umka/umka_shell.c

1821 lines
58 KiB
C

/*
umka_shell: User-Mode KolibriOS developer tools, the shell
Copyright (C) 2018--2020 Ivan Baravy <dunkaist@gmail.com>
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <https://www.gnu.org/licenses/>.
*/
#include <stdio.h>
#include <stdbool.h>
#include <stdint.h>
#include <inttypes.h>
#include <limits.h>
#include <stdlib.h>
#include <stddef.h>
#include <string.h>
#include <unistd.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <assert.h>
#include <time.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include "vdisk.h"
#include "vnet.h"
#include "umka.h"
#include "trace.h"
#include "lodepng.h"
#define PATH_MAX 4096
#define FGETS_BUF_LEN 4096
#define MAX_COMMAND_ARGS 42
#define PRINT_BYTES_PER_LINE 32
#define MAX_DIRENTS_TO_READ 100
#define MAX_BYTES_TO_READ (1024*1024)
#define DEFAULT_READDIR_ENCODING UTF8
#define DEFAULT_PATH_ENCODING UTF8
net_device_t vnet = {
.device_type = NET_TYPE_ETH,
.mtu = 1514,
.name = "UMK0770",
.unload = vnet_unload,
.reset = vnet_reset,
.transmit = vnet_transmit,
.bytes_tx = 0,
.bytes_rx = 0,
.packets_tx = 0,
.packets_rx = 0,
.link_state = ETH_LINK_FD + ETH_LINK_10M,
.hwacc = 0,
.mac = {0x80, 0x2b, 0xf9, 0x3b, 0x6c, 0xca},
};
char cur_dir[PATH_MAX] = "/";
const char *last_dir = cur_dir;
bool cur_dir_changed = true;
char cmd_buf[FGETS_BUF_LEN];
const char *f70_status_name[] = {
"success",
"disk_base",
"unsupported_fs",
"unknown_fs",
"partition",
"file_not_found",
"end_of_file",
"memory_pointer",
"disk_full",
"fs_fail",
"access_denied",
"device",
"out_of_memory"
};
const char *get_f70_status_name(int s) {
switch (s) {
case ERROR_SUCCESS:
// return "";
case ERROR_DISK_BASE:
case ERROR_UNSUPPORTED_FS:
case ERROR_UNKNOWN_FS:
case ERROR_PARTITION:
case ERROR_FILE_NOT_FOUND:
case ERROR_END_OF_FILE:
case ERROR_MEMORY_POINTER:
case ERROR_DISK_FULL:
case ERROR_FS_FAIL:
case ERROR_ACCESS_DENIED:
case ERROR_DEVICE:
case ERROR_OUT_OF_MEMORY:
return f70_status_name[s];
default:
return "unknown";
}
}
void convert_f70_file_attr(uint32_t attr, char s[KF_ATTR_CNT+1]) {
s[0] = (attr & KF_READONLY) ? 'r' : '-';
s[1] = (attr & KF_HIDDEN) ? 'h' : '-';
s[2] = (attr & KF_SYSTEM) ? 's' : '-';
s[3] = (attr & KF_LABEL) ? 'l' : '-';
s[4] = (attr & KF_FOLDER) ? 'f' : '-';
s[5] = '\0';
}
void print_f70_status(f7080ret_t *r, int use_ebx) {
printf("status = %d %s", r->status, get_f70_status_name(r->status));
if (use_ebx && (r->status == ERROR_SUCCESS || r->status == ERROR_END_OF_FILE))
printf(", count = %d", r->count);
putchar('\n');
}
bool parse_uintmax(const char *str, uintmax_t *res) {
char *endptr;
*res = strtoumax(str, &endptr, 0);
bool ok = (str != endptr) && (*endptr == '\0');
return ok;
}
bool parse_uint32(const char *str, uint32_t *res) {
uintmax_t x;
if (parse_uintmax(str, &x) && x <= UINT32_MAX) {
*res = (uint32_t)x;
return true;
} else {
perror("invalid number");
return false;
}
}
bool parse_uint64(const char *str, uint64_t *res) {
uintmax_t x;
if (parse_uintmax(str, &x) && x <= UINT64_MAX) {
*res = x;
return true;
} else {
perror("invalid number");
return false;
}
}
void print_bytes(uint8_t *x, size_t len) {
for (size_t i = 0; i < len; i++) {
if (i % PRINT_BYTES_PER_LINE == 0 && i != 0) {
printf("\n");
}
printf("%2.2x", x[i]);
}
putchar('\n');
}
void print_hash(uint8_t *x, size_t len) {
hash_context ctx;
hash_oneshot(&ctx, x, len);
for (size_t i = 0; i < HASH_SIZE; i++) {
printf("%2.2x", ctx.hash[i]);
}
putchar('\n');
}
const char *get_last_dir(const char *path) {
const char *last = strrchr(path, '/');
if (!last) {
last = path;
} else if (last != path || last[1] != '\0') {
last++;
}
return last;
}
void prompt() {
if (cur_dir_changed) {
COVERAGE_ON();
umka_sys_get_cwd(cur_dir, PATH_MAX);
COVERAGE_OFF();
last_dir = get_last_dir(cur_dir);
cur_dir_changed = false;
}
printf("%s> ", last_dir);
fflush(stdout);
}
int next_line(FILE *file, int is_tty) {
if (is_tty) {
prompt();
}
return fgets(cmd_buf, FGETS_BUF_LEN, file) != NULL;
}
int split_args(char *s, char **argv) {
int argc = -1;
for (; (argv[++argc] = strtok(s, " \t\n")) != NULL; s = NULL);
return argc;
}
void shell_i40(int argc, char **argv) {
const char *usage = \
"usage: i40 <eax> [ebx [ecx [edx [esi [edi [ebp]]]]]]...\n"
" see '/kernel/docs/sysfuncs.txt' for details";
if (argc == 1 || argc > 8) {
puts(usage);
return;
}
pushad_t regs = {0, 0, 0, 0, 0, 0, 0, 0};
if (argv[1]) regs.eax = strtoul(argv[1], NULL, 0);
if (argv[2]) regs.ebx = strtoul(argv[2], NULL, 0);
if (argv[3]) regs.ecx = strtoul(argv[3], NULL, 0);
if (argv[4]) regs.edx = strtoul(argv[4], NULL, 0);
if (argv[5]) regs.esi = strtoul(argv[5], NULL, 0);
if (argv[6]) regs.edi = strtoul(argv[6], NULL, 0);
if (argv[7]) regs.ebp = strtoul(argv[7], NULL, 0);
COVERAGE_ON();
umka_i40(&regs);
COVERAGE_OFF();
printf("eax = %8.8x %" PRIu32 " %" PRIi32 "\n"
"ebx = %8.8x %" PRIu32 " %" PRIi32 "\n",
regs.eax, regs.eax, (int32_t)regs.eax,
regs.ebx, regs.ebx, (int32_t)regs.ebx);
}
void shell_disk_list_partitions(disk_t *d) {
for (size_t i = 0; i < d->num_partitions; i++) {
printf("/%s/%d: ", d->name, i+1);
if (d->partitions[i]->fs_user_functions == xfs_user_functions) {
printf("xfs\n");
} else if (d->partitions[i]->fs_user_functions == ext_user_functions) {
printf("ext\n");
} else if (d->partitions[i]->fs_user_functions == fat_user_functions) {
printf("fat\n");
} else if (d->partitions[i]->fs_user_functions == ntfs_user_functions) {
printf("ntfs\n");
} else {
printf("???\n");
}
}
}
void shell_disk_add(int argc, char **argv) {
const char *usage = \
"usage: disk_add <file> <name> [option]...\n"
" <file> absolute or relative path\n"
" <name> disk name, e.g. hd0 or rd\n"
" -c cache size size of disk cache in bytes";
if (argc < 3) {
puts(usage);
return;
}
size_t cache_size = 0;
int adjust_cache_size = 0;
int opt;
optind = 1;
const char *file_name = argv[optind++];
const char *disk_name = argv[optind++];
while ((opt = getopt(argc, argv, "c:")) != -1) {
switch (opt) {
case 'c':
cache_size = strtoul(optarg, NULL, 0);
