kolibrios/drivers/ethernet/rhine.asm

1690 lines
46 KiB
NASM
Raw Normal View History

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; ;;
;; Copyright (C) KolibriOS team 2010-2013. All rights reserved. ;;
;; Distributed under terms of the GNU General Public License ;;
;; ;;
;; rhine.asm ;;
;; ;;
;; Ethernet driver for Kolibri OS ;;
;; ;;
;; This driver is based on the via-rhine driver from ;;
;; the etherboot 5.0.6 project. The copyright statement is ;;
;; ;;
;; GNU GENERAL PUBLIC LICENSE ;;
;; Version 2, June 1991 ;;
;; ;;
;; Rewritten in flat assembler by Asper (asper.85@mail.ru) ;;
;; and hidnplayr (hidnplayr@gmail.com) ;;
;; ;;
;; See file COPYING for details ;;
;; ;;
;; ;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
format MS COFF
API_VERSION = 0x01000100
DRIVER_VERSION = 5
MAX_DEVICES = 16
DEBUG = 1
__DEBUG__ = 1
__DEBUG_LEVEL__ = 2
TX_RING_SIZE = 4
RX_RING_SIZE = 4
; max time out delay time
W_MAX_TIMEOUT = 0x0FFF
; Size of the in-memory receive ring.
RX_BUF_LEN_IDX = 3 ; 0==8K, 1==16K, 2==32K, 3==64K
RX_BUF_LEN = (8192 shl RX_BUF_LEN_IDX)
; PCI Tuning Parameters
; Threshold is bytes transferred to chip before transmission starts.
TX_FIFO_THRESH = 256 ; In bytes, rounded down to 32 byte units.
; The following settings are log_2(bytes)-4: 0 == 16 bytes .. 6==1024.
RX_FIFO_THRESH = 4 ; Rx buffer level before first PCI xfer.
RX_DMA_BURST = 4 ; Maximum PCI burst, '4' is 256 bytes
TX_DMA_BURST = 4
include '../proc32.inc'
include '../imports.inc'
include '../fdo.inc'
include '../netdrv.inc'
public START
public service_proc
public version
;**************************************************************************
; VIA Rhine Register Definitions
;**************************************************************************
byPAR0 = 0x00
byRCR = 0x06
byTCR = 0x07
byCR0 = 0x08
byCR1 = 0x09
byISR0 = 0x0c
byISR1 = 0x0d
byIMR0 = 0x0e
byIMR1 = 0x0f
byMAR0 = 0x10
byMAR1 = 0x11
byMAR2 = 0x12
byMAR3 = 0x13
byMAR4 = 0x14
byMAR5 = 0x15
byMAR6 = 0x16
byMAR7 = 0x17
dwCurrentRxDescAddr = 0x18
dwCurrentTxDescAddr = 0x1c
dwCurrentRDSE0 = 0x20
dwCurrentRDSE1 = 0x24
dwCurrentRDSE2 = 0x28
dwCurrentRDSE3 = 0x2c
dwNextRDSE0 = 0x30
dwNextRDSE1 = 0x34
dwNextRDSE2 = 0x38
dwNextRDSE3 = 0x3c
dwCurrentTDSE0 = 0x40
dwCurrentTDSE1 = 0x44
dwCurrentTDSE2 = 0x48
dwCurrentTDSE3 = 0x4c
dwNextTDSE0 = 0x50
dwNextTDSE1 = 0x54
dwNextTDSE2 = 0x58
dwNextTDSE3 = 0x5c
dwCurrRxDMAPtr = 0x60
dwCurrTxDMAPtr = 0x64
byMPHY = 0x6c
byMIISR = 0x6d
byBCR0 = 0x6e
byBCR1 = 0x6f
byMIICR = 0x70
byMIIAD = 0x71
wMIIDATA = 0x72
byEECSR = 0x74
byTEST = 0x75
byGPIO = 0x76
byCFGA = 0x78
byCFGB = 0x79
byCFGC = 0x7a
byCFGD = 0x7b
wTallyCntMPA = 0x7c
wTallyCntCRC = 0x7d
bySTICKHW = 0x83
byWOLcrClr = 0xA4
byWOLcgClr = 0xA7
byPwrcsrClr = 0xAC
;--------------------- Exioaddr Definitions -------------------------
; Bits in the RCR register
RCR_RRFT2 = 0x80
RCR_RRFT1 = 0x40
RCR_RRFT0 = 0x20
RCR_PROM = 0x10
RCR_AB = 0x08
RCR_AM = 0x04
RCR_AR = 0x02
RCR_SEP = 0x01
; Bits in the TCR register
TCR_RTSF = 0x80
TCR_RTFT1 = 0x40
TCR_RTFT0 = 0x20
TCR_OFSET = 0x08
TCR_LB1 = 0x04 ; loopback[1]
TCR_LB0 = 0x02 ; loopback[0]
; Bits in the CR0 register
CR0_RDMD = 0x40 ; rx descriptor polling demand
CR0_TDMD = 0x20 ; tx descriptor polling demand
CR0_TXON = 0x10
CR0_RXON = 0x08
CR0_STOP = 0x04 ; stop NIC, default = 1
