newlib: new libm code

git-svn-id: svn://kolibrios.org@3362 a494cfbc-eb01-0410-851d-a64ba20cac60
This commit is contained in:
Sergey Semyonov (Serge) 2013-03-11 18:13:25 +00:00
parent 71d9f3dce2
commit 9ebd703865
409 changed files with 24398 additions and 16452 deletions

View File

@ -9,7 +9,7 @@ LIBC_INCLUDES = $(LIBC_TOPDIR)/include
NAME:= libc
DEFINES:=
DEFINES:= -D_IEEE_LIBM
INCLUDES:= -I $(LIBC_INCLUDES)
@ -253,26 +253,39 @@ STDIO_SRCS= \
sscanf.c
MATH_SRCS = acosf.c acosh.c acoshf.c acoshl.c acosl.c asinf.c asinh.c asinhf.c asinhl.c \
asinl.c atan2f.c atan2l.c atanf.c atanh.c atanhf.c atanhl.c atanl.c cbrt.c \
cbrtf.c cbrtl.c coshf.c coshl.c erfl.c expf.c expl.c expm1.c expm1f.c expm1l.c\
fabs.c fabsf.c fabsl.c fdim.c fdimf.c fdiml.c fmal.c fmax.c fmaxf.c fmaxl.c\
fmin.c fminf.c fminl.c fmodf.c fmodl.c fp_consts.c fp_constsf.c fp_constsl.c\
fpclassify.c fpclassifyf.c fpclassifyl.c frexpf.c fucom.c hypotf.c isnan.c \
isnanf.c isnanl.c ldexp.c ldexpf.c ldexpl.c lgamma.c lgammaf.c lgammal.c \
llrint.c llrintf.c llrintl.c logb.c logbf.c logbl.c lrint.c lrintf.c lrintl.c\
lround_generic.c modff.c modfl.c nextafterf.c nextafterl.c nexttoward.c \
nexttowardf.c pow.c powf.c powi.c powif.c powil.c powl.c rint.c rintf.c \
rintl.c round_generic.c s_erf.c sf_erf.c signbit.c signbitf.c signbitl.c \
sinhf.c sinhl.c sqrtf.c sqrtl.c tanhf.c tanhl.c tgamma.c tgammaf.c tgammal.c \
trunc.c truncf.c truncl.c e_sqrt.c e_sinh.c e_cosh.c e_hypot.c s_tanh.c \
s_roundf.c s_fpclassify.c s_isnand.c w_hypot.c s_modf.c e_atan2.c w_atan2.c\
ceil.S ceilf.S ceill.S copysign.S copysignf.S copysignl.S cos.S cosf.S cosl.S exp.S exp2.S \
exp2f.S exp2l.S floor.S floorf.S floorl.S fma.S fmaf.S frexp.S frexpl.S ilogb.S ilogbf.S \
ilogbl.S log10.S log10f.S log10l.S log1p.S log1pf.S log1pl.S log2.S log2f.S log2l.S \
log.S logf.S logl.S nearbyint.S nearbyintf.S nearbyintl.S remainder.S remainderf.S \
remainderl.S remquo.S remquof.S remquol.S scalbn.S scalbnf.S scalbnl.S sin.S \
sinf.S sinl.S tan.S tanf.S tanl.S s_expm1.S
MATH_SRCS = e_acos.c e_acosh.c e_asin.c e_atan2.c e_atanh.c e_cosh.c e_exp.c e_fmod.c \
e_hypot.c e_j0.c e_j1.c e_jn.c e_log.c e_log10.c e_pow.c e_rem_pio2.c \
e_remainder.c e_scalb.c e_sinh.c e_sqrt.c ef_acos.c ef_acosh.c ef_asin.c \
ef_atan2.c ef_atanh.c ef_cosh.c ef_exp.c ef_fmod.c ef_hypot.c ef_j0.c ef_j1.c \
ef_jn.c ef_log.c ef_log10.c ef_pow.c ef_rem_pio2.c ef_remainder.c ef_scalb.c \
ef_sinh.c ef_sqrt.c er_gamma.c er_lgamma.c erf_gamma.c erf_lgamma.c f_exp.c \
f_expf.c f_llrint.c f_llrintf.c f_llrintl.c f_lrint.c f_lrintf.c f_lrintl.c \
f_pow.c f_powf.c f_rint.c f_rintf.c f_rintl.c k_cos.c k_rem_pio2.c k_sin.c \
k_standard.c k_tan.c kf_cos.c kf_rem_pio2.c kf_sin.c kf_tan.c s_asinh.c \
s_atan.c s_cbrt.c s_ceil.c s_copysign.c s_cos.c s_erf.c s_exp10.c s_expm1.c \
s_fabs.c s_fdim.c s_finite.c s_floor.c s_fma.c s_fmax.c s_fmin.c s_fpclassify.c \
s_frexp.c s_ilogb.c s_infconst.c s_infinity.c s_isinf.c s_isinfd.c s_isnan.c \
s_isnand.c s_ldexp.c s_lib_ver.c s_llrint.c s_llround.c s_log1p.c s_log2.c \
s_logb.c s_lrint.c s_lround.c s_matherr.c s_modf.c s_nan.c s_nearbyint.c \
s_nextafter.c s_pow10.c s_remquo.c s_rint.c s_round.c s_scalbln.c s_scalbn.c \
s_signbit.c s_signif.c s_sin.c s_tan.c s_tanh.c s_trunc.c scalblnl.c scalbnl.c \
sf_asinh.c sf_atan.c sf_cbrt.c sf_ceil.c sf_copysign.c sf_cos.c sf_erf.c \
sf_exp10.c sf_expm1.c sf_fabs.c sf_fdim.c sf_finite.c sf_floor.c sf_fma.c \
sf_fmax.c sf_fmin.c sf_fpclassify.c sf_frexp.c sf_ilogb.c sf_infinity.c \
sf_isinf.c sf_isinff.c sf_isnan.c sf_isnanf.c sf_ldexp.c sf_llrint.c \
sf_llround.c sf_log1p.c sf_log2.c sf_logb.c sf_lrint.c sf_lround.c sf_modf.c \
sf_nan.c sf_nearbyint.c sf_nextafter.c sf_pow10.c sf_remquo.c sf_rint.c \
sf_round.c sf_scalbln.c sf_scalbn.c sf_signif.c sf_sin.c sf_tan.c sf_tanh.c \
sf_trunc.c w_acos.c w_acosh.c w_asin.c w_atan2.c w_atanh.c w_cosh.c w_drem.c \
w_exp.c w_exp2.c w_fmod.c w_gamma.c w_hypot.c w_j0.c w_j1.c w_jn.c w_lgamma.c \
w_log.c w_log10.c w_pow.c w_remainder.c w_scalb.c w_sincos.c w_sinh.c w_sqrt.c \
w_tgamma.c wf_acos.c wf_acosh.c wf_asin.c wf_atan2.c wf_atanh.c wf_cosh.c \
wf_drem.c wf_exp.c wf_exp2.c wf_fmod.c wf_gamma.c wf_hypot.c wf_j0.c wf_j1.c \
wf_jn.c wf_lgamma.c wf_log.c wf_log10.c wf_pow.c wf_remainder.c wf_scalb.c \
wf_sincos.c wf_sinh.c wf_sqrt.c wf_tgamma.c wr_gamma.c wr_lgamma.c wrf_gamma.c \
wrf_lgamma.c \
f_atan2.S f_atan2f.S f_frexp.S f_frexpf.S f_ldexp.S f_ldexpf.S f_log.S \
f_log10.S f_log10f.S f_logf.S f_tan.S f_tanf.S
AMZ_OBJS = $(patsubst %.S, %.o, $(patsubst %.c, %.o, $(AMZ_SRCS)))
@ -385,7 +398,7 @@ stdio/svfiscanf.o: stdio/vfscanf.c
%.obj : %.asm Makefile
fasm $< $@
fasm $< $
%.o : %.c Makefile
$(CC) $(CFLAGS) $(DEFINES) $(INCLUDES) -o $@ $<
@ -395,3 +408,5 @@ clean:
-rm -f */*.o

View File

@ -1,40 +0,0 @@
/*
* Written by J.T. Conklin <jtc@netbsd.org>.
* Public domain.
*/
#include <math.h>
float
acosf (float x)
{
float res;
/* acosl = atanl (sqrtl(1 - x^2) / x) */
asm ( "fld %%st\n\t"
"fmul %%st(0)\n\t" /* x^2 */
"fld1\n\t"
"fsubp\n\t" /* 1 - x^2 */
"fsqrt\n\t" /* sqrtl (1 - x^2) */
"fxch %%st(1)\n\t"
"fpatan"
: "=t" (res) : "0" (x) : "st(1)");
return res;
}
double
acos (double x)
{
double res;
/* acosl = atanl (sqrtl(1 - x^2) / x) */
asm ( "fld %%st\n\t"
"fmul %%st(0)\n\t" /* x^2 */
"fld1\n\t"
"fsubp\n\t" /* 1 - x^2 */
"fsqrt\n\t" /* sqrtl (1 - x^2) */
"fxch %%st(1)\n\t"
"fpatan"
: "=t" (res) : "0" (x) : "st(1)");
return res;
}

View File

@ -1,26 +0,0 @@
#include <math.h>
#include <errno.h>
#include "fastmath.h"
/* acosh(x) = log (x + sqrt(x * x - 1)) */
double acosh (double x)
{
if (isnan (x))
return x;
if (x < 1.0)
{
errno = EDOM;
return nan("");
}
if (x > 0x1p32)
/* Avoid overflow (and unnecessary calculation when
sqrt (x * x - 1) == x). GCC optimizes by replacing
the long double M_LN2 const with a fldln2 insn. */
return __fast_log (x) + 6.9314718055994530941723E-1L;
/* Since x >= 1, the arg to log will always be greater than
the fyl2xp1 limit (approx 0.29) so just use logl. */
return __fast_log (x + __fast_sqrt((x + 1.0) * (x - 1.0)));
}

View File

@ -1,25 +0,0 @@
#include <math.h>
#include <errno.h>
#include "fastmath.h"
/* acosh(x) = log (x + sqrt(x * x - 1)) */
float acoshf (float x)
{
if (isnan (x))
return x;
if (x < 1.0f)
{
errno = EDOM;
return nan("");
}
if (x > 0x1p32f)
/* Avoid overflow (and unnecessary calculation when
sqrt (x * x - 1) == x). GCC optimizes by replacing
the long double M_LN2 const with a fldln2 insn. */
return __fast_log (x) + 6.9314718055994530941723E-1L;
/* Since x >= 1, the arg to log will always be greater than
the fyl2xp1 limit (approx 0.29) so just use logl. */
return __fast_log (x + __fast_sqrt((x + 1.0) * (x - 1.0)));
}

View File

@ -1,27 +0,0 @@
#include <math.h>
#include <errno.h>
#include "fastmath.h"
/* acosh(x) = log (x + sqrt(x * x - 1)) */
long double acoshl (long double x)
{
if (isnan (x))
return x;
if (x < 1.0L)
{
errno = EDOM;
return nanl("");
}
if (x > 0x1p32L)
/* Avoid overflow (and unnecessary calculation when
sqrt (x * x - 1) == x).
The M_LN2 define doesn't have enough precison for
long double so use this one. GCC optimizes by replacing
the const with a fldln2 insn. */
return __fast_logl (x) + 6.9314718055994530941723E-1L;
/* Since x >= 1, the arg to log will always be greater than
the fyl2xp1 limit (approx 0.29) so just use logl. */
return __fast_logl (x + __fast_sqrtl((x + 1.0L) * (x - 1.0L)));
}

View File

@ -1,25 +0,0 @@
/*
* Written by J.T. Conklin <jtc@netbsd.org>.
* Public domain.
*
* Adapted for `long double' by Ulrich Drepper <drepper@cygnus.com>.
*/
#include <math.h>
long double
acosl (long double x)
{
long double res;
/* acosl = atanl (sqrtl(1 - x^2) / x) */
asm ( "fld %%st\n\t"
"fmul %%st(0)\n\t" /* x^2 */
"fld1\n\t"
"fsubp\n\t" /* 1 - x^2 */
"fsqrt\n\t" /* sqrtl (1 - x^2) */
"fxch %%st(1)\n\t"
"fpatan"
: "=t" (res) : "0" (x) : "st(1)");
return res;
}

View File

@ -1,34 +0,0 @@
/*
* Written by J.T. Conklin <jtc@netbsd.org>.
* Public domain.
*/
/* asin = atan (x / sqrt(1 - x^2)) */
float asinf (float x)
{
float res;
asm ( "fld %%st\n\t"
"fmul %%st(0)\n\t" /* x^2 */
"fld1\n\t"
"fsubp\n\t" /* 1 - x^2 */
"fsqrt\n\t" /* sqrt (1 - x^2) */
"fpatan"
: "=t" (res) : "0" (x) : "st(1)");
return res;
}
double asin (double x)
{
double res;
asm ( "fld %%st\n\t"
"fmul %%st(0)\n\t" /* x^2 */
"fld1\n\t"
"fsubp\n\t" /* 1 - x^2 */
"fsqrt\n\t" /* sqrt (1 - x^2) */
"fpatan"
: "=t" (res) : "0" (x) : "st(1)");
return res;
}

View File

@ -1,28 +0,0 @@
#include <math.h>
#include <errno.h>
#include "fastmath.h"
/* asinh(x) = copysign(log(fabs(x) + sqrt(x * x + 1.0)), x) */
double asinh(double x)
{
double z;
if (!isfinite (x))
return x;
z = fabs (x);
/* Avoid setting FPU underflow exception flag in x * x. */
#if 0
if ( z < 0x1p-32)
return x;
#endif
/* Use log1p to avoid cancellation with small x. Put
x * x in denom, so overflow is harmless.
asinh(x) = log1p (x + sqrt (x * x + 1.0) - 1.0)
= log1p (x + x * x / (sqrt (x * x + 1.0) + 1.0)) */
z = __fast_log1p (z + z * z / (__fast_sqrt (z * z + 1.0) + 1.0));
return ( x > 0.0 ? z : -z);
}

View File

@ -1,28 +0,0 @@
#include <math.h>
#include <errno.h>
#include "fastmath.h"
/* asinh(x) = copysign(log(fabs(x) + sqrt(x * x + 1.0)), x) */
float asinhf(float x)
{
float z;
if (!isfinite (x))
return x;
z = fabsf (x);
/* Avoid setting FPU underflow exception flag in x * x. */
#if 0
if ( z < 0x1p-32)
return x;
#endif
/* Use log1p to avoid cancellation with small x. Put
x * x in denom, so overflow is harmless.
asinh(x) = log1p (x + sqrt (x * x + 1.0) - 1.0)
= log1p (x + x * x / (sqrt (x * x + 1.0) + 1.0)) */
z = __fast_log1p (z + z * z / (__fast_sqrt (z * z + 1.0) + 1.0));
return ( x > 0.0 ? z : -z);
}

View File

@ -1,28 +0,0 @@
#include <math.h>
#include <errno.h>
#include "fastmath.h"
/* asinh(x) = copysign(log(fabs(x) + sqrt(x * x + 1.0)), x) */
long double asinhl(long double x)
{
long double z;
if (!isfinite (x))
return x;
z = fabsl (x);
/* Avoid setting FPU underflow exception flag in x * x. */
#if 0
if ( z < 0x1p-32)
return x;
#endif
/* Use log1p to avoid cancellation with small x. Put
x * x in denom, so overflow is harmless.
asinh(x) = log1p (x + sqrt (x * x + 1.0) - 1.0)
= log1p (x + x * x / (sqrt (x * x + 1.0) + 1.0)) */
z = __fast_log1pl (z + z * z / (__fast_sqrtl (z * z + 1.0L) + 1.0L));
return ( x > 0.0 ? z : -z);
}

View File

@ -1,21 +0,0 @@
/*
* Written by J.T. Conklin <jtc@netbsd.org>.
* Public domain.
* Adapted for long double type by Danny Smith <dannysmith@users.sourceforge.net>.
*/
/* asin = atan (x / sqrt(1 - x^2)) */
long double asinl (long double x)
{
long double res;
asm ( "fld %%st\n\t"
"fmul %%st(0)\n\t" /* x^2 */
"fld1\n\t"
"fsubp\n\t" /* 1 - x^2 */
"fsqrt\n\t" /* sqrt (1 - x^2) */
"fpatan"
: "=t" (res) : "0" (x) : "st(1)");
return res;
}

View File

@ -1,15 +0,0 @@
/*
* Written by J.T. Conklin <jtc@netbsd.org>.
* Public domain.
*
*/
#include <math.h>
float
atan2f (float y, float x)
{
float res;
asm ("fpatan" : "=t" (res) : "u" (y), "0" (x) : "st(1)");
return res;
}

View File

@ -1,16 +0,0 @@
/*
* Written by J.T. Conklin <jtc@netbsd.org>.
* Public domain.
*
* Adapted for `long double' by Ulrich Drepper <drepper@cygnus.com>.
*/
#include <math.h>
long double
atan2l (long double y, long double x)
{
long double res;
asm ("fpatan" : "=t" (res) : "u" (y), "0" (x) : "st(1)");
return res;
}

View File

@ -1,28 +0,0 @@
/*
* Written by J.T. Conklin <jtc@netbsd.org>.
* Public domain.
*
*/
#include <math.h>
float
atanf (float x)
{
float res;
asm ("fld1\n\t"
"fpatan" : "=t" (res) : "0" (x));
return res;
}
double
atan (double x)
{
double res;
asm ("fld1 \n\t"
"fpatan" : "=t" (res) : "0" (x));
return res;
}

View File

@ -1,31 +0,0 @@
#include <math.h>
#include <errno.h>
#include "fastmath.h"
/* atanh (x) = 0.5 * log ((1.0 + x)/(1.0 - x)) */
double atanh(double x)
{
double z;
if isnan (x)
return x;
z = fabs (x);
if (z == 1.0)
{
errno = ERANGE;
return (x > 0 ? INFINITY : -INFINITY);
}
if (z > 1.0)
{
errno = EDOM;
return nan("");
}
/* Rearrange formula to avoid precision loss for small x.
atanh(x) = 0.5 * log ((1.0 + x)/(1.0 - x))
= 0.5 * log1p ((1.0 + x)/(1.0 - x) - 1.0)
= 0.5 * log1p ((1.0 + x - 1.0 + x) /(1.0 - x))
= 0.5 * log1p ((2.0 * x ) / (1.0 - x)) */
z = 0.5 * __fast_log1p ((z + z) / (1.0 - z));
return x >= 0 ? z : -z;
}