adjust_cache_size = 1;
break;
default:
puts(usage);
return;
}
}
void *userdata = vdisk_init(file_name, adjust_cache_size, cache_size);
if (userdata) {
COVERAGE_ON();
void *vdisk = disk_add(&vdisk_functions, disk_name, userdata, 0);
COVERAGE_OFF();
if (vdisk) {
COVERAGE_ON();
disk_media_changed(vdisk, 1);
COVERAGE_OFF();
shell_disk_list_partitions(vdisk);
return;
}
}
printf("umka: can't add file '%s' as disk '%s'\n", file_name, disk_name);
return;
}
void shell_disk_del_by_name(const char *name) {
for(disk_t *d = disk_list.next; d != &disk_list; d = d->next) {
if (!strcmp(d->name, name)) {
COVERAGE_ON();
disk_del(d);
COVERAGE_OFF();
return;
}
}
printf("umka: can't find disk '%s'\n", name);
}
void shell_disk_del(int argc, char **argv) {
(void)argc;
const char *name = argv[1];
shell_disk_del_by_name(name);
return;
}
void shell_pwd(int argc, char **argv) {
(void)argc;
(void)argv;
bool quoted = false;
const char *quote = quoted ? "'" : "";
COVERAGE_ON();
umka_sys_get_cwd(cur_dir, PATH_MAX);
COVERAGE_OFF();
printf("%s%s%s\n", quote, cur_dir, quote);
}
void shell_set_pixel(int argc, char **argv) {
size_t x = strtoul(argv[1], NULL, 0);
size_t y = strtoul(argv[2], NULL, 0);
uint32_t color = strtoul(argv[3], NULL, 16);
int invert = (argc == 5) && !strcmp(argv[4], "-i");
COVERAGE_ON();
umka_sys_set_pixel(x, y, color, invert);
COVERAGE_OFF();
}
void shell_write_text(int argc, char **argv) {
(void)argc;
size_t x = strtoul(argv[1], NULL, 0);
size_t y = strtoul(argv[2], NULL, 0);
uint32_t color = strtoul(argv[3], NULL, 16);
const char *string = argv[4];
int asciiz = strtoul(argv[5], NULL, 0);
int fill_background = strtoul(argv[6], NULL, 0);
int font_and_encoding = strtoul(argv[7], NULL, 0);
int draw_to_buffer = strtoul(argv[8], NULL, 0);
int scale_factor = strtoul(argv[9], NULL, 0);
int length = strtoul(argv[10], NULL, 0);
int background_color_or_buffer = strtoul(argv[11], NULL, 0);
COVERAGE_ON();
umka_sys_write_text(x, y, color, asciiz, fill_background, font_and_encoding, draw_to_buffer, scale_factor, string, length, background_color_or_buffer);
COVERAGE_OFF();
}
void shell_dump_win_stack(int argc, char **argv) {
int depth = 5;
if (argc > 1) {
depth = strtol(argv[1], NULL, 0);
}
for (int i = 0; i < depth; i++) {
printf("%3i: %3u\n", i, kos_win_stack[i]);
}
}
void shell_dump_win_pos(int argc, char **argv) {
int depth = 5;
if (argc > 1) {
depth = strtol(argv[1], NULL, 0);
}
for (int i = 0; i < depth; i++) {
printf("%3i: %3u\n", i, kos_win_pos[i]);
}
}
void shell_process_info(int argc, char **argv) {
(void)argc;
process_information_t info;
int32_t pid = strtol(argv[1], NULL, 0);
COVERAGE_ON();
umka_sys_process_info(pid, &info);
COVERAGE_OFF();
printf("cpu_usage: %u\n", info.cpu_usage);
printf("window_stack_position: %u\n", info.window_stack_position);
printf("window_stack_value: %u\n", info.window_stack_value);
printf("process_name: %s\n", info.process_name);
printf("memory_start: 0x%.8" PRIx32 "\n", info.memory_start);
printf("used_memory: %u (0x%x)\n", info.used_memory, info.used_memory);
printf("pid: %u\n", info.pid);
printf("box: %u %u %u %u\n", info.box.left, info.box.top, info.box.width, info.box.height);
printf("slot_state: %u\n", info.slot_state);
printf("client_box: %u %u %u %u\n", info.client_box.left, info.client_box.top, info.client_box.width, info.client_box.height);
printf("wnd_state: 0x%.2" PRIx8 "\n", info.wnd_state);
}
void shell_display_number(int argc, char **argv) {
(void)argc;
int is_pointer = strtoul(argv[1], NULL, 0);
int base = strtoul(argv[2], NULL, 0);
if (base == 10) base = 0;
else if (base == 16) base = 1;
else if (base == 2) base = 2;
else base = 0;
size_t digits_to_display = strtoul(argv[3], NULL, 0);
int is_qword = strtoul(argv[4], NULL, 0);
int show_leading_zeros = strtoul(argv[5], NULL, 0);
uintptr_t number_or_pointer = strtoul(argv[6], NULL, 0);
size_t x = strtoul(argv[7], NULL, 0);
size_t y = strtoul(argv[8], NULL, 0);
uint32_t color = strtoul(argv[9], NULL, 16);
int fill_background = strtoul(argv[10], NULL, 0);
int font = strtoul(argv[11], NULL, 0);
int draw_to_buffer = strtoul(argv[12], NULL, 0);
int scale_factor = strtoul(argv[13], NULL, 0);
uintptr_t background_color_or_buffer = strtoul(argv[14], NULL, 16);
COVERAGE_ON();
umka_sys_display_number(is_pointer, base, digits_to_display, is_qword, show_leading_zeros, number_or_pointer, x, y, color, fill_background, font, draw_to_buffer, scale_factor, background_color_or_buffer);
COVERAGE_OFF();
}
void shell_set_window_colors(int argc, char **argv) {
if (argc != (1 + sizeof(system_colors_t)/4)) {
printf("10 colors required\n");
return;
}
system_colors_t colors;
colors.frame = strtoul(argv[1], NULL, 16);
colors.grab = strtoul(argv[2], NULL, 16);
colors.work_3d_dark = strtoul(argv[3], NULL, 16);
colors.work_3d_light = strtoul(argv[4], NULL, 16);
colors.grab_text = strtoul(argv[5], NULL, 16);
colors.work = strtoul(argv[6], NULL, 16);
colors.work_button = strtoul(argv[7], NULL, 16);
colors.work_button_text = strtoul(argv[8], NULL, 16);
colors.work_text = strtoul(argv[9], NULL, 16);
colors.work_graph = strtoul(argv[10], NULL, 16);
COVERAGE_ON();
umka_sys_set_window_colors(&colors);
COVERAGE_OFF();
}
void shell_get_window_colors(int argc, char **argv) {
(void)argc;
(void)argv;
system_colors_t colors;
COVERAGE_ON();
umka_sys_get_window_colors(&colors);
COVERAGE_OFF();
printf("0x%.8" PRIx32 " frame\n", colors.frame);
printf("0x%.8" PRIx32 " grab\n", colors.grab);
printf("0x%.8" PRIx32 " work_3d_dark\n", colors.work_3d_dark);
printf("0x%.8" PRIx32 " work_3d_light\n", colors.work_3d_light);
printf("0x%.8" PRIx32 " grab_text\n", colors.grab_text);
printf("0x%.8" PRIx32 " work\n", colors.work);
printf("0x%.8" PRIx32 " work_button\n", colors.work_button);
printf("0x%.8" PRIx32 " work_button_text\n", colors.work_button_text);
printf("0x%.8" PRIx32 " work_text\n", colors.work_text);
printf("0x%.8" PRIx32 " work_graph\n", colors.work_graph);
}
void shell_get_skin_height(int argc, char **argv) {
