forked from KolibriOS/kolibrios
482 lines
15 KiB
C
482 lines
15 KiB
C
|
/*
|
||
|
* Copyright © 2014 Intel Corporation
|
||
|
*
|
||
|
* Permission is hereby granted, free of charge, to any person obtaining a
|
||
|
* copy of this software and associated documentation files (the "Software"),
|
||
|
* to deal in the Software without restriction, including without limitation
|
||
|
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
|
||
|
* and/or sell copies of the Software, and to permit persons to whom the
|
||
|
* Software is furnished to do so, subject to the following conditions:
|
||
|
*
|
||
|
* The above copyright notice and this permission notice (including the next
|
||
|
* paragraph) shall be included in all copies or substantial portions of the
|
||
|
* Software.
|
||
|
*
|
||
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
|
||
|
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
|
||
|
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
|
||
|
* DEALINGS IN THE SOFTWARE.
|
||
|
*/
|
||
|
|
||
|
/**
|
||
|
* DOC: Panel Self Refresh (PSR/SRD)
|
||
|
*
|
||
|
* Since Haswell Display controller supports Panel Self-Refresh on display
|
||
|
* panels witch have a remote frame buffer (RFB) implemented according to PSR
|
||
|
* spec in eDP1.3. PSR feature allows the display to go to lower standby states
|
||
|
* when system is idle but display is on as it eliminates display refresh
|
||
|
* request to DDR memory completely as long as the frame buffer for that
|
||
|
* display is unchanged.
|
||
|
*
|
||
|
* Panel Self Refresh must be supported by both Hardware (source) and
|
||
|
* Panel (sink).
|
||
|
*
|
||
|
* PSR saves power by caching the framebuffer in the panel RFB, which allows us
|
||
|
* to power down the link and memory controller. For DSI panels the same idea
|
||
|
* is called "manual mode".
|
||
|
*
|
||
|
* The implementation uses the hardware-based PSR support which automatically
|
||
|
* enters/exits self-refresh mode. The hardware takes care of sending the
|
||
|
* required DP aux message and could even retrain the link (that part isn't
|
||
|
* enabled yet though). The hardware also keeps track of any frontbuffer
|
||
|
* changes to know when to exit self-refresh mode again. Unfortunately that
|
||
|
* part doesn't work too well, hence why the i915 PSR support uses the
|
||
|
* software frontbuffer tracking to make sure it doesn't miss a screen
|
||
|
* update. For this integration intel_psr_invalidate() and intel_psr_flush()
|
||
|
* get called by the frontbuffer tracking code. Note that because of locking
|
||
|
* issues the self-refresh re-enable code is done from a work queue, which
|
||
|
* must be correctly synchronized/cancelled when shutting down the pipe."
|
||
|
*/
|
||
|
|
||
|
#include <drm/drmP.h>
|
||
|
|
||
|
#include "intel_drv.h"
|
||
|
#include "i915_drv.h"
|
||
|
|
||
|
static bool is_edp_psr(struct intel_dp *intel_dp)
|
||
|
{
|
||
|
return intel_dp->psr_dpcd[0] & DP_PSR_IS_SUPPORTED;
|
||
|
}
|
||
|
|
||
|
bool intel_psr_is_enabled(struct drm_device *dev)
|
||
|
{
|
||
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
||
|
|
||
|
if (!HAS_PSR(dev))
|
||
|
return false;
|
||
|
|
||
|
return I915_READ(EDP_PSR_CTL(dev)) & EDP_PSR_ENABLE;
|
||
|
}
|
||
|
|
||
|
static void intel_psr_write_vsc(struct intel_dp *intel_dp,
|
||
|
struct edp_vsc_psr *vsc_psr)
|
||
|
{
|
||
|
struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
|
||
|
struct drm_device *dev = dig_port->base.base.dev;
|
||
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
||
|
struct intel_crtc *crtc = to_intel_crtc(dig_port->base.base.crtc);
|
||
|
u32 ctl_reg = HSW_TVIDEO_DIP_CTL(crtc->config.cpu_transcoder);
|
||
|
u32 data_reg = HSW_TVIDEO_DIP_VSC_DATA(crtc->config.cpu_transcoder);