View File

@ -1,30 +0,0 @@
#include <math.h>
#include <errno.h>
#include "fastmath.h"
/* atanh (x) = 0.5 * log ((1.0 + x)/(1.0 - x)) */
float atanhf (float x)
{
float z;
if isnan (x)
return x;
z = fabsf (x);
if (z == 1.0)
{
errno = ERANGE;
return (x > 0 ? INFINITY : -INFINITY);
}
if ( z > 1.0)
{
errno = EDOM;
return nanf("");
}
/* Rearrange formula to avoid precision loss for small x.
atanh(x) = 0.5 * log ((1.0 + x)/(1.0 - x))
= 0.5 * log1p ((1.0 + x)/(1.0 - x) - 1.0)
= 0.5 * log1p ((1.0 + x - 1.0 + x) /(1.0 - x))
= 0.5 * log1p ((2.0 * x ) / (1.0 - x)) */
z = 0.5 * __fast_log1p ((z + z) / (1.0 - z));
return x >= 0 ? z : -z;
}

View File

@ -1,29 +0,0 @@
#include <math.h>
#include <errno.h>
#include "fastmath.h"
/* atanh (x) = 0.5 * log ((1.0 + x)/(1.0 - x)) */
long double atanhl (long double x)
{
long double z;
if isnan (x)
return x;
z = fabsl (x);
if (z == 1.0L)
{
errno = ERANGE;
return (x > 0 ? INFINITY : -INFINITY);
}
if ( z > 1.0L)
{
errno = EDOM;
return nanl("");
}
/* Rearrange formula to avoid precision loss for small x.
atanh(x) = 0.5 * log ((1.0 + x)/(1.0 - x))
= 0.5 * log1p ((1.0 + x)/(1.0 - x) - 1.0)
= 0.5 * log1p ((1.0 + x - 1.0 + x) /(1.0 - x))
= 0.5 * log1p ((2.0 * x ) / (1.0 - x)) */
z = 0.5L * __fast_log1pl ((z + z) / (1.0L - z));
return x >= 0 ? z : -z;
}

View File

@ -1,19 +0,0 @@
/*
* Written by J.T. Conklin <jtc@netbsd.org>.
* Public domain.
*
* Adapted for `long double' by Ulrich Drepper <drepper@cygnus.com>.
*/
#include <math.h>
long double
atanl (long double x)
{
long double res;
asm ("fld1\n\t"
"fpatan"
: "=t" (res) : "0" (x));
return res;
}

View File

@ -1,162 +0,0 @@
/* cbrt.c
*
* Cube root
*
*
*
* SYNOPSIS:
*
* double x, y, cbrt();
*
* y = cbrt( x );
*
*
*
* DESCRIPTION:
*
* Returns the cube root of the argument, which may be negative.
*
* Range reduction involves determining the power of 2 of
* the argument. A polynomial of degree 2 applied to the
* mantissa, and multiplication by the cube root of 1, 2, or 4
* approximates the root to within about 0.1%. Then Newton's
* iteration is used three times to converge to an accurate
* result.
*
*
*
* ACCURACY:
*
* Relative error:
* arithmetic domain # trials peak rms
* DEC -10,10 200000 1.8e-17 6.2e-18
* IEEE 0,1e308 30000 1.5e-16 5.0e-17
*
*/
/* cbrt.c */
/*
Cephes Math Library Release 2.2: January, 1991
Copyright 1984, 1991 by Stephen L. Moshier
Direct inquiries to 30 Frost Street, Cambridge, MA 02140
*/
/*
Modified for mingwex.a
2002-07-01 Danny Smith <dannysmith@users.sourceforge.net>
*/
#ifdef __MINGW32__
#include <math.h>
#include "cephes_mconf.h"
#else
#include "mconf.h"
#endif
static const double CBRT2 = 1.2599210498948731647672;
static const double CBRT4 = 1.5874010519681994747517;
static const double CBRT2I = 0.79370052598409973737585;
static const double CBRT4I = 0.62996052494743658238361;
#ifndef __MINGW32__
#ifdef ANSIPROT
extern double frexp ( double, int * );
extern double ldexp ( double, int );
extern int isnan ( double );
extern int isfinite ( double );
#else
double frexp(), ldexp();
int isnan(), isfinite();
#endif
#endif
double cbrt(x)
double x;
{
int e, rem, sign;
double z;
#ifdef __MINGW32__
if (!isfinite (x) || x == 0 )
return x;
#else
#ifdef NANS
if( isnan(x) )
return x;
#endif
#ifdef INFINITIES
if( !isfinite(x) )
return x;
#endif
if( x == 0 )
return( x );
#endif /* __MINGW32__ */
if( x > 0 )
sign = 1;
else
{
sign = -1;
x = -x;
}
z = x;
/* extract power of 2, leaving
* mantissa between 0.5 and 1
*/
x = frexp( x, &e );
/* Approximate cube root of number between .5 and 1,
* peak relative error = 9.2e-6
*/
x = (((-1.3466110473359520655053e-1 * x
+ 5.4664601366395524503440e-1) * x
- 9.5438224771509446525043e-1) * x
+ 1.1399983354717293273738e0 ) * x
+ 4.0238979564544752126924e-1;
/* exponent divided by 3 */
if( e >= 0 )
{
rem = e;
e /= 3;
rem -= 3*e;
if( rem == 1 )
x *= CBRT2;
else if( rem == 2 )
x *= CBRT4;
}
/* argument less than 1 */
else
{
e = -e;
rem = e;
e /= 3;
rem -= 3*e;
if( rem == 1 )
x *= CBRT2I;
else if( rem == 2 )
x *= CBRT4I;
e = -e;
}
/* multiply by power of 2 */
x = ldexp( x, e );
/* Newton iteration */
x -= ( x - (z/(x*x)) )*0.33333333333333333333;
#ifdef DEC
x -= ( x - (z/(x*x)) )/3.0;
#else
x -= ( x - (z/(x*x)) )*0.33333333333333333333;
#endif
if( sign < 0 )
x = -x;
return(x);
}

View File

@ -1,147 +0,0 @@
/* cbrtf.c
*
* Cube root
*
*
*
* SYNOPSIS:
*
* float x, y, cbrtf();
*
* y = cbrtf( x );
*
*
*
* DESCRIPTION:
*
* Returns the cube root of the argument, which may be negative.
*
* Range reduction involves determining the power of 2 of
* the argument. A polynomial of degree 2 applied to the
* mantissa, and multiplication by the cube root of 1, 2, or 4
* approximates the root to within about 0.1%. Then Newton's
* iteration is used to converge to an accurate result.
*
*
*
* ACCURACY:
*
* Relative error:
* arithmetic domain # trials peak rms
* IEEE 0,1e38 100000 7.6e-8 2.7e-8
*
*/
/* cbrt.c */
/*
Cephes Math Library Release 2.2: June, 1992
Copyright 1984, 1987, 1988, 1992 by Stephen L. Moshier
Direct inquiries to 30 Frost Street, Cambridge, MA 02140
*/
/*
Modified for mingwex.a
2002-07-01 Danny Smith <dannysmith@users.sourceforge.net>
*/
#ifdef __MINGW32__
#include <math.h>
#include "cephes_mconf.h"
#else
#include "mconf.h"
#endif
static const float CBRT2 = 1.25992104989487316477;
static const float CBRT4 = 1.58740105196819947475;
#ifndef __MINGW32__
#ifdef ANSIC
float frexpf(float, int *), ldexpf(float, int);
float cbrtf( float xx )
#else
float frexpf(), ldexpf();
float cbrtf(xx)
double xx;
#endif
{
int e, rem, sign;
float x, z;
x = xx;
#else /* __MINGW32__ */
float cbrtf (float x)
{
int e, rem, sign;
float z;
#endif /* __MINGW32__ */
#ifdef __MINGW32__
if (!isfinite (x) || x == 0.0F )
return x;
#else
if( x == 0 )
return( 0.0 );
#endif
if( x > 0 )
sign = 1;
else
{
sign = -1;
x = -x;
}
z = x;
/* extract power of 2, leaving
* mantissa between 0.5 and 1
*/
x = frexpf( x, &e );
/* Approximate cube root of number between .5 and 1,
* peak relative error = 9.2e-6
*/
x = (((-0.13466110473359520655053 * x
+ 0.54664601366395524503440 ) * x
- 0.95438224771509446525043 ) * x
+ 1.1399983354717293273738 ) * x
+ 0.40238979564544752126924;
/* exponent divided by 3 */
if( e >= 0 )
{
rem = e;
e /= 3;
rem -= 3*e;
if( rem == 1 )
x *= CBRT2;
else if( rem == 2 )
x *= CBRT4;
}
/* argument less than 1 */
else
{
e = -e;
rem = e;
e /= 3;
rem -= 3*e;
if( rem == 1 )
x /= CBRT2;
else if( rem == 2 )
x /= CBRT4;
e = -e;
}
/* multiply by power of 2 */
x = ldexpf( x, e );
/* Newton iteration */
x -= ( x - (z/(x*x)) ) * 0.333333333333;
if( sign < 0 )
x = -x;
return(x);
}

View File

@ -1,161 +0,0 @@
/* cbrtl.c
*
* Cube root, long double precision
*
*
*
* SYNOPSIS:
*
* long double x, y, cbrtl();
*
* y = cbrtl( x );
*
*
*
* DESCRIPTION:
*
* Returns the cube root of the argument, which may be negative.
*
* Range reduction involves determining the power of 2 of
* the argument. A polynomial of degree 2 applied to the
* mantissa, and multiplication by the cube root of 1, 2, or 4
* approximates the root to within about 0.1%. Then Newton's
* iteration is used three times to converge to an accurate
* result.
*
*
*
* ACCURACY:
*
* Relative error:
* arithmetic domain # trials peak rms
* IEEE .125,8 80000 7.0e-20 2.2e-20
* IEEE exp(+-707) 100000 7.0e-20 2.4e-20
*
*/
/*
Cephes Math Library Release 2.2: January, 1991
Copyright 1984, 1991 by Stephen L. Moshier
Direct inquiries to 30 Frost Street, Cambridge, MA 02140
*/
/*
Modified for mingwex.a
2002-07-01 Danny Smith <dannysmith@users.sourceforge.net>
*/
#ifdef __MINGW32__
#include "cephes_mconf.h"
#else
#include "mconf.h"
#endif
static const long double CBRT2 = 1.2599210498948731647672L;
static const long double CBRT4 = 1.5874010519681994747517L;
static const long double CBRT2I = 0.79370052598409973737585L;
static const long double CBRT4I = 0.62996052494743658238361L;
#ifndef __MINGW32__
#ifdef ANSIPROT
extern long double frexpl ( long double, int * );
extern long double ldexpl ( long double, int );
extern int isnanl ( long double );
#else
long double frexpl(), ldexpl();
extern int isnanl();
#endif
#ifdef INFINITIES
extern long double INFINITYL;
#endif
#endif /* __MINGW32__ */
long double cbrtl(x)
long double x;
{
int e, rem, sign;
long double z;
#ifdef __MINGW32__
if (!isfinite (x) || x == 0.0L)
return(x);
#else
#ifdef NANS
if(isnanl(x))
return(x);
#endif
#ifdef INFINITIES
if( x == INFINITYL)
return(x);
if( x == -INFINITYL)
return(x);
#endif
if( x == 0 )
return( x );
#endif /* __MINGW32__ */
if( x > 0 )
sign = 1;
else
{
sign = -1;
x = -x;
}
z = x;
/* extract power of 2, leaving
* mantissa between 0.5 and 1
*/
x = frexpl( x, &e );
/* Approximate cube root of number between .5 and 1,
* peak relative error = 1.2e-6
*/
x = (((( 1.3584464340920900529734e-1L * x
- 6.3986917220457538402318e-1L) * x
+ 1.2875551670318751538055e0L) * x
- 1.4897083391357284957891e0L) * x
+ 1.3304961236013647092521e0L) * x
+ 3.7568280825958912391243e-1L;
/* exponent divided by 3 */
if( e >= 0 )
{
rem = e;
e /= 3;
rem -= 3*e;
if( rem == 1 )
x *= CBRT2;
else if( rem == 2 )
x *= CBRT4;
}
else
{ /* argument less than 1 */
e = -e;
rem = e;
e /= 3;
rem -= 3*e;
if( rem == 1 )
x *= CBRT2I;
else if( rem == 2 )
x *= CBRT4I;
e = -e;
}
/* multiply by power of 2 */
x = ldexpl( x, e );
/* Newton iteration */
x -= ( x - (z/(x*x)) )*0.3333333333333333333333L;
x -= ( x - (z/(x*x)) )*0.3333333333333333333333L;
if( sign < 0 )
x = -x;
return(x);
}

View File

@ -1,31 +0,0 @@
/*
* Written by J.T. Conklin <jtc@netbsd.org>.
* Public domain.
*/
.file "ceil.s"
.text
.align 4
.globl _ceil
.def _ceil; .scl 2; .type 32; .endef
_ceil:
fldl 4(%esp)
subl $8,%esp
fstcw 4(%esp) /* store fpu control word */
/* We use here %edx although only the low 1 bits are defined.
But none of the operations should care and they are faster
than the 16 bit operations. */
movl $0x0800,%edx /* round towards +oo */
orl 4(%esp),%edx
andl $0xfbff,%edx
movl %edx,(%esp)
fldcw (%esp) /* load modified control word */
frndint /* round */
fldcw 4(%esp) /* restore original control word */
addl $8,%esp
ret

View File

@ -1,31 +0,0 @@
/*
* Written by J.T. Conklin <jtc@netbsd.org>.
* Public domain.
*/
.file "ceilf.S"
.text
.align 4
.globl _ceilf
.def _ceilf; .scl 2; .type 32; .endef
_ceilf:
flds 4(%esp)
subl $8,%esp
fstcw 4(%esp) /* store fpu control word */
/* We use here %edx although only the low 1 bits are defined.
But none of the operations should care and they are faster
than the 16 bit operations. */
movl $0x0800,%edx /* round towards +oo */
orl 4(%esp),%edx
andl $0xfbff,%edx
movl %edx,(%esp)
fldcw (%esp) /* load modified control word */
frndint /* round */
fldcw 4(%esp) /* restore original control word */
addl $8,%esp
ret

View File

@ -1,33 +0,0 @@
/*
* Written by J.T. Conklin <jtc@netbsd.org>.
* Public domain.
* Changes for long double by Ulrich Drepper <drepper@cygnus.com>
*/
.file "ceill.S"
.text
.align 4
.globl _ceill
.def _ceill; .scl 2; .type 32; .endef
_ceill:
fldt 4(%esp)
subl $8,%esp
fstcw 4(%esp) /* store fpu control word */
/* We use here %edx although only the low 1 bits are defined.
But none of the operations should care and they are faster
than the 16 bit operations. */
movl $0x0800,%edx /* round towards +oo */
orl 4(%esp),%edx
andl $0xfbff,%edx
movl %edx,(%esp)
fldcw (%esp) /* load modified control word */
frndint /* round */
fldcw 4(%esp) /* restore original control word */
addl $8,%esp
ret