(void)argc;
(void)argv;
COVERAGE_ON();
uint32_t skin_height = umka_sys_get_skin_height();
COVERAGE_OFF();
printf("%" PRIu32 "\n", skin_height);
}
void shell_get_screen_area(int argc, char **argv) {
(void)argc;
(void)argv;
rect_t wa;
COVERAGE_ON();
umka_sys_get_screen_area(&wa);
COVERAGE_OFF();
printf("%" PRIu32 " left\n", wa.left);
printf("%" PRIu32 " top\n", wa.top);
printf("%" PRIu32 " right\n", wa.right);
printf("%" PRIu32 " bottom\n", wa.bottom);
}
void shell_set_screen_area(int argc, char **argv) {
if (argc != 5) {
printf("left top right bottom\n");
return;
}
rect_t wa;
wa.left = strtoul(argv[1], NULL, 0);
wa.top = strtoul(argv[2], NULL, 0);
wa.right = strtoul(argv[3], NULL, 0);
wa.bottom = strtoul(argv[4], NULL, 0);
COVERAGE_ON();
umka_sys_set_screen_area(&wa);
COVERAGE_OFF();
}
void shell_get_skin_margins(int argc, char **argv) {
(void)argc;
(void)argv;
rect_t wa;
COVERAGE_ON();
umka_sys_get_skin_margins(&wa);
COVERAGE_OFF();
printf("%" PRIu32 " left\n", wa.left);
printf("%" PRIu32 " top\n", wa.top);
printf("%" PRIu32 " right\n", wa.right);
printf("%" PRIu32 " bottom\n", wa.bottom);
}
void shell_set_button_style(int argc, char **argv) {
(void)argc;
uint32_t style = strtoul(argv[1], NULL, 0);
COVERAGE_ON();
umka_sys_set_button_style(style);
COVERAGE_OFF();
}
void shell_set_skin(int argc, char **argv) {
(void)argc;
const char *path = argv[1];
COVERAGE_ON();
int32_t status = umka_sys_set_skin(path);
COVERAGE_OFF();
printf("status: %" PRIi32 "\n", status);
}
void shell_get_font_smoothing(int argc, char **argv) {
(void)argc;
(void)argv;
const char *names[] = {"off", "anti-aliasing", "subpixel"};
COVERAGE_ON();
int type = umka_sys_get_font_smoothing();
COVERAGE_OFF();
printf("font smoothing: %i - %s\n", type, names[type]);
}
void shell_set_font_smoothing(int argc, char **argv) {
(void)argc;
int type = strtol(argv[1], NULL, 0);
COVERAGE_ON();
umka_sys_set_font_smoothing(type);
COVERAGE_OFF();
}
void shell_get_font_size(int argc, char **argv) {
(void)argc;
(void)argv;
COVERAGE_ON();
size_t size = umka_sys_get_font_size();
COVERAGE_OFF();
printf("%upx\n", size);
}
void shell_set_font_size(int argc, char **argv) {
(void)argc;
uint32_t size = strtoul(argv[1], NULL, 0);
COVERAGE_ON();
umka_sys_set_font_size(size);
COVERAGE_OFF();
}
void shell_button(int argc, char **argv) {
(void)argc;
size_t x = strtoul(argv[1], NULL, 0);
size_t xsize = strtoul(argv[2], NULL, 0);
size_t y = strtoul(argv[3], NULL, 0);
size_t ysize = strtoul(argv[4], NULL, 0);
uint32_t button_id = strtoul(argv[5], NULL, 0);
uint32_t color = strtoul(argv[6], NULL, 16);
int draw_button = strtoul(argv[7], NULL, 0);
int draw_frame = strtoul(argv[8], NULL, 0);
COVERAGE_ON();
umka_sys_button(x, xsize, y, ysize, button_id, draw_button, draw_frame, color);
COVERAGE_OFF();
}
void shell_put_image(int argc, char **argv) {
(void)argc;
FILE *f = fopen(argv[1], "r");
fseek(f, 0, SEEK_END);
size_t fsize = ftell(f);
rewind(f);
uint8_t *image = (uint8_t*)malloc(fsize);
fread(image, fsize, 1, f);
fclose(f);
size_t xsize = strtoul(argv[2], NULL, 0);
size_t ysize = strtoul(argv[3], NULL, 0);
size_t x = strtoul(argv[4], NULL, 0);
size_t y = strtoul(argv[5], NULL, 0);
COVERAGE_ON();
umka_sys_put_image(image, xsize, ysize, x, y);
COVERAGE_OFF();
free(image);
}
void shell_put_image_palette(int argc, char **argv) {
(void)argc;
FILE *f = fopen(argv[1], "r");
fseek(f, 0, SEEK_END);
size_t fsize = ftell(f);
rewind(f);
uint8_t *image = (uint8_t*)malloc(fsize);
fread(image, fsize, 1, f);
fclose(f);
size_t xsize = strtoul(argv[2], NULL, 0);
size_t ysize = strtoul(argv[3], NULL, 0);
size_t x = strtoul(argv[4], NULL, 0);
size_t y = strtoul(argv[5], NULL, 0);
size_t bpp = strtoul(argv[6], NULL, 0);
void *palette = NULL;
size_t row_offset = strtoul(argv[7], NULL, 0);
COVERAGE_ON();
umka_sys_put_image_palette(image, xsize, ysize, x, y, bpp, palette, row_offset);
COVERAGE_OFF();
free(image);
}
void shell_draw_rect(int argc, char **argv) {
size_t x = strtoul(argv[1], NULL, 0);
size_t xsize = strtoul(argv[2], NULL, 0);
size_t y = strtoul(argv[3], NULL, 0);
size_t ysize = strtoul(argv[4], NULL, 0);
uint32_t color = strtoul(argv[5], NULL, 16);
int gradient = (argc == 7) && !strcmp(argv[6], "-g");
COVERAGE_ON();
umka_sys_draw_rect(x, xsize, y, ysize, color, gradient);
COVERAGE_OFF();
}
void shell_get_screen_size(int argc, char **argv) {
(void)argc;
(void)argv;
uint32_t xsize, ysize;
COVERAGE_ON();
umka_sys_get_screen_size(&xsize, &ysize);
COVERAGE_OFF();
printf("%" PRIu32 "x%" PRIu32 "\n", xsize, ysize);
}
void shell_draw_line(int argc, char **argv) {
size_t x = strtoul(argv[1], NULL, 0);
size_t xend = strtoul(argv[2], NULL, 0);
size_t y = strtoul(argv[3], NULL, 0);
size_t yend = strtoul(argv[4], NULL, 0);
uint32_t color = strtoul(argv[5], NULL, 16);
int invert = (argc == 7) && !strcmp(argv[6], "-i");
COVERAGE_ON();
umka_sys_draw_line(x, xend, y, yend, color, invert);
COVERAGE_OFF();
}
void shell_set_window_caption(int argc, char **argv) {
(void)argc;
const char *caption = argv[1];
int encoding = strtoul(argv[2], NULL, 0);
COVERAGE_ON();
umka_sys_set_window_caption(caption, encoding);
COVERAGE_OFF();
}
void shell_draw_window(int argc, char **argv) {
(void)argc;
size_t x = strtoul(argv[1], NULL, 0);
size_t xsize = strtoul(argv[2], NULL, 0);
size_t y = strtoul(argv[3], NULL, 0);
size_t ysize = strtoul(argv[4], NULL, 0);
uint32_t color = strtoul(argv[5], NULL, 16);
int has_caption = strtoul(argv[6], NULL, 0);
int client_relative = strtoul(argv[7], NULL, 0);
int fill_workarea = strtoul(argv[8], NULL, 0);
int gradient_fill = strtoul(argv[9], NULL, 0);
int movable = strtoul(argv[10], NULL, 0);
int style = strtoul(argv[11], NULL, 0);
const char *caption = argv[12];
COVERAGE_ON();
umka_sys_draw_window(x, xsize, y, ysize, color, has_caption, client_relative, fill_workarea, gradient_fill, movable, style, caption);
COVERAGE_OFF();
}
void shell_window_redraw(int argc, char **argv) {
(void)argc;
int begin_end = strtoul(argv[1], NULL, 0);
COVERAGE_ON();
