forked from KolibriOS/kolibrios
395 lines
11 KiB
C
395 lines
11 KiB
C
|
/* -*- Mode: c; tab-width: 8; c-basic-offset: 4; indent-tabs-mode: t; -*- */
|
||
|
/* Cairo - a vector graphics library with display and print output
|
||
|
*
|
||
|
* Copyright © 2007 Mozilla Corporation
|
||
|
*
|
||
|
* This library is free software; you can redistribute it and/or
|
||
|
* modify it either under the terms of the GNU Lesser General Public
|
||
|
* License version 2.1 as published by the Free Software Foundation
|
||
|
* (the "LGPL") or, at your option, under the terms of the Mozilla
|
||
|
* Public License Version 1.1 (the "MPL"). If you do not alter this
|
||
|
* notice, a recipient may use your version of this file under either
|
||
|
* the MPL or the LGPL.
|
||
|
*
|
||
|
* You should have received a copy of the LGPL along with this library
|
||
|
* in the file COPYING-LGPL-2.1; if not, write to the Free Software
|
||
|
* Foundation, Inc., 51 Franklin Street, Suite 500, Boston, MA 02110-1335, USA
|
||
|
* You should have received a copy of the MPL along with this library
|
||
|
* in the file COPYING-MPL-1.1
|
||
|
*
|
||
|
* The contents of this file are subject to the Mozilla Public License
|
||
|
* Version 1.1 (the "License"); you may not use this file except in
|
||
|
* compliance with the License. You may obtain a copy of the License at
|
||
|
* http://www.mozilla.org/MPL/
|
||
|
*
|
||
|
* This software is distributed on an "AS IS" basis, WITHOUT WARRANTY
|
||
|
* OF ANY KIND, either express or implied. See the LGPL or the MPL for
|
||
|
* the specific language governing rights and limitations.
|
||
|
*
|
||
|
* The Original Code is the cairo graphics library.
|
||
|
*
|
||
|
* The Initial Developer of the Original Code is Mozilla Foundation
|
||
|
*
|
||
|
* Contributor(s):
|
||
|
* Vladimir Vukicevic <vladimir@pobox.com>
|
||
|
*/
|
||
|
|
||
|
#ifndef CAIRO_FIXED_PRIVATE_H
|
||
|
#define CAIRO_FIXED_PRIVATE_H
|
||
|
|
||
|
#include "cairo-fixed-type-private.h"
|
||
|
|
||
|
#include "cairo-wideint-private.h"
|
||
|
#include "cairoint.h"
|
||
|
|
||
|
/* Implementation */
|
||
|
|
||
|
#if (CAIRO_FIXED_BITS != 32)
|
||
|
# error CAIRO_FIXED_BITS must be 32, and the type must be a 32-bit type.
|
||
|
# error To remove this limitation, you will have to fix the tesselator.
|
||
|
#endif
|
||
|
|
||
|
#define CAIRO_FIXED_ONE ((cairo_fixed_t)(1 << CAIRO_FIXED_FRAC_BITS))
|
||
|
#define CAIRO_FIXED_ONE_DOUBLE ((double)(1 << CAIRO_FIXED_FRAC_BITS))
|
||
|
#define CAIRO_FIXED_EPSILON ((cairo_fixed_t)(1))
|
||
|
|
||
|
#define CAIRO_FIXED_ERROR_DOUBLE (1. / (2 * CAIRO_FIXED_ONE_DOUBLE))
|
||
|
|
||
|
#define CAIRO_FIXED_FRAC_MASK ((cairo_fixed_t)(((cairo_fixed_unsigned_t)(-1)) >> (CAIRO_FIXED_BITS - CAIRO_FIXED_FRAC_BITS)))
|
||
|
#define CAIRO_FIXED_WHOLE_MASK (~CAIRO_FIXED_FRAC_MASK)
|
||
|
|
||
|
static inline cairo_fixed_t
|
||
|
_cairo_fixed_from_int (int i)
|
||
|
{
|
||
|
return i << CAIRO_FIXED_FRAC_BITS;
|
||
|
}
|
||
|
|
||
|
/* This is the "magic number" approach to converting a double into fixed
|
||
|
* point as described here:
|
||
|
*
|
||
|
* http://www.stereopsis.com/sree/fpu2006.html (an overview)
|
||
|
* http://www.d6.com/users/checker/pdfs/gdmfp.pdf (in detail)
|
||
|
*
|
||
|
* The basic idea is to add a large enough number to the double that the
|
||
|
* literal floating point is moved up to the extent that it forces the
|
||
|
* double's value to be shifted down to the bottom of the mantissa (to make
|
||
|
* room for the large number being added in). Since the mantissa is, at a
|
||
|
* given moment in time, a fixed point integer itself, one can convert a
|
||
|
* float to various fixed point representations by moving around the point
|
||
|
* of a floating point number through arithmetic operations. This behavior
|
||
|
* is reliable on most modern platforms as it is mandated by the IEEE-754
|
||
|
* standard for floating point arithmetic.