View File

@ -1,395 +0,0 @@
#include <math.h>
#include <errno.h>
#define IBMPC 1
#define ANSIPROT 1
#define MINUSZERO 1
#define INFINITIES 1
#define NANS 1
#define DENORMAL 1
#define VOLATILE
#define mtherr(fname, code)
#define XPD 0,
//#define _CEPHES_USE_ERRNO
#ifdef _CEPHES_USE_ERRNO
#define _SET_ERRNO(x) errno = (x)
#else
#define _SET_ERRNO(x)
#endif
/* constants used by cephes functions */
/* double */
#define MAXNUM 1.7976931348623158E308
#define MAXLOG 7.09782712893383996843E2
#define MINLOG -7.08396418532264106224E2
#define LOGE2 6.93147180559945309417E-1
#define LOG2E 1.44269504088896340736
#define PI 3.14159265358979323846
#define PIO2 1.57079632679489661923
#define PIO4 7.85398163397448309616E-1
#define NEGZERO (-0.0)
#undef NAN
#undef INFINITY
#if (__GNUC__ > 3 || (__GNUC__ == 3 && __GNUC_MINOR__ > 2))
#define INFINITY __builtin_huge_val()
#define NAN __builtin_nan("")
#else
extern double __INF;
#define INFINITY (__INF)
extern double __QNAN;
#define NAN (__QNAN)
#endif
/*long double*/
#define MAXNUML 1.189731495357231765021263853E4932L
#define MAXLOGL 1.1356523406294143949492E4L
#define MINLOGL -1.13994985314888605586758E4L
#define LOGE2L 6.9314718055994530941723E-1L
#define LOG2EL 1.4426950408889634073599E0L
#define PIL 3.1415926535897932384626L
#define PIO2L 1.5707963267948966192313L
#define PIO4L 7.8539816339744830961566E-1L
#define isfinitel isfinite
#define isinfl isinf
#define isnanl isnan
#define signbitl signbit
#define NEGZEROL (-0.0L)
#undef NANL
#undef INFINITYL
#if (__GNUC__ > 3 || (__GNUC__ == 3 && __GNUC_MINOR__ > 2))
#define INFINITYL __builtin_huge_vall()
#define NANL __builtin_nanl("")
#else
extern long double __INFL;
#define INFINITYL (__INFL)
extern long double __QNANL;
#define NANL (__QNANL)
#endif
/* float */
#define MAXNUMF 3.4028234663852885981170418348451692544e38F
#define MAXLOGF 88.72283905206835F
#define MINLOGF -103.278929903431851103F /* log(2^-149) */
#define LOG2EF 1.44269504088896341F
#define LOGE2F 0.693147180559945309F
#define PIF 3.141592653589793238F
#define PIO2F 1.5707963267948966192F
#define PIO4F 0.7853981633974483096F
#define isfinitef isfinite
#define isinff isinf
#define isnanf isnan
#define signbitf signbit
#define NEGZEROF (-0.0F)
#undef NANF
#undef INFINITYF
#if (__GNUC__ > 3 || (__GNUC__ == 3 && __GNUC_MINOR__ > 2))
#define INFINITYF __builtin_huge_valf()
#define NANF __builtin_nanf("")
#else
extern float __INFF;
#define INFINITYF (__INFF)
extern float __QNANF;
#define NANF (__QNANF)
#endif
/* double */
/*
Cephes Math Library Release 2.2: July, 1992
Copyright 1984, 1987, 1988, 1992 by Stephen L. Moshier
Direct inquiries to 30 Frost Street, Cambridge, MA 02140
*/
/* polevl.c
* p1evl.c
*
* Evaluate polynomial
*
*
*
* SYNOPSIS:
*
* int N;
* double x, y, coef[N+1], polevl[];
*
* y = polevl( x, coef, N );
*
*
*
* DESCRIPTION:
*
* Evaluates polynomial of degree N:
*
* 2 N
* y = C + C x + C x +...+ C x
* 0 1 2 N
*
* Coefficients are stored in reverse order:
*
* coef[0] = C , ..., coef[N] = C .
* N 0
*
* The function p1evl() assumes that coef[N] = 1.0 and is
* omitted from the array. Its calling arguments are
* otherwise the same as polevl().
*
*
* SPEED:
*
* In the interest of speed, there are no checks for out
* of bounds arithmetic. This routine is used by most of
* the functions in the library. Depending on available
* equipment features, the user may wish to rewrite the
* program in microcode or assembly language.
*
*/
/* Polynomial evaluator:
* P[0] x^n + P[1] x^(n-1) + ... + P[n]
*/
static __inline__ double polevl( x, p, n )
double x;
const void *p;
int n;
{
register double y;
register double *P = (double *)p;
y = *P++;
do
{
y = y * x + *P++;
}
while( --n );
return(y);
}
/* Polynomial evaluator:
* x^n + P[0] x^(n-1) + P[1] x^(n-2) + ... + P[n]
*/
static __inline__ double p1evl( x, p, n )
double x;
const void *p;
int n;
{
register double y;
register double *P = (double *)p;
n -= 1;
y = x + *P++;
do
{
y = y * x + *P++;
}
while( --n );
return( y );
}
/* long double */
/*
Cephes Math Library Release 2.2: July, 1992
Copyright 1984, 1987, 1988, 1992 by Stephen L. Moshier
Direct inquiries to 30 Frost Street, Cambridge, MA 02140
*/
/* polevll.c
* p1evll.c
*
* Evaluate polynomial
*
*
*
* SYNOPSIS:
*
* int N;
* long double x, y, coef[N+1], polevl[];
*
* y = polevll( x, coef, N );
*
*
*
* DESCRIPTION:
*
* Evaluates polynomial of degree N:
*
* 2 N
* y = C + C x + C x +...+ C x
* 0 1 2 N
*
* Coefficients are stored in reverse order:
*
* coef[0] = C , ..., coef[N] = C .
* N 0
*
* The function p1evll() assumes that coef[N] = 1.0 and is
* omitted from the array. Its calling arguments are
* otherwise the same as polevll().
*
*
* SPEED:
*
* In the interest of speed, there are no checks for out
* of bounds arithmetic. This routine is used by most of
* the functions in the library. Depending on available
* equipment features, the user may wish to rewrite the
* program in microcode or assembly language.
*
*/
/* Polynomial evaluator:
* P[0] x^n + P[1] x^(n-1) + ... + P[n]
*/
static __inline__ long double polevll( x, p, n )
long double x;
const void *p;
int n;
{
register long double y;
register long double *P = (long double *)p;
y = *P++;
do
{
y = y * x + *P++;
}
while( --n );
return(y);
}
/* Polynomial evaluator:
* x^n + P[0] x^(n-1) + P[1] x^(n-2) + ... + P[n]
*/
static __inline__ long double p1evll( x, p, n )
long double x;
const void *p;
int n;
{
register long double y;
register long double *P = (long double *)p;
n -= 1;
y = x + *P++;
do
{
y = y * x + *P++;
}
while( --n );
return( y );
}
/* Float version */
/* polevlf.c
* p1evlf.c
*
* Evaluate polynomial
*
*
*
* SYNOPSIS:
*
* int N;
* float x, y, coef[N+1], polevlf[];
*
* y = polevlf( x, coef, N );
*
*
*
* DESCRIPTION:
*
* Evaluates polynomial of degree N:
*
* 2 N
* y = C + C x + C x +...+ C x
* 0 1 2 N
*
* Coefficients are stored in reverse order:
*
* coef[0] = C , ..., coef[N] = C .
* N 0
*
* The function p1evl() assumes that coef[N] = 1.0 and is
* omitted from the array. Its calling arguments are
* otherwise the same as polevl().
*
*
* SPEED:
*
* In the interest of speed, there are no checks for out
* of bounds arithmetic. This routine is used by most of
* the functions in the library. Depending on available
* equipment features, the user may wish to rewrite the
* program in microcode or assembly language.
*
*/
/*
Cephes Math Library Release 2.1: December, 1988
Copyright 1984, 1987, 1988 by Stephen L. Moshier
Direct inquiries to 30 Frost Street, Cambridge, MA 02140
*/
static __inline__ float polevlf(float x, const float* coef, int N )
{
float ans;
float *p;
int i;
p = (float*)coef;
ans = *p++;
/*
for( i=0; i<N; i++ )
ans = ans * x + *p++;
*/
i = N;
do
ans = ans * x + *p++;
while( --i );
return( ans );
}
/* p1evl() */
/* N
* Evaluate polynomial when coefficient of x is 1.0.
* Otherwise same as polevl.
*/
static __inline__ float p1evlf( float x, const float *coef, int N )
{
float ans;
float *p;
int i;
p = (float*)coef;
ans = x + *p++;
i = N-1;
do
ans = ans * x + *p++;
while( --i );
return( ans );
}

View File

@ -1,19 +0,0 @@
/*
* Written by J.T. Conklin <jtc@netbsd.org>.
* Public domain.
*/
.file "copysign.S"
.text
.align 4
.globl _copysign
.def _copysign; .scl 2; .type 32; .endef
_copysign:
movl 16(%esp),%edx
movl 8(%esp),%eax
andl $0x80000000,%edx
andl $0x7fffffff,%eax
orl %edx,%eax
movl %eax,8(%esp)
fldl 4(%esp)
ret

View File

@ -1,19 +0,0 @@
/*
* Written by J.T. Conklin <jtc@netbsd.org>.
* Public domain.
*/
.file "copysignf.S"
.text
.align 4
.globl _copysignf
.def _copysignf; .scl 2; .type 32; .endef
_copysignf:
movl 8(%esp),%edx
movl 4(%esp),%eax
andl $0x80000000,%edx
andl $0x7fffffff,%eax
orl %edx,%eax
movl %eax,4(%esp)
flds 4(%esp)
ret

View File

@ -1,20 +0,0 @@
/*
* Written by J.T. Conklin <jtc@netbsd.org>.
* Changes for long double by Ulrich Drepper <drepper@cygnus.com>
* Public domain.
*/
.file "copysignl.S"
.text
.align 4
.globl _copysignl
.def _copysignl; .scl 2; .type 32; .endef
_copysignl:
movl 24(%esp),%edx
movl 12(%esp),%eax
andl $0x8000,%edx
andl $0x7fff,%eax
orl %edx,%eax
movl %eax,12(%esp)
fldt 4(%esp)
ret

View File

@ -1,29 +0,0 @@
/*
* Written by J.T. Conklin <jtc@netbsd.org>.
* Public domain.
*
* Removed glibc header dependancy by Danny Smith
* <dannysmith@users.sourceforge.net>
*/
.file "cos.s"
.text
.align 4
.globl _cos
.def _cos; .scl 2; .type 32; .endef
_cos:
fldl 4(%esp)
fcos
fnstsw %ax
testl $0x400,%eax
jnz 1f
ret
1: fldpi
fadd %st(0)
fxch %st(1)
2: fprem1
fnstsw %ax
testl $0x400,%eax
jnz 2b
fstp %st(1)
fcos
ret

View File

@ -1,29 +0,0 @@
/*
* Written by J.T. Conklin <jtc@netbsd.org>.
* Public domain.
*
* Removed glibc header dependancy by Danny Smith
* <dannysmith@users.sourceforge.net>
*/
.file "cosf.S"
.text
.align 4
.globl _cosl
.def _cosf; .scl 2; .type 32; .endef
_cosf:
flds 4(%esp)
fcos
fnstsw %ax
testl $0x400,%eax
jnz 1f
ret
1: fldpi
fadd %st(0)
fxch %st(1)
2: fprem1
fnstsw %ax
testl $0x400,%eax
jnz 2b
fstp %st(1)
fcos
ret

View File

@ -1,3 +0,0 @@
#include <math.h>
float coshf (float x)
{return (float) cosh (x);}

View File

@ -1,110 +0,0 @@
/* coshl.c
*
* Hyperbolic cosine, long double precision
*
*
*
* SYNOPSIS:
*
* long double x, y, coshl();
*
* y = coshl( x );
*
*
*
* DESCRIPTION:
*
* Returns hyperbolic cosine of argument in the range MINLOGL to
* MAXLOGL.
*
* cosh(x) = ( exp(x) + exp(-x) )/2.
*
*
*
* ACCURACY:
*
* Relative error:
* arithmetic domain # trials peak rms
* IEEE +-10000 30000 1.1e-19 2.8e-20
*
*
* ERROR MESSAGES:
*
* message condition value returned
* cosh overflow |x| > MAXLOGL+LOGE2L INFINITYL
*
*
*/
/*
Cephes Math Library Release 2.7: May, 1998
Copyright 1985, 1991, 1998 by Stephen L. Moshier
*/
/*
Modified for mingw
2002-07-22 Danny Smith <dannysmith@users.sourceforge.net>
*/
#ifdef __MINGW32__
#include "cephes_mconf.h"
#else
#include "mconf.h"
#endif
#ifndef _SET_ERRNO
#define _SET_ERRNO(x)
#endif
#ifndef __MINGW32__
extern long double MAXLOGL, MAXNUML, LOGE2L;
#ifdef ANSIPROT
extern long double expl ( long double );
extern int isnanl ( long double );
#else
long double expl(), isnanl();
#endif
#ifdef INFINITIES
extern long double INFINITYL;
#endif
#ifdef NANS
extern long double NANL;
#endif
#endif /* __MINGW32__ */
long double coshl(x)
long double x;
{
long double y;
#ifdef NANS
if( isnanl(x) )
{
_SET_ERRNO(EDOM);
return(x);
}
#endif
if( x < 0 )
x = -x;
if( x > (MAXLOGL + LOGE2L) )
{
mtherr( "coshl", OVERFLOW );
_SET_ERRNO(ERANGE);
#ifdef INFINITIES
return( INFINITYL );
#else
return( MAXNUML );
#endif
}
if( x >= (MAXLOGL - LOGE2L) )
{
y = expl(0.5L * x);
y = (0.5L * y) * y;
return(y);
}
y = expl(x);
y = 0.5L * (y + 1.0L / y);
return( y );
}

View File

@ -1,30 +0,0 @@
/*
* Written by J.T. Conklin <jtc@netbsd.org>.
* Public domain.
*
* Adapted for `long double' by Ulrich Drepper <drepper@cygnus.com>.
* Removed glibc header dependancy by Danny Smith
* <dannysmith@users.sourceforge.net>
*/
.file "cosl.S"
.text
.align 4
.globl _cosl
.def _cosl; .scl 2; .type 32; .endef
_cosl:
fldt 4(%esp)
fcos
fnstsw %ax
testl $0x400,%eax
jnz 1f
ret
1: fldpi
fadd %st(0)
fxch %st(1)
2: fprem1
fnstsw %ax
testl $0x400,%eax
jnz 2b
fstp %st(1)
fcos
ret

View File

@ -1,265 +0,0 @@
/* Software floating-point emulation.
Definitions for IEEE Double Precision
Copyright (C) 1997, 1998, 1999, 2006, 2007, 2008, 2009
Free Software Foundation, Inc.
This file is part of the GNU C Library.
Contributed by Richard Henderson (rth@cygnus.com),
Jakub Jelinek (jj@ultra.linux.cz),
David S. Miller (davem@redhat.com) and
Peter Maydell (pmaydell@chiark.greenend.org.uk).
The GNU C Library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
In addition to the permissions in the GNU Lesser General Public
License, the Free Software Foundation gives you unlimited
permission to link the compiled version of this file into
combinations with other programs, and to distribute those
combinations without any restriction coming from the use of this
file. (The Lesser General Public License restrictions do apply in
other respects; for example, they cover modification of the file,
and distribution when not linked into a combine executable.)
The GNU C Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with the GNU C Library; if not, write to the Free
Software Foundation, 51 Franklin Street, Fifth Floor, Boston,
MA 02110-1301, USA. */
#if _FP_W_TYPE_SIZE < 32
#error "Here's a nickel kid. Go buy yourself a real computer."
#endif
#if _FP_W_TYPE_SIZE < 64
#define _FP_FRACTBITS_D (2 * _FP_W_TYPE_SIZE)
#else
#define _FP_FRACTBITS_D _FP_W_TYPE_SIZE
#endif
#define _FP_FRACBITS_D 53
#define _FP_FRACXBITS_D (_FP_FRACTBITS_D - _FP_FRACBITS_D)
#define _FP_WFRACBITS_D (_FP_WORKBITS + _FP_FRACBITS_D)
#define _FP_WFRACXBITS_D (_FP_FRACTBITS_D - _FP_WFRACBITS_D)
#define _FP_EXPBITS_D 11
#define _FP_EXPBIAS_D 1023
#define _FP_EXPMAX_D 2047
#define _FP_QNANBIT_D \
((_FP_W_TYPE)1 << (_FP_FRACBITS_D-2) % _FP_W_TYPE_SIZE)
#define _FP_QNANBIT_SH_D \
((_FP_W_TYPE)1 << (_FP_FRACBITS_D-2+_FP_WORKBITS) % _FP_W_TYPE_SIZE)
#define _FP_IMPLBIT_D \
((_FP_W_TYPE)1 << (_FP_FRACBITS_D-1) % _FP_W_TYPE_SIZE)
#define _FP_IMPLBIT_SH_D \
((_FP_W_TYPE)1 << (_FP_FRACBITS_D-1+_FP_WORKBITS) % _FP_W_TYPE_SIZE)
#define _FP_OVERFLOW_D \
((_FP_W_TYPE)1 << _FP_WFRACBITS_D % _FP_W_TYPE_SIZE)
typedef float DFtype __attribute__((mode(DF)));
#if _FP_W_TYPE_SIZE < 64
union _FP_UNION_D
{
DFtype flt;
struct {
#if __BYTE_ORDER == __BIG_ENDIAN
unsigned sign : 1;
unsigned exp : _FP_EXPBITS_D;
unsigned frac1 : _FP_FRACBITS_D - (_FP_IMPLBIT_D != 0) - _FP_W_TYPE_SIZE;
unsigned frac0 : _FP_W_TYPE_SIZE;
#else
unsigned frac0 : _FP_W_TYPE_SIZE;
unsigned frac1 : _FP_FRACBITS_D - (_FP_IMPLBIT_D != 0) - _FP_W_TYPE_SIZE;
unsigned exp : _FP_EXPBITS_D;
unsigned sign : 1;
#endif
} bits __attribute__((packed));
};
#define FP_DECL_D(X) _FP_DECL(2,X)
#define FP_UNPACK_RAW_D(X,val) _FP_UNPACK_RAW_2(D,X,val)
#define FP_UNPACK_RAW_DP(X,val) _FP_UNPACK_RAW_2_P(D,X,val)
#define FP_PACK_RAW_D(val,X) _FP_PACK_RAW_2(D,val,X)
#define FP_PACK_RAW_DP(val,X) \
do { \
if (!FP_INHIBIT_RESULTS) \
_FP_PACK_RAW_2_P(D,val,X); \
} while (0)
#define FP_UNPACK_D(X,val) \
do { \
_FP_UNPACK_RAW_2(D,X,val); \
_FP_UNPACK_CANONICAL(D,2,X); \
} while (0)
#define FP_UNPACK_DP(X,val) \
do { \
_FP_UNPACK_RAW_2_P(D,X,val); \
_FP_UNPACK_CANONICAL(D,2,X); \
} while (0)
#define FP_UNPACK_SEMIRAW_D(X,val) \
do { \
_FP_UNPACK_RAW_2(D,X,val); \
_FP_UNPACK_SEMIRAW(D,2,X); \
} while (0)
#define FP_UNPACK_SEMIRAW_DP(X,val) \
do { \
_FP_UNPACK_RAW_2_P(D,X,val); \
_FP_UNPACK_SEMIRAW(D,2,X); \
} while (0)
#define FP_PACK_D(val,X) \
do { \
_FP_PACK_CANONICAL(D,2,X); \
_FP_PACK_RAW_2(D,val,X); \
} while (0)
#define FP_PACK_DP(val,X) \
do { \
_FP_PACK_CANONICAL(D,2,X); \
if (!FP_INHIBIT_RESULTS) \
_FP_PACK_RAW_2_P(D,val,X); \
} while (0)
#define FP_PACK_SEMIRAW_D(val,X) \
do { \
_FP_PACK_SEMIRAW(D,2,X); \
_FP_PACK_RAW_2(D,val,X); \
} while (0)
#define FP_PACK_SEMIRAW_DP(val,X) \
do { \
_FP_PACK_SEMIRAW(D,2,X); \
if (!FP_INHIBIT_RESULTS) \
_FP_PACK_RAW_2_P(D,val,X); \
} while (0)
#define FP_ISSIGNAN_D(X) _FP_ISSIGNAN(D,2,X)
#define FP_NEG_D(R,X) _FP_NEG(D,2,R,X)
#define FP_ADD_D(R,X,Y) _FP_ADD(D,2,R,X,Y)
#define FP_SUB_D(R,X,Y) _FP_SUB(D,2,R,X,Y)
#define FP_MUL_D(R,X,Y) _FP_MUL(D,2,R,X,Y)
#define FP_DIV_D(R,X,Y) _FP_DIV(D,2,R,X,Y)
#define FP_SQRT_D(R,X) _FP_SQRT(D,2,R,X)
#define _FP_SQRT_MEAT_D(R,S,T,X,Q) _FP_SQRT_MEAT_2(R,S,T,X,Q)
#define FP_CMP_D(r,X,Y,un) _FP_CMP(D,2,r,X,Y,un)
#define FP_CMP_EQ_D(r,X,Y) _FP_CMP_EQ(D,2,r,X,Y)
#define FP_CMP_UNORD_D(r,X,Y) _FP_CMP_UNORD(D,2,r,X,Y)
#define FP_TO_INT_D(r,X,rsz,rsg) _FP_TO_INT(D,2,r,X,rsz,rsg)
#define FP_FROM_INT_D(X,r,rs,rt) _FP_FROM_INT(D,2,X,r,rs,rt)
#define _FP_FRAC_HIGH_D(X) _FP_FRAC_HIGH_2(X)
#define _FP_FRAC_HIGH_RAW_D(X) _FP_FRAC_HIGH_2(X)
#else
union _FP_UNION_D
{
DFtype flt;
struct {
#if __BYTE_ORDER == __BIG_ENDIAN
unsigned sign : 1;
unsigned exp : _FP_EXPBITS_D;
_FP_W_TYPE frac : _FP_FRACBITS_D - (_FP_IMPLBIT_D != 0);
#else
_FP_W_TYPE frac : _FP_FRACBITS_D - (_FP_IMPLBIT_D != 0);
unsigned exp : _FP_EXPBITS_D;
unsigned sign : 1;
#endif
} bits __attribute__((packed));
};
#define FP_DECL_D(X) _FP_DECL(1,X)
#define FP_UNPACK_RAW_D(X,val) _FP_UNPACK_RAW_1(D,X,val)
#define FP_UNPACK_RAW_DP(X,val) _FP_UNPACK_RAW_1_P(D,X,val)
#define FP_PACK_RAW_D(val,X) _FP_PACK_RAW_1(D,val,X)
#define FP_PACK_RAW_DP(val,X) \
do { \
if (!FP_INHIBIT_RESULTS) \
_FP_PACK_RAW_1_P(D,val,X); \
} while (0)
#define FP_UNPACK_D(X,val) \
do { \
_FP_UNPACK_RAW_1(D,X,val); \
_FP_UNPACK_CANONICAL(D,1,X); \
} while (0)
#define FP_UNPACK_DP(X,val) \
do { \
_FP_UNPACK_RAW_1_P(D,X,val); \
_FP_UNPACK_CANONICAL(D,1,X); \
} while (0)
#define FP_UNPACK_SEMIRAW_D(X,val) \
do { \
_FP_UNPACK_RAW_1(D,X,val); \
_FP_UNPACK_SEMIRAW(D,1,X); \
} while (0)
#define FP_UNPACK_SEMIRAW_DP(X,val) \
do { \
_FP_UNPACK_RAW_1_P(D,X,val); \
_FP_UNPACK_SEMIRAW(D,1,X); \
} while (0)
#define FP_PACK_D(val,X) \
do { \
_FP_PACK_CANONICAL(D,1,X); \
_FP_PACK_RAW_1(D,val,X); \
} while (0)
#define FP_PACK_DP(val,X) \
do { \
_FP_PACK_CANONICAL(D,1,X); \
if (!FP_INHIBIT_RESULTS) \
_FP_PACK_RAW_1_P(D,val,X); \
} while (0)
#define FP_PACK_SEMIRAW_D(val,X) \
do { \
_FP_PACK_SEMIRAW(D,1,X); \
_FP_PACK_RAW_1(D,val,X); \
} while (0)
#define FP_PACK_SEMIRAW_DP(val,X) \
do { \
_FP_PACK_SEMIRAW(D,1,X); \
if (!FP_INHIBIT_RESULTS) \
_FP_PACK_RAW_1_P(D,val,X); \
} while (0)
#define FP_ISSIGNAN_D(X) _FP_ISSIGNAN(D,1,X)
#define FP_NEG_D(R,X) _FP_NEG(D,1,R,X)
#define FP_ADD_D(R,X,Y) _FP_ADD(D,1,R,X,Y)
#define FP_SUB_D(R,X,Y) _FP_SUB(D,1,R,X,Y)
#define FP_MUL_D(R,X,Y) _FP_MUL(D,1,R,X,Y)
#define FP_DIV_D(R,X,Y) _FP_DIV(D,1,R,X,Y)
#define FP_SQRT_D(R,X) _FP_SQRT(D,1,R,X)
#define _FP_SQRT_MEAT_D(R,S,T,X,Q) _FP_SQRT_MEAT_1(R,S,T,X,Q)
/* The implementation of _FP_MUL_D and _FP_DIV_D should be chosen by
the target machine. */
#define FP_CMP_D(r,X,Y,un) _FP_CMP(D,1,r,X,Y,un)
#define FP_CMP_EQ_D(r,X,Y) _FP_CMP_EQ(D,1,r,X,Y)
#define FP_CMP_UNORD_D(r,X,Y) _FP_CMP_UNORD(D,1,r,X,Y)
#define FP_TO_INT_D(r,X,rsz,rsg) _FP_TO_INT(D,1,r,X,rsz,rsg)
#define FP_FROM_INT_D(X,r,rs,rt) _FP_FROM_INT(D,1,X,r,rs,rt)
#define _FP_FRAC_HIGH_D(X) _FP_FRAC_HIGH_1(X)
#define _FP_FRAC_HIGH_RAW_D(X) _FP_FRAC_HIGH_1(X)
#endif /* W_TYPE_SIZE < 64 */