CR0_STRT = 0x02 ; start NIC
CR0_INIT = 0x01 ; start init process
; Bits in the CR1 register
CR1_SFRST = 0x80 ; software reset
CR1_RDMD1 = 0x40 ; RDMD1
CR1_TDMD1 = 0x20 ; TDMD1
CR1_KEYPAG = 0x10 ; turn on par/key
CR1_DPOLL = 0x08 ; disable rx/tx auto polling
CR1_FDX = 0x04 ; full duplex mode
CR1_ETEN = 0x02 ; early tx mode
CR1_EREN = 0x01 ; early rx mode
; Bits in the CR register
CR_RDMD = 0x0040 ; rx descriptor polling demand
CR_TDMD = 0x0020 ; tx descriptor polling demand
CR_TXON = 0x0010
CR_RXON = 0x0008
CR_STOP = 0x0004 ; stop NIC, default = 1
CR_STRT = 0x0002 ; start NIC
CR_INIT = 0x0001 ; start init process
CR_SFRST = 0x8000 ; software reset
CR_RDMD1 = 0x4000 ; RDMD1
CR_TDMD1 = 0x2000 ; TDMD1
CR_KEYPAG = 0x1000 ; turn on par/key
CR_DPOLL = 0x0800 ; disable rx/tx auto polling
CR_FDX = 0x0400 ; full duplex mode
CR_ETEN = 0x0200 ; early tx mode
CR_EREN = 0x0100 ; early rx mode
; Bits in the IMR0 register
IMR0_CNTM = 0x80
IMR0_BEM = 0x40
IMR0_RUM = 0x20
IMR0_TUM = 0x10
IMR0_TXEM = 0x08
IMR0_RXEM = 0x04
IMR0_PTXM = 0x02
IMR0_PRXM = 0x01
; define imrshadow
IMRShadow = 0x5AFF
; Bits in the IMR1 register
IMR1_INITM = 0x80
IMR1_SRCM = 0x40
IMR1_NBFM = 0x10
IMR1_PRAIM = 0x08
IMR1_RES0M = 0x04
IMR1_ETM = 0x02
IMR1_ERM = 0x01
; Bits in the ISR register
ISR_INITI = 0x8000
ISR_SRCI = 0x4000
ISR_ABTI = 0x2000
ISR_NORBF = 0x1000
ISR_PKTRA = 0x0800
ISR_RES0 = 0x0400
ISR_ETI = 0x0200
ISR_ERI = 0x0100
ISR_CNT = 0x0080
ISR_BE = 0x0040
ISR_RU = 0x0020
ISR_TU = 0x0010
ISR_TXE = 0x0008
ISR_RXE = 0x0004
ISR_PTX = 0x0002
ISR_PRX = 0x0001
; Bits in the ISR0 register
ISR0_CNT = 0x80
ISR0_BE = 0x40
ISR0_RU = 0x20
ISR0_TU = 0x10
ISR0_TXE = 0x08
ISR0_RXE = 0x04
ISR0_PTX = 0x02
ISR0_PRX = 0x01
; Bits in the ISR1 register
ISR1_INITI = 0x80
ISR1_SRCI = 0x40
ISR1_NORBF = 0x10
ISR1_PKTRA = 0x08
ISR1_ETI = 0x02
ISR1_ERI = 0x01
; ISR ABNORMAL CONDITION
ISR_ABNORMAL = ISR_BE+ISR_RU+ISR_TU+ISR_CNT+ISR_NORBF+ISR_PKTRA
; Bits in the MIISR register
MIISR_MIIERR = 0x08
MIISR_MRERR = 0x04
MIISR_LNKFL = 0x02
MIISR_SPEED = 0x01
; Bits in the MIICR register
MIICR_MAUTO = 0x80
MIICR_RCMD = 0x40
MIICR_WCMD = 0x20
MIICR_MDPM = 0x10
MIICR_MOUT = 0x08
MIICR_MDO = 0x04
MIICR_MDI = 0x02
MIICR_MDC = 0x01
; Bits in the EECSR register
EECSR_EEPR = 0x80 ; eeprom programed status, 73h means programed
EECSR_EMBP = 0x40 ; eeprom embeded programming
EECSR_AUTOLD = 0x20 ; eeprom content reload
EECSR_DPM = 0x10 ; eeprom direct programming
EECSR_CS = 0x08 ; eeprom CS pin
EECSR_SK = 0x04 ; eeprom SK pin
EECSR_DI = 0x02 ; eeprom DI pin
EECSR_DO = 0x01 ; eeprom DO pin
; Bits in the BCR0 register
BCR0_CRFT2 = 0x20
BCR0_CRFT1 = 0x10
BCR0_CRFT0 = 0x08
BCR0_DMAL2 = 0x04
BCR0_DMAL1 = 0x02
BCR0_DMAL0 = 0x01
; Bits in the BCR1 register
BCR1_CTSF = 0x20
BCR1_CTFT1 = 0x10
BCR1_CTFT0 = 0x08
BCR1_POT2 = 0x04
BCR1_POT1 = 0x02
BCR1_POT0 = 0x01
; Bits in the CFGA register
CFGA_EELOAD = 0x80 ; enable eeprom embeded and direct programming
CFGA_JUMPER = 0x40
CFGA_MTGPIO = 0x08
CFGA_T10EN = 0x02
CFGA_AUTO = 0x01
; Bits in the CFGB register
CFGB_PD = 0x80
CFGB_POLEN = 0x02
CFGB_LNKEN = 0x01
; Bits in the CFGC register
CFGC_M10TIO = 0x80
CFGC_M10POL = 0x40
CFGC_PHY1 = 0x20
CFGC_PHY0 = 0x10
CFGC_BTSEL = 0x08
CFGC_BPS2 = 0x04 ; bootrom select[2]
CFGC_BPS1 = 0x02 ; bootrom select[1]
CFGC_BPS0 = 0x01 ; bootrom select[0]