|
||
|
*
|
||
|
* For our purposes, a "magic number" must be carefully selected that is
|
||
|
* both large enough to produce the desired point-shifting effect, and also
|
||
|
* has no lower bits in its representation that would interfere with our
|
||
|
* value at the bottom of the mantissa. The magic number is calculated as
|
||
|
* follows:
|
||
|
*
|
||
|
* (2 ^ (MANTISSA_SIZE - FRACTIONAL_SIZE)) * 1.5
|
||
|
*
|
||
|
* where in our case:
|
||
|
* - MANTISSA_SIZE for 64-bit doubles is 52
|
||
|
* - FRACTIONAL_SIZE for 16.16 fixed point is 16
|
||
|
*
|
||
|
* Although this approach provides a very large speedup of this function
|
||
|
* on a wide-array of systems, it does come with two caveats:
|
||
|
*
|
||
|
* 1) It uses banker's rounding as opposed to arithmetic rounding.
|
||
|
* 2) It doesn't function properly if the FPU is in single-precision
|
||
|
* mode.
|
||
|
*/
|
||
|
|
||
|
/* The 16.16 number must always be available */
|
||
|
#define CAIRO_MAGIC_NUMBER_FIXED_16_16 (103079215104.0)
|
||
|
|
||
|
#if CAIRO_FIXED_BITS <= 32
|
||
|
#define CAIRO_MAGIC_NUMBER_FIXED ((1LL << (52 - CAIRO_FIXED_FRAC_BITS)) * 1.5)
|
||
|
|
||
|
/* For 32-bit fixed point numbers */
|
||
|
static inline cairo_fixed_t
|
||
|
_cairo_fixed_from_double (double d)
|
||
|
{
|
||
|
union {
|
||
|
double d;
|
||
|
int32_t i[2];
|
||
|
} u;
|
||
|
|
||
|
u.d = d + CAIRO_MAGIC_NUMBER_FIXED;
|
||
|
#ifdef FLOAT_WORDS_BIGENDIAN
|
||
|
return u.i[1];
|
||
|
#else
|
||
|
return u.i[0];