|
||
|
uint32_t *data = (uint32_t *) vsc_psr;
|
||
|
unsigned int i;
|
||
|
|
||
|
/* As per BSPec (Pipe Video Data Island Packet), we need to disable
|
||
|
the video DIP being updated before program video DIP data buffer
|
||
|
registers for DIP being updated. */
|
||
|
I915_WRITE(ctl_reg, 0);
|
||
|
POSTING_READ(ctl_reg);
|
||
|
|
||
|
for (i = 0; i < VIDEO_DIP_VSC_DATA_SIZE; i += 4) {
|
||
|
if (i < sizeof(struct edp_vsc_psr))
|
||
|
I915_WRITE(data_reg + i, *data++);
|
||
|
else
|
||
|
I915_WRITE(data_reg + i, 0);
|
||
|
}
|
||
|
|
||
|
I915_WRITE(ctl_reg, VIDEO_DIP_ENABLE_VSC_HSW);
|
||
|
POSTING_READ(ctl_reg);
|
||
|
}
|
||
|
|
||
|
static void intel_psr_setup_vsc(struct intel_dp *intel_dp)
|
||
|
{
|
||
|
struct edp_vsc_psr psr_vsc;
|
||
|
|
||
|
/* Prepare VSC packet as per EDP 1.3 spec, Table 3.10 */
|
||
|
memset(&psr_vsc, 0, sizeof(psr_vsc));
|
||
|
psr_vsc.sdp_header.HB0 = 0;
|
||
|
psr_vsc.sdp_header.HB1 = 0x7;
|
||
|
psr_vsc.sdp_header.HB2 = 0x2;
|
||
|
psr_vsc.sdp_header.HB3 = 0x8;
|
||
|
intel_psr_write_vsc(intel_dp, &psr_vsc);
|
||
|
}
|
||
|
|
||
|
static void intel_psr_enable_sink(struct intel_dp *intel_dp)
|
||
|
{
|
||
|
struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
|
||
|
struct drm_device *dev = dig_port->base.base.dev;
|
||
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
||
|
uint32_t aux_clock_divider;
|
||
|
int precharge = 0x3;
|
||
|
bool only_standby = false;
|
||
|
static const uint8_t aux_msg[] = {
|
||
|
[0] = DP_AUX_NATIVE_WRITE << 4,
|
||
|
[1] = DP_SET_POWER >> 8,
|
||
|
[2] = DP_SET_POWER & 0xff,
|
||
|
[3] = 1 - 1,
|
||
|
[4] = DP_SET_POWER_D0,
|
||
|
};
|
||
|
int i;
|
||
|
|
||
|
BUILD_BUG_ON(sizeof(aux_msg) > 20);
|
||
|
|
||
|
aux_clock_divider = intel_dp->get_aux_clock_divider(intel_dp, 0);
|
||
|
|
||
|
if (IS_BROADWELL(dev) && dig_port->port != PORT_A)
|
||
|
only_standby = true;
|
||
|
|
||
|
/* Enable PSR in sink */
|
||
|
if (intel_dp->psr_dpcd[1] & DP_PSR_NO_TRAIN_ON_EXIT || only_standby)
|
||
|
drm_dp_dpcd_writeb(&intel_dp->aux, DP_PSR_EN_CFG,
|
||
|
DP_PSR_ENABLE & ~DP_PSR_MAIN_LINK_ACTIVE);
|
||
|
else
|
||
|
drm_dp_dpcd_writeb(&intel_dp->aux, DP_PSR_EN_CFG,
|
||
|
DP_PSR_ENABLE | DP_PSR_MAIN_LINK_ACTIVE);
|
||
|
|
||
|
/* Setup AUX registers */
|
||
|
for (i = 0; i < sizeof(aux_msg); i += 4)
|
||
|
I915_WRITE(EDP_PSR_AUX_DATA1(dev) + i,
|
||
|
intel_dp_pack_aux(&aux_msg[i], sizeof(aux_msg) - i));
|
||
|
|
||
|
I915_WRITE(EDP_PSR_AUX_CTL(dev),
|
||
|
DP_AUX_CH_CTL_TIME_OUT_400us |
|
||
|
(sizeof(aux_msg) << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
|
||
|
(precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
|
||
|
(aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT));
|
||
|
}
|
||
|
|
||
|
static void intel_psr_enable_source(struct intel_dp *intel_dp)
|
||
|
{
|
||
|
struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
|
||
|
struct drm_device *dev = dig_port->base.base.dev;
|
||
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
||
|
uint32_t max_sleep_time = 0x1f;
|
||
|
uint32_t idle_frames = 1;
|
||
|
uint32_t val = 0x0;
|
||
|
const uint32_t link_entry_time = EDP_PSR_MIN_LINK_ENTRY_TIME_8_LINES;
|
||
|
bool only_standby = false;
|
||
|
|
||
|
if (IS_BROADWELL(dev) && dig_port->port != PORT_A)
|
||
|
only_standby = true;
|
||
|
|
||
|
if (intel_dp->psr_dpcd[1] & DP_PSR_NO_TRAIN_ON_EXIT || only_standby) {
|
||
|
val |= EDP_PSR_LINK_STANDBY;
|
||
|
val |= EDP_PSR_TP2_TP3_TIME_0us;
|
||
|
val |= EDP_PSR_TP1_TIME_0us;
|
||
|
val |= EDP_PSR_SKIP_AUX_EXIT;
|
||
|
val |= IS_BROADWELL(dev) ? BDW_PSR_SINGLE_FRAME : 0;
|
||
|
} else
|
||
|
val |= EDP_PSR_LINK_DISABLE;
|
||
|
|
||
|
I915_WRITE(EDP_PSR_CTL(dev), val |
|
||
|
(IS_BROADWELL(dev) ? 0 : link_entry_time) |
|
||
|
max_sleep_time << EDP_PSR_MAX_SLEEP_TIME_SHIFT |