View File

@ -0,0 +1,111 @@
/* @(#)e_acos.c 5.1 93/09/24 */
/*
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunPro, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
/* __ieee754_acos(x)
* Method :
* acos(x) = pi/2 - asin(x)
* acos(-x) = pi/2 + asin(x)
* For |x|<=0.5
* acos(x) = pi/2 - (x + x*x^2*R(x^2)) (see asin.c)
* For x>0.5
* acos(x) = pi/2 - (pi/2 - 2asin(sqrt((1-x)/2)))
* = 2asin(sqrt((1-x)/2))
* = 2s + 2s*z*R(z) ...z=(1-x)/2, s=sqrt(z)
* = 2f + (2c + 2s*z*R(z))
* where f=hi part of s, and c = (z-f*f)/(s+f) is the correction term
* for f so that f+c ~ sqrt(z).
* For x<-0.5
* acos(x) = pi - 2asin(sqrt((1-|x|)/2))
* = pi - 0.5*(s+s*z*R(z)), where z=(1-|x|)/2,s=sqrt(z)
*
* Special cases:
* if x is NaN, return x itself;
* if |x|>1, return NaN with invalid signal.
*
* Function needed: sqrt
*/
#include "fdlibm.h"
#ifndef _DOUBLE_IS_32BITS
#ifdef __STDC__
static const double
#else
static double
#endif
one= 1.00000000000000000000e+00, /* 0x3FF00000, 0x00000000 */
pi = 3.14159265358979311600e+00, /* 0x400921FB, 0x54442D18 */
pio2_hi = 1.57079632679489655800e+00, /* 0x3FF921FB, 0x54442D18 */
pio2_lo = 6.12323399573676603587e-17, /* 0x3C91A626, 0x33145C07 */
pS0 = 1.66666666666666657415e-01, /* 0x3FC55555, 0x55555555 */
pS1 = -3.25565818622400915405e-01, /* 0xBFD4D612, 0x03EB6F7D */
pS2 = 2.01212532134862925881e-01, /* 0x3FC9C155, 0x0E884455 */
pS3 = -4.00555345006794114027e-02, /* 0xBFA48228, 0xB5688F3B */
pS4 = 7.91534994289814532176e-04, /* 0x3F49EFE0, 0x7501B288 */
pS5 = 3.47933107596021167570e-05, /* 0x3F023DE1, 0x0DFDF709 */
qS1 = -2.40339491173441421878e+00, /* 0xC0033A27, 0x1C8A2D4B */
qS2 = 2.02094576023350569471e+00, /* 0x40002AE5, 0x9C598AC8 */
qS3 = -6.88283971605453293030e-01, /* 0xBFE6066C, 0x1B8D0159 */
qS4 = 7.70381505559019352791e-02; /* 0x3FB3B8C5, 0xB12E9282 */
#ifdef __STDC__
double __ieee754_acos(double x)
#else
double __ieee754_acos(x)
double x;
#endif
{
double z,p,q,r,w,s,c,df;
__int32_t hx,ix;
GET_HIGH_WORD(hx,x);
ix = hx&0x7fffffff;
if(ix>=0x3ff00000) { /* |x| >= 1 */
__uint32_t lx;
GET_LOW_WORD(lx,x);
if(((ix-0x3ff00000)|lx)==0) { /* |x|==1 */
if(hx>0) return 0.0; /* acos(1) = 0 */
else return pi+2.0*pio2_lo; /* acos(-1)= pi */
}
return (x-x)/(x-x); /* acos(|x|>1) is NaN */
}
if(ix<0x3fe00000) { /* |x| < 0.5 */
if(ix<=0x3c600000) return pio2_hi+pio2_lo;/*if|x|<2**-57*/
z = x*x;
p = z*(pS0+z*(pS1+z*(pS2+z*(pS3+z*(pS4+z*pS5)))));
q = one+z*(qS1+z*(qS2+z*(qS3+z*qS4)));
r = p/q;
return pio2_hi - (x - (pio2_lo-x*r));
} else if (hx<0) { /* x < -0.5 */
z = (one+x)*0.5;
p = z*(pS0+z*(pS1+z*(pS2+z*(pS3+z*(pS4+z*pS5)))));
q = one+z*(qS1+z*(qS2+z*(qS3+z*qS4)));
s = __ieee754_sqrt(z);
r = p/q;
w = r*s-pio2_lo;
return pi - 2.0*(s+w);
} else { /* x > 0.5 */
z = (one-x)*0.5;
s = __ieee754_sqrt(z);
df = s;
SET_LOW_WORD(df,0);
c = (z-df*df)/(s+df);
p = z*(pS0+z*(pS1+z*(pS2+z*(pS3+z*(pS4+z*pS5)))));
q = one+z*(qS1+z*(qS2+z*(qS3+z*qS4)));
r = p/q;
w = r*s+c;
return 2.0*(df+w);
}
}
#endif /* defined(_DOUBLE_IS_32BITS) */

View File

@ -0,0 +1,70 @@
/* @(#)e_acosh.c 5.1 93/09/24 */
/*
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunPro, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*
*/
/* __ieee754_acosh(x)
* Method :
* Based on
* acosh(x) = log [ x + sqrt(x*x-1) ]
* we have
* acosh(x) := log(x)+ln2, if x is large; else
* acosh(x) := log(2x-1/(sqrt(x*x-1)+x)) if x>2; else
* acosh(x) := log1p(t+sqrt(2.0*t+t*t)); where t=x-1.
*
* Special cases:
* acosh(x) is NaN with signal if x<1.
* acosh(NaN) is NaN without signal.
*/
#include "fdlibm.h"
#ifndef _DOUBLE_IS_32BITS
#ifdef __STDC__
static const double
#else
static double
#endif
one = 1.0,
ln2 = 6.93147180559945286227e-01; /* 0x3FE62E42, 0xFEFA39EF */
#ifdef __STDC__
double __ieee754_acosh(double x)
#else
double __ieee754_acosh(x)
double x;
#endif
{
double t;
__int32_t hx;
__uint32_t lx;
EXTRACT_WORDS(hx,lx,x);
if(hx<0x3ff00000) { /* x < 1 */
return (x-x)/(x-x);
} else if(hx >=0x41b00000) { /* x > 2**28 */
if(hx >=0x7ff00000) { /* x is inf of NaN */
return x+x;
} else
return __ieee754_log(x)+ln2; /* acosh(huge)=log(2x) */
} else if(((hx-0x3ff00000)|lx)==0) {
return 0.0; /* acosh(1) = 0 */
} else if (hx > 0x40000000) { /* 2**28 > x > 2 */
t=x*x;
return __ieee754_log(2.0*x-one/(x+__ieee754_sqrt(t-one)));
} else { /* 1<x<2 */
t = x-one;
return log1p(t+__ieee754_sqrt(2.0*t+t*t));
}
}
#endif /* defined(_DOUBLE_IS_32BITS) */

View File

@ -0,0 +1,121 @@
/* @(#)e_asin.c 5.1 93/09/24 */
/*
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunPro, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
/* __ieee754_asin(x)
* Method :
* Since asin(x) = x + x^3/6 + x^5*3/40 + x^7*15/336 + ...
* we approximate asin(x) on [0,0.5] by
* asin(x) = x + x*x^2*R(x^2)
* where
* R(x^2) is a rational approximation of (asin(x)-x)/x^3
* and its remez error is bounded by
* |(asin(x)-x)/x^3 - R(x^2)| < 2^(-58.75)
*
* For x in [0.5,1]
* asin(x) = pi/2-2*asin(sqrt((1-x)/2))
* Let y = (1-x), z = y/2, s := sqrt(z), and pio2_hi+pio2_lo=pi/2;
* then for x>0.98
* asin(x) = pi/2 - 2*(s+s*z*R(z))
* = pio2_hi - (2*(s+s*z*R(z)) - pio2_lo)
* For x<=0.98, let pio4_hi = pio2_hi/2, then
* f = hi part of s;
* c = sqrt(z) - f = (z-f*f)/(s+f) ...f+c=sqrt(z)
* and
* asin(x) = pi/2 - 2*(s+s*z*R(z))
* = pio4_hi+(pio4-2s)-(2s*z*R(z)-pio2_lo)
* = pio4_hi+(pio4-2f)-(2s*z*R(z)-(pio2_lo+2c))
*
* Special cases:
* if x is NaN, return x itself;
* if |x|>1, return NaN with invalid signal.
*
*/
#include "fdlibm.h"
#ifndef _DOUBLE_IS_32BITS
#ifdef __STDC__
static const double
#else
static double
#endif
one = 1.00000000000000000000e+00, /* 0x3FF00000, 0x00000000 */
huge = 1.000e+300,
pio2_hi = 1.57079632679489655800e+00, /* 0x3FF921FB, 0x54442D18 */
pio2_lo = 6.12323399573676603587e-17, /* 0x3C91A626, 0x33145C07 */
pio4_hi = 7.85398163397448278999e-01, /* 0x3FE921FB, 0x54442D18 */
/* coefficient for R(x^2) */
pS0 = 1.66666666666666657415e-01, /* 0x3FC55555, 0x55555555 */
pS1 = -3.25565818622400915405e-01, /* 0xBFD4D612, 0x03EB6F7D */
pS2 = 2.01212532134862925881e-01, /* 0x3FC9C155, 0x0E884455 */
pS3 = -4.00555345006794114027e-02, /* 0xBFA48228, 0xB5688F3B */
pS4 = 7.91534994289814532176e-04, /* 0x3F49EFE0, 0x7501B288 */
pS5 = 3.47933107596021167570e-05, /* 0x3F023DE1, 0x0DFDF709 */
qS1 = -2.40339491173441421878e+00, /* 0xC0033A27, 0x1C8A2D4B */
qS2 = 2.02094576023350569471e+00, /* 0x40002AE5, 0x9C598AC8 */
qS3 = -6.88283971605453293030e-01, /* 0xBFE6066C, 0x1B8D0159 */
qS4 = 7.70381505559019352791e-02; /* 0x3FB3B8C5, 0xB12E9282 */
#ifdef __STDC__
double __ieee754_asin(double x)
#else
double __ieee754_asin(x)
double x;
#endif
{
double t,w,p,q,c,r,s;
__int32_t hx,ix;
GET_HIGH_WORD(hx,x);
ix = hx&0x7fffffff;
if(ix>= 0x3ff00000) { /* |x|>= 1 */
__uint32_t lx;
GET_LOW_WORD(lx,x);
if(((ix-0x3ff00000)|lx)==0)
/* asin(1)=+-pi/2 with inexact */
return x*pio2_hi+x*pio2_lo;
return (x-x)/(x-x); /* asin(|x|>1) is NaN */
} else if (ix<0x3fe00000) { /* |x|<0.5 */
if(ix<0x3e400000) { /* if |x| < 2**-27 */
if(huge+x>one) return x;/* return x with inexact if x!=0*/
} else {
t = x*x;
p = t*(pS0+t*(pS1+t*(pS2+t*(pS3+t*(pS4+t*pS5)))));
q = one+t*(qS1+t*(qS2+t*(qS3+t*qS4)));
w = p/q;
return x+x*w;
}
}
/* 1> |x|>= 0.5 */
w = one-fabs(x);
t = w*0.5;
p = t*(pS0+t*(pS1+t*(pS2+t*(pS3+t*(pS4+t*pS5)))));
q = one+t*(qS1+t*(qS2+t*(qS3+t*qS4)));
s = __ieee754_sqrt(t);
if(ix>=0x3FEF3333) { /* if |x| > 0.975 */
w = p/q;
t = pio2_hi-(2.0*(s+s*w)-pio2_lo);
} else {
w = s;
SET_LOW_WORD(w,0);
c = (t-w*w)/(s+w);
r = p/q;
p = 2.0*s*r-(pio2_lo-2.0*c);
q = pio4_hi-2.0*w;
t = pio4_hi-(p-q);
}
if(hx>0) return t; else return -t;
}
#endif /* defined(_DOUBLE_IS_32BITS) */

