net_arp_get_entry", cmd_net_arp_get_entry },
{ "net_bind", cmd_net_bind },
{ "net_close_socket", cmd_net_close_socket },
{ "net_connect", cmd_net_connect },
{ "net_dev_reset", cmd_net_dev_reset },
{ "net_dev_stop", cmd_net_dev_stop },
{ "net_eth_read_mac", cmd_net_eth_read_mac },
{ "net_get_byte_rx_count", cmd_net_get_byte_rx_count },
{ "net_get_byte_tx_count", cmd_net_get_byte_tx_count },
{ "net_get_dev", cmd_net_get_dev },
{ "net_get_dev_count", cmd_net_get_dev_count },
{ "net_get_dev_name", cmd_net_get_dev_name },
{ "net_get_dev_type", cmd_net_get_dev_type },
{ "net_get_link_status", cmd_net_get_link_status },
{ "net_get_packet_rx_count", cmd_net_get_packet_rx_count },
{ "net_get_packet_tx_count", cmd_net_get_packet_tx_count },
{ "net_ipv4_get_addr", cmd_net_ipv4_get_addr },
{ "net_ipv4_get_dns", cmd_net_ipv4_get_dns },
{ "net_ipv4_get_gw", cmd_net_ipv4_get_gw },
{ "net_ipv4_get_subnet", cmd_net_ipv4_get_subnet },
{ "net_ipv4_set_addr", cmd_net_ipv4_set_addr },
{ "net_ipv4_set_dns", cmd_net_ipv4_set_dns },
{ "net_ipv4_set_gw", cmd_net_ipv4_set_gw },
{ "net_ipv4_set_subnet", cmd_net_ipv4_set_subnet },
{ "net_listen", cmd_net_listen },
{ "net_open_socket", cmd_net_open_socket },
{ "osloop", cmd_osloop },
{ "pci_get_path", cmd_pci_get_path },
{ "pci_set_path", cmd_pci_set_path },
{ "process_info", cmd_process_info },
{ "put_image", cmd_put_image },
{ "put_image_palette", cmd_put_image_palette },
{ "pwd", cmd_pwd },
{ "ramdisk_init", cmd_ramdisk_init },
{ "read70", cmd_read70 },
{ "read80", cmd_read80 },
{ "scrot", cmd_scrot },
{ "write_devices_dat", cmd_write_devices_dat },
{ "set_button_style", cmd_set_button_style },
{ "set_cursor", cmd_set_cursor },
{ "set_cwd", cmd_cd },
{ "set_font_size", cmd_set_font_size },
{ "set_font_smoothing", cmd_set_font_smoothing },
{ "set_keyboard_lang", cmd_set_keyboard_lang },
{ "set_keyboard_layout", cmd_set_keyboard_layout },
{ "set_keyboard_mode", cmd_set_keyboard_mode },
{ "set_mouse_pos_screen", cmd_set_mouse_pos_screen },
{ "set_pixel", cmd_set_pixel },
{ "set_screen_area", cmd_set_screen_area },
{ "set_skin", cmd_set_skin },
{ "set_system_lang", cmd_set_system_lang },
{ "set_window_caption", cmd_set_window_caption },
{ "set_window_colors", cmd_set_window_colors },
{ "csleep", cmd_csleep },
{ "stat70", cmd_stat70 },
{ "stat80", cmd_stat80 },
{ "var", cmd_var },
{ "check_for_event", cmd_check_for_event },
{ "wait_for_idle", cmd_wait_for_idle },
{ "wait_for_os_idle", cmd_wait_for_os_idle },
{ "wait_for_window", cmd_wait_for_window },
{ "window_redraw", cmd_window_redraw },
{ "write_text", cmd_write_text },
{ "switch_to_thread", cmd_switch_to_thread },
{ "new_sys_thread", cmd_new_sys_thread },
{ NULL, NULL },
};
void
shell_run_cmd_sync(struct shell_ctx *ctx) {
struct umka_cmd *cmd = umka_cmd_buf;
switch (cmd->type) {
case UMKA_CMD_WAIT_FOR_IDLE: {
COVERAGE_ON();
umka_wait_for_idle();
COVERAGE_OFF();
break;
}
case UMKA_CMD_WAIT_FOR_OS_IDLE: {
COVERAGE_ON();
umka_wait_for_os_idle();
COVERAGE_OFF();
break;
}
case UMKA_CMD_WAIT_FOR_WINDOW: {
struct cmd_wait_for_window_arg *c = &cmd->wait_for_window.arg;
COVERAGE_ON();
umka_wait_for_window(c->wnd_title);
COVERAGE_OFF();
break;
}
case UMKA_CMD_SYS_CSLEEP: {
struct cmd_sys_csleep_arg *c = &cmd->sys_csleep.arg;
COVERAGE_ON();
umka_sys_csleep(c->csec);
COVERAGE_OFF();
