kolibrios/drivers/ddk/linux/bitmap.c

855 lines
26 KiB
C
Raw Normal View History

/*
* lib/bitmap.c
* Helper functions for bitmap.h.
*
* This source code is licensed under the GNU General Public License,
* Version 2. See the file COPYING for more details.
*/
#include <syscall.h>
#include <linux/export.h>
//#include <linux/thread_info.h>
#include <linux/ctype.h>
#include <linux/errno.h>
#include <linux/bitmap.h>
#include <linux/bitops.h>
#include <linux/bug.h>
//#include <asm/uaccess.h>
/*
* bitmaps provide an array of bits, implemented using an an
* array of unsigned longs. The number of valid bits in a
* given bitmap does _not_ need to be an exact multiple of
* BITS_PER_LONG.
*
* The possible unused bits in the last, partially used word
* of a bitmap are 'don't care'. The implementation makes
* no particular effort to keep them zero. It ensures that
* their value will not affect the results of any operation.
* The bitmap operations that return Boolean (bitmap_empty,
* for example) or scalar (bitmap_weight, for example) results
* carefully filter out these unused bits from impacting their
* results.
*
* These operations actually hold to a slightly stronger rule:
* if you don't input any bitmaps to these ops that have some
* unused bits set, then they won't output any set unused bits
* in output bitmaps.
*
* The byte ordering of bitmaps is more natural on little
* endian architectures. See the big-endian headers
* include/asm-ppc64/bitops.h and include/asm-s390/bitops.h
* for the best explanations of this ordering.
*/
int __bitmap_empty(const unsigned long *bitmap, unsigned int bits)
{
unsigned int k, lim = bits/BITS_PER_LONG;
for (k = 0; k < lim; ++k)
if (bitmap[k])
return 0;
if (bits % BITS_PER_LONG)
if (bitmap[k] & BITMAP_LAST_WORD_MASK(bits))
return 0;
return 1;
}
EXPORT_SYMBOL(__bitmap_empty);
int __bitmap_full(const unsigned long *bitmap, unsigned int bits)
{
unsigned int k, lim = bits/BITS_PER_LONG;
for (k = 0; k < lim; ++k)
if (~bitmap[k])
return 0;
if (bits % BITS_PER_LONG)
if (~bitmap[k] & BITMAP_LAST_WORD_MASK(bits))
return 0;
return 1;
}
EXPORT_SYMBOL(__bitmap_full);
int __bitmap_equal(const unsigned long *bitmap1,
const unsigned long *bitmap2, unsigned int bits)
{
unsigned int k, lim = bits/BITS_PER_LONG;
for (k = 0; k < lim; ++k)
if (bitmap1[k] != bitmap2[k])
return 0;
if (bits % BITS_PER_LONG)
if ((bitmap1[k] ^ bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits))
return 0;
return 1;
}
EXPORT_SYMBOL(__bitmap_equal);
void __bitmap_complement(unsigned long *dst, const unsigned long *src, unsigned int bits)
{
unsigned int k, lim = bits/BITS_PER_LONG;
for (k = 0; k < lim; ++k)
dst[k] = ~src[k];
if (bits % BITS_PER_LONG)
dst[k] = ~src[k];
}
EXPORT_SYMBOL(__bitmap_complement);
/**
* __bitmap_shift_right - logical right shift of the bits in a bitmap
* @dst : destination bitmap
* @src : source bitmap
* @shift : shift by this many bits
* @bits : bitmap size, in bits
*
* Shifting right (dividing) means moving bits in the MS -> LS bit
* direction. Zeros are fed into the vacated MS positions and the
* LS bits shifted off the bottom are lost.
*/
void __bitmap_shift_right(unsigned long *dst,
const unsigned long *src, int shift, int bits)
{
int k, lim = BITS_TO_LONGS(bits), left = bits % BITS_PER_LONG;
int off = shift/BITS_PER_LONG, rem = shift % BITS_PER_LONG;
unsigned long mask = (1UL << left) - 1;
for (k = 0; off + k < lim; ++k) {
unsigned long upper, lower;
/*
* If shift is not word aligned, take lower rem bits of
* word above and make them the top rem bits of result.