; Bits in the CFGD register
CFGD_GPIOEN = 0x80
CFGD_DIAG = 0x40
CFGD_MAGIC = 0x10
CFGD_RANDOM = 0x08
CFGD_CFDX = 0x04
CFGD_CEREN = 0x02
CFGD_CETEN = 0x01
; Bits in RSR
RSR_RERR = 0x00000001
RSR_CRC = 0x00000002
RSR_FAE = 0x00000004
RSR_FOV = 0x00000008
RSR_LONG = 0x00000010
RSR_RUNT = 0x00000020
RSR_SERR = 0x00000040
RSR_BUFF = 0x00000080
RSR_EDP = 0x00000100
RSR_STP = 0x00000200
RSR_CHN = 0x00000400
RSR_PHY = 0x00000800
RSR_BAR = 0x00001000
RSR_MAR = 0x00002000
RSR_RXOK = 0x00008000
RSR_ABNORMAL = RSR_RERR+RSR_LONG+RSR_RUNT
; Bits in TSR
TSR_NCR0 = 0x00000001
TSR_NCR1 = 0x00000002
TSR_NCR2 = 0x00000004
TSR_NCR3 = 0x00000008
TSR_COLS = 0x00000010
TSR_CDH = 0x00000080
TSR_ABT = 0x00000100
TSR_OWC = 0x00000200
TSR_CRS = 0x00000400
TSR_UDF = 0x00000800
TSR_TBUFF = 0x00001000
TSR_SERR = 0x00002000
TSR_JAB = 0x00004000
TSR_TERR = 0x00008000
TSR_ABNORMAL = TSR_TERR+TSR_OWC+TSR_ABT+TSR_JAB+TSR_CRS
TSR_OWN_BIT = 0x80000000
CB_DELAY_LOOP_WAIT = 10 ; 10ms
; enabled mask value of irq
W_IMR_MASK_VALUE = 0x1BFF ; initial value of IMR
; Ethernet address filter type
PKT_TYPE_DIRECTED = 0x0001 ; obsolete, directed address is always accepted
PKT_TYPE_MULTICAST = 0x0002
PKT_TYPE_ALL_MULTICAST = 0x0004
PKT_TYPE_BROADCAST = 0x0008
PKT_TYPE_PROMISCUOUS = 0x0020
PKT_TYPE_LONG = 0x2000
PKT_TYPE_RUNT = 0x4000
PKT_TYPE_ERROR = 0x8000 ; accept error packets, e.g. CRC error
; Loopback mode
NIC_LB_NONE = 0x00
NIC_LB_INTERNAL = 0x01
NIC_LB_PHY = 0x02 ; MII or Internal-10BaseT loopback
PKT_BUF_SZ = 1536 ; Size of each temporary Rx buffer.
PCI_REG_MODE3 = 0x53
MODE3_MIION = 0x04 ; in PCI_REG_MOD3 OF PCI space
; VIA Rhine revisions
VT86C100A = 0x00
VTunknown0 = 0x20
VT6102 = 0x40
VT8231 = 0x50 ; Integrated MAC
VT8233 = 0x60 ; Integrated MAC
VT8235 = 0x74 ; Integrated MAC
VT8237 = 0x78 ; Integrated MAC
VTunknown1 = 0x7C
VT6105 = 0x80
VT6105_B0 = 0x83
VT6105L = 0x8A
VT6107 = 0x8C
VTunknown2 = 0x8E
VT6105M = 0x90
; Rx status bits
RX_SBITS_RERR = 1 shl 0
RX_SBITS_CRC_ERROR = 1 shl 1
RX_SBITS_FAE = 1 shl 2
RX_SBITS_FOV = 1 shl 3
RX_SBITS_TOOLONG = 1 shl 4
RX_SBITS_RUNT = 1 shl 5
RX_SBITS_SERR = 1 shl 6
RX_SBITS_BUFF = 1 shl 7
RX_SBITS_EDP = 1 shl 8
RX_SBITS_STP = 1 shl 9
RX_SBITS_CHN = 1 shl 10
RX_SBITS_PHY = 1 shl 11
RX_SBITS_BAR = 1 shl 12
RX_SBITS_MAR = 1 shl 13
RX_SBITS_RESERVED_1 = 1 shl 14
RX_SBITS_RXOK = 1 shl 15
RX_SBITS_FRAME_LENGTH = 0x7FF shl 16
RX_SBITS_RESERVED_2 = 0xF shl 27
RX_SBITS_OWN_BIT = 1 shl 31
; Rx control bits
RX_CBITS_RX_BUF_SIZE = 0x7FF
RX_CBITS_EXTEND_RX_BUF_SIZE = 0xF shl 11
RX_CBITS_RESERVED_1 = 0x1FFFF shl 15
; Tx status bits
TX_SBITS_NCR0 = 1 shl 0
TX_SBITS_NCR1 = 1 shl 1
TX_SBITS_NCR2 = 1 shl 2
TX_SBITS_NCR3 = 1 shl 3
TX_SBITS_COLS = 1 shl 4
TX_SBITS_RESERVED_1 = 1 shl 5
TX_SBITS_CDH = 1 shl 7
TX_SBITS_ABT = 1 shl 8
TX_SBITS_OWC = 1 shl 9
TX_SBITS_CRS = 1 shl 10
TX_SBITS_UDF = 1 shl 11
TX_SBITS_TBUFF = 1 shl 12
TX_SBITS_SERR = 1 shl 13
TX_SBITS_JAB = 1 shl 14
TX_SBITS_TERR = 1 shl 15
TX_SBITS_RESERVED_2 = 0x7FFF shl 16
TX_SBITS_OWN_BIT = 1 shl 31
; Tx control bits
TX_CBITS_TX_BUF_SIZE = 0x7FF
TX_CBITS_EXTEND_TX_BUF_SIZE = 0xF shl 11
TX_CBITS_CHN = 1 shl 15
TX_CBITS_CRC = 1 shl 16
TX_CBITS_RESERVED_1 = 0xF shl 17
TX_CBITS_STP = 1 shl 21
TX_CBITS_EDP = 1 shl 22
TX_CBITS_IC = 1 shl 23
TX_CBITS_RESERVED_2 = 0xFF shl 24
; Offsets to the device registers.