|
||
|
idle_frames << EDP_PSR_IDLE_FRAME_SHIFT |
|
||
|
EDP_PSR_ENABLE);
|
||
|
}
|
||
|
|
||
|
static bool intel_psr_match_conditions(struct intel_dp *intel_dp)
|
||
|
{
|
||
|
struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
|
||
|
struct drm_device *dev = dig_port->base.base.dev;
|
||
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
||
|
struct drm_crtc *crtc = dig_port->base.base.crtc;
|
||
|
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
|
||
|
|
||
|
lockdep_assert_held(&dev_priv->psr.lock);
|
||
|
WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));
|
||
|
WARN_ON(!drm_modeset_is_locked(&crtc->mutex));
|
||
|
|
||
|
dev_priv->psr.source_ok = false;
|
||
|
|
||
|
if (IS_HASWELL(dev) && dig_port->port != PORT_A) {
|
||
|
DRM_DEBUG_KMS("HSW ties PSR to DDI A (eDP)\n");
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
if (!i915.enable_psr) {
|
||
|
DRM_DEBUG_KMS("PSR disable by flag\n");
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
/* Below limitations aren't valid for Broadwell */
|
||
|
if (IS_BROADWELL(dev))
|
||
|
goto out;
|
||
|
|
||
|
if (I915_READ(HSW_STEREO_3D_CTL(intel_crtc->config.cpu_transcoder)) &
|
||
|
S3D_ENABLE) {
|
||
|
DRM_DEBUG_KMS("PSR condition failed: Stereo 3D is Enabled\n");
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) {
|
||
|
DRM_DEBUG_KMS("PSR condition failed: Interlaced is Enabled\n");
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
out:
|
||
|
dev_priv->psr.source_ok = true;
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
static void intel_psr_do_enable(struct intel_dp *intel_dp)
|
||
|
{
|
||
|
struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
|
||
|
struct drm_device *dev = intel_dig_port->base.base.dev;
|
||
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
||
|
|
||
|
WARN_ON(I915_READ(EDP_PSR_CTL(dev)) & EDP_PSR_ENABLE);
|
||
|
WARN_ON(dev_priv->psr.active);
|
||
|
lockdep_assert_held(&dev_priv->psr.lock);
|
||
|
|
||
|
/* Enable/Re-enable PSR on the host */
|
||
|
intel_psr_enable_source(intel_dp);
|
||
|
|
||
|
dev_priv->psr.active = true;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* intel_psr_enable - Enable PSR
|
||
|
* @intel_dp: Intel DP
|
||
|
*
|
||
|
* This function can only be called after the pipe is fully trained and enabled.
|
||
|
*/
|
||
|
void intel_psr_enable(struct intel_dp *intel_dp)
|
||
|
{
|
||
|
struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
|
||
|
struct drm_device *dev = intel_dig_port->base.base.dev;
|
||
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
||
|
|
||
|
if (!HAS_PSR(dev)) {
|
||
|
DRM_DEBUG_KMS("PSR not supported on this platform\n");
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
if (!is_edp_psr(intel_dp)) {
|
||
|
DRM_DEBUG_KMS("PSR not supported by this panel\n");
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
mutex_lock(&dev_priv->psr.lock);
|
||
|
if (dev_priv->psr.enabled) {
|
||
|
DRM_DEBUG_KMS("PSR already in use\n");
|
||
|
goto unlock;
|
||
|
}
|
||
|
|
||
|
if (!intel_psr_match_conditions(intel_dp))
|
||
|
goto unlock;
|
||
|
|
||
|
dev_priv->psr.busy_frontbuffer_bits = 0;
|
||
|
|
||
|
intel_psr_setup_vsc(intel_dp);
|
||
|
|
||
|
/* Avoid continuous PSR exit by masking memup and hpd */
|
||
|
I915_WRITE(EDP_PSR_DEBUG_CTL(dev), EDP_PSR_DEBUG_MASK_MEMUP |
|
||
|
EDP_PSR_DEBUG_MASK_HPD | EDP_PSR_DEBUG_MASK_LPSP);
|
||
|
|
||
|
/* Enable PSR on the panel */
|
||
|
intel_psr_enable_sink(intel_dp);
|
||
|
|
||
|
dev_priv->psr.enabled = intel_dp;
|
||
|
unlock:
|
||
|
mutex_unlock(&dev_priv->psr.lock);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* intel_psr_disable - Disable PSR
|
||
|
* @intel_dp: Intel DP
|
||
|
*
|
||
|
* This function needs to be called before disabling pipe.