*/
if (!rem || off + k + 1 >= lim)
upper = 0;
else {
upper = src[off + k + 1];
if (off + k + 1 == lim - 1 && left)
upper &= mask;
}
lower = src[off + k];
if (left && off + k == lim - 1)
lower &= mask;
dst[k] = upper << (BITS_PER_LONG - rem) | lower >> rem;
if (left && k == lim - 1)
dst[k] &= mask;
}
if (off)
memset(&dst[lim - off], 0, off*sizeof(unsigned long));
}
EXPORT_SYMBOL(__bitmap_shift_right);
/**
* __bitmap_shift_left - logical left shift of the bits in a bitmap
* @dst : destination bitmap
* @src : source bitmap
* @shift : shift by this many bits
* @bits : bitmap size, in bits
*
* Shifting left (multiplying) means moving bits in the LS -> MS
* direction. Zeros are fed into the vacated LS bit positions
* and those MS bits shifted off the top are lost.
*/
void __bitmap_shift_left(unsigned long *dst,
const unsigned long *src, int shift, int bits)
{
int k, lim = BITS_TO_LONGS(bits), left = bits % BITS_PER_LONG;
int off = shift/BITS_PER_LONG, rem = shift % BITS_PER_LONG;
for (k = lim - off - 1; k >= 0; --k) {
unsigned long upper, lower;
/*
* If shift is not word aligned, take upper rem bits of
* word below and make them the bottom rem bits of result.
*/
if (rem && k > 0)
lower = src[k - 1];
else
lower = 0;
upper = src[k];
if (left && k == lim - 1)
upper &= (1UL << left) - 1;
dst[k + off] = lower >> (BITS_PER_LONG - rem) | upper << rem;
if (left && k + off == lim - 1)
dst[k + off] &= (1UL << left) - 1;
}
if (off)
memset(dst, 0, off*sizeof(unsigned long));
}
EXPORT_SYMBOL(__bitmap_shift_left);
int __bitmap_and(unsigned long *dst, const unsigned long *bitmap1,
const unsigned long *bitmap2, unsigned int bits)
{
unsigned int k;
unsigned int lim = bits/BITS_PER_LONG;
unsigned long result = 0;
for (k = 0; k < lim; k++)
result |= (dst[k] = bitmap1[k] & bitmap2[k]);
if (bits % BITS_PER_LONG)
result |= (dst[k] = bitmap1[k] & bitmap2[k] &
BITMAP_LAST_WORD_MASK(bits));
return result != 0;
}
EXPORT_SYMBOL(__bitmap_and);
void __bitmap_or(unsigned long *dst, const unsigned long *bitmap1,
const unsigned long *bitmap2, unsigned int bits)
{
unsigned int k;
unsigned int nr = BITS_TO_LONGS(bits);
for (k = 0; k < nr; k++)
dst[k] = bitmap1[k] | bitmap2[k];
}
EXPORT_SYMBOL(__bitmap_or);
void __bitmap_xor(unsigned long *dst, const unsigned long *bitmap1,
const unsigned long *bitmap2, unsigned int bits)
{
unsigned int k;
unsigned int nr = BITS_TO_LONGS(bits);
for (k = 0; k < nr; k++)
dst[k] = bitmap1[k] ^ bitmap2[k];
}
EXPORT_SYMBOL(__bitmap_xor);
int __bitmap_andnot(unsigned long *dst, const unsigned long *bitmap1,
const unsigned long *bitmap2, unsigned int bits)
{
unsigned int k;
unsigned int lim = bits/BITS_PER_LONG;
unsigned long result = 0;
for (k = 0; k < lim; k++)
result |= (dst[k] = bitmap1[k] & ~bitmap2[k]);
if (bits % BITS_PER_LONG)
result |= (dst[k] = bitmap1[k] & ~bitmap2[k] &
BITMAP_LAST_WORD_MASK(bits));
return result != 0;
}
EXPORT_SYMBOL(__bitmap_andnot);
int __bitmap_intersects(const unsigned long *bitmap1,
const unsigned long *bitmap2, unsigned int bits)
{
unsigned int k, lim = bits/BITS_PER_LONG;
for (k = 0; k < lim; ++k)
if (bitmap1[k] & bitmap2[k])
return 1;
if (bits % BITS_PER_LONG)
if ((bitmap1[k] & bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits))
return 1;
return 0;
}
EXPORT_SYMBOL(__bitmap_intersects);