umka_sys_window_redraw(begin_end);
COVERAGE_OFF();
}
void shell_move_window(int argc, char **argv) {
(void)argc;
size_t x = strtoul(argv[1], NULL, 0);
size_t y = strtoul(argv[2], NULL, 0);
ssize_t xsize = strtol(argv[3], NULL, 0);
ssize_t ysize = strtol(argv[4], NULL, 0);
COVERAGE_ON();
umka_sys_move_window(x, y, xsize, ysize);
COVERAGE_OFF();
}
void shell_blit_bitmap(int argc, char **argv) {
(void)argc;
FILE *f = fopen(argv[1], "r");
fseek(f, 0, SEEK_END);
size_t fsize = ftell(f);
rewind(f);
uint8_t *image = (uint8_t*)malloc(fsize);
fread(image, fsize, 1, f);
fclose(f);
size_t dstx = strtoul(argv[2], NULL, 0);
size_t dsty = strtoul(argv[3], NULL, 0);
size_t dstxsize = strtoul(argv[4], NULL, 0);
size_t dstysize = strtoul(argv[5], NULL, 0);
size_t srcx = strtoul(argv[6], NULL, 0);
size_t srcy = strtoul(argv[7], NULL, 0);
size_t srcxsize = strtoul(argv[8], NULL, 0);
size_t srcysize = strtoul(argv[9], NULL, 0);
int operation = strtoul(argv[10], NULL, 0);
int background = strtoul(argv[11], NULL, 0);
int transparent = strtoul(argv[12], NULL, 0);
int client_relative = strtoul(argv[13], NULL, 0);
int row_length = strtoul(argv[14], NULL, 0);
uint32_t params[] = {dstx, dsty, dstxsize, dstysize, srcx, srcy, srcxsize, srcysize, (uintptr_t)image, row_length};
COVERAGE_ON();
umka_sys_blit_bitmap(operation, background, transparent, client_relative, params);
COVERAGE_OFF();
free(image);
}
void shell_scrot(int argc, char **argv) {
(void)argc;
uint32_t xsize, ysize;
COVERAGE_ON();
umka_sys_get_screen_size(&xsize, &ysize);
COVERAGE_OFF();
uint32_t *lfb = kos_lfb_base;
for (size_t y = 0; y < ysize; y++) {
for (size_t x = 0; x < xsize; x++) {
*lfb++ |= 0xff000000;
}
}
unsigned error = lodepng_encode32_file(argv[1], (const unsigned char *)kos_lfb_base, xsize, ysize);
if(error) printf("error %u: %s\n", error, lodepng_error_text(error));
}
void shell_cd(int argc, char **argv) {
(void)argc;
COVERAGE_ON();
umka_sys_set_cwd(argv[1]);
COVERAGE_OFF();
cur_dir_changed = true;
}
void ls_range(f7080s1arg_t *fX0, f70or80_t f70or80) {
f7080ret_t r;
size_t bdfe_len = (fX0->encoding == CP866) ? BDFE_LEN_CP866 : BDFE_LEN_UNICODE;
uint32_t requested = fX0->size;
if (fX0->size > MAX_DIRENTS_TO_READ) {
fX0->size = MAX_DIRENTS_TO_READ;
}
for (; requested; requested -= fX0->size) {
if (fX0->size > requested) {
fX0->size = requested;
}
COVERAGE_ON();
umka_sys_lfn(fX0, &r, f70or80);
COVERAGE_OFF();
fX0->offset += fX0->size;
print_f70_status(&r, 1);
f7080s1info_t *dir = fX0->buf;
int ok = (r.count <= fX0->size);
ok &= (dir->cnt == r.count);
ok &= (r.status == ERROR_SUCCESS && r.count == fX0->size)
|| (r.status == ERROR_END_OF_FILE && r.count < fX0->size);
assert(ok);
if (!ok)
break;
bdfe_t *bdfe = dir->bdfes;
for (size_t i = 0; i < dir->cnt; i++) {
char fattr[KF_ATTR_CNT+1];
convert_f70_file_attr(bdfe->attr, fattr);
printf("%s %s\n", fattr, bdfe->name);
bdfe = (bdfe_t*)((uintptr_t)bdfe + bdfe_len);
}
if (r.status == ERROR_END_OF_FILE) {
break;
}
}
}
void ls_all(f7080s1arg_t *fX0, f70or80_t f70or80) {
f7080ret_t r;
size_t bdfe_len = (fX0->encoding == CP866) ? BDFE_LEN_CP866 : BDFE_LEN_UNICODE;
while (true) {
COVERAGE_ON();
umka_sys_lfn(fX0, &r, f70or80);
COVERAGE_OFF();
print_f70_status(&r, 1);
assert((r.status == ERROR_SUCCESS && r.count == fX0->size)
|| (r.status == ERROR_END_OF_FILE && r.count < fX0->size));
f7080s1info_t *dir = fX0->buf;
fX0->offset += dir->cnt;
int ok = (r.count <= fX0->size);
ok &= (dir->cnt == r.count);
ok &= (r.status == ERROR_SUCCESS && r.count == fX0->size)
|| (r.status == ERROR_END_OF_FILE && r.count < fX0->size);
assert(ok);
if (!ok)
break;
printf("total = %"PRIi32"\n", dir->total_cnt);
bdfe_t *bdfe = dir->bdfes;
for (size_t i = 0; i < dir->cnt; i++) {
char fattr[KF_ATTR_CNT+1];
convert_f70_file_attr(bdfe->attr, fattr);
printf("%s %s\n", fattr, bdfe->name);
bdfe = (bdfe_t*)((uintptr_t)bdfe + bdfe_len);
}
if (r.status == ERROR_END_OF_FILE) {
break;
}
}
}
fs_enc_t parse_encoding(const char *str) {
fs_enc_t enc;
if (!strcmp(str, "default")) {
enc = DEFAULT_ENCODING;
} else if (!strcmp(str, "cp866")) {
enc = CP866;
} else if (!strcmp(str, "utf16")) {
enc = UTF16;
} else if (!strcmp(str, "utf8")) {
enc = UTF8;
} else {
enc = INVALID_ENCODING;
}
return enc;
}
void shell_ls(int argc, char **argv, const char *usage, f70or80_t f70or80) {
int opt;
optind = 1;
const char *optstring = (f70or80 == F70) ? "f:c:e:" : "f:c:e:p:";
const char *path = ".";
uint32_t readdir_enc = DEFAULT_READDIR_ENCODING;
uint32_t path_enc = DEFAULT_PATH_ENCODING;
uint32_t from_idx = 0, count = MAX_DIRENTS_TO_READ;
if (argc > 1 && *argv[optind] != '-') {
path = argv[optind++];
}
while ((opt = getopt(argc, argv, optstring)) != -1) {
switch (opt) {
case 'f':
from_idx = strtoul(optarg, NULL, 0);
break;
case 'c':
count = strtoul(optarg, NULL, 0);
break;
case 'e':
readdir_enc = parse_encoding(optarg);
break;
case 'p':
path_enc = parse_encoding(optarg);
break;
default:
puts(usage);
return;
}
}
size_t bdfe_len = (readdir_enc <= CP866) ? BDFE_LEN_CP866 : BDFE_LEN_UNICODE;
f7080s1info_t *dir = (f7080s1info_t*)malloc(sizeof(f7080s1info_t) + bdfe_len * MAX_DIRENTS_TO_READ);
f7080s1arg_t fX0 = {.sf = 1, .offset = from_idx, .encoding = readdir_enc, .size = count, .buf = dir};
if (f70or80 == F70) {
fX0.u.f70.zero = 0;
fX0.u.f70.path = path;
} else {
fX0.u.f80.path_encoding = path_enc;
fX0.u.f80.path = path;
}
if (count != MAX_DIRENTS_TO_READ) {
ls_range(&fX0, f70or80);
} else {
ls_all(&fX0, f70or80);
}
free(dir);
return;
}
void shell_ls70(int argc, char **argv) {
const char *usage = \
"usage: ls70 [dir] [option]...\n"
" -f number index of the first dir entry to read\n"
" -c number number of dir entries to read\n"
" -e encoding cp866|utf16|utf8\n"
" return directory listing in this encoding";
shell_ls(argc, argv, usage, F70);
}
void shell_ls80(int argc, char **argv) {
const char *usage = \
"usage: ls80 [dir] [option]...\n"
" -f number index of the first dir entry to read\n"
" -c number number of dir entries to read\n"