View File

@ -1,131 +1,131 @@
/* @(#)e_atan2.c 5.1 93/09/24 */
/*
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunPro, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*
*/
/* __ieee754_atan2(y,x)
* Method :
* 1. Reduce y to positive by atan2(y,x)=-atan2(-y,x).
* 2. Reduce x to positive by (if x and y are unexceptional):
* ARG (x+iy) = arctan(y/x) ... if x > 0,
* ARG (x+iy) = pi - arctan[y/(-x)] ... if x < 0,
*
* Special cases:
*
* ATAN2((anything), NaN ) is NaN;
* ATAN2(NAN , (anything) ) is NaN;
* ATAN2(+-0, +(anything but NaN)) is +-0 ;
* ATAN2(+-0, -(anything but NaN)) is +-pi ;
* ATAN2(+-(anything but 0 and NaN), 0) is +-pi/2;
* ATAN2(+-(anything but INF and NaN), +INF) is +-0 ;
* ATAN2(+-(anything but INF and NaN), -INF) is +-pi;
* ATAN2(+-INF,+INF ) is +-pi/4 ;
* ATAN2(+-INF,-INF ) is +-3pi/4;
* ATAN2(+-INF, (anything but,0,NaN, and INF)) is +-pi/2;
*
* Constants:
* The hexadecimal values are the intended ones for the following
* constants. The decimal values may be used, provided that the
* compiler will convert from decimal to binary accurately enough
* to produce the hexadecimal values shown.
*/
#include "fdlibm.h"
#ifndef _DOUBLE_IS_32BITS
#ifdef __STDC__
static const double
#else
static double
#endif
tiny = 1.0e-300,
zero = 0.0,
pi_o_4 = 7.8539816339744827900E-01, /* 0x3FE921FB, 0x54442D18 */
pi_o_2 = 1.5707963267948965580E+00, /* 0x3FF921FB, 0x54442D18 */
pi = 3.1415926535897931160E+00, /* 0x400921FB, 0x54442D18 */
pi_lo = 1.2246467991473531772E-16; /* 0x3CA1A626, 0x33145C07 */
#ifdef __STDC__
double __ieee754_atan2(double y, double x)
#else
double __ieee754_atan2(y,x)
double y,x;
#endif
{
double z;
__int32_t k,m,hx,hy,ix,iy;
__uint32_t lx,ly;
EXTRACT_WORDS(hx,lx,x);
ix = hx&0x7fffffff;
EXTRACT_WORDS(hy,ly,y);
iy = hy&0x7fffffff;
if(((ix|((lx|-lx)>>31))>0x7ff00000)||
((iy|((ly|-ly)>>31))>0x7ff00000)) /* x or y is NaN */
return x+y;
if((hx-0x3ff00000|lx)==0) return atan(y); /* x=1.0 */
m = ((hy>>31)&1)|((hx>>30)&2); /* 2*sign(x)+sign(y) */
/* when y = 0 */
if((iy|ly)==0) {
switch(m) {
case 0:
case 1: return y; /* atan(+-0,+anything)=+-0 */
case 2: return pi+tiny;/* atan(+0,-anything) = pi */
case 3: return -pi-tiny;/* atan(-0,-anything) =-pi */
}
}
/* when x = 0 */
if((ix|lx)==0) return (hy<0)? -pi_o_2-tiny: pi_o_2+tiny;
/* when x is INF */
if(ix==0x7ff00000) {
if(iy==0x7ff00000) {
switch(m) {
case 0: return pi_o_4+tiny;/* atan(+INF,+INF) */
case 1: return -pi_o_4-tiny;/* atan(-INF,+INF) */
case 2: return 3.0*pi_o_4+tiny;/*atan(+INF,-INF)*/
case 3: return -3.0*pi_o_4-tiny;/*atan(-INF,-INF)*/
}
} else {
switch(m) {
case 0: return zero ; /* atan(+...,+INF) */
case 1: return -zero ; /* atan(-...,+INF) */
case 2: return pi+tiny ; /* atan(+...,-INF) */
case 3: return -pi-tiny ; /* atan(-...,-INF) */
}
}
}
/* when y is INF */
if(iy==0x7ff00000) return (hy<0)? -pi_o_2-tiny: pi_o_2+tiny;
/* compute y/x */
k = (iy-ix)>>20;
if(k > 60) z=pi_o_2+0.5*pi_lo; /* |y/x| > 2**60 */
else if(hx<0&&k<-60) z=0.0; /* |y|/x < -2**60 */
else z=atan(fabs(y/x)); /* safe to do y/x */
switch (m) {
case 0: return z ; /* atan(+,+) */
case 1: {
__uint32_t zh;
GET_HIGH_WORD(zh,z);
SET_HIGH_WORD(z,zh ^ 0x80000000);
}
return z ; /* atan(-,+) */
case 2: return pi-(z-pi_lo);/* atan(+,-) */
default: /* case 3 */
return (z-pi_lo)-pi;/* atan(-,-) */
}
}
#endif /* defined(_DOUBLE_IS_32BITS) */
/* @(#)e_atan2.c 5.1 93/09/24 */
/*
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunPro, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*
*/
/* __ieee754_atan2(y,x)
* Method :
* 1. Reduce y to positive by atan2(y,x)=-atan2(-y,x).
* 2. Reduce x to positive by (if x and y are unexceptional):
* ARG (x+iy) = arctan(y/x) ... if x > 0,
* ARG (x+iy) = pi - arctan[y/(-x)] ... if x < 0,
*
* Special cases:
*
* ATAN2((anything), NaN ) is NaN;
* ATAN2(NAN , (anything) ) is NaN;
* ATAN2(+-0, +(anything but NaN)) is +-0 ;
* ATAN2(+-0, -(anything but NaN)) is +-pi ;
* ATAN2(+-(anything but 0 and NaN), 0) is +-pi/2;
* ATAN2(+-(anything but INF and NaN), +INF) is +-0 ;
* ATAN2(+-(anything but INF and NaN), -INF) is +-pi;
* ATAN2(+-INF,+INF ) is +-pi/4 ;
* ATAN2(+-INF,-INF ) is +-3pi/4;
* ATAN2(+-INF, (anything but,0,NaN, and INF)) is +-pi/2;
*
* Constants:
* The hexadecimal values are the intended ones for the following
* constants. The decimal values may be used, provided that the
* compiler will convert from decimal to binary accurately enough
* to produce the hexadecimal values shown.
*/
#include "fdlibm.h"
#ifndef _DOUBLE_IS_32BITS
#ifdef __STDC__
static const double
#else
static double
#endif
tiny = 1.0e-300,
zero = 0.0,
pi_o_4 = 7.8539816339744827900E-01, /* 0x3FE921FB, 0x54442D18 */
pi_o_2 = 1.5707963267948965580E+00, /* 0x3FF921FB, 0x54442D18 */
pi = 3.1415926535897931160E+00, /* 0x400921FB, 0x54442D18 */
pi_lo = 1.2246467991473531772E-16; /* 0x3CA1A626, 0x33145C07 */
#ifdef __STDC__
double __ieee754_atan2(double y, double x)
#else
double __ieee754_atan2(y,x)
double y,x;
#endif
{
double z;
__int32_t k,m,hx,hy,ix,iy;
__uint32_t lx,ly;
EXTRACT_WORDS(hx,lx,x);
ix = hx&0x7fffffff;
EXTRACT_WORDS(hy,ly,y);
iy = hy&0x7fffffff;
if(((ix|((lx|-lx)>>31))>0x7ff00000)||
((iy|((ly|-ly)>>31))>0x7ff00000)) /* x or y is NaN */
return x+y;
if(((hx-0x3ff00000)|lx)==0) return atan(y); /* x=1.0 */
m = ((hy>>31)&1)|((hx>>30)&2); /* 2*sign(x)+sign(y) */
/* when y = 0 */
if((iy|ly)==0) {
switch(m) {
case 0:
case 1: return y; /* atan(+-0,+anything)=+-0 */
case 2: return pi+tiny;/* atan(+0,-anything) = pi */
case 3: return -pi-tiny;/* atan(-0,-anything) =-pi */
}
}
/* when x = 0 */
if((ix|lx)==0) return (hy<0)? -pi_o_2-tiny: pi_o_2+tiny;
/* when x is INF */
if(ix==0x7ff00000) {
if(iy==0x7ff00000) {
switch(m) {
case 0: return pi_o_4+tiny;/* atan(+INF,+INF) */
case 1: return -pi_o_4-tiny;/* atan(-INF,+INF) */
case 2: return 3.0*pi_o_4+tiny;/*atan(+INF,-INF)*/
case 3: return -3.0*pi_o_4-tiny;/*atan(-INF,-INF)*/
}
} else {
switch(m) {
case 0: return zero ; /* atan(+...,+INF) */
case 1: return -zero ; /* atan(-...,+INF) */
case 2: return pi+tiny ; /* atan(+...,-INF) */
case 3: return -pi-tiny ; /* atan(-...,-INF) */
}
}
}
/* when y is INF */
if(iy==0x7ff00000) return (hy<0)? -pi_o_2-tiny: pi_o_2+tiny;
/* compute y/x */
k = (iy-ix)>>20;
if(k > 60) z=pi_o_2+0.5*pi_lo; /* |y/x| > 2**60 */
else if(hx<0&&k<-60) z=0.0; /* |y|/x < -2**60 */
else z=atan(fabs(y/x)); /* safe to do y/x */
switch (m) {
case 0: return z ; /* atan(+,+) */
case 1: {
__uint32_t zh;
GET_HIGH_WORD(zh,z);
SET_HIGH_WORD(z,zh ^ 0x80000000);
}
return z ; /* atan(-,+) */
case 2: return pi-(z-pi_lo);/* atan(+,-) */
default: /* case 3 */
return (z-pi_lo)-pi;/* atan(-,-) */
}
}
#endif /* defined(_DOUBLE_IS_32BITS) */

View File

@ -0,0 +1,75 @@
/* @(#)e_atanh.c 5.1 93/09/24 */
/*
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunPro, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*
*/
/* __ieee754_atanh(x)
* Method :
* 1.Reduced x to positive by atanh(-x) = -atanh(x)
* 2.For x>=0.5
* 1 2x x
* atanh(x) = --- * log(1 + -------) = 0.5 * log1p(2 * --------)
* 2 1 - x 1 - x
*
* For x<0.5
* atanh(x) = 0.5*log1p(2x+2x*x/(1-x))
*
* Special cases:
* atanh(x) is NaN if |x| > 1 with signal;
* atanh(NaN) is that NaN with no signal;
* atanh(+-1) is +-INF with signal.
*
*/
#include "fdlibm.h"
#ifndef _DOUBLE_IS_32BITS
#ifdef __STDC__
static const double one = 1.0, huge = 1e300;
#else
static double one = 1.0, huge = 1e300;
#endif
#ifdef __STDC__
static const double zero = 0.0;
#else
static double zero = 0.0;
#endif
#ifdef __STDC__
double __ieee754_atanh(double x)
#else
double __ieee754_atanh(x)
double x;
#endif
{
double t;
__int32_t hx,ix;
__uint32_t lx;
EXTRACT_WORDS(hx,lx,x);
ix = hx&0x7fffffff;
if ((ix|((lx|(-lx))>>31))>0x3ff00000) /* |x|>1 */
return (x-x)/(x-x);
if(ix==0x3ff00000)
return x/zero;
if(ix<0x3e300000&&(huge+x)>zero) return x; /* x<2**-28 */
SET_HIGH_WORD(x,ix);
if(ix<0x3fe00000) { /* x < 0.5 */
t = x+x;
t = 0.5*log1p(t+t*x/(one-x));
} else
t = 0.5*log1p((x+x)/(one-x));
if(hx>=0) return t; else return -t;
}
#endif /* defined(_DOUBLE_IS_32BITS) */

View File

@ -1,90 +1,93 @@
/* @(#)e_cosh.c 5.1 93/09/24 */
/*
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunPro, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
/* __ieee754_cosh(x)
* Method :
* mathematically cosh(x) if defined to be (exp(x)+exp(-x))/2
* 1. Replace x by |x| (cosh(x) = cosh(-x)).
* 2.
* [ exp(x) - 1 ]^2
* 0 <= x <= ln2/2 : cosh(x) := 1 + -------------------
* 2*exp(x)
*
* exp(x) + 1/exp(x)
* ln2/2 <= x <= 22 : cosh(x) := -------------------
* 2
* 22 <= x <= lnovft : cosh(x) := exp(x)/2
* lnovft <= x <= ln2ovft: cosh(x) := exp(x/2)/2 * exp(x/2)
* ln2ovft < x : cosh(x) := huge*huge (overflow)
*
* Special cases:
* cosh(x) is |x| if x is +INF, -INF, or NaN.
* only cosh(0)=1 is exact for finite x.
*/
#include "fdlibm.h"
#ifdef __STDC__
static const double one = 1.0, half=0.5, huge = 1.0e300;
#else
static double one = 1.0, half=0.5, huge = 1.0e300;
#endif
#ifdef __STDC__
double cosh(double x)
#else
double cosh(x)
double x;
#endif
{
double t,w;
__int32_t ix;
__uint32_t lx;
/* High word of |x|. */
GET_HIGH_WORD(ix,x);
ix &= 0x7fffffff;
/* x is INF or NaN */
if(ix>=0x7ff00000) return x*x;
/* |x| in [0,0.5*ln2], return 1+expm1(|x|)^2/(2*exp(|x|)) */
if(ix<0x3fd62e43) {
t = expm1(fabs(x));
w = one+t;
if (ix<0x3c800000) return w; /* cosh(tiny) = 1 */
return one+(t*t)/(w+w);
}
/* |x| in [0.5*ln2,22], return (exp(|x|)+1/exp(|x|)/2; */
if (ix < 0x40360000) {
t = exp(fabs(x));
return half*t+half/t;
}
/* |x| in [22, log(maxdouble)] return half*exp(|x|) */
if (ix < 0x40862E42) return half*exp(fabs(x));
/* |x| in [log(maxdouble), overflowthresold] */
GET_LOW_WORD(lx,x);
if (ix<0x408633CE ||
(ix==0x408633ce && lx<=(__uint32_t)0x8fb9f87d)) {
w = exp(half*fabs(x));
t = half*w;
return t*w;
}
/* |x| > overflowthresold, cosh(x) overflow */
return huge*huge;
}
/* @(#)e_cosh.c 5.1 93/09/24 */
/*
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunPro, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
/* __ieee754_cosh(x)
* Method :
* mathematically cosh(x) if defined to be (exp(x)+exp(-x))/2
* 1. Replace x by |x| (cosh(x) = cosh(-x)).
* 2.
* [ exp(x) - 1 ]^2
* 0 <= x <= ln2/2 : cosh(x) := 1 + -------------------
* 2*exp(x)
*
* exp(x) + 1/exp(x)
* ln2/2 <= x <= 22 : cosh(x) := -------------------
* 2
* 22 <= x <= lnovft : cosh(x) := exp(x)/2
* lnovft <= x <= ln2ovft: cosh(x) := exp(x/2)/2 * exp(x/2)
* ln2ovft < x : cosh(x) := huge*huge (overflow)
*
* Special cases:
* cosh(x) is |x| if x is +INF, -INF, or NaN.
* only cosh(0)=1 is exact for finite x.
*/
#include "fdlibm.h"
#ifndef _DOUBLE_IS_32BITS
#ifdef __STDC__
static const double one = 1.0, half=0.5, huge = 1.0e300;
#else
static double one = 1.0, half=0.5, huge = 1.0e300;
#endif
#ifdef __STDC__
double __ieee754_cosh(double x)
#else
double __ieee754_cosh(x)
double x;
#endif
{
double t,w;
__int32_t ix;
__uint32_t lx;
/* High word of |x|. */
GET_HIGH_WORD(ix,x);
ix &= 0x7fffffff;
/* x is INF or NaN */
if(ix>=0x7ff00000) return x*x;
/* |x| in [0,0.5*ln2], return 1+expm1(|x|)^2/(2*exp(|x|)) */
if(ix<0x3fd62e43) {
t = expm1(fabs(x));
w = one+t;
if (ix<0x3c800000) return w; /* cosh(tiny) = 1 */
return one+(t*t)/(w+w);
}
/* |x| in [0.5*ln2,22], return (exp(|x|)+1/exp(|x|)/2; */
if (ix < 0x40360000) {
t = __ieee754_exp(fabs(x));
return half*t+half/t;
}
/* |x| in [22, log(maxdouble)] return half*exp(|x|) */
if (ix < 0x40862E42) return half*__ieee754_exp(fabs(x));
/* |x| in [log(maxdouble), overflowthresold] */
GET_LOW_WORD(lx,x);
if (ix<0x408633CE ||
(ix==0x408633ce && lx<=(__uint32_t)0x8fb9f87d)) {
w = __ieee754_exp(half*fabs(x));
t = half*w;
return t*w;
}
/* |x| > overflowthresold, cosh(x) overflow */
return huge*huge;
}
#endif /* defined(_DOUBLE_IS_32BITS) */

View File

@ -0,0 +1,166 @@
/* @(#)e_exp.c 5.1 93/09/24 */
/*
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunPro, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
/* __ieee754_exp(x)
* Returns the exponential of x.
*
* Method
* 1. Argument reduction:
* Reduce x to an r so that |r| <= 0.5*ln2 ~ 0.34658.
* Given x, find r and integer k such that
*
* x = k*ln2 + r, |r| <= 0.5*ln2.
*
* Here r will be represented as r = hi-lo for better
* accuracy.
*
* 2. Approximation of exp(r) by a special rational function on
* the interval [0,0.34658]:
* Write
* R(r**2) = r*(exp(r)+1)/(exp(r)-1) = 2 + r*r/6 - r**4/360 + ...
* We use a special Reme algorithm on [0,0.34658] to generate
* a polynomial of degree 5 to approximate R. The maximum error
* of this polynomial approximation is bounded by 2**-59. In
* other words,
* R(z) ~ 2.0 + P1*z + P2*z**2 + P3*z**3 + P4*z**4 + P5*z**5
* (where z=r*r, and the values of P1 to P5 are listed below)
* and
* | 5 | -59
* | 2.0+P1*z+...+P5*z - R(z) | <= 2
* | |
* The computation of exp(r) thus becomes
* 2*r
* exp(r) = 1 + -------
* R - r
* r*R1(r)
* = 1 + r + ----------- (for better accuracy)
* 2 - R1(r)
* where
* 2 4 10
* R1(r) = r - (P1*r + P2*r + ... + P5*r ).
*
* 3. Scale back to obtain exp(x):
* From step 1, we have
* exp(x) = 2^k * exp(r)
*
* Special cases:
* exp(INF) is INF, exp(NaN) is NaN;
* exp(-INF) is 0, and
* for finite argument, only exp(0)=1 is exact.
*
* Accuracy:
* according to an error analysis, the error is always less than
* 1 ulp (unit in the last place).
*
* Misc. info.
* For IEEE double
* if x > 7.09782712893383973096e+02 then exp(x) overflow
* if x < -7.45133219101941108420e+02 then exp(x) underflow
*
* Constants:
* The hexadecimal values are the intended ones for the following
* constants. The decimal values may be used, provided that the
* compiler will convert from decimal to binary accurately enough
* to produce the hexadecimal values shown.
*/
#include "fdlibm.h"
#ifndef _DOUBLE_IS_32BITS
#ifdef __STDC__
static const double
#else
static double
#endif
one = 1.0,
halF[2] = {0.5,-0.5,},
huge = 1.0e+300,
twom1000= 9.33263618503218878990e-302, /* 2**-1000=0x01700000,0*/
o_threshold= 7.09782712893383973096e+02, /* 0x40862E42, 0xFEFA39EF */
u_threshold= -7.45133219101941108420e+02, /* 0xc0874910, 0xD52D3051 */
ln2HI[2] ={ 6.93147180369123816490e-01, /* 0x3fe62e42, 0xfee00000 */
-6.93147180369123816490e-01,},/* 0xbfe62e42, 0xfee00000 */
ln2LO[2] ={ 1.90821492927058770002e-10, /* 0x3dea39ef, 0x35793c76 */
-1.90821492927058770002e-10,},/* 0xbdea39ef, 0x35793c76 */
invln2 = 1.44269504088896338700e+00, /* 0x3ff71547, 0x652b82fe */
P1 = 1.66666666666666019037e-01, /* 0x3FC55555, 0x5555553E */
P2 = -2.77777777770155933842e-03, /* 0xBF66C16C, 0x16BEBD93 */
P3 = 6.61375632143793436117e-05, /* 0x3F11566A, 0xAF25DE2C */
P4 = -1.65339022054652515390e-06, /* 0xBEBBBD41, 0xC5D26BF1 */
P5 = 4.13813679705723846039e-08; /* 0x3E663769, 0x72BEA4D0 */
#ifdef __STDC__
double __ieee754_exp(double x) /* default IEEE double exp */
#else
double __ieee754_exp(x) /* default IEEE double exp */
double x;
#endif
{
double y,hi,lo,c,t;
__int32_t k = 0,xsb;
__uint32_t hx;
GET_HIGH_WORD(hx,x);
xsb = (hx>>31)&1; /* sign bit of x */
hx &= 0x7fffffff; /* high word of |x| */
/* filter out non-finite argument */
if(hx >= 0x40862E42) { /* if |x|>=709.78... */
if(hx>=0x7ff00000) {
__uint32_t lx;
GET_LOW_WORD(lx,x);
if(((hx&0xfffff)|lx)!=0)
return x+x; /* NaN */
else return (xsb==0)? x:0.0; /* exp(+-inf)={inf,0} */
}
if(x > o_threshold) return huge*huge; /* overflow */
if(x < u_threshold) return twom1000*twom1000; /* underflow */
}
/* argument reduction */
if(hx > 0x3fd62e42) { /* if |x| > 0.5 ln2 */
if(hx < 0x3FF0A2B2) { /* and |x| < 1.5 ln2 */
hi = x-ln2HI[xsb]; lo=ln2LO[xsb]; k = 1-xsb-xsb;
} else {
k = invln2*x+halF[xsb];
t = k;
hi = x - t*ln2HI[0]; /* t*ln2HI is exact here */
lo = t*ln2LO[0];
}
x = hi - lo;
}
else if(hx < 0x3e300000) { /* when |x|<2**-28 */
if(huge+x>one) return one+x;/* trigger inexact */
}
/* x is now in primary range */
t = x*x;
c = x - t*(P1+t*(P2+t*(P3+t*(P4+t*P5))));
if(k==0) return one-((x*c)/(c-2.0)-x);
else y = one-((lo-(x*c)/(2.0-c))-hi);
if(k >= -1021) {
__uint32_t hy;
GET_HIGH_WORD(hy,y);
SET_HIGH_WORD(y,hy+(k<<20)); /* add k to y's exponent */
return y;
} else {
__uint32_t hy;
GET_HIGH_WORD(hy,y);
SET_HIGH_WORD(y,hy+((k+1000)<<20)); /* add k to y's exponent */
return y*twom1000;
}
}
#endif /* defined(_DOUBLE_IS_32BITS) */