int __bitmap_subset(const unsigned long *bitmap1,
const unsigned long *bitmap2, unsigned int bits)
{
unsigned int k, lim = bits/BITS_PER_LONG;
for (k = 0; k < lim; ++k)
if (bitmap1[k] & ~bitmap2[k])
return 0;
if (bits % BITS_PER_LONG)
if ((bitmap1[k] & ~bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits))
return 0;
return 1;
}
EXPORT_SYMBOL(__bitmap_subset);
int __bitmap_weight(const unsigned long *bitmap, unsigned int bits)
{
unsigned int k, lim = bits/BITS_PER_LONG;
int w = 0;
for (k = 0; k < lim; k++)
w += hweight_long(bitmap[k]);
if (bits % BITS_PER_LONG)
w += hweight_long(bitmap[k] & BITMAP_LAST_WORD_MASK(bits));
return w;
}
EXPORT_SYMBOL(__bitmap_weight);
void bitmap_set(unsigned long *map, unsigned int start, int len)
{
unsigned long *p = map + BIT_WORD(start);
const unsigned int size = start + len;
int bits_to_set = BITS_PER_LONG - (start % BITS_PER_LONG);
unsigned long mask_to_set = BITMAP_FIRST_WORD_MASK(start);
while (len - bits_to_set >= 0) {
*p |= mask_to_set;
len -= bits_to_set;
bits_to_set = BITS_PER_LONG;
mask_to_set = ~0UL;
p++;
}
if (len) {
mask_to_set &= BITMAP_LAST_WORD_MASK(size);
*p |= mask_to_set;
}
}
EXPORT_SYMBOL(bitmap_set);
void bitmap_clear(unsigned long *map, unsigned int start, int len)
{
unsigned long *p = map + BIT_WORD(start);
const unsigned int size = start + len;
int bits_to_clear = BITS_PER_LONG - (start % BITS_PER_LONG);
unsigned long mask_to_clear = BITMAP_FIRST_WORD_MASK(start);
while (len - bits_to_clear >= 0) {
*p &= ~mask_to_clear;
len -= bits_to_clear;
bits_to_clear = BITS_PER_LONG;
mask_to_clear = ~0UL;
p++;
}
if (len) {
mask_to_clear &= BITMAP_LAST_WORD_MASK(size);
*p &= ~mask_to_clear;
}
}
EXPORT_SYMBOL(bitmap_clear);
/*
* bitmap_find_next_zero_area - find a contiguous aligned zero area
* @map: The address to base the search on
* @size: The bitmap size in bits
* @start: The bitnumber to start searching at
* @nr: The number of zeroed bits we're looking for
* @align_mask: Alignment mask for zero area
*
* The @align_mask should be one less than a power of 2; the effect is that
* the bit offset of all zero areas this function finds is multiples of that
* power of 2. A @align_mask of 0 means no alignment is required.
*/
unsigned long bitmap_find_next_zero_area(unsigned long *map,
unsigned long size,
unsigned long start,
unsigned int nr,
unsigned long align_mask)
{
unsigned long index, end, i;
again:
index = find_next_zero_bit(map, size, start);
/* Align allocation */
index = __ALIGN_MASK(index, align_mask);
end = index + nr;
if (end > size)
return end;
i = find_next_bit(map, end, index);
if (i < end) {
start = i + 1;
goto again;
}
return index;
}
EXPORT_SYMBOL(bitmap_find_next_zero_area);
/*
* Bitmap printing & parsing functions: first version by Nadia Yvette Chambers,
* second version by Paul Jackson, third by Joe Korty.
*/
#define CHUNKSZ 32
#define nbits_to_hold_value(val) fls(val)
#define BASEDEC 10 /* fancier cpuset lists input in decimal */
/**
* bitmap_pos_to_ord - find ordinal of set bit at given position in bitmap
* @buf: pointer to a bitmap
* @pos: a bit position in @buf (0 <= @pos < @bits)
* @bits: number of valid bit positions in @buf
*
* Map the bit at position @pos in @buf (of length @bits) to the
* ordinal of which set bit it is. If it is not set or if @pos
* is not a valid bit position, map to -1.