StationAddr = 0x00
RxConfig = 0x06
TxConfig = 0x07
ChipCmd = 0x08
IntrStatus = 0x0C
IntrEnable = 0x0E
MulticastFilter0 = 0x10
MulticastFilter1 = 0x14
RxRingPtr = 0x18
TxRingPtr = 0x1C
GFIFOTest = 0x54
MIIPhyAddr = 0x6C
MIIStatus = 0x6D
PCIBusConfig = 0x6E
MIICmd = 0x70
MIIRegAddr = 0x71
MIIData = 0x72
MACRegEEcsr = 0x74
ConfigA = 0x78
ConfigB = 0x79
ConfigC = 0x7A
ConfigD = 0x7B
RxMissed = 0x7C
RxCRCErrs = 0x7E
MiscCmd = 0x81
StickyHW = 0x83
IntrStatus2 = 0x84
WOLcrClr = 0xA4
WOLcgClr = 0xA7
PwrcsrClr = 0xAC
; Bits in the interrupt status/mask registers.
IntrRxDone = 0x0001
IntrRxErr = 0x0004
IntrRxEmpty = 0x0020
IntrTxDone = 0x0002
IntrTxError = 0x0008
IntrTxUnderrun = 0x0010
IntrPCIErr = 0x0040
IntrStatsMax = 0x0080
IntrRxEarly = 0x0100
IntrRxOverflow = 0x0400
IntrRxDropped = 0x0800
IntrRxNoBuf = 0x1000
IntrTxAborted = 0x2000
IntrLinkChange = 0x4000
IntrRxWakeUp = 0x8000
IntrNormalSummary = 0x0003
IntrAbnormalSummary = 0xC260
IntrTxDescRace = 0x080000 ; mapped from IntrStatus2
IntrTxErrSummary = 0x082218
DEFAULT_INTR = (IntrRxDone or IntrRxErr or IntrRxEmpty or IntrRxOverflow or IntrRxDropped or IntrRxNoBuf)
virtual at ebx
device:
ETH_DEVICE
.io_addr dd ?
.pci_dev dd ?
.pci_bus dd ?
.revision db ?
.irq_line db ?
.chip_id dw ?
.cur_rx dw ?
.cur_tx dw ?
.last_tx dw ?
rb 0x100-(($ - device) and 0xff) ; align 256
.tx_ring rb tx_head.sizeof*TX_RING_SIZE
rb 0x100-(($ - device) and 0xff) ; align 256
.rx_ring rb rx_head.sizeof*RX_RING_SIZE
.size = $ - device
end virtual
virtual at 0
rx_head:
.status dd ?
.control dd ?
.buff_addr dd ? ; address
.next_desc dd ? ;
.buff_addr_virt dd ?
rd 3 ; alignment
.sizeof:
end virtual
virtual at 0
tx_head:
.status dd ?
.control dd ?
.buff_addr dd ? ; address
.next_desc dd ? ;
.buff_addr_virt dd ?
rd 3 ; alignment
.sizeof:
end virtual
section '.flat' code readable align 16
;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; ;;
;; proc START ;;
;; ;;
;; (standard driver proc) ;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;
align 4
proc START stdcall, state:dword
cmp [state], 1
jne .exit
.entry:
DEBUGF 2,"Loading %s driver\n", my_service
stdcall RegService, my_service, service_proc
ret
.fail:
.exit:
xor eax, eax
ret
endp
;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; ;;
;; proc SERVICE_PROC ;;
;; ;;
;; (standard driver proc) ;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;
align 4
proc service_proc stdcall, ioctl:dword
mov edx, [ioctl]
mov eax, [IOCTL.io_code]
;------------------------------------------------------
cmp eax, 0 ;SRV_GETVERSION
jne @F
cmp [IOCTL.out_size], 4
jb .fail
mov eax, [IOCTL.output]
mov [eax], dword API_VERSION
xor eax, eax
ret
;------------------------------------------------------
@@:
cmp eax, 1 ;SRV_HOOK
jne .fail
cmp [IOCTL.inp_size], 3 ; Data input must be at least 3 bytes
jb .fail
mov eax, [IOCTL.input]
cmp byte [eax], 1 ; 1 means device number and bus number (pci) are given
jne .fail ; other types arent supported for this card yet
; check if the device is already listed
mov esi, device_list
mov ecx, [devices]
test ecx, ecx
jz .firstdevice
; mov eax, [IOCTL.input] ; get the pci bus and device numbers
mov ax , [eax+1] ;
.nextdevice:
mov ebx, [esi]
cmp al, byte[device.pci_bus]
jne @f
cmp ah, byte[device.pci_dev]
je .find_devicenum ; Device is already loaded, let's find it's device number
@@:
add esi, 4
loop .nextdevice
; This device doesnt have its own eth_device structure yet, lets create one
.firstdevice:
cmp [devices], MAX_DEVICES ; First check if the driver can handle one more card
jae .fail
allocate_and_clear ebx, device.size, .fail ; Allocate the buffer for device structure
; Fill in the direct call addresses into the struct
mov [device.reset], reset
mov [device.transmit], transmit
mov [device.unload], unload
mov [device.name], my_service
; save the pci bus and device numbers
mov eax, [IOCTL.input]
movzx ecx, byte[eax+1]
mov [device.pci_bus], ecx
movzx ecx, byte[eax+2]
mov [device.pci_dev], ecx
; Now, it's time to find the base io addres of the PCI device
PCI_find_io
; We've found the io address, find IRQ now
PCI_find_irq
DEBUGF 1,"Hooking into device, dev:%x, bus:%x, irq:%x, addr:%x\n",\
[device.pci_dev]:1,[device.pci_bus]:1,[device.irq_line]:1,[device.io_addr]:4
; Ok, the eth_device structure is ready, let's probe the device
call probe ; this function will output in eax
test eax, eax
jnz .err ; If an error occured, exit
mov eax, [devices] ; Add the device structure to our device list
mov [device_list+4*eax], ebx ; (IRQ handler uses this list to find device)
inc [devices] ;
mov [device.type], NET_TYPE_ETH
call NetRegDev
cmp eax, -1
je .destroy
ret
; If the device was already loaded, find the device number and return it in eax
.find_devicenum:
DEBUGF 1,"Trying to find device number of already registered device\n"
