umka/vnet.c

246 lines
6.0 KiB
C

/*
SPDX-License-Identifier: GPL-2.0-or-later
UMKa - User-Mode KolibriOS developer tools
vnet - virtual network card
Copyright (C) 2020-2022 Ivan Baravy <dunkaist@gmail.com>
Copyright (C) 2021 Magomed Kostoev <mkostoevr@yandex.ru>
*/
#include <arpa/inet.h>
#include <assert.h>
#include <errno.h>
#include <fcntl.h>
#include <inttypes.h>
#include <linux/if.h>
#include <linux/if_tun.h>
#include <net/if_arp.h>
#include <netinet/in.h>
#include <poll.h>
#include <stdbool.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/ioctl.h>
#include <sys/socket.h>
#include "umka.h"
#include "trace.h"
#include "vnet.h"
// TODO: Cleanup
#ifndef _WIN32
#include <unistd.h>
#endif
#define TAP_DEV "/dev/net/tun"
#define UMKA_TAP_NAME "umka%d"
#define STACK_SIZE 0x10000
typedef struct {
int tapfd;
bool input_processed;
} vnet_userdata_t;
static int
tap_alloc() {
struct ifreq ifr = {.ifr_name = UMKA_TAP_NAME,
.ifr_flags = IFF_TAP | IFF_NO_PI};
int fd, err;
if( (fd = open(TAP_DEV, O_RDWR | O_NONBLOCK)) < 0 ) {
perror("Opening /dev/net/tun");
return fd;
}
if( (err = ioctl(fd, TUNSETIFF, &ifr)) < 0 ) {
perror("ioctl(TUNSETIFF)");
close(fd);
return err;
}
ifr.ifr_hwaddr.sa_family = ARPHRD_ETHER;
memcpy(ifr.ifr_hwaddr.sa_data, (char[]){0x00, 0x11, 0x00, 0x00, 0x00, 0x00}, 6);
if( (err = ioctl(fd, SIOCSIFHWADDR, &ifr)) < 0 ) {
perror("ioctl(SIOCSIFHWADDR)");
close(fd);
return err;
}
struct sockaddr_in sai;
sai.sin_family = AF_INET;
sai.sin_port = 0;
sai.sin_addr.s_addr = inet_addr("10.50.0.1");
memcpy(&ifr.ifr_addr, &sai, sizeof(struct sockaddr));
int sockfd = socket(AF_INET, SOCK_DGRAM, 0);
if ( (err = ioctl(sockfd, SIOCSIFADDR, &ifr)) < 0 ) {
perror("ioctl(SIOCSIFADDR)");
close(fd);
return err;
}
sai.sin_addr.s_addr = inet_addr("255.255.255.0");
memcpy(&ifr.ifr_netmask, &sai, sizeof(struct sockaddr));
if ((err = ioctl(sockfd, SIOCSIFNETMASK, &ifr)) < 0) {
perror("ioctl(SIOCSIFNETMASK)");
close(fd);
return err;
}
if ((err = ioctl(sockfd, SIOCGIFFLAGS, &ifr)) < 0) {
perror("ioctl(SIOCGIFFLAGS)");
close(fd);
return err;
}
ifr.ifr_flags |= IFF_UP | IFF_RUNNING;
ifr.ifr_flags &= ~(IFF_BROADCAST | IFF_LOWER_UP);
if ((err = ioctl(sockfd, SIOCSIFFLAGS, &ifr)) < 0) {
perror("ioctl(SIOCSIFFLAGS)");
close(fd);
return err;
}
return fd;
}
static int
vnet_input(void *udata) {
umka_sti();
net_device_t *vnet = udata;
vnet_userdata_t *u = vnet->userdata;
int tapfd = u->tapfd;
uint8_t buffer[2048];
int plen = 0;
fprintf(stderr, "###### vnet_input\n");
plen = read(tapfd, buffer, 2*1024);
if (plen > 0) {
fprintf(stderr, "[net_drv] read %i bytes\n", plen);
for (int i = 0; i < plen; i++) {
fprintf(stderr, " %2.2x", buffer[i]);
}
fprintf(stderr, "\n");
net_buff_t *buf = kos_net_buff_alloc(plen + offsetof(net_buff_t, data));
if (!buf) {
fprintf(stderr, "[vnet] Can't allocate network buffer!\n");
return 1;
}
buf->length = plen;
buf->device = vnet;
buf->offset = offsetof(net_buff_t, data);
memcpy(buf->data, buffer, plen);
kos_eth_input(buf);
}
u->input_processed = true;
return 1;
}
static void
vnet_input_monitor(net_device_t *vnet) {
umka_sti();
vnet_userdata_t *u = vnet->userdata;
int tapfd = u->tapfd;
struct pollfd pfd = {tapfd, POLLIN, 0};
while(true)
{
if (u->input_processed && poll(&pfd, 1, 0)) {
u->input_processed = false;
raise(SIGUSR1);
umka_sti();
}
}
}
static void
dump_net_buff(net_buff_t *buf) {
for (size_t i = 0; i < buf->length; i++) {
printf("%2.2x ", buf->data[i]);
}
putchar('\n');
}
static STDCALL void
vnet_unload() {
printf("vnet_unload\n");
COVERAGE_ON();
COVERAGE_OFF();
}
static STDCALL void
vnet_reset() {
printf("vnet_reset\n");
COVERAGE_ON();
COVERAGE_OFF();
}
static STDCALL int
vnet_transmit(net_buff_t *buf) {
// TODO: Separate implementations for win32 and linux
#ifdef _WIN32
assert(!"Function is not implemented for win32");
#else
net_device_t *vnet;
__asm__ __inline__ __volatile__ (
"nop"
: "=b"(vnet)
:
: "memory");
vnet_userdata_t *u = vnet->userdata;
printf("vnet_transmit: %d bytes\n", buf->length);
dump_net_buff(buf);
write(u->tapfd, buf->data, buf->length);
buf->length = 0;
COVERAGE_OFF();
COVERAGE_ON();
printf("vnet_transmit: done\n");
#endif
return 0;
}
net_device_t*
vnet_init() {
// printf("vnet_init\n");
int tapfd = tap_alloc();
vnet_userdata_t *u = (vnet_userdata_t*)malloc(sizeof(vnet_userdata_t));
u->tapfd = tapfd;
u->input_processed = true;
net_device_t *vnet = (net_device_t*)malloc(sizeof(net_device_t));
*vnet = (net_device_t){
.device_type = NET_TYPE_ETH,
.mtu = 1514,
.name = "UMK0770",
.unload = vnet_unload,
.reset = vnet_reset,
.transmit = vnet_transmit,
.bytes_tx = 0,
.bytes_rx = 0,
.packets_tx = 0,
.packets_rx = 0,
.link_state = ETH_LINK_FD + ETH_LINK_10M,
.hwacc = 0,
.mac = {0x80, 0x2b, 0xf9, 0x3b, 0x6c, 0xca},
.userdata = u,
};
kos_attach_int_handler(SIGUSR1, vnet_input, vnet);
fprintf(stderr, "### thread_start: %p\n", (void*)(uintptr_t)vnet_input_monitor);
uint8_t *stack = malloc(STACK_SIZE);
size_t tid = umka_new_sys_threads(0, vnet_input_monitor, stack + STACK_SIZE);
appdata_t *t = kos_slot_base + tid;
*(void**)((uint8_t*)t->pl0_stack+0x2000-12) = vnet;
// t->saved_esp0 = (uint8_t*)t->saved_esp0 - 8;
return vnet;
}