" -e encoding cp866|utf16|utf8\n"
" return directory listing in this encoding\n"
" -p encoding cp866|utf16|utf8\n"
" path to dir is specified in this encoding";
shell_ls(argc, argv, usage, F80);
}
void shell_stat(int argc, char **argv, f70or80_t f70or80) {
(void)argc;
f7080s5arg_t fX0 = {.sf = 5, .flags = 0};
f7080ret_t r;
bdfe_t file;
fX0.buf = &file;
if (f70or80 == F70) {
fX0.u.f70.zero = 0;
fX0.u.f70.path = argv[1];
} else {
fX0.u.f80.path_encoding = DEFAULT_PATH_ENCODING;
fX0.u.f80.path = argv[1];
}
COVERAGE_ON();
umka_sys_lfn(&fX0, &r, f70or80);
COVERAGE_OFF();
print_f70_status(&r, 0);
if (r.status != ERROR_SUCCESS)
return;
char fattr[KF_ATTR_CNT+1];
convert_f70_file_attr(file.attr, fattr);
printf("attr: %s\n", fattr);
if ((file.attr & KF_FOLDER) == 0) { // don't show size for dirs
printf("size: %llu\n", file.size);
}
#if PRINT_DATE_TIME == 1
time_t time;
struct tm *t;
time = kos_time_to_epoch(&file.ctime);
t = localtime(&time);
printf("ctime: %4.4i.%2.2i.%2.2i %2.2i:%2.2i:%2.2i\n",
t->tm_year + 1900, t->tm_mon + 1, t->tm_mday,
t->tm_hour, t->tm_min, t->tm_sec);
time = kos_time_to_epoch(&file.atime);
t = localtime(&time);
printf("atime: %4.4i.%2.2i.%2.2i %2.2i:%2.2i:%2.2i\n",
t->tm_year + 1900, t->tm_mon + 1, t->tm_mday,
t->tm_hour, t->tm_min, t->tm_sec);
time = kos_time_to_epoch(&file.mtime);
t = localtime(&time);
printf("mtime: %4.4i.%2.2i.%2.2i %2.2i:%2.2i:%2.2i\n",
t->tm_year + 1900, t->tm_mon + 1, t->tm_mday,
t->tm_hour, t->tm_min, t->tm_sec);
#endif
return;
}
void shell_stat70(int argc, char **argv) {
shell_stat(argc, argv, F70);
}
void shell_stat80(int argc, char **argv) {
shell_stat(argc, argv, F80);
}
void shell_read(int argc, char **argv, f70or80_t f70or80) {
(void)argc;
f7080s0arg_t fX0 = {.sf = 0};
f7080ret_t r;
bool dump_bytes = false, dump_hash = false;
if (argc < 4) {
printf("usage: %s <offset> <length> [-b] [-h] [-e cp866|utf8|utf16]\n", argv[0]);
return;
}
int opt = 1;
if (f70or80 == F70) {
fX0.u.f70.zero = 0;
fX0.u.f70.path = argv[opt++];
} else {
fX0.u.f80.path_encoding = DEFAULT_PATH_ENCODING;
fX0.u.f80.path = argv[opt++];
}
if ((opt >= argc) || !parse_uint64(argv[opt++], &fX0.offset))
return;
if ((opt >= argc) || !parse_uint32(argv[opt++], &fX0.count))
return;
for (; opt < argc; opt++) {
if (!strcmp(argv[opt], "-b")) {
dump_bytes = true;
} else if (!strcmp(argv[opt], "-h")) {
dump_hash = true;
} else if (!strcmp(argv[opt], "-e")) {
if (f70or80 == F70) {
printf("f70 doesn't accept encoding parameter, use f80\n");
return;
}
} else {
printf("invalid option: '%s'\n", argv[opt]);
return;
}
}
fX0.buf = (uint8_t*)malloc(fX0.count);
COVERAGE_ON();
umka_sys_lfn(&fX0, &r, f70or80);
COVERAGE_OFF();
print_f70_status(&r, 1);
if (r.status == ERROR_SUCCESS || r.status == ERROR_END_OF_FILE) {
if (dump_bytes)
print_bytes(fX0.buf, r.count);
if (dump_hash)
print_hash(fX0.buf, r.count);
}
free(fX0.buf);
return;
}
void shell_read70(int argc, char **argv) {
shell_read(argc, argv, F70);
}
void shell_read80(int argc, char **argv) {
shell_read(argc, argv, F80);
}
void shell_acpi_preload_table(int argc, char **argv) {
(void)argc;
FILE *f = fopen(argv[1], "r");
fseek(f, 0, SEEK_END);
size_t fsize = ftell(f);
rewind(f);
uint8_t *table = (uint8_t*)malloc(fsize);
fread(table, fsize, 1, f);
fclose(f);
fprintf(stderr, "# %zu\n", kos_acpi_ssdt_cnt);
kos_acpi_ssdt_base[kos_acpi_ssdt_cnt] = table;
kos_acpi_ssdt_size[kos_acpi_ssdt_cnt] = fsize;
kos_acpi_ssdt_cnt++;
}
void shell_acpi_enable(int argc, char **argv) {
(void)argc;
(void)argv;
COVERAGE_ON();
kos_enable_acpi();
COVERAGE_OFF();
}
void shell_stack_init(int argc, char **argv) {
(void)argc;
(void)argv;
kos_stack_init();
}
void shell_net_add_device(int argc, char **argv) {
(void)argc;
(void)argv;
int32_t dev_num = kos_net_add_device(&vnet);
printf("device number: %" PRIi32 "\n", dev_num);
}
void shell_net_get_dev_count(int argc, char **argv) {
(void)argc;
(void)argv;
uint32_t count = umka_sys_net_get_dev_count();
printf("active network devices: %u\n", count);
}
void shell_net_get_dev_type(int argc, char **argv) {
const char *usage = \
"usage: net_get_dev_type <dev_num>\n"
" dev_num device number as returned by net_add_device";
if (argc != 2) {
puts(usage);
return;
}
uint8_t dev_num = strtoul(argv[1], NULL, 0);
int32_t dev_type = umka_sys_net_get_dev_type(dev_num);
printf("status: %s\n", dev_type == -1 ? "fail" : "ok");
if (dev_type != -1) {
printf("type of network device #%" PRIu8 ": %i\n", dev_num, dev_type);
}
}
void shell_net_get_dev_name(int argc, char **argv) {
const char *usage = \
"usage: net_get_dev_name <dev_num>\n"
" dev_num device number as returned by net_add_device";
if (argc != 2) {
puts(usage);
return;
}
char dev_name[64];
uint8_t dev_num = strtoul(argv[1], NULL, 0);
int32_t status = umka_sys_net_get_dev_name(dev_num, dev_name);
printf("status: %s\n", status == -1 ? "fail" : "ok");
if (status != -1) {
printf("name of network device #%" PRIu8 ": %s\n", dev_num, dev_name);
}
}
void shell_net_dev_reset(int argc, char **argv) {
const char *usage = \
"usage: net_dev_reset <dev_num>\n"
" dev_num device number as returned by net_add_device";
if (argc != 2) {
puts(usage);
return;
}
uint8_t dev_num = strtoul(argv[1], NULL, 0);
int32_t status = umka_sys_net_dev_reset(dev_num);
printf("status: %s\n", status == -1 ? "fail" : "ok");
}
void shell_net_dev_stop(int argc, char **argv) {
const char *usage = \
"usage: net_dev_stop <dev_num>\n"
" dev_num device number as returned by net_add_device";
if (argc != 2) {
puts(usage);
return;
}
uint8_t dev_num = strtoul(argv[1], NULL, 0);
int32_t status = umka_sys_net_dev_stop(dev_num);
printf("status: %s\n", status == -1 ? "fail" : "ok");
}
void shell_net_get_dev(int argc, char **argv) {
const char *usage = \
"usage: net_get_dev <dev_num>\n"
" dev_num device number as returned by net_add_device";
if (argc != 2) {
puts(usage);
return;
}
uint8_t dev_num = strtoul(argv[1], NULL, 0);
intptr_t dev = umka_sys_net_get_dev(dev_num);
printf("status: %s\n", dev == -1 ? "fail" : "ok");