call NetPtrToNum ; This kernel procedure converts a pointer to device struct in ebx
; into a device number in edi
mov eax, edi ; Application wants it in eax instead
DEBUGF 1,"Kernel says: %u\n", eax
ret
; If an error occured, remove all allocated data and exit (returning -1 in eax)
.destroy:
; todo: reset device into virgin state
.err:
stdcall KernelFree, ebx
.fail:
or eax, -1
ret
;------------------------------------------------------
endp
;;/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\;;
;; ;;
;; Actual Hardware dependent code starts here ;;
;; ;;
;;/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\;;
probe:
mov eax, [device.io_addr]
DEBUGF 1, "Probing card at 0x%x\n", eax
; make the card a bus master
PCI_make_bus_master
; get device id
stdcall PciRead16, [device.pci_bus], [device.pci_dev], PCI_DEVICE_ID
mov [device.chip_id], ax
mov esi, chiplist
.loop:
cmp word[esi+2], ax
je .got_it
add esi, 8
cmp esi, chiplist + 6*8
jbe .loop
DEBUGF 2, "Unknown chip: 0x%x, continueing anyway\n", ax
jmp .done
.got_it:
mov eax, dword[esi+4]
mov [device.name], eax
DEBUGF 1, "Chip type = %s\n", eax
.done:
; get revision id.
PCI_find_rev
movzx eax, [device.revision]
DEBUGF 1, "Card revision = 0x%x\n", eax
; D-Link provided reset code (with comment additions)
cmp al, 0x40
jb .below_x40
mov ax, [device.chip_id]
DEBUGF 1, "Enabling Sticky Bit Workaround for Chip_id: 0x%x\n", ax
; clear sticky bit before reset & read ethernet address
set_io 0
set_io bySTICKHW
in al, dx
and al, 0xFC
out dx, al
; (bits written are cleared?)
; disable force PME-enable
set_io byWOLcgClr
mov al, 0x80
out dx, al
; disable power-event config bit
mov al, 0xFF
out dx, al
; clear power status (undocumented in vt6102 docs?)
set_io byPwrcsrClr
out dx, al
.below_x40:
; Reset the chip to erase previous misconfiguration.
set_io 0
set_io byCR0
mov ax, CR_SFRST
out dx, ax
; if vt3043 delay after reset
cmp [device.revision], 0x40
jae @f
mov esi, 2000 ; 2000ms
call Sleep
@@:
; polling till software reset complete
mov ecx, W_MAX_TIMEOUT
.poll_again:
in ax, dx
test ax, CR_SFRST
jz @f
loop .poll_again
DEBUGF 1, "Soft reset timeout!\n"
@@:
; issue AUTOLoad in EECSR to reload eeprom
set_io byEECSR
mov al, 0x20
out dx, al
; if vt3065 delay after reset
cmp [device.revision], 0x40
jb .not_vt3065
; delay 8ms to let MAC stable
mov esi, 8 ; 8ms
call Sleep
; for 3065D, EEPROM reloaded will cause bit 0 in MAC_REG_CFGA
; turned on. it makes MAC receive magic packet
; automatically. So, we turn it off. (D-Link)
set_io byCFGA
in al, dx
and al, 0xFE
out dx, al
; turn on bit2 in PCI configuration register 0x53 , only for 3065
stdcall PciRead8, [device.pci_bus], [device.pci_dev], PCI_REG_MODE3
or al, MODE3_MIION
stdcall PciWrite8, [device.pci_bus], [device.pci_dev], PCI_REG_MODE3, eax
.not_vt3065:
; back off algorithm, disable the right-most 4-bit off CFGD
set_io 0
set_io byCFGD
in al, dx
and al, not (CFGD_RANDOM or CFGD_CFDX or CFGD_CEREN or CFGD_CETEN)
out dx, al
; reload eeprom
call reload_eeprom
; read MAC
call read_mac
; restart MII auto-negotiation
stdcall WriteMII, 0, 1 shl 9, 1
DEBUGF 1, "Analyzing Media type, this may take several seconds"
mov ecx, 5
.read_again:
DEBUGF 1, "."
mov esi, 1
call Sleep
stdcall ReadMII, 1
test eax, 0x0020
jnz .read_done
loop .read_again
DEBUGF 1, "timeout!\n"
.read_done:
DEBUGF 1, " OK\n"
if DEBUG
set_io 0
set_io 0x6C
in al, dx
and eax, 0xFF
DEBUGF 1, "MII : Address %x\n", ax
stdcall ReadMII, 1
DEBUGF 1, "status 0x%x\n", ax
stdcall ReadMII, 4
DEBUGF 1, "advertising 0x%x\n", ax
stdcall ReadMII, 5
DEBUGF 1, "link 0x%x\n", ax
end if
; query MII to know LineSpeed, duplex mode
set_io 0
set_io MIIStatus
in al, dx
test al, MIISR_SPEED
jz .100mbps
DEBUGF 1, "Linespeed=10Mbs\n"
jmp @f
.100mbps:
DEBUGF 1, "Linespeed=100Mbs\n"
@@:
call QueryAuto
test eax, 1
jz .halfduplex
DEBUGF 1, "Fullduplex\n"
set_io 0
set_io byCR0
mov ax, CR_FDX
out dx, ax
jmp @f
.halfduplex:
DEBUGF 1, "Halfduplex\n"
@@:
; set MII 10 FULL ON, only apply in vt3043
cmp [device.chip_id], 0x3043
jne @f
stdcall WriteMII, 0x17, 1 shl 1, 1
@@:
; turn on MII link change
set_io 0
set_io byMIICR
in al, dx
and al, 0x7F
out dx, al
push eax
call MIIDelay
set_io byMIIAD
mov al, 0x41
out dx, al
call MIIDelay
pop eax
or al, 0x80
set_io byMIICR
out dx, al
;**************************************************************************;
;* ETH_RESET - Reset adapter *;
;**************************************************************************;
reset:
DEBUGF 1, "reset\n"
; attach int handler
movzx eax, [device.irq_line]
DEBUGF 1,"Attaching int handler to irq %x\n", eax:1
stdcall AttachIntHandler, eax, int_handler, dword 0
test eax, eax
jnz @f
DEBUGF 2,"\nCould not attach int handler!\n"
; or eax, -1
; ret
@@:
; Soft reset the chip.