*
* If for example, just bits 4 through 7 are set in @buf, then @pos
* values 4 through 7 will get mapped to 0 through 3, respectively,
* and other @pos values will get mapped to -1. When @pos value 7
* gets mapped to (returns) @ord value 3 in this example, that means
* that bit 7 is the 3rd (starting with 0th) set bit in @buf.
*
* The bit positions 0 through @bits are valid positions in @buf.
*/
static int bitmap_pos_to_ord(const unsigned long *buf, int pos, int bits)
{
int i, ord;
if (pos < 0 || pos >= bits || !test_bit(pos, buf))
return -1;
i = find_first_bit(buf, bits);
ord = 0;
while (i < pos) {
i = find_next_bit(buf, bits, i + 1);
ord++;
}
BUG_ON(i != pos);
return ord;
}
/**
* bitmap_ord_to_pos - find position of n-th set bit in bitmap
* @buf: pointer to bitmap
* @ord: ordinal bit position (n-th set bit, n >= 0)
* @bits: number of valid bit positions in @buf
*
* Map the ordinal offset of bit @ord in @buf to its position in @buf.
* Value of @ord should be in range 0 <= @ord < weight(buf), else
* results are undefined.
*
* If for example, just bits 4 through 7 are set in @buf, then @ord
* values 0 through 3 will get mapped to 4 through 7, respectively,
* and all other @ord values return undefined values. When @ord value 3
* gets mapped to (returns) @pos value 7 in this example, that means
* that the 3rd set bit (starting with 0th) is at position 7 in @buf.
*
* The bit positions 0 through @bits are valid positions in @buf.
*/
int bitmap_ord_to_pos(const unsigned long *buf, int ord, int bits)
{
int pos = 0;
if (ord >= 0 && ord < bits) {
int i;
for (i = find_first_bit(buf, bits);
i < bits && ord > 0;
i = find_next_bit(buf, bits, i + 1))
ord--;
if (i < bits && ord == 0)
pos = i;
}
return pos;
}
/**
* bitmap_remap - Apply map defined by a pair of bitmaps to another bitmap
* @dst: remapped result
* @src: subset to be remapped
* @old: defines domain of map
* @new: defines range of map
* @bits: number of bits in each of these bitmaps
*
* Let @old and @new define a mapping of bit positions, such that
* whatever position is held by the n-th set bit in @old is mapped
* to the n-th set bit in @new. In the more general case, allowing
* for the possibility that the weight 'w' of @new is less than the
* weight of @old, map the position of the n-th set bit in @old to
* the position of the m-th set bit in @new, where m == n % w.
*
* If either of the @old and @new bitmaps are empty, or if @src and
* @dst point to the same location, then this routine copies @src
* to @dst.
*
* The positions of unset bits in @old are mapped to themselves
* (the identify map).
*
* Apply the above specified mapping to @src, placing the result in
* @dst, clearing any bits previously set in @dst.
*
* For example, lets say that @old has bits 4 through 7 set, and
* @new has bits 12 through 15 set. This defines the mapping of bit
* position 4 to 12, 5 to 13, 6 to 14 and 7 to 15, and of all other
* bit positions unchanged. So if say @src comes into this routine
* with bits 1, 5 and 7 set, then @dst should leave with bits 1,
* 13 and 15 set.
*/
void bitmap_remap(unsigned long *dst, const unsigned long *src,
const unsigned long *old, const unsigned long *new,
int bits)
{
int oldbit, w;
if (dst == src) /* following doesn't handle inplace remaps */
return;
bitmap_zero(dst, bits);
w = bitmap_weight(new, bits);
for_each_set_bit(oldbit, src, bits) {
int n = bitmap_pos_to_ord(old, oldbit, bits);
if (n < 0 || w == 0)
set_bit(oldbit, dst); /* identity map */
else
set_bit(bitmap_ord_to_pos(new, n % w, bits), dst);
}
}
EXPORT_SYMBOL(bitmap_remap);
/**
* bitmap_bitremap - Apply map defined by a pair of bitmaps to a single bit
* @oldbit: bit position to be mapped
* @old: defines domain of map
* @new: defines range of map
* @bits: number of bits in each of these bitmaps
*
* Let @old and @new define a mapping of bit positions, such that
* whatever position is held by the n-th set bit in @old is mapped
* to the n-th set bit in @new. In the more general case, allowing
* for the possibility that the weight 'w' of @new is less than the
* weight of @old, map the position of the n-th set bit in @old to
* the position of the m-th set bit in @new, where m == n % w.