View File

@ -0,0 +1,140 @@
/* @(#)e_fmod.c 5.1 93/09/24 */
/*
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunPro, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
/*
* __ieee754_fmod(x,y)
* Return x mod y in exact arithmetic
* Method: shift and subtract
*/
#include "fdlibm.h"
#ifndef _DOUBLE_IS_32BITS
#ifdef __STDC__
static const double one = 1.0, Zero[] = {0.0, -0.0,};
#else
static double one = 1.0, Zero[] = {0.0, -0.0,};
#endif
#ifdef __STDC__
double __ieee754_fmod(double x, double y)
#else
double __ieee754_fmod(x,y)
double x,y ;
#endif
{
__int32_t n,hx,hy,hz,ix,iy,sx,i;
__uint32_t lx,ly,lz;
EXTRACT_WORDS(hx,lx,x);
EXTRACT_WORDS(hy,ly,y);
sx = hx&0x80000000; /* sign of x */
hx ^=sx; /* |x| */
hy &= 0x7fffffff; /* |y| */
/* purge off exception values */
if((hy|ly)==0||(hx>=0x7ff00000)|| /* y=0,or x not finite */
((hy|((ly|-ly)>>31))>0x7ff00000)) /* or y is NaN */
return (x*y)/(x*y);
if(hx<=hy) {
if((hx<hy)||(lx<ly)) return x; /* |x|<|y| return x */
if(lx==ly)
return Zero[(__uint32_t)sx>>31]; /* |x|=|y| return x*0*/
}
/* determine ix = ilogb(x) */
if(hx<0x00100000) { /* subnormal x */
if(hx==0) {
for (ix = -1043, i=lx; i>0; i<<=1) ix -=1;
} else {
for (ix = -1022,i=(hx<<11); i>0; i<<=1) ix -=1;
}
} else ix = (hx>>20)-1023;
/* determine iy = ilogb(y) */
if(hy<0x00100000) { /* subnormal y */
if(hy==0) {
for (iy = -1043, i=ly; i>0; i<<=1) iy -=1;
} else {
for (iy = -1022,i=(hy<<11); i>0; i<<=1) iy -=1;
}
} else iy = (hy>>20)-1023;
/* set up {hx,lx}, {hy,ly} and align y to x */
if(ix >= -1022)
hx = 0x00100000|(0x000fffff&hx);
else { /* subnormal x, shift x to normal */
n = -1022-ix;
if(n<=31) {
hx = (hx<<n)|(lx>>(32-n));
lx <<= n;
} else {
hx = lx<<(n-32);
lx = 0;
}
}
if(iy >= -1022)
hy = 0x00100000|(0x000fffff&hy);
else { /* subnormal y, shift y to normal */
n = -1022-iy;
if(n<=31) {
hy = (hy<<n)|(ly>>(32-n));
ly <<= n;
} else {
hy = ly<<(n-32);
ly = 0;
}
}
/* fix point fmod */
n = ix - iy;
while(n--) {
hz=hx-hy;lz=lx-ly; if(lx<ly) hz -= 1;
if(hz<0){hx = hx+hx+(lx>>31); lx = lx+lx;}
else {
if((hz|lz)==0) /* return sign(x)*0 */
return Zero[(__uint32_t)sx>>31];
hx = hz+hz+(lz>>31); lx = lz+lz;
}
}
hz=hx-hy;lz=lx-ly; if(lx<ly) hz -= 1;
if(hz>=0) {hx=hz;lx=lz;}
/* convert back to floating value and restore the sign */
if((hx|lx)==0) /* return sign(x)*0 */
return Zero[(__uint32_t)sx>>31];
while(hx<0x00100000) { /* normalize x */
hx = hx+hx+(lx>>31); lx = lx+lx;
iy -= 1;
}
if(iy>= -1022) { /* normalize output */
hx = ((hx-0x00100000)|((iy+1023)<<20));
INSERT_WORDS(x,hx|sx,lx);
} else { /* subnormal output */
n = -1022 - iy;
if(n<=20) {
lx = (lx>>n)|((__uint32_t)hx<<(32-n));
hx >>= n;
} else if (n<=31) {
lx = (hx<<(32-n))|(lx>>n); hx = sx;
} else {
lx = hx>>(n-32); hx = sx;
}
INSERT_WORDS(x,hx|sx,lx);
x *= one; /* create necessary signal */
}
return x; /* exact output */
}
#endif /* defined(_DOUBLE_IS_32BITS) */

View File

@ -1,128 +1,128 @@
/* @(#)e_hypot.c 5.1 93/09/24 */
/*
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunPro, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
/* __ieee754_hypot(x,y)
*
* Method :
* If (assume round-to-nearest) z=x*x+y*y
* has error less than sqrt(2)/2 ulp, than
* sqrt(z) has error less than 1 ulp (exercise).
*
* So, compute sqrt(x*x+y*y) with some care as
* follows to get the error below 1 ulp:
*
* Assume x>y>0;
* (if possible, set rounding to round-to-nearest)
* 1. if x > 2y use
* x1*x1+(y*y+(x2*(x+x1))) for x*x+y*y
* where x1 = x with lower 32 bits cleared, x2 = x-x1; else
* 2. if x <= 2y use
* t1*y1+((x-y)*(x-y)+(t1*y2+t2*y))
* where t1 = 2x with lower 32 bits cleared, t2 = 2x-t1,
* y1= y with lower 32 bits chopped, y2 = y-y1.
*
* NOTE: scaling may be necessary if some argument is too
* large or too tiny
*
* Special cases:
* hypot(x,y) is INF if x or y is +INF or -INF; else
* hypot(x,y) is NAN if x or y is NAN.
*
* Accuracy:
* hypot(x,y) returns sqrt(x^2+y^2) with error less
* than 1 ulps (units in the last place)
*/
#include "fdlibm.h"
#ifndef _DOUBLE_IS_32BITS
#ifdef __STDC__
double __ieee754_hypot(double x, double y)
#else
double __ieee754_hypot(x,y)
double x, y;
#endif
{
double a=x,b=y,t1,t2,y1,y2,w;
__int32_t j,k,ha,hb;
GET_HIGH_WORD(ha,x);
ha &= 0x7fffffff;
GET_HIGH_WORD(hb,y);
hb &= 0x7fffffff;
if(hb > ha) {a=y;b=x;j=ha; ha=hb;hb=j;} else {a=x;b=y;}
SET_HIGH_WORD(a,ha); /* a <- |a| */
SET_HIGH_WORD(b,hb); /* b <- |b| */
if((ha-hb)>0x3c00000) {return a+b;} /* x/y > 2**60 */
k=0;
if(ha > 0x5f300000) { /* a>2**500 */
if(ha >= 0x7ff00000) { /* Inf or NaN */
__uint32_t low;
w = a+b; /* for sNaN */
GET_LOW_WORD(low,a);
if(((ha&0xfffff)|low)==0) w = a;
GET_LOW_WORD(low,b);
if(((hb^0x7ff00000)|low)==0) w = b;
return w;
}
/* scale a and b by 2**-600 */
ha -= 0x25800000; hb -= 0x25800000; k += 600;
SET_HIGH_WORD(a,ha);
SET_HIGH_WORD(b,hb);
}
if(hb < 0x20b00000) { /* b < 2**-500 */
if(hb <= 0x000fffff) { /* subnormal b or 0 */
__uint32_t low;
GET_LOW_WORD(low,b);
if((hb|low)==0) return a;
t1=0;
SET_HIGH_WORD(t1,0x7fd00000); /* t1=2^1022 */
b *= t1;
a *= t1;
k -= 1022;
} else { /* scale a and b by 2^600 */
ha += 0x25800000; /* a *= 2^600 */
hb += 0x25800000; /* b *= 2^600 */
k -= 600;
SET_HIGH_WORD(a,ha);
SET_HIGH_WORD(b,hb);
}
}
/* medium size a and b */
w = a-b;
if (w>b) {
t1 = 0;
SET_HIGH_WORD(t1,ha);
t2 = a-t1;
w = __ieee754_sqrt(t1*t1-(b*(-b)-t2*(a+t1)));
} else {
a = a+a;
y1 = 0;
SET_HIGH_WORD(y1,hb);
y2 = b - y1;
t1 = 0;
SET_HIGH_WORD(t1,ha+0x00100000);
t2 = a - t1;
w = __ieee754_sqrt(t1*y1-(w*(-w)-(t1*y2+t2*b)));
}
if(k!=0) {
__uint32_t high;
t1 = 1.0;
GET_HIGH_WORD(high,t1);
SET_HIGH_WORD(t1,high+(k<<20));
return t1*w;
} else return w;
}
#endif /* defined(_DOUBLE_IS_32BITS) */
/* @(#)e_hypot.c 5.1 93/09/24 */
/*
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunPro, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
/* __ieee754_hypot(x,y)
*
* Method :
* If (assume round-to-nearest) z=x*x+y*y
* has error less than sqrt(2)/2 ulp, than
* sqrt(z) has error less than 1 ulp (exercise).
*
* So, compute sqrt(x*x+y*y) with some care as
* follows to get the error below 1 ulp:
*
* Assume x>y>0;
* (if possible, set rounding to round-to-nearest)
* 1. if x > 2y use
* x1*x1+(y*y+(x2*(x+x1))) for x*x+y*y
* where x1 = x with lower 32 bits cleared, x2 = x-x1; else
* 2. if x <= 2y use
* t1*y1+((x-y)*(x-y)+(t1*y2+t2*y))
* where t1 = 2x with lower 32 bits cleared, t2 = 2x-t1,
* y1= y with lower 32 bits chopped, y2 = y-y1.
*
* NOTE: scaling may be necessary if some argument is too
* large or too tiny
*
* Special cases:
* hypot(x,y) is INF if x or y is +INF or -INF; else
* hypot(x,y) is NAN if x or y is NAN.
*
* Accuracy:
* hypot(x,y) returns sqrt(x^2+y^2) with error less
* than 1 ulps (units in the last place)
*/
#include "fdlibm.h"
#ifndef _DOUBLE_IS_32BITS
#ifdef __STDC__
double __ieee754_hypot(double x, double y)
#else
double __ieee754_hypot(x,y)
double x, y;
#endif
{
double a=x,b=y,t1,t2,y1,y2,w;
__int32_t j,k,ha,hb;
GET_HIGH_WORD(ha,x);
ha &= 0x7fffffff;
GET_HIGH_WORD(hb,y);
hb &= 0x7fffffff;
if(hb > ha) {a=y;b=x;j=ha; ha=hb;hb=j;} else {a=x;b=y;}
SET_HIGH_WORD(a,ha); /* a <- |a| */
SET_HIGH_WORD(b,hb); /* b <- |b| */
if((ha-hb)>0x3c00000) {return a+b;} /* x/y > 2**60 */
k=0;
if(ha > 0x5f300000) { /* a>2**500 */
if(ha >= 0x7ff00000) { /* Inf or NaN */
__uint32_t low;
w = a+b; /* for sNaN */
GET_LOW_WORD(low,a);
if(((ha&0xfffff)|low)==0) w = a;
GET_LOW_WORD(low,b);
if(((hb^0x7ff00000)|low)==0) w = b;
return w;
}
/* scale a and b by 2**-600 */
ha -= 0x25800000; hb -= 0x25800000; k += 600;
SET_HIGH_WORD(a,ha);
SET_HIGH_WORD(b,hb);
}
if(hb < 0x20b00000) { /* b < 2**-500 */
if(hb <= 0x000fffff) { /* subnormal b or 0 */
__uint32_t low;
GET_LOW_WORD(low,b);
if((hb|low)==0) return a;
t1=0;
SET_HIGH_WORD(t1,0x7fd00000); /* t1=2^1022 */
b *= t1;
a *= t1;
k -= 1022;
} else { /* scale a and b by 2^600 */
ha += 0x25800000; /* a *= 2^600 */
hb += 0x25800000; /* b *= 2^600 */
k -= 600;
SET_HIGH_WORD(a,ha);
SET_HIGH_WORD(b,hb);
}
}
/* medium size a and b */
w = a-b;
if (w>b) {
t1 = 0;
SET_HIGH_WORD(t1,ha);
t2 = a-t1;
w = __ieee754_sqrt(t1*t1-(b*(-b)-t2*(a+t1)));
} else {
a = a+a;
y1 = 0;
SET_HIGH_WORD(y1,hb);
y2 = b - y1;
t1 = 0;
SET_HIGH_WORD(t1,ha+0x00100000);
t2 = a - t1;
w = __ieee754_sqrt(t1*y1-(w*(-w)-(t1*y2+t2*b)));
}
if(k!=0) {
__uint32_t high;
t1 = 1.0;
GET_HIGH_WORD(high,t1);
SET_HIGH_WORD(t1,high+(k<<20));
return t1*w;
} else return w;
}
#endif /* defined(_DOUBLE_IS_32BITS) */