set_io 0
set_io byCR0
mov ax, CR_SFRST
out dx, ax
call MIIDelay
; Initialize rings
call init_ring
; Setup Multicast
call set_rx_mode
; set TCR RCR threshold to store and forward
set_io 0
set_io byBCR0
mov al, 0x3E
out dx, al
set_io byBCR1
mov al, 0x38
out dx, al
set_io byRCR
mov al, 0x2C
out dx, al
set_io byTCR
mov al, 0x60
out dx, al
; Set Fulldupex
call QueryAuto
test eax, eax ; full duplex?
jz @f
set_io 0
set_io byCFGD
mov al, CFGD_CFDX
out dx, al
set_io byCR0
mov ax, CR_FDX
out dx, ax
@@:
; ENABLE interrupts
set_io 0
set_io byIMR0
mov ax, DEFAULT_INTR
out dx, ax
; KICK NIC to WORK
set_io byCR0
in ax, dx
and ax, not CR_STOP
or ax, CR_STRT or CR_TXON or CR_RXON or CR_DPOLL
out dx, ax
; Set the mtu, kernel will be able to send now
mov [device.mtu], 1514
; Set link state to unknown
mov [device.state], ETH_LINK_UNKOWN
; say reset was successfull
xor eax, eax
ret
align 4
unload:
call reset
push eax edx
DEBUGF 1, "rhine disable\n"
; Switch to loopback mode to avoid hardware races.
set_io 0
set_io byTCR
mov al, 0x61
out dx, al
; Stop the chip's Tx and Rx processes.
set_io byCR0
mov ax, CR_STOP
out dx, ax
pop edx eax
ret
align 4
reload_eeprom:
DEBUGF 1, "Reload eeprom\n"
set_io 0
set_io byEECSR
mov al, 0x20
out dx, al
; Typically 2 cycles to reload.
mov ecx, 150
.reload:
in al, dx
test al, 0x20
jz @f
loop .reload
DEBUGF 1, "Reload timeout!\n"
@@:
ret
; Initialize the Rx and Tx rings, along with various 'dev' bits.
align 4
init_ring:
DEBUGF 1, "Init ring\n"
lea edi, [device.rx_ring]
mov eax, edi
GetRealAddr
mov esi, eax
push esi
mov ecx, RX_RING_SIZE
.rx_init:
add esi, rx_head.sizeof
mov [edi + rx_head.status], RX_SBITS_OWN_BIT
mov [edi + rx_head.control], PKT_BUF_SZ
push ecx
stdcall KernelAlloc, PKT_BUF_SZ
pop ecx
mov [edi + rx_head.buff_addr_virt], eax
GetRealAddr
mov [edi + rx_head.buff_addr], eax ; buffer ptr
mov [edi + rx_head.next_desc], esi ; next head
add edi, rx_head.sizeof
dec ecx
jnz .rx_init
pop [edi - rx_head.sizeof + rx_head.next_desc] ; Mark the last entry as wrapping the ring.
lea edi, [device.tx_ring]
mov eax, edi
GetRealAddr
mov esi, eax
push esi
mov ecx, TX_RING_SIZE
.tx_init:
add esi, tx_head.sizeof
mov [edi + tx_head.status], 0
mov [edi + tx_head.control], 0x00E08000
mov [edi + tx_head.buff_addr], 0
mov [edi + tx_head.next_desc], esi
mov [edi + tx_head.buff_addr_virt], 0
add edi, tx_head.sizeof
dec ecx
jnz .tx_init
pop [edi - tx_head.sizeof + tx_head.next_desc] ; Mark the last entry as wrapping the ring.
; write Descriptors to MAC
lea eax, [device.rx_ring]
GetRealAddr
set_io 0
set_io dwCurrentRxDescAddr
out dx, eax
lea eax, [device.tx_ring]
GetRealAddr
set_io dwCurrentTxDescAddr
out dx, eax
xor eax, eax
mov [device.cur_rx], ax
mov [device.cur_tx], ax
mov [device.last_tx], ax
ret
align 4
QueryAuto:
DEBUGF 1, "Query Auto\n"
push ecx
stdcall ReadMII, 0x04 ; advertised
mov ecx, eax
stdcall ReadMII, 0x05
and ecx, eax
xor eax, eax
test ecx, 0x100
jnz .one
and ecx, 0x1C0
cmp ecx, 0x40
jne .zero
.one:
inc eax
DEBUGF 1, "AutoNego OK!\n"
.zero:
pop ecx
ret
proc ReadMII stdcall, byMIIIndex:dword
; DEBUGF 1, "ReadMII Index=%x\n", [byMIIIndex]
push esi ebx ecx edx
set_io 0
set_io byMIIAD
in al, dx
mov bl, al
set_io byMIICR
in al, dx
mov bh, al
and al, 0x7F
out dx, al
call MIIDelay
mov al, byte [byMIIIndex]
set_io byMIIAD
out dx, al
call MIIDelay
set_io byMIICR
in al, dx
or al, 0x40
out dx, al
mov ecx, 200
.read_again:
in al, dx
test al, 0x40
jz @f
mov esi, 10
call Sleep
dec ecx
jnz .read_again
DEBUGF 1, "\nReadMII timeout!\n"
@@:
call MIIDelay
set_io byMIIAD
in ax, dx
push eax
mov ax, bx
set_io byMIIAD
out dx, al
shr ax, 8
set_io byMIICR
out dx, al
call MIIDelay
pop eax
and eax, 0xFFFF
rol ax, 8 ;;;;; I dont know how or why but it seems needed...