*
* The positions of unset bits in @old are mapped to themselves
* (the identify map).
*
* Apply the above specified mapping to bit position @oldbit, returning
* the new bit position.
*
* For example, lets say that @old has bits 4 through 7 set, and
* @new has bits 12 through 15 set. This defines the mapping of bit
* position 4 to 12, 5 to 13, 6 to 14 and 7 to 15, and of all other
* bit positions unchanged. So if say @oldbit is 5, then this routine
* returns 13.
*/
int bitmap_bitremap(int oldbit, const unsigned long *old,
const unsigned long *new, int bits)
{
int w = bitmap_weight(new, bits);
int n = bitmap_pos_to_ord(old, oldbit, bits);
if (n < 0 || w == 0)
return oldbit;
else
return bitmap_ord_to_pos(new, n % w, bits);
}
EXPORT_SYMBOL(bitmap_bitremap);
/**
* bitmap_onto - translate one bitmap relative to another
* @dst: resulting translated bitmap
* @orig: original untranslated bitmap
* @relmap: bitmap relative to which translated
* @bits: number of bits in each of these bitmaps
*
* Set the n-th bit of @dst iff there exists some m such that the
* n-th bit of @relmap is set, the m-th bit of @orig is set, and
* the n-th bit of @relmap is also the m-th _set_ bit of @relmap.
* (If you understood the previous sentence the first time your
* read it, you're overqualified for your current job.)
*
* In other words, @orig is mapped onto (surjectively) @dst,
* using the the map { <n, m> | the n-th bit of @relmap is the
* m-th set bit of @relmap }.
*
* Any set bits in @orig above bit number W, where W is the
* weight of (number of set bits in) @relmap are mapped nowhere.
* In particular, if for all bits m set in @orig, m >= W, then
* @dst will end up empty. In situations where the possibility
* of such an empty result is not desired, one way to avoid it is
* to use the bitmap_fold() operator, below, to first fold the
* @orig bitmap over itself so that all its set bits x are in the
* range 0 <= x < W. The bitmap_fold() operator does this by
* setting the bit (m % W) in @dst, for each bit (m) set in @orig.
*
* Example [1] for bitmap_onto():
* Let's say @relmap has bits 30-39 set, and @orig has bits
* 1, 3, 5, 7, 9 and 11 set. Then on return from this routine,
* @dst will have bits 31, 33, 35, 37 and 39 set.
*
* When bit 0 is set in @orig, it means turn on the bit in
* @dst corresponding to whatever is the first bit (if any)
* that is turned on in @relmap. Since bit 0 was off in the
* above example, we leave off that bit (bit 30) in @dst.
*
* When bit 1 is set in @orig (as in the above example), it
* means turn on the bit in @dst corresponding to whatever
* is the second bit that is turned on in @relmap. The second
* bit in @relmap that was turned on in the above example was
* bit 31, so we turned on bit 31 in @dst.
*
* Similarly, we turned on bits 33, 35, 37 and 39 in @dst,
* because they were the 4th, 6th, 8th and 10th set bits
* set in @relmap, and the 4th, 6th, 8th and 10th bits of
* @orig (i.e. bits 3, 5, 7 and 9) were also set.
*
* When bit 11 is set in @orig, it means turn on the bit in
* @dst corresponding to whatever is the twelfth bit that is
* turned on in @relmap. In the above example, there were
* only ten bits turned on in @relmap (30..39), so that bit
* 11 was set in @orig had no affect on @dst.
*
* Example [2] for bitmap_fold() + bitmap_onto():
* Let's say @relmap has these ten bits set:
* 40 41 42 43 45 48 53 61 74 95
* (for the curious, that's 40 plus the first ten terms of the
* Fibonacci sequence.)
*
* Further lets say we use the following code, invoking
* bitmap_fold() then bitmap_onto, as suggested above to
* avoid the possitility of an empty @dst result:
*
* unsigned long *tmp; // a temporary bitmap's bits
*
* bitmap_fold(tmp, orig, bitmap_weight(relmap, bits), bits);
* bitmap_onto(dst, tmp, relmap, bits);
*
* Then this table shows what various values of @dst would be, for
* various @orig's. I list the zero-based positions of each set bit.