|
||
|
#endif
|
||
|
}
|
||
|
|
||
|
#else
|
||
|
# error Please define a magic number for your fixed point type!
|
||
|
# error See cairo-fixed-private.h for details.
|
||
|
#endif
|
||
|
|
||
|
static inline cairo_fixed_t
|
||
|
_cairo_fixed_from_26_6 (uint32_t i)
|
||
|
{
|
||
|
#if CAIRO_FIXED_FRAC_BITS > 6
|
||
|
return i << (CAIRO_FIXED_FRAC_BITS - 6);
|
||
|
#else
|
||
|
return i >> (6 - CAIRO_FIXED_FRAC_BITS);
|
||
|
#endif
|
||
|
}
|
||
|
|
||
|
static inline cairo_fixed_t
|
||
|
_cairo_fixed_from_16_16 (uint32_t i)
|
||
|
{
|
||
|
#if CAIRO_FIXED_FRAC_BITS > 16
|
||
|
return i << (CAIRO_FIXED_FRAC_BITS - 16);
|
||
|
#else
|
||
|
return i >> (16 - CAIRO_FIXED_FRAC_BITS);
|
||
|
#endif
|
||
|
}
|
||
|
|
||
|
static inline double
|
||
|
_cairo_fixed_to_double (cairo_fixed_t f)
|
||
|
{
|
||
|
return ((double) f) / CAIRO_FIXED_ONE_DOUBLE;
|
||
|
}
|
||
|
|
||
|
static inline int
|
||
|
_cairo_fixed_is_integer (cairo_fixed_t f)
|
||
|
{
|
||
|
return (f & CAIRO_FIXED_FRAC_MASK) == 0;
|
||
|
}
|
||
|
|
||
|
static inline cairo_fixed_t
|
||
|
_cairo_fixed_floor (cairo_fixed_t f)
|
||
|
{
|
||
|
return f & ~CAIRO_FIXED_FRAC_MASK;
|
||
|
}
|
||
|
|
||
|
static inline cairo_fixed_t
|
||
|
_cairo_fixed_ceil (cairo_fixed_t f)
|
||
|
{
|
||
|
return _cairo_fixed_floor (f + CAIRO_FIXED_FRAC_MASK);
|
||
|
}
|
||
|
|
||
|
static inline cairo_fixed_t
|
||
|
_cairo_fixed_round (cairo_fixed_t f)
|
||
|
{
|
||
|
return _cairo_fixed_floor (f + (CAIRO_FIXED_FRAC_MASK+1)/2);
|
||
|
}
|
||
|
|
||
|
static inline cairo_fixed_t
|
||
|
_cairo_fixed_round_down (cairo_fixed_t f)
|
||
|
{
|
||
|
return _cairo_fixed_floor (f + CAIRO_FIXED_FRAC_MASK/2);
|
||
|
}
|
||
|
|
||
|
static inline int
|
||
|
_cairo_fixed_integer_part (cairo_fixed_t f)
|
||
|
{
|
||
|
return f >> CAIRO_FIXED_FRAC_BITS;
|
||
|
}
|
||
|
|
||
|
static inline int
|
||
|
_cairo_fixed_integer_round (cairo_fixed_t f)
|
||
|
{
|
||
|
return _cairo_fixed_integer_part (f + (CAIRO_FIXED_FRAC_MASK+1)/2);
|
||
|
}
|
||
|
|
||
|
static inline int
|
||
|
_cairo_fixed_integer_round_down (cairo_fixed_t f)
|
||
|
{
|
||
|
return _cairo_fixed_integer_part (f + CAIRO_FIXED_FRAC_MASK/2);
|
||
|
}
|
||
|
|
||
|
static inline int
|
||
|
_cairo_fixed_fractional_part (cairo_fixed_t f)
|
||
|
{
|
||
|
return f & CAIRO_FIXED_FRAC_MASK;
|
||
|
}
|
||
|
|
||
|
static inline int
|
||
|
_cairo_fixed_integer_floor (cairo_fixed_t f)
|
||
|
{
|
||
|
if (f >= 0)
|
||
|
return f >> CAIRO_FIXED_FRAC_BITS;
|
||
|
else
|
||
|
return -((-f - 1) >> CAIRO_FIXED_FRAC_BITS) - 1;
|
||
|
}
|
||
|
|
||
|
static inline int
|
||
|
_cairo_fixed_integer_ceil (cairo_fixed_t f)
|
||
|
{
|
||
|
if (f > 0)
|
||
|
return ((f - 1)>>CAIRO_FIXED_FRAC_BITS) + 1;
|
||
|
else
|
||
|
return - (-f >> CAIRO_FIXED_FRAC_BITS);
|
||
|
}
|
||
|
|
||
|
/* A bunch of explicit 16.16 operators; we need these
|
||
|
* to interface with pixman and other backends that require
|
||
|
* 16.16 fixed point types.