if (dev != -1) {
printf("address of net dev #%" PRIu8 ": 0x%x\n", dev_num, dev);
}
}
void shell_net_get_packet_tx_count(int argc, char **argv) {
const char *usage = \
"usage: net_get_packet_tx_count <dev_num>\n"
" dev_num device number as returned by net_add_device";
if (argc != 2) {
puts(usage);
return;
}
uint8_t dev_num = strtoul(argv[1], NULL, 0);
uint32_t count = umka_sys_net_get_packet_tx_count(dev_num);
printf("status: %s\n", count == UINT32_MAX ? "fail" : "ok");
if (count != UINT32_MAX) {
printf("packet tx count of net dev #%" PRIu8 ": %" PRIu32 "\n",
dev_num, count);
}
}
void shell_net_get_packet_rx_count(int argc, char **argv) {
const char *usage = \
"usage: net_get_packet_rx_count <dev_num>\n"
" dev_num device number as returned by net_add_device";
if (argc != 2) {
puts(usage);
return;
}
uint8_t dev_num = strtoul(argv[1], NULL, 0);
uint32_t count = umka_sys_net_get_packet_rx_count(dev_num);
printf("status: %s\n", count == UINT32_MAX ? "fail" : "ok");
if (count != UINT32_MAX) {
printf("packet rx count of net dev #%" PRIu8 ": %" PRIu32 "\n",
dev_num, count);
}
}
void shell_net_get_byte_tx_count(int argc, char **argv) {
const char *usage = \
"usage: net_get_byte_tx_count <dev_num>\n"
" dev_num device number as returned by net_add_device";
if (argc != 2) {
puts(usage);
return;
}
uint8_t dev_num = strtoul(argv[1], NULL, 0);
uint32_t count = umka_sys_net_get_byte_tx_count(dev_num);
printf("status: %s\n", count == UINT32_MAX ? "fail" : "ok");
if (count != UINT32_MAX) {
printf("byte tx count of net dev #%" PRIu8 ": %" PRIu32 "\n",
dev_num, count);
}
}
void shell_net_get_byte_rx_count(int argc, char **argv) {
const char *usage = \
"usage: net_get_byte_rx_count <dev_num>\n"
" dev_num device number as returned by net_add_device";
if (argc != 2) {
puts(usage);
return;
}
uint8_t dev_num = strtoul(argv[1], NULL, 0);
uint32_t count = umka_sys_net_get_byte_rx_count(dev_num);
printf("status: %s\n", count == UINT32_MAX ? "fail" : "ok");
if (count != UINT32_MAX) {
printf("byte rx count of net dev #%" PRIu8 ": %" PRIu32 "\n",
dev_num, count);
}
}
void print_link_status_names(uint32_t status) {
switch (status & 0x3) {
case ETH_LINK_DOWN:
printf("ETH_LINK_DOWN");
break;
case ETH_LINK_UNKNOWN:
printf("ETH_LINK_UNKNOWN");
break;
case ETH_LINK_FD:
printf("ETH_LINK_FD");
break;
default:
printf("ERROR");
break;
}
switch(status & ~3u) {
case ETH_LINK_1G:
printf(" + ETH_LINK_1G");
break;
case ETH_LINK_100M:
printf(" + ETH_LINK_100M");
break;
case ETH_LINK_10M:
printf(" + ETH_LINK_10M");
break;
default:
printf(" + UNKNOWN");
break;
}
}
void shell_net_get_link_status(int argc, char **argv) {
const char *usage = \
"usage: net_get_link_status <dev_num>\n"
" dev_num device number as returned by net_add_device";
if (argc != 2) {
puts(usage);
return;
}
uint8_t dev_num = strtoul(argv[1], NULL, 0);
uint32_t status = umka_sys_net_get_link_status(dev_num);
printf("status: %s\n", status == UINT32_MAX ? "fail" : "ok");
if (status != UINT32_MAX) {
printf("link status of net dev #%" PRIu8 ": %" PRIu32 " ",
dev_num, status);
print_link_status_names(status);
putchar('\n');
}
}
void shell_net_open_socket(int argc, char **argv) {
const char *usage = \
"usage: net_open_socket <domain> <type> <protocol>\n"
" domain domain\n"
" type type\n"
" protocol protocol";
if (argc != 4) {
puts(usage);
return;
}
uint32_t domain = strtoul(argv[1], NULL, 0);
uint32_t type = strtoul(argv[2], NULL, 0);
uint32_t protocol = strtoul(argv[3], NULL, 0);
f75ret_t r = umka_sys_net_open_socket(domain, type, protocol);
printf("value: 0x%" PRIx32 "\n", r.value);
printf("errorcode: 0x%" PRIx32 "\n", r.errorcode);
// UINT32_MAX
}
void shell_net_close_socket(int argc, char **argv) {
const char *usage = \
"usage: net_close_socket <socket number>\n"
" socket number socket number";
if (argc != 2) {
puts(usage);
return;
}
uint32_t fd = strtoul(argv[1], NULL, 0);
f75ret_t r = umka_sys_net_close_socket(fd);
printf("value: 0x%" PRIx32 "\n", r.value);
printf("errorcode: 0x%" PRIx32 "\n", r.errorcode);
}
void shell_net_bind(int argc, char **argv) {
const char *usage = \
"usage: net_bind <fd> <port> <ip>\n"
" fd socket number\n"
" port port\n"
" addr addr";
if (argc != 4) {
puts(usage);
return;
}
uint32_t fd = strtoul(argv[1], NULL, 0);
uint16_t port = strtoul(argv[2], NULL, 0);
char *addr_str = argv[3];
uint32_t addr = inet_addr(addr_str);
struct sockaddr_in sa;
memset(&sa, 0, sizeof(sa));
sa.sin_family = AF_INET4;
sa.sin_port = htons(port);
sa.sin_addr.s_addr = addr;
printf("sockaddr at %p\n", &sa);
f75ret_t r = umka_sys_net_bind(fd, &sa, sizeof(struct sockaddr_in));
printf("value: 0x%" PRIx32 "\n", r.value);
printf("errorcode: 0x%" PRIx32 "\n", r.errorcode);
}
void shell_net_listen(int argc, char **argv) {
const char *usage = \
"usage: net_listen <fd> <backlog>\n"
" fd socket number\n"
" backlog max queue length";
if (argc != 3) {
puts(usage);
return;
}
uint32_t fd = strtoul(argv[1], NULL, 0);
uint32_t backlog = strtoul(argv[2], NULL, 0);
f75ret_t r = umka_sys_net_listen(fd, backlog);
printf("value: 0x%" PRIx32 "\n", r.value);
printf("errorcode: 0x%" PRIx32 "\n", r.errorcode);
}
void shell_net_connect(int argc, char **argv) {
const char *usage = \
"usage: net_connect <fd> <port> <ip>\n"
" fd socket number\n"
" port port\n"
" addr addr";
if (argc != 4) {
puts(usage);
return;
}
uint32_t fd = strtoul(argv[1], NULL, 0);
uint16_t port = strtoul(argv[2], NULL, 0);
char *addr_str = argv[3];
uint32_t addr = inet_addr(addr_str);
struct sockaddr_in sa;
memset(&sa, 0, sizeof(sa));
sa.sin_family = AF_INET4;
sa.sin_port = htons(port);
sa.sin_addr.s_addr = addr;
printf("sockaddr at %p\n", &sa);
f75ret_t r = umka_sys_net_connect(fd, &sa, sizeof(struct sockaddr_in));
printf("value: 0x%" PRIx32 "\n", r.value);
printf("errorcode: 0x%" PRIx32 "\n", r.errorcode);
}
void shell_net_accept(int argc, char **argv) {
const char *usage = \
"usage: net_accept <fd> <port> <ip>\n"
" fd socket number\n"
" port port\n"
" addr addr";
if (argc != 4) {