* The tmp column shows the intermediate result, as computed by
* using bitmap_fold() to fold the @orig bitmap modulo ten
* (the weight of @relmap).
*
* @orig tmp @dst
* 0 0 40
* 1 1 41
* 9 9 95
* 10 0 40 (*)
* 1 3 5 7 1 3 5 7 41 43 48 61
* 0 1 2 3 4 0 1 2 3 4 40 41 42 43 45
* 0 9 18 27 0 9 8 7 40 61 74 95
* 0 10 20 30 0 40
* 0 11 22 33 0 1 2 3 40 41 42 43
* 0 12 24 36 0 2 4 6 40 42 45 53
* 78 102 211 1 2 8 41 42 74 (*)
*
* (*) For these marked lines, if we hadn't first done bitmap_fold()
* into tmp, then the @dst result would have been empty.
*
* If either of @orig or @relmap is empty (no set bits), then @dst
* will be returned empty.
*
* If (as explained above) the only set bits in @orig are in positions
* m where m >= W, (where W is the weight of @relmap) then @dst will
* once again be returned empty.
*
* All bits in @dst not set by the above rule are cleared.
*/
void bitmap_onto(unsigned long *dst, const unsigned long *orig,
const unsigned long *relmap, int bits)
{
int n, m; /* same meaning as in above comment */
if (dst == orig) /* following doesn't handle inplace mappings */
return;
bitmap_zero(dst, bits);
/*
* The following code is a more efficient, but less
* obvious, equivalent to the loop:
* for (m = 0; m < bitmap_weight(relmap, bits); m++) {
* n = bitmap_ord_to_pos(orig, m, bits);
* if (test_bit(m, orig))
* set_bit(n, dst);
* }
*/
m = 0;
for_each_set_bit(n, relmap, bits) {
/* m == bitmap_pos_to_ord(relmap, n, bits) */
if (test_bit(m, orig))
set_bit(n, dst);
m++;
}
}
EXPORT_SYMBOL(bitmap_onto);
/**
* bitmap_fold - fold larger bitmap into smaller, modulo specified size
* @dst: resulting smaller bitmap
* @orig: original larger bitmap
* @sz: specified size
* @bits: number of bits in each of these bitmaps
*
* For each bit oldbit in @orig, set bit oldbit mod @sz in @dst.
* Clear all other bits in @dst. See further the comment and
* Example [2] for bitmap_onto() for why and how to use this.
*/
void bitmap_fold(unsigned long *dst, const unsigned long *orig,
int sz, int bits)
{
int oldbit;
if (dst == orig) /* following doesn't handle inplace mappings */
return;
bitmap_zero(dst, bits);
for_each_set_bit(oldbit, orig, bits)
set_bit(oldbit % sz, dst);
}
EXPORT_SYMBOL(bitmap_fold);
/*
* Common code for bitmap_*_region() routines.
* bitmap: array of unsigned longs corresponding to the bitmap
* pos: the beginning of the region
* order: region size (log base 2 of number of bits)
* reg_op: operation(s) to perform on that region of bitmap
*
* Can set, verify and/or release a region of bits in a bitmap,
* depending on which combination of REG_OP_* flag bits is set.
*
* A region of a bitmap is a sequence of bits in the bitmap, of
* some size '1 << order' (a power of two), aligned to that same
* '1 << order' power of two.
*
* Returns 1 if REG_OP_ISFREE succeeds (region is all zero bits).
* Returns 0 in all other cases and reg_ops.
*/
enum {
REG_OP_ISFREE, /* true if region is all zero bits */
REG_OP_ALLOC, /* set all bits in region */
REG_OP_RELEASE, /* clear all bits in region */
};
static int __reg_op(unsigned long *bitmap, unsigned int pos, int order, int reg_op)
{
int nbits_reg; /* number of bits in region */
int index; /* index first long of region in bitmap */
int offset; /* bit offset region in bitmap[index] */
int nlongs_reg; /* num longs spanned by region in bitmap */
int nbitsinlong; /* num bits of region in each spanned long */
unsigned long mask; /* bitmask for one long of region */
int i; /* scans bitmap by longs */
int ret = 0; /* return value */
/*
* Either nlongs_reg == 1 (for small orders that fit in one long)
* or (offset == 0 && mask == ~0UL) (for larger multiword orders.)