|
||
|
*/
|
||
|
static inline cairo_fixed_16_16_t
|
||
|
_cairo_fixed_to_16_16 (cairo_fixed_t f)
|
||
|
{
|
||
|
#if (CAIRO_FIXED_FRAC_BITS == 16) && (CAIRO_FIXED_BITS == 32)
|
||
|
return f;
|
||
|
#elif CAIRO_FIXED_FRAC_BITS > 16
|
||
|
/* We're just dropping the low bits, so we won't ever got over/underflow here */
|
||
|
return f >> (CAIRO_FIXED_FRAC_BITS - 16);
|
||
|
#else
|
||
|
cairo_fixed_16_16_t x;
|
||
|
|
||
|
/* Handle overflow/underflow by clamping to the lowest/highest
|
||
|
* value representable as 16.16
|
||
|
*/
|
||
|
if ((f >> CAIRO_FIXED_FRAC_BITS) < INT16_MIN) {
|
||
|
x = INT32_MIN;
|
||
|
} else if ((f >> CAIRO_FIXED_FRAC_BITS) > INT16_MAX) {
|
||
|
x = INT32_MAX;
|
||
|
} else {
|
||
|
x = f << (16 - CAIRO_FIXED_FRAC_BITS);
|
||
|
}
|
||
|
|
||
|
return x;
|
||
|
#endif
|
||
|
}
|
||
|
|
||
|
static inline cairo_fixed_16_16_t
|
||
|
_cairo_fixed_16_16_from_double (double d)
|
||
|
{
|
||
|
union {
|
||
|
double d;
|
||
|
int32_t i[2];
|
||
|
} u;
|
||
|
|
||
|
u.d = d + CAIRO_MAGIC_NUMBER_FIXED_16_16;
|
||
|
#ifdef FLOAT_WORDS_BIGENDIAN
|
||
|
return u.i[1];
|
||
|
#else
|
||
|
return u.i[0];
|
||
|
#endif
|
||
|
}
|
||
|
|
||
|
static inline int
|
||
|
_cairo_fixed_16_16_floor (cairo_fixed_16_16_t f)
|
||
|
{
|
||
|
if (f >= 0)
|
||
|
return f >> 16;
|
||
|
else
|
||
|
return -((-f - 1) >> 16) - 1;
|
||
|
}
|
||
|
|
||
|
static inline double
|
||
|
_cairo_fixed_16_16_to_double (cairo_fixed_16_16_t f)
|
||
|
{
|
||
|
return ((double) f) / (double) (1 << 16);
|
||
|
}
|
||
|
|
||
|
#if CAIRO_FIXED_BITS == 32
|
||
|
|
||
|
static inline cairo_fixed_t
|
||
|
_cairo_fixed_mul (cairo_fixed_t a, cairo_fixed_t b)
|
||
|
{
|
||
|
cairo_int64_t temp = _cairo_int32x32_64_mul (a, b);
|
||
|
return _cairo_int64_to_int32(_cairo_int64_rsl (temp, CAIRO_FIXED_FRAC_BITS));
|
||
|
}
|
||
|
|
||
|
/* computes round (a * b / c) */
|
||
|
static inline cairo_fixed_t
|
||
|
_cairo_fixed_mul_div (cairo_fixed_t a, cairo_fixed_t b, cairo_fixed_t c)
|
||
|
{
|
||
|
cairo_int64_t ab = _cairo_int32x32_64_mul (a, b);
|
||
|
cairo_int64_t c64 = _cairo_int32_to_int64 (c);
|
||
|
return _cairo_int64_to_int32 (_cairo_int64_divrem (ab, c64).quo);
|
||
|
}
|
||
|
|
||
|
/* computes floor (a * b / c) */
|
||
|
static inline cairo_fixed_t
|
||
|
_cairo_fixed_mul_div_floor (cairo_fixed_t a, cairo_fixed_t b, cairo_fixed_t c)
|
||
|
{
|
||
|
return _cairo_int64_32_div (_cairo_int32x32_64_mul (a, b), c);
|
||
|
}
|
||
|
|
||
|
|
||
|
static inline cairo_fixed_t
|
||
|
_cairo_edge_compute_intersection_y_for_x (const cairo_point_t *p1,
|