puts(usage);
return;
}
uint32_t fd = strtoul(argv[1], NULL, 0);
uint16_t port = strtoul(argv[2], NULL, 0);
char *addr_str = argv[3];
uint32_t addr = inet_addr(addr_str);
struct sockaddr_in sa;
memset(&sa, 0, sizeof(sa));
sa.sin_family = AF_INET4;
sa.sin_port = htons(port);
sa.sin_addr.s_addr = addr;
printf("sockaddr at %p\n", &sa);
f75ret_t r = umka_sys_net_accept(fd, &sa, sizeof(struct sockaddr_in));
printf("value: 0x%" PRIx32 "\n", r.value);
printf("errorcode: 0x%" PRIx32 "\n", r.errorcode);
}
void shell_net_eth_read_mac(int argc, char **argv) {
const char *usage = \
"usage: net_eth_read_mac <dev_num>\n"
" dev_num device number as returned by net_add_device";
if (argc != 2) {
puts(usage);
return;
}
uint32_t dev_num = strtoul(argv[1], NULL, 0);
f76ret_t r = umka_sys_net_eth_read_mac(dev_num);
if (r.eax == UINT32_MAX) {
printf("status: fail\n");
} else {
printf("%2.2x:%2.2x:%2.2x:%2.2x:%2.2x:%2.2x\n",
(uint8_t)(r.ebx >> 0), (uint8_t)(r.ebx >> 8),
(uint8_t)(r.eax >> 0), (uint8_t)(r.eax >> 8),
(uint8_t)(r.eax >> 16), (uint8_t)(r.eax >> 24));
}
}
void shell_net_ipv4_get_addr(int argc, char **argv) {
const char *usage = \
"usage: net_ipv4_get_addr <dev_num>\n"
" dev_num device number as returned by net_add_device";
if (argc != 2) {
puts(usage);
return;
}
uint32_t dev_num = strtoul(argv[1], NULL, 0);
f76ret_t r = umka_sys_net_ipv4_get_addr(dev_num);
if (r.eax == UINT32_MAX) {
printf("status: fail\n");
} else {
printf("%d.%d.%d.%d\n",
(uint8_t)(r.eax >> 0), (uint8_t)(r.eax >> 8),
(uint8_t)(r.eax >> 16), (uint8_t)(r.eax >> 24));
}
}
void shell_net_ipv4_set_addr(int argc, char **argv) {
const char *usage = \
"usage: net_ipv4_set_addr <dev_num> <addr>\n"
" dev_num device number as returned by net_add_device\n"
" addr a.b.c.d";
if (argc != 3) {
puts(usage);
return;
}
uint32_t dev_num = strtoul(argv[1], NULL, 0);
char *addr_str = argv[2];
uint32_t addr = inet_addr(addr_str);
f76ret_t r = umka_sys_net_ipv4_set_addr(dev_num, addr);
if (r.eax == UINT32_MAX) {
printf("status: fail\n");
} else {
printf("status: ok\n");
}
}
void shell_net_ipv4_get_dns(int argc, char **argv) {
const char *usage = \
"usage: net_ipv4_get_dns <dev_num>\n"
" dev_num device number as returned by net_add_device";
if (argc != 2) {
puts(usage);
return;
}
uint32_t dev_num = strtoul(argv[1], NULL, 0);
f76ret_t r = umka_sys_net_ipv4_get_dns(dev_num);
if (r.eax == UINT32_MAX) {
printf("status: fail\n");
} else {
printf("%d.%d.%d.%d\n",
(uint8_t)(r.eax >> 0), (uint8_t)(r.eax >> 8),
(uint8_t)(r.eax >> 16), (uint8_t)(r.eax >> 24));
}
}
void shell_net_ipv4_set_dns(int argc, char **argv) {
const char *usage = \
"usage: net_ipv4_set_dns <dev_num> <dns>\n"
" dev_num device number as returned by net_add_device\n"
" dns a.b.c.d";
if (argc != 3) {
puts(usage);
return;
}
uint32_t dev_num = strtoul(argv[1], NULL, 0);
uint32_t dns = inet_addr(argv[2]);
f76ret_t r = umka_sys_net_ipv4_set_dns(dev_num, dns);
if (r.eax == UINT32_MAX) {
printf("status: fail\n");
} else {
printf("status: ok\n");
}
}
void shell_net_ipv4_get_subnet(int argc, char **argv) {
const char *usage = \
"usage: net_ipv4_get_subnet <dev_num>\n"
" dev_num device number as returned by net_add_device";
if (argc != 2) {
puts(usage);
return;
}
uint32_t dev_num = strtoul(argv[1], NULL, 0);
f76ret_t r = umka_sys_net_ipv4_get_subnet(dev_num);
if (r.eax == UINT32_MAX) {
printf("status: fail\n");
} else {
printf("%d.%d.%d.%d\n",
(uint8_t)(r.eax >> 0), (uint8_t)(r.eax >> 8),
(uint8_t)(r.eax >> 16), (uint8_t)(r.eax >> 24));
}
}
void shell_net_ipv4_set_subnet(int argc, char **argv) {
const char *usage = \
"usage: net_ipv4_set_subnet <dev_num> <subnet>\n"
" dev_num device number as returned by net_add_device\n"
" subnet a.b.c.d";
if (argc != 3) {
puts(usage);
return;
}
uint32_t dev_num = strtoul(argv[1], NULL, 0);
char *subnet_str = argv[2];
uint32_t subnet = inet_addr(subnet_str);
f76ret_t r = umka_sys_net_ipv4_set_subnet(dev_num, subnet);
if (r.eax == UINT32_MAX) {
printf("status: fail\n");
} else {
printf("status: ok\n");
}
}
void shell_net_ipv4_get_gw(int argc, char **argv) {
const char *usage = \
"usage: net_ipv4_get_gw <dev_num>\n"
" dev_num device number as returned by net_add_device";
if (argc != 2) {
puts(usage);
return;
}
uint32_t dev_num = strtoul(argv[1], NULL, 0);
f76ret_t r = umka_sys_net_ipv4_get_gw(dev_num);
if (r.eax == UINT32_MAX) {
printf("status: fail\n");
} else {
printf("%d.%d.%d.%d\n",
(uint8_t)(r.eax >> 0), (uint8_t)(r.eax >> 8),
(uint8_t)(r.eax >> 16), (uint8_t)(r.eax >> 24));
}
}
void shell_net_ipv4_set_gw(int argc, char **argv) {
const char *usage = \
"usage: net_ipv4_set_gw <dev_num> <gw>\n"
" dev_num device number as returned by net_add_device\n"
" gw a.b.c.d";
if (argc != 3) {
puts(usage);
return;
}
uint32_t dev_num = strtoul(argv[1], NULL, 0);
char *gw_str = argv[2];
uint32_t gw = inet_addr(gw_str);
f76ret_t r = umka_sys_net_ipv4_set_gw(dev_num, gw);
if (r.eax == UINT32_MAX) {
printf("status: fail\n");
} else {
printf("status: ok\n");
}
}
void shell_net_arp_get_count(int argc, char **argv) {
const char *usage = \
"usage: net_arp_get_count <dev_num>\n"
" dev_num device number as returned by net_add_device";
if (argc != 2) {
puts(usage);
return;
}
uint32_t dev_num = strtoul(argv[1], NULL, 0);
f76ret_t r = umka_sys_net_arp_get_count(dev_num);
if (r.eax == UINT32_MAX) {
printf("status: fail\n");
} else {
printf("%" PRIi32 "\n", r.eax);
}
}
void shell_net_arp_get_entry(int argc, char **argv) {
const char *usage = \
"usage: net_arp_get_entry <dev_num>\n"
" dev_num device number as returned by net_add_device\n"
" arp_num arp number as returned by net_add_device";
if (argc != 3) {
puts(usage);
return;
}
uint32_t dev_num = strtoul(argv[1], NULL, 0);
uint32_t arp_num = strtoul(argv[2], NULL, 0);
arp_entry_t arp;
f76ret_t r = umka_sys_net_arp_get_entry(dev_num, arp_num, &arp);
if (r.eax == UINT32_MAX) {
printf("status: fail\n");
} else {
printf("arp #%u: IP %d.%d.%d.%d, "
"mac %2.2" SCNu8 ":%2.2" SCNu8 ":%2.2" SCNu8
":%2.2" SCNu8 ":%2.2" SCNu8 ":%2.2" SCNu8 " "