View File

@ -0,0 +1,487 @@
/* @(#)e_j0.c 5.1 93/09/24 */
/*
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunPro, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
/* __ieee754_j0(x), __ieee754_y0(x)
* Bessel function of the first and second kinds of order zero.
* Method -- j0(x):
* 1. For tiny x, we use j0(x) = 1 - x^2/4 + x^4/64 - ...
* 2. Reduce x to |x| since j0(x)=j0(-x), and
* for x in (0,2)
* j0(x) = 1-z/4+ z^2*R0/S0, where z = x*x;
* (precision: |j0-1+z/4-z^2R0/S0 |<2**-63.67 )
* for x in (2,inf)
* j0(x) = sqrt(2/(pi*x))*(p0(x)*cos(x0)-q0(x)*sin(x0))
* where x0 = x-pi/4. It is better to compute sin(x0),cos(x0)
* as follow:
* cos(x0) = cos(x)cos(pi/4)+sin(x)sin(pi/4)
* = 1/sqrt(2) * (cos(x) + sin(x))
* sin(x0) = sin(x)cos(pi/4)-cos(x)sin(pi/4)
* = 1/sqrt(2) * (sin(x) - cos(x))
* (To avoid cancellation, use
* sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x))
* to compute the worse one.)
*
* 3 Special cases
* j0(nan)= nan
* j0(0) = 1
* j0(inf) = 0
*
* Method -- y0(x):
* 1. For x<2.
* Since
* y0(x) = 2/pi*(j0(x)*(ln(x/2)+Euler) + x^2/4 - ...)
* therefore y0(x)-2/pi*j0(x)*ln(x) is an even function.
* We use the following function to approximate y0,
* y0(x) = U(z)/V(z) + (2/pi)*(j0(x)*ln(x)), z= x^2
* where
* U(z) = u00 + u01*z + ... + u06*z^6
* V(z) = 1 + v01*z + ... + v04*z^4
* with absolute approximation error bounded by 2**-72.
* Note: For tiny x, U/V = u0 and j0(x)~1, hence
* y0(tiny) = u0 + (2/pi)*ln(tiny), (choose tiny<2**-27)
* 2. For x>=2.
* y0(x) = sqrt(2/(pi*x))*(p0(x)*cos(x0)+q0(x)*sin(x0))
* where x0 = x-pi/4. It is better to compute sin(x0),cos(x0)
* by the method mentioned above.
* 3. Special cases: y0(0)=-inf, y0(x<0)=NaN, y0(inf)=0.
*/
#include "fdlibm.h"
#ifndef _DOUBLE_IS_32BITS
#ifdef __STDC__
static double pzero(double), qzero(double);
#else
static double pzero(), qzero();
#endif
#ifdef __STDC__
static const double
#else
static double
#endif
huge = 1e300,
one = 1.0,
invsqrtpi= 5.64189583547756279280e-01, /* 0x3FE20DD7, 0x50429B6D */
tpi = 6.36619772367581382433e-01, /* 0x3FE45F30, 0x6DC9C883 */
/* R0/S0 on [0, 2.00] */
R02 = 1.56249999999999947958e-02, /* 0x3F8FFFFF, 0xFFFFFFFD */
R03 = -1.89979294238854721751e-04, /* 0xBF28E6A5, 0xB61AC6E9 */
R04 = 1.82954049532700665670e-06, /* 0x3EBEB1D1, 0x0C503919 */
R05 = -4.61832688532103189199e-09, /* 0xBE33D5E7, 0x73D63FCE */
S01 = 1.56191029464890010492e-02, /* 0x3F8FFCE8, 0x82C8C2A4 */
S02 = 1.16926784663337450260e-04, /* 0x3F1EA6D2, 0xDD57DBF4 */
S03 = 5.13546550207318111446e-07, /* 0x3EA13B54, 0xCE84D5A9 */
S04 = 1.16614003333790000205e-09; /* 0x3E1408BC, 0xF4745D8F */
#ifdef __STDC__
static const double zero = 0.0;
#else
static double zero = 0.0;
#endif
#ifdef __STDC__
double __ieee754_j0(double x)
#else
double __ieee754_j0(x)
double x;
#endif
{
double z, s,c,ss,cc,r,u,v;
__int32_t hx,ix;
GET_HIGH_WORD(hx,x);
ix = hx&0x7fffffff;
if(ix>=0x7ff00000) return one/(x*x);
x = fabs(x);
if(ix >= 0x40000000) { /* |x| >= 2.0 */
s = sin(x);
c = cos(x);
ss = s-c;
cc = s+c;
if(ix<0x7fe00000) { /* make sure x+x not overflow */
z = -cos(x+x);
if ((s*c)<zero) cc = z/ss;
else ss = z/cc;
}
/*
* j0(x) = 1/sqrt(pi) * (P(0,x)*cc - Q(0,x)*ss) / sqrt(x)
* y0(x) = 1/sqrt(pi) * (P(0,x)*ss + Q(0,x)*cc) / sqrt(x)
*/
if(ix>0x48000000) z = (invsqrtpi*cc)/__ieee754_sqrt(x);
else {
u = pzero(x); v = qzero(x);
z = invsqrtpi*(u*cc-v*ss)/__ieee754_sqrt(x);
}
return z;
}
if(ix<0x3f200000) { /* |x| < 2**-13 */
if(huge+x>one) { /* raise inexact if x != 0 */
if(ix<0x3e400000) return one; /* |x|<2**-27 */
else return one - 0.25*x*x;
}
}
z = x*x;
r = z*(R02+z*(R03+z*(R04+z*R05)));
s = one+z*(S01+z*(S02+z*(S03+z*S04)));
if(ix < 0x3FF00000) { /* |x| < 1.00 */
return one + z*(-0.25+(r/s));
} else {
u = 0.5*x;
return((one+u)*(one-u)+z*(r/s));
}
}
#ifdef __STDC__
static const double
#else
static double
#endif
u00 = -7.38042951086872317523e-02, /* 0xBFB2E4D6, 0x99CBD01F */
u01 = 1.76666452509181115538e-01, /* 0x3FC69D01, 0x9DE9E3FC */
u02 = -1.38185671945596898896e-02, /* 0xBF8C4CE8, 0xB16CFA97 */
u03 = 3.47453432093683650238e-04, /* 0x3F36C54D, 0x20B29B6B */
u04 = -3.81407053724364161125e-06, /* 0xBECFFEA7, 0x73D25CAD */
u05 = 1.95590137035022920206e-08, /* 0x3E550057, 0x3B4EABD4 */
u06 = -3.98205194132103398453e-11, /* 0xBDC5E43D, 0x693FB3C8 */
v01 = 1.27304834834123699328e-02, /* 0x3F8A1270, 0x91C9C71A */
v02 = 7.60068627350353253702e-05, /* 0x3F13ECBB, 0xF578C6C1 */
v03 = 2.59150851840457805467e-07, /* 0x3E91642D, 0x7FF202FD */
v04 = 4.41110311332675467403e-10; /* 0x3DFE5018, 0x3BD6D9EF */
#ifdef __STDC__
double __ieee754_y0(double x)
#else
double __ieee754_y0(x)
double x;
#endif
{
double z, s,c,ss,cc,u,v;
__int32_t hx,ix,lx;
EXTRACT_WORDS(hx,lx,x);
ix = 0x7fffffff&hx;
/* Y0(NaN) is NaN, y0(-inf) is Nan, y0(inf) is 0 */
if(ix>=0x7ff00000) return one/(x+x*x);
if((ix|lx)==0) return -one/zero;
if(hx<0) return zero/zero;
if(ix >= 0x40000000) { /* |x| >= 2.0 */
/* y0(x) = sqrt(2/(pi*x))*(p0(x)*sin(x0)+q0(x)*cos(x0))
* where x0 = x-pi/4
* Better formula:
* cos(x0) = cos(x)cos(pi/4)+sin(x)sin(pi/4)
* = 1/sqrt(2) * (sin(x) + cos(x))
* sin(x0) = sin(x)cos(3pi/4)-cos(x)sin(3pi/4)
* = 1/sqrt(2) * (sin(x) - cos(x))
* To avoid cancellation, use
* sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x))
* to compute the worse one.
*/
s = sin(x);
c = cos(x);
ss = s-c;
cc = s+c;
/*
* j0(x) = 1/sqrt(pi) * (P(0,x)*cc - Q(0,x)*ss) / sqrt(x)
* y0(x) = 1/sqrt(pi) * (P(0,x)*ss + Q(0,x)*cc) / sqrt(x)
*/
if(ix<0x7fe00000) { /* make sure x+x not overflow */
z = -cos(x+x);
if ((s*c)<zero) cc = z/ss;
else ss = z/cc;
}
if(ix>0x48000000) z = (invsqrtpi*ss)/__ieee754_sqrt(x);
else {
u = pzero(x); v = qzero(x);
z = invsqrtpi*(u*ss+v*cc)/__ieee754_sqrt(x);
}
return z;
}
if(ix<=0x3e400000) { /* x < 2**-27 */
return(u00 + tpi*__ieee754_log(x));
}
z = x*x;
u = u00+z*(u01+z*(u02+z*(u03+z*(u04+z*(u05+z*u06)))));
v = one+z*(v01+z*(v02+z*(v03+z*v04)));
return(u/v + tpi*(__ieee754_j0(x)*__ieee754_log(x)));
}
/* The asymptotic expansions of pzero is
* 1 - 9/128 s^2 + 11025/98304 s^4 - ..., where s = 1/x.
* For x >= 2, We approximate pzero by
* pzero(x) = 1 + (R/S)
* where R = pR0 + pR1*s^2 + pR2*s^4 + ... + pR5*s^10
* S = 1 + pS0*s^2 + ... + pS4*s^10
* and
* | pzero(x)-1-R/S | <= 2 ** ( -60.26)
*/
#ifdef __STDC__
static const double pR8[6] = { /* for x in [inf, 8]=1/[0,0.125] */
#else
static double pR8[6] = { /* for x in [inf, 8]=1/[0,0.125] */
#endif
0.00000000000000000000e+00, /* 0x00000000, 0x00000000 */
-7.03124999999900357484e-02, /* 0xBFB1FFFF, 0xFFFFFD32 */
-8.08167041275349795626e+00, /* 0xC02029D0, 0xB44FA779 */
-2.57063105679704847262e+02, /* 0xC0701102, 0x7B19E863 */
-2.48521641009428822144e+03, /* 0xC0A36A6E, 0xCD4DCAFC */
-5.25304380490729545272e+03, /* 0xC0B4850B, 0x36CC643D */
};
#ifdef __STDC__
static const double pS8[5] = {
#else
static double pS8[5] = {
#endif
1.16534364619668181717e+02, /* 0x405D2233, 0x07A96751 */
3.83374475364121826715e+03, /* 0x40ADF37D, 0x50596938 */
4.05978572648472545552e+04, /* 0x40E3D2BB, 0x6EB6B05F */
1.16752972564375915681e+05, /* 0x40FC810F, 0x8F9FA9BD */
4.76277284146730962675e+04, /* 0x40E74177, 0x4F2C49DC */
};
#ifdef __STDC__
static const double pR5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */
#else
static double pR5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */
#endif
-1.14125464691894502584e-11, /* 0xBDA918B1, 0x47E495CC */
-7.03124940873599280078e-02, /* 0xBFB1FFFF, 0xE69AFBC6 */
-4.15961064470587782438e+00, /* 0xC010A370, 0xF90C6BBF */
-6.76747652265167261021e+01, /* 0xC050EB2F, 0x5A7D1783 */
-3.31231299649172967747e+02, /* 0xC074B3B3, 0x6742CC63 */
-3.46433388365604912451e+02, /* 0xC075A6EF, 0x28A38BD7 */
};
#ifdef __STDC__
static const double pS5[5] = {
#else
static double pS5[5] = {
#endif
6.07539382692300335975e+01, /* 0x404E6081, 0x0C98C5DE */
1.05125230595704579173e+03, /* 0x40906D02, 0x5C7E2864 */
5.97897094333855784498e+03, /* 0x40B75AF8, 0x8FBE1D60 */
9.62544514357774460223e+03, /* 0x40C2CCB8, 0xFA76FA38 */
2.40605815922939109441e+03, /* 0x40A2CC1D, 0xC70BE864 */
};
#ifdef __STDC__
static const double pR3[6] = {/* for x in [4.547,2.8571]=1/[0.2199,0.35001] */
#else
static double pR3[6] = {/* for x in [4.547,2.8571]=1/[0.2199,0.35001] */
#endif
-2.54704601771951915620e-09, /* 0xBE25E103, 0x6FE1AA86 */
-7.03119616381481654654e-02, /* 0xBFB1FFF6, 0xF7C0E24B */
-2.40903221549529611423e+00, /* 0xC00345B2, 0xAEA48074 */
-2.19659774734883086467e+01, /* 0xC035F74A, 0x4CB94E14 */
-5.80791704701737572236e+01, /* 0xC04D0A22, 0x420A1A45 */
-3.14479470594888503854e+01, /* 0xC03F72AC, 0xA892D80F */
};
#ifdef __STDC__
static const double pS3[5] = {
#else
static double pS3[5] = {
#endif
3.58560338055209726349e+01, /* 0x4041ED92, 0x84077DD3 */
3.61513983050303863820e+02, /* 0x40769839, 0x464A7C0E */
1.19360783792111533330e+03, /* 0x4092A66E, 0x6D1061D6 */
1.12799679856907414432e+03, /* 0x40919FFC, 0xB8C39B7E */
1.73580930813335754692e+02, /* 0x4065B296, 0xFC379081 */
};
#ifdef __STDC__
static const double pR2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */
#else
static double pR2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */
#endif
-8.87534333032526411254e-08, /* 0xBE77D316, 0xE927026D */
-7.03030995483624743247e-02, /* 0xBFB1FF62, 0x495E1E42 */
-1.45073846780952986357e+00, /* 0xBFF73639, 0x8A24A843 */
-7.63569613823527770791e+00, /* 0xC01E8AF3, 0xEDAFA7F3 */
-1.11931668860356747786e+01, /* 0xC02662E6, 0xC5246303 */
-3.23364579351335335033e+00, /* 0xC009DE81, 0xAF8FE70F */
};
#ifdef __STDC__
static const double pS2[5] = {
#else
static double pS2[5] = {
#endif
2.22202997532088808441e+01, /* 0x40363865, 0x908B5959 */
1.36206794218215208048e+02, /* 0x4061069E, 0x0EE8878F */
2.70470278658083486789e+02, /* 0x4070E786, 0x42EA079B */
1.53875394208320329881e+02, /* 0x40633C03, 0x3AB6FAFF */
1.46576176948256193810e+01, /* 0x402D50B3, 0x44391809 */
};
#ifdef __STDC__
static double pzero(double x)
#else
static double pzero(x)
double x;
#endif
{
#ifdef __STDC__
const double *p,*q;
#else
double *p,*q;
#endif
double z,r,s;
__int32_t ix;
GET_HIGH_WORD(ix,x);
ix &= 0x7fffffff;
if(ix>=0x40200000) {p = pR8; q= pS8;}
else if(ix>=0x40122E8B){p = pR5; q= pS5;}
else if(ix>=0x4006DB6D){p = pR3; q= pS3;}
else {p = pR2; q= pS2;}
z = one/(x*x);
r = p[0]+z*(p[1]+z*(p[2]+z*(p[3]+z*(p[4]+z*p[5]))));
s = one+z*(q[0]+z*(q[1]+z*(q[2]+z*(q[3]+z*q[4]))));
return one+ r/s;
}
/* For x >= 8, the asymptotic expansions of qzero is
* -1/8 s + 75/1024 s^3 - ..., where s = 1/x.
* We approximate qzero by
* qzero(x) = s*(-1.25 + (R/S))
* where R = qR0 + qR1*s^2 + qR2*s^4 + ... + qR5*s^10
* S = 1 + qS0*s^2 + ... + qS5*s^12
* and
* | qzero(x)/s +1.25-R/S | <= 2 ** ( -61.22)
*/
#ifdef __STDC__
static const double qR8[6] = { /* for x in [inf, 8]=1/[0,0.125] */
#else
static double qR8[6] = { /* for x in [inf, 8]=1/[0,0.125] */
#endif
0.00000000000000000000e+00, /* 0x00000000, 0x00000000 */
7.32421874999935051953e-02, /* 0x3FB2BFFF, 0xFFFFFE2C */
1.17682064682252693899e+01, /* 0x40278952, 0x5BB334D6 */
5.57673380256401856059e+02, /* 0x40816D63, 0x15301825 */
8.85919720756468632317e+03, /* 0x40C14D99, 0x3E18F46D */
3.70146267776887834771e+04, /* 0x40E212D4, 0x0E901566 */
};
#ifdef __STDC__
static const double qS8[6] = {
#else
static double qS8[6] = {
#endif
1.63776026895689824414e+02, /* 0x406478D5, 0x365B39BC */
8.09834494656449805916e+03, /* 0x40BFA258, 0x4E6B0563 */
1.42538291419120476348e+05, /* 0x41016652, 0x54D38C3F */
8.03309257119514397345e+05, /* 0x412883DA, 0x83A52B43 */
8.40501579819060512818e+05, /* 0x4129A66B, 0x28DE0B3D */
-3.43899293537866615225e+05, /* 0xC114FD6D, 0x2C9530C5 */
};
#ifdef __STDC__
static const double qR5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */
#else
static double qR5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */
#endif
1.84085963594515531381e-11, /* 0x3DB43D8F, 0x29CC8CD9 */
7.32421766612684765896e-02, /* 0x3FB2BFFF, 0xD172B04C */
5.83563508962056953777e+00, /* 0x401757B0, 0xB9953DD3 */
1.35111577286449829671e+02, /* 0x4060E392, 0x0A8788E9 */
1.02724376596164097464e+03, /* 0x40900CF9, 0x9DC8C481 */
1.98997785864605384631e+03, /* 0x409F17E9, 0x53C6E3A6 */
};
#ifdef __STDC__
static const double qS5[6] = {
#else
static double qS5[6] = {
#endif
8.27766102236537761883e+01, /* 0x4054B1B3, 0xFB5E1543 */
2.07781416421392987104e+03, /* 0x40A03BA0, 0xDA21C0CE */
1.88472887785718085070e+04, /* 0x40D267D2, 0x7B591E6D */
5.67511122894947329769e+04, /* 0x40EBB5E3, 0x97E02372 */
3.59767538425114471465e+04, /* 0x40E19118, 0x1F7A54A0 */
-5.35434275601944773371e+03, /* 0xC0B4EA57, 0xBEDBC609 */
};
#ifdef __STDC__
static const double qR3[6] = {/* for x in [4.547,2.8571]=1/[0.2199,0.35001] */
#else
static double qR3[6] = {/* for x in [4.547,2.8571]=1/[0.2199,0.35001] */
#endif
4.37741014089738620906e-09, /* 0x3E32CD03, 0x6ADECB82 */
7.32411180042911447163e-02, /* 0x3FB2BFEE, 0x0E8D0842 */
3.34423137516170720929e+00, /* 0x400AC0FC, 0x61149CF5 */
4.26218440745412650017e+01, /* 0x40454F98, 0x962DAEDD */
1.70808091340565596283e+02, /* 0x406559DB, 0xE25EFD1F */
1.66733948696651168575e+02, /* 0x4064D77C, 0x81FA21E0 */
};
#ifdef __STDC__
static const double qS3[6] = {
#else
static double qS3[6] = {
#endif
4.87588729724587182091e+01, /* 0x40486122, 0xBFE343A6 */
7.09689221056606015736e+02, /* 0x40862D83, 0x86544EB3 */
3.70414822620111362994e+03, /* 0x40ACF04B, 0xE44DFC63 */
6.46042516752568917582e+03, /* 0x40B93C6C, 0xD7C76A28 */
2.51633368920368957333e+03, /* 0x40A3A8AA, 0xD94FB1C0 */
-1.49247451836156386662e+02, /* 0xC062A7EB, 0x201CF40F */
};
#ifdef __STDC__
static const double qR2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */
#else
static double qR2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */
#endif
1.50444444886983272379e-07, /* 0x3E84313B, 0x54F76BDB */
7.32234265963079278272e-02, /* 0x3FB2BEC5, 0x3E883E34 */
1.99819174093815998816e+00, /* 0x3FFFF897, 0xE727779C */
1.44956029347885735348e+01, /* 0x402CFDBF, 0xAAF96FE5 */
3.16662317504781540833e+01, /* 0x403FAA8E, 0x29FBDC4A */
1.62527075710929267416e+01, /* 0x403040B1, 0x71814BB4 */
};
#ifdef __STDC__
static const double qS2[6] = {
#else
static double qS2[6] = {
#endif
3.03655848355219184498e+01, /* 0x403E5D96, 0xF7C07AED */
2.69348118608049844624e+02, /* 0x4070D591, 0xE4D14B40 */
8.44783757595320139444e+02, /* 0x408A6645, 0x22B3BF22 */
8.82935845112488550512e+02, /* 0x408B977C, 0x9C5CC214 */
2.12666388511798828631e+02, /* 0x406A9553, 0x0E001365 */
-5.31095493882666946917e+00, /* 0xC0153E6A, 0xF8B32931 */
};
#ifdef __STDC__
static double qzero(double x)
#else
static double qzero(x)
double x;
#endif
{
#ifdef __STDC__
const double *p,*q;
#else
double *p,*q;
#endif
double s,r,z;
__int32_t ix;
GET_HIGH_WORD(ix,x);
ix &= 0x7fffffff;
if(ix>=0x40200000) {p = qR8; q= qS8;}
else if(ix>=0x40122E8B){p = qR5; q= qS5;}
else if(ix>=0x4006DB6D){p = qR3; q= qS3;}
else {p = qR2; q= qS2;}
z = one/(x*x);
r = p[0]+z*(p[1]+z*(p[2]+z*(p[3]+z*(p[4]+z*p[5]))));
s = one+z*(q[0]+z*(q[1]+z*(q[2]+z*(q[3]+z*(q[4]+z*q[5])))));
return (-.125 + r/s)/x;
}
#endif /* defined(_DOUBLE_IS_32BITS) */