||
|
const cairo_point_t *p2,
|
||
|
cairo_fixed_t x)
|
||
|
{
|
||
|
cairo_fixed_t y, dx;
|
||
|
|
||
|
if (x == p1->x)
|
||
|
return p1->y;
|
||
|
if (x == p2->x)
|
||
|
return p2->y;
|
||
|
|
||
|
y = p1->y;
|
||
|
dx = p2->x - p1->x;
|
||
|
if (dx != 0)
|
||
|
y += _cairo_fixed_mul_div_floor (x - p1->x, p2->y - p1->y, dx);
|
||
|
|
||
|
return y;
|
||
|
}
|
||
|
|
||
|
static inline cairo_fixed_t
|
||
|
_cairo_edge_compute_intersection_x_for_y (const cairo_point_t *p1,
|
||
|
const cairo_point_t *p2,
|
||
|
cairo_fixed_t y)
|
||
|
{
|
||
|
cairo_fixed_t x, dy;
|
||
|
|
||
|
if (y == p1->y)
|
||
|
return p1->x;
|
||
|
if (y == p2->y)
|
||
|
return p2->x;
|
||
|
|
||
|
x = p1->x;
|
||
|
dy = p2->y - p1->y;
|
||
|
if (dy != 0)
|
||
|
x += _cairo_fixed_mul_div_floor (y - p1->y, p2->x - p1->x, dy);
|
||
|
|
||
|
return x;
|
||
|
}
|
||
|
|
||
|
/* Intersect two segments based on the algorithm described at
|
||
|
* http://paulbourke.net/geometry/pointlineplane/. This implementation
|
||
|
* uses floating point math. */
|
||
|
static inline cairo_bool_t
|
||
|
_slow_segment_intersection (const cairo_point_t *seg1_p1,
|
||
|
const cairo_point_t *seg1_p2,
|
||
|
const cairo_point_t *seg2_p1,
|
||
|
const cairo_point_t *seg2_p2,
|
||
|
cairo_point_t *intersection)
|
||
|
{
|
||
|
double denominator, u_a, u_b;
|
||
|
double seg1_dx, seg1_dy, seg2_dx, seg2_dy, seg_start_dx, seg_start_dy;
|
||
|
|
||
|
seg1_dx = _cairo_fixed_to_double (seg1_p2->x - seg1_p1->x);
|
||
|
seg1_dy = _cairo_fixed_to_double (seg1_p2->y - seg1_p1->y);
|
||
|
seg2_dx = _cairo_fixed_to_double (seg2_p2->x - seg2_p1->x);
|
||
|
seg2_dy = _cairo_fixed_to_double (seg2_p2->y - seg2_p1->y);
|
||
|
denominator = (seg2_dy * seg1_dx) - (seg2_dx * seg1_dy);
|
||
|
if (denominator == 0)
|
||
|
return FALSE;
|
||
|
|
||
|
seg_start_dx = _cairo_fixed_to_double (seg1_p1->x - seg2_p1->x);
|
||
|
seg_start_dy = _cairo_fixed_to_double (seg1_p1->y - seg2_p1->y);
|
||
|
u_a = ((seg2_dx * seg_start_dy) - (seg2_dy * seg_start_dx)) / denominator;
|
||
|
u_b = ((seg1_dx * seg_start_dy) - (seg1_dy * seg_start_dx)) / denominator;
|
||
|
|
||
|
if (u_a <= 0 || u_a >= 1 || u_b <= 0 || u_b >= 1)
|
||
|
return FALSE;
|
||
|
|
||
|
intersection->x = seg1_p1->x + _cairo_fixed_from_double ((u_a * seg1_dx));
|
||
|
intersection->y = seg1_p1->y + _cairo_fixed_from_double ((u_a * seg1_dy));
|
||
|
return TRUE;
|
||
|
}
|
||
|
|
||
|
#else
|
||
|
# error Please define multiplication and other operands for your fixed-point type size
|
||
|
#endif
|
||
|
|
||
|
#endif /* CAIRO_FIXED_PRIVATE_H */
|