*/
nbits_reg = 1 << order;
index = pos / BITS_PER_LONG;
offset = pos - (index * BITS_PER_LONG);
nlongs_reg = BITS_TO_LONGS(nbits_reg);
nbitsinlong = min(nbits_reg, BITS_PER_LONG);
/*
* Can't do "mask = (1UL << nbitsinlong) - 1", as that
* overflows if nbitsinlong == BITS_PER_LONG.
*/
mask = (1UL << (nbitsinlong - 1));
mask += mask - 1;
mask <<= offset;
switch (reg_op) {
case REG_OP_ISFREE:
for (i = 0; i < nlongs_reg; i++) {
if (bitmap[index + i] & mask)
goto done;
}
ret = 1; /* all bits in region free (zero) */
break;
case REG_OP_ALLOC:
for (i = 0; i < nlongs_reg; i++)
bitmap[index + i] |= mask;
break;
case REG_OP_RELEASE:
for (i = 0; i < nlongs_reg; i++)
bitmap[index + i] &= ~mask;
break;
}
done:
return ret;
}
/**
* bitmap_find_free_region - find a contiguous aligned mem region
* @bitmap: array of unsigned longs corresponding to the bitmap
* @bits: number of bits in the bitmap
* @order: region size (log base 2 of number of bits) to find
*
* Find a region of free (zero) bits in a @bitmap of @bits bits and
* allocate them (set them to one). Only consider regions of length
* a power (@order) of two, aligned to that power of two, which
* makes the search algorithm much faster.
*
* Return the bit offset in bitmap of the allocated region,
* or -errno on failure.
*/
int bitmap_find_free_region(unsigned long *bitmap, unsigned int bits, int order)
{
unsigned int pos, end; /* scans bitmap by regions of size order */
for (pos = 0 ; (end = pos + (1U << order)) <= bits; pos = end) {
if (!__reg_op(bitmap, pos, order, REG_OP_ISFREE))
continue;
__reg_op(bitmap, pos, order, REG_OP_ALLOC);
return pos;
}
return -ENOMEM;
}
EXPORT_SYMBOL(bitmap_find_free_region);
/**
* bitmap_release_region - release allocated bitmap region
* @bitmap: array of unsigned longs corresponding to the bitmap
* @pos: beginning of bit region to release
* @order: region size (log base 2 of number of bits) to release
*
* This is the complement to __bitmap_find_free_region() and releases
* the found region (by clearing it in the bitmap).
*
* No return value.
*/
void bitmap_release_region(unsigned long *bitmap, unsigned int pos, int order)
{
__reg_op(bitmap, pos, order, REG_OP_RELEASE);
}
EXPORT_SYMBOL(bitmap_release_region);
/**
* bitmap_allocate_region - allocate bitmap region
* @bitmap: array of unsigned longs corresponding to the bitmap
* @pos: beginning of bit region to allocate
* @order: region size (log base 2 of number of bits) to allocate
*
* Allocate (set bits in) a specified region of a bitmap.
*
* Return 0 on success, or %-EBUSY if specified region wasn't
* free (not all bits were zero).
*/
int bitmap_allocate_region(unsigned long *bitmap, unsigned int pos, int order)
{
if (!__reg_op(bitmap, pos, order, REG_OP_ISFREE))
return -EBUSY;
return __reg_op(bitmap, pos, order, REG_OP_ALLOC);
}
EXPORT_SYMBOL(bitmap_allocate_region);
/**
* bitmap_copy_le - copy a bitmap, putting the bits into little-endian order.
* @dst: destination buffer
* @src: bitmap to copy
* @nbits: number of bits in the bitmap
*
* Require nbits % BITS_PER_LONG == 0.
*/
void bitmap_copy_le(void *dst, const unsigned long *src, int nbits)
{
unsigned long *d = dst;
int i;
for (i = 0; i < nbits/BITS_PER_LONG; i++) {
if (BITS_PER_LONG == 64)
d[i] = cpu_to_le64(src[i]);
else
d[i] = cpu_to_le32(src[i]);
}
}
EXPORT_SYMBOL(bitmap_copy_le);