pop edx ecx ebx esi
ret
endp
proc WriteMII stdcall, byMIISetByte:dword, byMIISetBit:dword, byMIIOP:dword
; DEBUGF 1, "WriteMII SetByte=%x SetBit=%x OP=%x\n", [byMIISetByte], [byMIISetBit], [byMIIOP]
push ebx eax ecx edx
set_io 0
set_io byMIIAD
in al, dx
mov bl, al
set_io byMIICR
in al, dx
mov bh, al
and al, 0x7F
out dx, al
call MIIDelay
mov al, byte [byMIISetByte]
set_io byMIIAD
out dx, al
call MIIDelay
set_io byMIICR
in al, dx
or al, 0x40
out dx, al
mov ecx, 200
.read_again0:
in al, dx
test al, 0x40
jz .done
mov esi, 10
call Sleep
dec ecx
jnz .read_again0
DEBUGF 1, "WriteMII timeout 1\n"
.done:
call MIIDelay
set_io wMIIDATA
in ax, dx
mov ecx, [byMIISetBit]
rol cx, 8 ;;;;;;;;;;;;;;;;; CHECKME
cmp byte [byMIIOP], 0
jne @f
not ecx
and ax, cx
jmp .end_mascarad
@@:
or ax, cx
.end_mascarad:
set_io wMIIDATA
out dx, ax
call MIIDelay
set_io byMIICR
in al, dx
or al, 0x20
out dx, al
mov ecx, 200
.read_again1:
in al, dx
test al, 0x20
jz @f
mov esi, 10
call Sleep
dec ecx
jnz .read_again1
DEBUGF 1, "WriteMII timeout 2\n"
@@:
call MIIDelay
mov ax, bx
and al, 0x7F
set_io byMIIAD
out dx, al
shr ax, 8
set_io byMIICR
out dx, al
call MIIDelay
pop edx ecx eax ebx
ret
endp
align 4
MIIDelay:
mov ecx, 0x7FFF
@@:
in al, 0x61
in al, 0x61
in al, 0x61
in al, 0x61
loop @b
ret
align 4
set_rx_mode:
DEBUGF 1, "Set RX mode\n"
; ! IFF_PROMISC
mov eax, 0xffffffff
set_io 0
set_io byMAR0
out dx, eax
set_io byMAR4
out dx, eax
set_io byRCR
mov al, 0x6C ;rx_mode = 0x0C;
out dx, al ;outb(0x60 /* thresh */ | rx_mode, byRCR );
ret
; Beware of PCI posted writes
macro IOSYNC
{
set_io StationAddr
in al, dx
}
align 4
read_mac:
DEBUGF 1, "Ethernet Address: "
lea edi, [device.mac]
set_io 0
set_io byPAR0
mov ecx, 6
.next:
in al, dx
stosb
DEBUGF 1, "-%x", al
inc edx
dec ecx
jnz .next
DEBUGF 1, "\n"
ret
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; ;;
;; Transmit ;;
;; ;;
;; In: buffer pointer in [esp+4] ;;
;; size of buffer in [esp+8] ;;
;; pointer to device structure in ebx ;;
;; ;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
align 4
transmit:
DEBUGF 1,"\nTransmitting packet, buffer:%x, size:%u\n", [esp+4], [esp+8]
mov eax, [esp+4]
DEBUGF 1,"To: %x-%x-%x-%x-%x-%x From: %x-%x-%x-%x-%x-%x Type:%x%x\n",\
[eax+00]:2,[eax+01]:2,[eax+02]:2,[eax+03]:2,[eax+04]:2,[eax+05]:2,\
[eax+06]:2,[eax+07]:2,[eax+08]:2,[eax+09]:2,[eax+10]:2,[eax+11]:2,\
[eax+13]:2,[eax+12]:2
cmp dword [esp+8], 1514
ja .fail
cmp dword [esp+8], 60
jb .fail
movzx eax, [device.cur_tx]
mov ecx, tx_head.sizeof
mul ecx
lea edi, [device.tx_ring]
add edi, eax
cmp [edi + tx_head.buff_addr_virt], 0
jne .fail
mov eax, [esp+4]
mov [edi + tx_head.buff_addr_virt], eax
GetRealAddr
mov [edi + tx_head.buff_addr], eax
mov ecx, [esp+8]
and ecx, TX_CBITS_TX_BUF_SIZE
or ecx, 0x00E08000
mov [edi + tx_head.control], ecx
or [edi + tx_head.status], TX_SBITS_OWN_BIT
set_io 0
set_io byCR1
in al, dx
or al, CR1_TDMD1
out dx, al
inc [device.cur_tx]
and [device.cur_tx], TX_RING_SIZE-1
;outw(IMRShadow,byIMR0); ;
; Update stats
inc [device.packets_tx]
mov ecx, [esp+8] ;;;;;
add dword [device.bytes_tx], ecx
adc dword [device.bytes_tx + 4], 0
xor eax, eax ; Transmit succesfull
ret 8
.fail:
DEBUGF 2, "Transmit Failed!\n"
or eax, -1 ; Transmit failed
ret 8
;;;;;;;;;;;;;;;;;;;;;;;
;; ;;
;; Interrupt handler ;;
;; ;;
;;;;;;;;;;;;;;;;;;;;;;;
align 4
int_handler:
push ebx esi edi
DEBUGF 1,"\n%s int ", my_service
; Find pointer of device wich made IRQ occur
mov ecx, [devices]
test ecx, ecx
jz .nothing
mov esi, device_list
.nextdevice:
mov ebx, [esi]
set_io 0
set_io IntrStatus
in ax, dx
out dx, ax ; send it back to ACK
test ax, ax
jnz .got_it
.continue:
add esi, 4