"status %" PRIu16 " "
"ttl %" PRIu16 "\n",
arp_num,
(uint8_t)(arp.ip >> 0), (uint8_t)(arp.ip >> 8),
(uint8_t)(arp.ip >> 16), (uint8_t)(arp.ip >> 24),
arp.mac[0], arp.mac[1], arp.mac[2],
arp.mac[3], arp.mac[4], arp.mac[5],
arp.status, arp.ttl);
}
}
void shell_net_arp_add_entry(int argc, char **argv) {
const char *usage = \
"usage: net_arp_add_entry <dev_num> <addr> <mac> <status> <ttl>\n"
" dev_num device number as returned by net_add_device\n"
" arp_num arp number as returned by net_add_device";
if (argc != 6) {
puts(usage);
return;
}
arp_entry_t arp;
uint32_t dev_num = strtoul(argv[1], NULL, 0);
arp.ip = inet_addr(argv[2]);
sscanf(argv[3], "%" SCNu8 ":%" SCNu8 ":%" SCNu8
":%" SCNu8 ":%" SCNu8 ":%" SCNu8,
arp.mac+0, arp.mac+1, arp.mac+2,
arp.mac+3, arp.mac+4, arp.mac+5);
arp.status = strtoul(argv[4], NULL, 0);
arp.ttl = strtoul(argv[5], NULL, 0);
fprintf(stderr, "## before\n");
f76ret_t r = umka_sys_net_arp_add_entry(dev_num, &arp);
fprintf(stderr, "## after\n");
if (r.eax == UINT32_MAX) {
printf("status: fail\n");
} else {
printf("%" PRIi32 "\n", r.eax);
}
}
typedef struct {
char *name;
void (*func) (int, char **);
} func_table_t;
func_table_t funcs[] = {
{ "i40", shell_i40 },
{ "disk_add", shell_disk_add },
{ "disk_del", shell_disk_del },
{ "ls70", shell_ls70 },
{ "ls80", shell_ls80 },
{ "stat70", shell_stat70 },
{ "stat80", shell_stat80 },
{ "read70", shell_read70 },
{ "read80", shell_read80 },
{ "pwd", shell_pwd },
{ "cd", shell_cd },
{ "set_cwd", shell_cd },
{ "draw_window", shell_draw_window },
{ "set_pixel", shell_set_pixel },
{ "write_text", shell_write_text },
{ "put_image", shell_put_image },
{ "button", shell_button },
{ "process_info", shell_process_info },
{ "window_redraw", shell_window_redraw },
{ "draw_rect", shell_draw_rect },
{ "get_screen_size", shell_get_screen_size },
{ "draw_line", shell_draw_line },
{ "display_number", shell_display_number },
{ "set_button_style", shell_set_button_style },
{ "set_window_colors", shell_set_window_colors },
{ "get_window_colors", shell_get_window_colors },
{ "get_skin_height", shell_get_skin_height },
{ "get_screen_area", shell_get_screen_area },
{ "set_screen_area", shell_set_screen_area },
{ "get_skin_margins", shell_get_skin_margins },
{ "set_skin", shell_set_skin },
{ "get_font_smoothing", shell_get_font_smoothing },
{ "set_font_smoothing", shell_set_font_smoothing },
{ "get_font_size", shell_get_font_size },
{ "set_font_size", shell_set_font_size },
{ "put_image_palette", shell_put_image_palette },
{ "move_window", shell_move_window },
{ "set_window_caption", shell_set_window_caption },
{ "blit_bitmap", shell_blit_bitmap },
{ "scrot", shell_scrot },
{ "dump_win_stack", shell_dump_win_stack },
{ "dump_win_pos", shell_dump_win_pos },
{ "acpi_enable", shell_acpi_enable },
{ "acpi_preload_table", shell_acpi_preload_table },
{ "stack_init", shell_stack_init },
{ "net_add_device", shell_net_add_device },
{ "net_get_dev_count", shell_net_get_dev_count },
{ "net_get_dev_type", shell_net_get_dev_type },
{ "net_get_dev_name", shell_net_get_dev_name },
{ "net_dev_reset", shell_net_dev_reset },
{ "net_dev_stop", shell_net_dev_stop },
{ "net_get_dev", shell_net_get_dev },
{ "net_get_packet_tx_count", shell_net_get_packet_tx_count },
{ "net_get_packet_rx_count", shell_net_get_packet_rx_count },
{ "net_get_byte_tx_count", shell_net_get_byte_tx_count },
{ "net_get_byte_rx_count", shell_net_get_byte_rx_count },
{ "net_get_link_status", shell_net_get_link_status },
{ "net_open_socket", shell_net_open_socket },
{ "net_close_socket", shell_net_close_socket },
{ "net_bind", shell_net_bind },
{ "net_listen", shell_net_listen },
{ "net_connect", shell_net_connect },
{ "net_accept", shell_net_accept },
{ "net_eth_read_mac", shell_net_eth_read_mac },
{ "net_ipv4_get_addr", shell_net_ipv4_get_addr },
{ "net_ipv4_set_addr", shell_net_ipv4_set_addr },
{ "net_ipv4_get_dns", shell_net_ipv4_get_dns },
{ "net_ipv4_set_dns", shell_net_ipv4_set_dns },
{ "net_ipv4_get_subnet", shell_net_ipv4_get_subnet },
{ "net_ipv4_set_subnet", shell_net_ipv4_set_subnet },
{ "net_ipv4_get_gw", shell_net_ipv4_get_gw },
{ "net_ipv4_set_gw", shell_net_ipv4_set_gw },
{ "net_arp_get_count", shell_net_arp_get_count },
{ "net_arp_get_entry", shell_net_arp_get_entry },
{ "net_arp_add_entry", shell_net_arp_add_entry },
{ NULL, NULL },
};
void *run_test(const char *infile_name) {
FILE *infile, *outfile;
if (!infile_name) {
infile = stdin;
outfile = stdout;
} else {
char outfile_name[PATH_MAX];
strncpy(outfile_name, infile_name, PATH_MAX-2); // ".t" is shorter than ".out"
char *last_dot = strrchr(outfile_name, '.');
if (!last_dot) {
printf("test file must have '.t' suffix\n");
return NULL;
}
strcpy(last_dot, ".out.log");
infile = fopen(infile_name, "r");
outfile = fopen(outfile_name, "w");
if (!infile || !outfile) {
printf("can't open in/out files\n");
return NULL;
}
}
int is_tty = isatty(fileno(infile));
char **argv = (char**)malloc(sizeof(char*) * (MAX_COMMAND_ARGS + 1));
while(next_line(infile, is_tty)) {
if (cmd_buf[0] == '#' || cmd_buf[0] == '\n') {
printf("%s", cmd_buf);
continue;
}
if (cmd_buf[0] == 'X') break;
if (!is_tty) {
prompt();
printf("%s", cmd_buf);
fflush(outfile);
}
int argc = split_args(cmd_buf, argv);
func_table_t *ft;
for (ft = funcs; ft->name != NULL; ft++) {
if (!strcmp(argv[0], ft->name)) {
break;
}
}
if (ft->name) {
ft->func(argc, argv);
} else {
printf("unknown command: %s\n", argv[0]);
}
}
free(argv);
return NULL;
}
int main(int argc, char **argv) {
const char *usage = \
"usage: umka_shell [test_file.t] [-c]\n"
" -c collect coverage";
const char *test_file = NULL;
int opt;
optind = 1;
if (argc > 1 && *argv[optind] != '-') {
test_file = argv[optind++];
}
while ((opt = getopt(argc, argv, "c")) != -1) {
switch (opt) {
case 'c':
coverage = 1;
break;
default:
puts(usage);
return 1;
}
}
if (coverage)
trace_begin();
COVERAGE_ON();
kos_init();
COVERAGE_OFF();
run_test(test_file);
if (coverage)
trace_end();
return 0;
}