|
||
|
*/
|
||
|
void intel_psr_disable(struct intel_dp *intel_dp)
|
||
|
{
|
||
|
struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
|
||
|
struct drm_device *dev = intel_dig_port->base.base.dev;
|
||
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
||
|
|
||
|
mutex_lock(&dev_priv->psr.lock);
|
||
|
if (!dev_priv->psr.enabled) {
|
||
|
mutex_unlock(&dev_priv->psr.lock);
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
if (dev_priv->psr.active) {
|
||
|
I915_WRITE(EDP_PSR_CTL(dev),
|
||
|
I915_READ(EDP_PSR_CTL(dev)) & ~EDP_PSR_ENABLE);
|
||
|
|
||
|
/* Wait till PSR is idle */
|
||
|
if (_wait_for((I915_READ(EDP_PSR_STATUS_CTL(dev)) &
|
||
|
EDP_PSR_STATUS_STATE_MASK) == 0, 2000, 10))
|
||
|
DRM_ERROR("Timed out waiting for PSR Idle State\n");
|
||
|
|
||
|
dev_priv->psr.active = false;
|
||
|
} else {
|
||
|
WARN_ON(I915_READ(EDP_PSR_CTL(dev)) & EDP_PSR_ENABLE);
|
||
|
}
|
||
|
|
||
|
dev_priv->psr.enabled = NULL;
|
||
|
mutex_unlock(&dev_priv->psr.lock);
|
||
|
|
||
|
cancel_delayed_work_sync(&dev_priv->psr.work);
|
||
|
}
|
||
|
|
||
|
static void intel_psr_work(struct work_struct *work)
|
||
|
{
|
||
|
struct drm_i915_private *dev_priv =
|
||
|
container_of(work, typeof(*dev_priv), psr.work.work);
|
||
|
struct intel_dp *intel_dp = dev_priv->psr.enabled;
|
||
|
|
||
|
/* We have to make sure PSR is ready for re-enable
|
||
|
* otherwise it keeps disabled until next full enable/disable cycle.
|
||
|
* PSR might take some time to get fully disabled
|
||
|
* and be ready for re-enable.
|
||
|
*/
|
||
|
if (wait_for((I915_READ(EDP_PSR_STATUS_CTL(dev_priv->dev)) &
|
||
|
EDP_PSR_STATUS_STATE_MASK) == 0, 50)) {
|
||
|
DRM_ERROR("Timed out waiting for PSR Idle for re-enable\n");
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
mutex_lock(&dev_priv->psr.lock);
|
||
|
intel_dp = dev_priv->psr.enabled;
|
||
|
|
||
|
if (!intel_dp)
|
||
|
goto unlock;
|
||
|
|
||
|
/*
|
||
|
* The delayed work can race with an invalidate hence we need to
|
||
|
* recheck. Since psr_flush first clears this and then reschedules we
|
||
|
* won't ever miss a flush when bailing out here.
|
||
|
*/
|
||
|
if (dev_priv->psr.busy_frontbuffer_bits)
|
||
|
goto unlock;
|
||
|
|
||
|
intel_psr_do_enable(intel_dp);
|
||
|
unlock:
|
||
|
mutex_unlock(&dev_priv->psr.lock);
|
||
|
}
|
||
|
|
||
|
static void intel_psr_exit(struct drm_device *dev)
|
||
|
{
|
||
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
||
|
|
||
|
if (dev_priv->psr.active) {
|
||
|
u32 val = I915_READ(EDP_PSR_CTL(dev));
|
||
|
|
||
|
WARN_ON(!(val & EDP_PSR_ENABLE));
|
||
|
|
||
|
I915_WRITE(EDP_PSR_CTL(dev), val & ~EDP_PSR_ENABLE);
|
||
|
|
||
|
dev_priv->psr.active = false;
|
||
|
}
|
||
|
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* intel_psr_invalidate - Invalidade PSR
|
||
|
* @dev: DRM device
|
||
|
* @frontbuffer_bits: frontbuffer plane tracking bits
|
||
|
*
|
||
|
* Since the hardware frontbuffer tracking has gaps we need to integrate
|
||
|
* with the software frontbuffer tracking. This function gets called every
|
||
|
* time frontbuffer rendering starts and a buffer gets dirtied. PSR must be
|
||
|
* disabled if the frontbuffer mask contains a buffer relevant to PSR.