break;
}
case UMKA_CMD_SET_MOUSE_DATA: {
struct cmd_set_mouse_data_arg *c = &cmd->set_mouse_data.arg;
COVERAGE_ON();
kos_set_mouse_data(c->btn_state, c->xmoving, c->ymoving, c->vscroll,
c->hscroll);
COVERAGE_OFF();
break;
}
case UMKA_CMD_SYS_LFN: {
struct cmd_sys_lfn_arg *c = &cmd->sys_lfn.arg;
COVERAGE_ON();
umka_sys_lfn(c->bufptr, c->r, c->f70or80);
COVERAGE_OFF();
break;
}
default:
fprintf(ctx->fout, "[!] unknown command: %u\n", cmd->type);
break;
}
atomic_store_explicit(&cmd->status, SHELL_CMD_STATUS_DONE,
memory_order_release);
pthread_cond_signal(&ctx->cmd_done);
}
static void
cmd_help(struct shell_ctx *ctx, int argc, char **argv) {
const char *usage = \
"usage: help [command]\n"
" command help on this command usage\n";
switch (argc) {
case 1:
fputs(usage, ctx->fout);
puts("\navailable commands:\n");
for (func_table_t *ft = cmd_cmds; ft->name; ft++) {
fprintf(ctx->fout, " %s\n", ft->name);
}
break;
case 2: {
const char *cmd_name = argv[1];
for (func_table_t *ft = cmd_cmds; ft->name; ft++) {
if (!strcmp(ft->name, cmd_name)) {
ft->func(ctx, 0, NULL);
return;
}
}
fprintf(ctx->fout, "no such command: %s\n", cmd_name);
break;
}
default:
fputs(usage, ctx->fout);
return;
}
}
void *
run_test(struct shell_ctx *ctx) {
int fdstdin = -1;
if (ctx->fin != stdin) {
fdstdin = dup(STDIN_FILENO);
close(STDIN_FILENO);
dup2(fileno(ctx->fin), STDIN_FILENO);
fclose(ctx->fin);
}
ic_init_custom_malloc(NULL, NULL, NULL);
// ic_style_def("ic-prompt","ansi-default");
ic_enable_color(0);
ic_set_prompt_marker(NULL, NULL);
ic_enable_multiline(0);
ic_enable_beep(0);
pthread_mutex_lock(&ctx->cmd_mutex);
int is_tty = isatty(fileno(stdin));
char **argv = (char**)calloc(sizeof(char*), (MAX_COMMAND_ARGS + 1));
ic_set_default_completer(completer, NULL);
ic_set_default_highlighter(highlighter, NULL);
ic_enable_auto_tab(1);
sprintf(prompt_line, "%s", last_dir);
char *line;
while ((line = ic_readline(prompt_line)) || !feof(stdin)) {
if (!is_tty) {
prompt(ctx);
fprintf(ctx->fout, "%s\n", line ? line : "");
}
if (!line) {
continue;
}
if (line[0] == '\0') {
break;
}
if (!strcmp(line, "X") || !strcmp(line, "q")) {
free(line);
break;
} else if (line[0] == '\0' || line[0] == '#' || line[0] == '\n'
|| *line == '\r') {
free(line);
continue;
} else {
int argc = split_args(line, argv);
func_table_t *ft;
for (ft = cmd_cmds; ft->name; ft++) {
if (!strcmp(argv[0], ft->name)) {
break;
}
}
if (ft->name) {
ft->func(ctx, argc, argv);
} else {
fprintf(ctx->fout, "unknown command: %s\n", argv[0]);
}
free(line);
}
}
free(argv);
pthread_mutex_unlock(&ctx->cmd_mutex);
if (fdstdin != -1) {
close(STDIN_FILENO);
dup2(fdstdin, STDIN_FILENO);
close(fdstdin);
}
return NULL;
}
struct shell_ctx *
shell_init(const int reproducible, const char *hist_file,
const struct umka_ctx *umka, const struct umka_io *io, FILE *fin) {
struct shell_ctx *ctx = malloc(sizeof(struct shell_ctx));
ctx->umka = umka;
ctx->io = io;
ctx->reproducible = reproducible;
ctx->hist_file = hist_file;
ctx->var = NULL;
ctx->fin = fin;
ctx->fout = stdout;
ctx->running = &umka->running;
pthread_cond_init(&ctx->cmd_done, NULL);
pthread_mutex_init(&ctx->cmd_mutex, NULL);
return ctx;
}
void
shell_close(struct shell_ctx *ctx) {
struct shell_var *next;
for (struct shell_var *var = ctx->var; var; var = next) {
next = var->next;
free(var);
}
}