dec ecx
jnz .nextdevice
.nothing:
pop edi esi ebx
xor eax, eax
ret ; If no device was found, abort (The irq was probably for a device, not registered to this driver)
.got_it:
DEBUGF 1, "status=0x%x\n", ax
push ax
test ax, IntrRxDone
jz .not_RX
push ebx
.more_RX:
pop ebx
; Get the current descripter pointer
movzx eax, [device.cur_rx]
mov ecx, rx_head.sizeof
mul ecx
lea edi, [device.rx_ring]
add edi, eax
; Check it's status
test [edi + rx_head.status], RX_SBITS_OWN_BIT
jnz .not_bit_own
DEBUGF 1, "Packet status = 0x%x\n", [edi + rx_head.status]
; TODO: check error bits
; get length
mov ecx, [edi + rx_head.status]
and ecx, RX_SBITS_FRAME_LENGTH
shr ecx, 16
sub ecx, 4 ; We dont want CRC
; Update stats
add dword [device.bytes_rx], ecx
adc dword [device.bytes_rx + 4], 0
inc [device.packets_rx]
; Push packet size and pointer, kernel will need it..
push ebx
push .more_RX ; return ptr
push ecx ; full packet size
push [edi + rx_head.buff_addr_virt]
; reset the RX descriptor
push edi
stdcall KernelAlloc, PKT_BUF_SZ
pop edi
mov [edi + rx_head.buff_addr_virt], eax
GetRealAddr
mov [edi + rx_head.buff_addr], eax
mov [edi + rx_head.status], RX_SBITS_OWN_BIT
; Use next descriptor next time
inc [device.cur_rx]
and [device.cur_rx], RX_RING_SIZE - 1
; At last, send packet to kernel
jmp Eth_input
.not_bit_own:
.not_RX:
pop ax
test ax, IntrTxDone
jz .not_TX
.loop_tx:
movzx eax, [device.last_tx]
mov ecx, tx_head.sizeof
mul ecx
lea edi, [device.tx_ring]
add edi, eax
test [edi + tx_head.status], TX_SBITS_OWN_BIT
jnz .not_TX
cmp [edi + tx_head.buff_addr_virt], 0
je .not_TX
DEBUGF 1,"Freeing buffer 0x%x\n", [edi + tx_head.buff_addr_virt]
push [edi + tx_head.buff_addr_virt]
mov [edi + tx_head.buff_addr_virt], 0
call KernelFree
inc [device.last_tx]
and [device.last_tx], TX_RING_SIZE - 1
jmp .loop_tx
.not_TX:
; On Rhine-II, Bit 3 indicates Tx descriptor write-back race.
if 0
cmp [device.chip_id], 0x3065 ;if (tp->chip_id == 0x3065)
jne @f
push ax
xor eax, eax
set_io IntrStatus2
in al, dx ; intr_status |= inb(nic->ioaddr + IntrStatus2) << 16;
shl eax, 16
pop ax
@@:
end if
if 0
; Acknowledge all of the current interrupt sources ASAP.
xor ecx, ecx
test eax, IntrTxDescRace
jz @f
set_io 0
set_io IntrStatus2
push ax
mov al, 0x08
out dx, al
pop ax
@@:
set_io 0
set_io IntrStatus
out dx, ax
IOSYNC
end if
pop edi esi ebx
xor eax, eax
inc eax
ret
; End of code
section '.data' data readable writable align 16 ; place all uninitialized data here
align 4 ; Place all initialised data here
devices dd 0
version dd (DRIVER_VERSION shl 16) or (API_VERSION and 0xFFFF)
my_service db 'RHINE',0 ; max 16 chars including zero
chiplist:
dd 0x30431106, rhine_3043;, RHINE_IOTYPE, RHINE_I_IOSIZE, CanHaveMII or ReqTxAlign or HasV1TxStat
dd 0x61001106, rhine_6100;, RHINE_IOTYPE, RHINE_I_IOSIZE, CanHaveMII or ReqTxAlign or HasV1TxStat
dd 0x30651106, rhine_6102;, RHINE_IOTYPE, RHINEII_IOSIZE, CanHaveMII or HasWOL
dd 0x31061106, rhine_6105;, RHINE_IOTYPE, RHINEII_IOSIZE, CanHaveMII or HasWOL
; Duplicate entry, with 'M' features enabled.
dd 0x31061106, rhine_6105;, RHINE_IOTYPE, RHINEII_IOSIZE, CanHaveMII or HasWOL or HasIPChecksum or HasVLAN
dd 0x30531106, rhine_3053;, RHINE_IOTYPE, RHINEII_IOSIZE, CanHaveMII or HasWOL
dd 0
rhine_3043 db "VIA VT3043 Rhine", 0
rhine_6100 db "VIA VT86C100A Rhine", 0
rhine_6102 db "VIA VT6102 Rhine-II", 0
rhine_6105 db "VIA VT6105LOM Rhine-III (3106)", 0
rhine_3053 db "VIA VT6105M Rhine-III (3053 prototype)", 0
include_debug_strings ; All data wich FDO uses will be included here
device_list rd MAX_DEVICES ; This list contains all pointers to device structures the driver is handling