|
||
|
*
|
||
|
* Dirty frontbuffers relevant to PSR are tracked in busy_frontbuffer_bits."
|
||
|
*/
|
||
|
void intel_psr_invalidate(struct drm_device *dev,
|
||
|
unsigned frontbuffer_bits)
|
||
|
{
|
||
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
||
|
struct drm_crtc *crtc;
|
||
|
enum pipe pipe;
|
||
|
|
||
|
mutex_lock(&dev_priv->psr.lock);
|
||
|
if (!dev_priv->psr.enabled) {
|
||
|
mutex_unlock(&dev_priv->psr.lock);
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
crtc = dp_to_dig_port(dev_priv->psr.enabled)->base.base.crtc;
|
||
|
pipe = to_intel_crtc(crtc)->pipe;
|
||
|
|
||
|
intel_psr_exit(dev);
|
||
|
|
||
|
frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(pipe);
|
||
|
|
||
|
dev_priv->psr.busy_frontbuffer_bits |= frontbuffer_bits;
|
||
|
mutex_unlock(&dev_priv->psr.lock);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* intel_psr_flush - Flush PSR
|
||
|
* @dev: DRM device
|
||
|
* @frontbuffer_bits: frontbuffer plane tracking bits
|
||
|
*
|
||
|
* Since the hardware frontbuffer tracking has gaps we need to integrate
|
||
|
* with the software frontbuffer tracking. This function gets called every
|
||
|
* time frontbuffer rendering has completed and flushed out to memory. PSR
|
||
|
* can be enabled again if no other frontbuffer relevant to PSR is dirty.
|
||
|
*
|
||
|
* Dirty frontbuffers relevant to PSR are tracked in busy_frontbuffer_bits.
|
||
|
*/
|
||
|
void intel_psr_flush(struct drm_device *dev,
|
||
|
unsigned frontbuffer_bits)
|
||
|
{
|
||
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
||
|
struct drm_crtc *crtc;
|
||
|
enum pipe pipe;
|
||
|
|
||
|
mutex_lock(&dev_priv->psr.lock);
|
||
|
if (!dev_priv->psr.enabled) {
|
||
|
mutex_unlock(&dev_priv->psr.lock);
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
crtc = dp_to_dig_port(dev_priv->psr.enabled)->base.base.crtc;
|
||
|
pipe = to_intel_crtc(crtc)->pipe;
|
||
|
dev_priv->psr.busy_frontbuffer_bits &= ~frontbuffer_bits;
|
||
|
|
||
|
/*
|
||
|
* On Haswell sprite plane updates don't result in a psr invalidating
|
||
|
* signal in the hardware. Which means we need to manually fake this in
|
||
|
* software for all flushes, not just when we've seen a preceding
|
||
|
* invalidation through frontbuffer rendering.
|
||
|
*/
|
||
|
if (IS_HASWELL(dev) &&
|
||
|
(frontbuffer_bits & INTEL_FRONTBUFFER_SPRITE(pipe)))
|
||
|
intel_psr_exit(dev);
|
||
|
|
||
|
if (!dev_priv->psr.active && !dev_priv->psr.busy_frontbuffer_bits)
|
||
|
schedule_delayed_work(&dev_priv->psr.work,
|
||
|
msecs_to_jiffies(100));
|
||
|
mutex_unlock(&dev_priv->psr.lock);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* intel_psr_init - Init basic PSR work and mutex.
|
||
|
* @dev: DRM device
|
||
|
*
|
||
|
* This function is called only once at driver load to initialize basic
|
||
|
* PSR stuff.
|
||
|
*/
|
||
|
void intel_psr_init(struct drm_device *dev)
|
||
|
{
|
||
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
||
|
|
||
|
INIT_DELAYED_WORK(&dev_priv->psr.work, intel_psr_work);
|
||
|
mutex_init(&dev_priv->psr.lock);
|
||
|
}
|