View File

@ -0,0 +1,486 @@
/* @(#)e_j1.c 5.1 93/09/24 */
/*
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunPro, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
/* __ieee754_j1(x), __ieee754_y1(x)
* Bessel function of the first and second kinds of order zero.
* Method -- j1(x):
* 1. For tiny x, we use j1(x) = x/2 - x^3/16 + x^5/384 - ...
* 2. Reduce x to |x| since j1(x)=-j1(-x), and
* for x in (0,2)
* j1(x) = x/2 + x*z*R0/S0, where z = x*x;
* (precision: |j1/x - 1/2 - R0/S0 |<2**-61.51 )
* for x in (2,inf)
* j1(x) = sqrt(2/(pi*x))*(p1(x)*cos(x1)-q1(x)*sin(x1))
* y1(x) = sqrt(2/(pi*x))*(p1(x)*sin(x1)+q1(x)*cos(x1))
* where x1 = x-3*pi/4. It is better to compute sin(x1),cos(x1)
* as follow:
* cos(x1) = cos(x)cos(3pi/4)+sin(x)sin(3pi/4)
* = 1/sqrt(2) * (sin(x) - cos(x))
* sin(x1) = sin(x)cos(3pi/4)-cos(x)sin(3pi/4)
* = -1/sqrt(2) * (sin(x) + cos(x))
* (To avoid cancellation, use
* sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x))
* to compute the worse one.)
*
* 3 Special cases
* j1(nan)= nan
* j1(0) = 0
* j1(inf) = 0
*
* Method -- y1(x):
* 1. screen out x<=0 cases: y1(0)=-inf, y1(x<0)=NaN
* 2. For x<2.
* Since
* y1(x) = 2/pi*(j1(x)*(ln(x/2)+Euler)-1/x-x/2+5/64*x^3-...)
* therefore y1(x)-2/pi*j1(x)*ln(x)-1/x is an odd function.
* We use the following function to approximate y1,
* y1(x) = x*U(z)/V(z) + (2/pi)*(j1(x)*ln(x)-1/x), z= x^2
* where for x in [0,2] (abs err less than 2**-65.89)
* U(z) = U0[0] + U0[1]*z + ... + U0[4]*z^4
* V(z) = 1 + v0[0]*z + ... + v0[4]*z^5
* Note: For tiny x, 1/x dominate y1 and hence
* y1(tiny) = -2/pi/tiny, (choose tiny<2**-54)
* 3. For x>=2.
* y1(x) = sqrt(2/(pi*x))*(p1(x)*sin(x1)+q1(x)*cos(x1))
* where x1 = x-3*pi/4. It is better to compute sin(x1),cos(x1)
* by method mentioned above.
*/
#include "fdlibm.h"
#ifndef _DOUBLE_IS_32BITS
#ifdef __STDC__
static double pone(double), qone(double);
#else
static double pone(), qone();
#endif
#ifdef __STDC__
static const double
#else
static double
#endif
huge = 1e300,
one = 1.0,
invsqrtpi= 5.64189583547756279280e-01, /* 0x3FE20DD7, 0x50429B6D */
tpi = 6.36619772367581382433e-01, /* 0x3FE45F30, 0x6DC9C883 */
/* R0/S0 on [0,2] */
r00 = -6.25000000000000000000e-02, /* 0xBFB00000, 0x00000000 */
r01 = 1.40705666955189706048e-03, /* 0x3F570D9F, 0x98472C61 */
r02 = -1.59955631084035597520e-05, /* 0xBEF0C5C6, 0xBA169668 */
r03 = 4.96727999609584448412e-08, /* 0x3E6AAAFA, 0x46CA0BD9 */
s01 = 1.91537599538363460805e-02, /* 0x3F939D0B, 0x12637E53 */
s02 = 1.85946785588630915560e-04, /* 0x3F285F56, 0xB9CDF664 */
s03 = 1.17718464042623683263e-06, /* 0x3EB3BFF8, 0x333F8498 */
s04 = 5.04636257076217042715e-09, /* 0x3E35AC88, 0xC97DFF2C */
s05 = 1.23542274426137913908e-11; /* 0x3DAB2ACF, 0xCFB97ED8 */
#ifdef __STDC__
static const double zero = 0.0;
#else
static double zero = 0.0;
#endif
#ifdef __STDC__
double __ieee754_j1(double x)
#else
double __ieee754_j1(x)
double x;
#endif
{
double z, s,c,ss,cc,r,u,v,y;
__int32_t hx,ix;
GET_HIGH_WORD(hx,x);
ix = hx&0x7fffffff;
if(ix>=0x7ff00000) return one/x;
y = fabs(x);
if(ix >= 0x40000000) { /* |x| >= 2.0 */
s = sin(y);
c = cos(y);
ss = -s-c;
cc = s-c;
if(ix<0x7fe00000) { /* make sure y+y not overflow */
z = cos(y+y);
if ((s*c)>zero) cc = z/ss;
else ss = z/cc;
}
/*
* j1(x) = 1/__ieee754_sqrt(pi) * (P(1,x)*cc - Q(1,x)*ss) / __ieee754_sqrt(x)
* y1(x) = 1/__ieee754_sqrt(pi) * (P(1,x)*ss + Q(1,x)*cc) / __ieee754_sqrt(x)
*/
if(ix>0x48000000) z = (invsqrtpi*cc)/__ieee754_sqrt(y);
else {
u = pone(y); v = qone(y);
z = invsqrtpi*(u*cc-v*ss)/__ieee754_sqrt(y);
}
if(hx<0) return -z;
else return z;
}
if(ix<0x3e400000) { /* |x|<2**-27 */
if(huge+x>one) return 0.5*x;/* inexact if x!=0 necessary */
}
z = x*x;
r = z*(r00+z*(r01+z*(r02+z*r03)));
s = one+z*(s01+z*(s02+z*(s03+z*(s04+z*s05))));
r *= x;
return(x*0.5+r/s);
}
#ifdef __STDC__
static const double U0[5] = {
#else
static double U0[5] = {
#endif
-1.96057090646238940668e-01, /* 0xBFC91866, 0x143CBC8A */
5.04438716639811282616e-02, /* 0x3FA9D3C7, 0x76292CD1 */
-1.91256895875763547298e-03, /* 0xBF5F55E5, 0x4844F50F */
2.35252600561610495928e-05, /* 0x3EF8AB03, 0x8FA6B88E */
-9.19099158039878874504e-08, /* 0xBE78AC00, 0x569105B8 */
};
#ifdef __STDC__
static const double V0[5] = {
#else
static double V0[5] = {
#endif
1.99167318236649903973e-02, /* 0x3F94650D, 0x3F4DA9F0 */
2.02552581025135171496e-04, /* 0x3F2A8C89, 0x6C257764 */
1.35608801097516229404e-06, /* 0x3EB6C05A, 0x894E8CA6 */
6.22741452364621501295e-09, /* 0x3E3ABF1D, 0x5BA69A86 */
1.66559246207992079114e-11, /* 0x3DB25039, 0xDACA772A */
};
#ifdef __STDC__
double __ieee754_y1(double x)
#else
double __ieee754_y1(x)
double x;
#endif
{
double z, s,c,ss,cc,u,v;
__int32_t hx,ix,lx;
EXTRACT_WORDS(hx,lx,x);
ix = 0x7fffffff&hx;
/* if Y1(NaN) is NaN, Y1(-inf) is NaN, Y1(inf) is 0 */
if(ix>=0x7ff00000) return one/(x+x*x);
if((ix|lx)==0) return -one/zero;
if(hx<0) return zero/zero;
if(ix >= 0x40000000) { /* |x| >= 2.0 */
s = sin(x);
c = cos(x);
ss = -s-c;
cc = s-c;
if(ix<0x7fe00000) { /* make sure x+x not overflow */
z = cos(x+x);
if ((s*c)>zero) cc = z/ss;
else ss = z/cc;
}
/* y1(x) = sqrt(2/(pi*x))*(p1(x)*sin(x0)+q1(x)*cos(x0))
* where x0 = x-3pi/4
* Better formula:
* cos(x0) = cos(x)cos(3pi/4)+sin(x)sin(3pi/4)
* = 1/sqrt(2) * (sin(x) - cos(x))
* sin(x0) = sin(x)cos(3pi/4)-cos(x)sin(3pi/4)
* = -1/sqrt(2) * (cos(x) + sin(x))
* To avoid cancellation, use
* sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x))
* to compute the worse one.
*/
if(ix>0x48000000) z = (invsqrtpi*ss)/__ieee754_sqrt(x);
else {
u = pone(x); v = qone(x);
z = invsqrtpi*(u*ss+v*cc)/__ieee754_sqrt(x);
}
return z;
}
if(ix<=0x3c900000) { /* x < 2**-54 */
return(-tpi/x);
}
z = x*x;
u = U0[0]+z*(U0[1]+z*(U0[2]+z*(U0[3]+z*U0[4])));
v = one+z*(V0[0]+z*(V0[1]+z*(V0[2]+z*(V0[3]+z*V0[4]))));
return(x*(u/v) + tpi*(__ieee754_j1(x)*__ieee754_log(x)-one/x));
}
/* For x >= 8, the asymptotic expansions of pone is
* 1 + 15/128 s^2 - 4725/2^15 s^4 - ..., where s = 1/x.
* We approximate pone by
* pone(x) = 1 + (R/S)
* where R = pr0 + pr1*s^2 + pr2*s^4 + ... + pr5*s^10
* S = 1 + ps0*s^2 + ... + ps4*s^10
* and
* | pone(x)-1-R/S | <= 2 ** ( -60.06)
*/
#ifdef __STDC__
static const double pr8[6] = { /* for x in [inf, 8]=1/[0,0.125] */
#else
static double pr8[6] = { /* for x in [inf, 8]=1/[0,0.125] */
#endif
0.00000000000000000000e+00, /* 0x00000000, 0x00000000 */
1.17187499999988647970e-01, /* 0x3FBDFFFF, 0xFFFFFCCE */
1.32394806593073575129e+01, /* 0x402A7A9D, 0x357F7FCE */
4.12051854307378562225e+02, /* 0x4079C0D4, 0x652EA590 */
3.87474538913960532227e+03, /* 0x40AE457D, 0xA3A532CC */
7.91447954031891731574e+03, /* 0x40BEEA7A, 0xC32782DD */
};
#ifdef __STDC__
static const double ps8[5] = {
#else
static double ps8[5] = {
#endif
1.14207370375678408436e+02, /* 0x405C8D45, 0x8E656CAC */
3.65093083420853463394e+03, /* 0x40AC85DC, 0x964D274F */
3.69562060269033463555e+04, /* 0x40E20B86, 0x97C5BB7F */
9.76027935934950801311e+04, /* 0x40F7D42C, 0xB28F17BB */
3.08042720627888811578e+04, /* 0x40DE1511, 0x697A0B2D */
};
#ifdef __STDC__
static const double pr5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */
#else
static double pr5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */
#endif
1.31990519556243522749e-11, /* 0x3DAD0667, 0xDAE1CA7D */
1.17187493190614097638e-01, /* 0x3FBDFFFF, 0xE2C10043 */
6.80275127868432871736e+00, /* 0x401B3604, 0x6E6315E3 */
1.08308182990189109773e+02, /* 0x405B13B9, 0x452602ED */
5.17636139533199752805e+02, /* 0x40802D16, 0xD052D649 */
5.28715201363337541807e+02, /* 0x408085B8, 0xBB7E0CB7 */
};
#ifdef __STDC__
static const double ps5[5] = {
#else
static double ps5[5] = {
#endif
5.92805987221131331921e+01, /* 0x404DA3EA, 0xA8AF633D */
9.91401418733614377743e+02, /* 0x408EFB36, 0x1B066701 */
5.35326695291487976647e+03, /* 0x40B4E944, 0x5706B6FB */
7.84469031749551231769e+03, /* 0x40BEA4B0, 0xB8A5BB15 */
1.50404688810361062679e+03, /* 0x40978030, 0x036F5E51 */
};
#ifdef __STDC__
static const double pr3[6] = {
#else
static double pr3[6] = {/* for x in [4.547,2.8571]=1/[0.2199,0.35001] */
#endif
3.02503916137373618024e-09, /* 0x3E29FC21, 0xA7AD9EDD */
1.17186865567253592491e-01, /* 0x3FBDFFF5, 0x5B21D17B */
3.93297750033315640650e+00, /* 0x400F76BC, 0xE85EAD8A */
3.51194035591636932736e+01, /* 0x40418F48, 0x9DA6D129 */
9.10550110750781271918e+01, /* 0x4056C385, 0x4D2C1837 */
4.85590685197364919645e+01, /* 0x4048478F, 0x8EA83EE5 */
};
#ifdef __STDC__
static const double ps3[5] = {
#else
static double ps3[5] = {
#endif
3.47913095001251519989e+01, /* 0x40416549, 0xA134069C */
3.36762458747825746741e+02, /* 0x40750C33, 0x07F1A75F */
1.04687139975775130551e+03, /* 0x40905B7C, 0x5037D523 */
8.90811346398256432622e+02, /* 0x408BD67D, 0xA32E31E9 */
1.03787932439639277504e+02, /* 0x4059F26D, 0x7C2EED53 */
};
#ifdef __STDC__
static const double pr2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */
#else
static double pr2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */
#endif
1.07710830106873743082e-07, /* 0x3E7CE9D4, 0xF65544F4 */
1.17176219462683348094e-01, /* 0x3FBDFF42, 0xBE760D83 */
2.36851496667608785174e+00, /* 0x4002F2B7, 0xF98FAEC0 */
1.22426109148261232917e+01, /* 0x40287C37, 0x7F71A964 */
1.76939711271687727390e+01, /* 0x4031B1A8, 0x177F8EE2 */
5.07352312588818499250e+00, /* 0x40144B49, 0xA574C1FE */
};
#ifdef __STDC__
static const double ps2[5] = {
#else
static double ps2[5] = {
#endif
2.14364859363821409488e+01, /* 0x40356FBD, 0x8AD5ECDC */
1.25290227168402751090e+02, /* 0x405F5293, 0x14F92CD5 */
2.32276469057162813669e+02, /* 0x406D08D8, 0xD5A2DBD9 */
1.17679373287147100768e+02, /* 0x405D6B7A, 0xDA1884A9 */
8.36463893371618283368e+00, /* 0x4020BAB1, 0xF44E5192 */
};
#ifdef __STDC__
static double pone(double x)
#else
static double pone(x)
double x;
#endif
{
#ifdef __STDC__
const double *p,*q;
#else
double *p,*q;
#endif
double z,r,s;
__int32_t ix;
GET_HIGH_WORD(ix,x);
ix &= 0x7fffffff;
if(ix>=0x40200000) {p = pr8; q= ps8;}
else if(ix>=0x40122E8B){p = pr5; q= ps5;}
else if(ix>=0x4006DB6D){p = pr3; q= ps3;}
else {p = pr2; q= ps2;}
z = one/(x*x);
r = p[0]+z*(p[1]+z*(p[2]+z*(p[3]+z*(p[4]+z*p[5]))));
s = one+z*(q[0]+z*(q[1]+z*(q[2]+z*(q[3]+z*q[4]))));
return one+ r/s;
}
/* For x >= 8, the asymptotic expansions of qone is
* 3/8 s - 105/1024 s^3 - ..., where s = 1/x.
* We approximate qone by
* qone(x) = s*(0.375 + (R/S))
* where R = qr1*s^2 + qr2*s^4 + ... + qr5*s^10
* S = 1 + qs1*s^2 + ... + qs6*s^12
* and
* | qone(x)/s -0.375-R/S | <= 2 ** ( -61.13)
*/
#ifdef __STDC__
static const double qr8[6] = { /* for x in [inf, 8]=1/[0,0.125] */
#else
static double qr8[6] = { /* for x in [inf, 8]=1/[0,0.125] */
#endif
0.00000000000000000000e+00, /* 0x00000000, 0x00000000 */
-1.02539062499992714161e-01, /* 0xBFBA3FFF, 0xFFFFFDF3 */
-1.62717534544589987888e+01, /* 0xC0304591, 0xA26779F7 */
-7.59601722513950107896e+02, /* 0xC087BCD0, 0x53E4B576 */
-1.18498066702429587167e+04, /* 0xC0C724E7, 0x40F87415 */
-4.84385124285750353010e+04, /* 0xC0E7A6D0, 0x65D09C6A */
};
#ifdef __STDC__
static const double qs8[6] = {
#else
static double qs8[6] = {
#endif
1.61395369700722909556e+02, /* 0x40642CA6, 0xDE5BCDE5 */
7.82538599923348465381e+03, /* 0x40BE9162, 0xD0D88419 */
1.33875336287249578163e+05, /* 0x4100579A, 0xB0B75E98 */
7.19657723683240939863e+05, /* 0x4125F653, 0x72869C19 */
6.66601232617776375264e+05, /* 0x412457D2, 0x7719AD5C */
-2.94490264303834643215e+05, /* 0xC111F969, 0x0EA5AA18 */
};
#ifdef __STDC__
static const double qr5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */
#else
static double qr5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */
#endif
-2.08979931141764104297e-11, /* 0xBDB6FA43, 0x1AA1A098 */
-1.02539050241375426231e-01, /* 0xBFBA3FFF, 0xCB597FEF */
-8.05644828123936029840e+00, /* 0xC0201CE6, 0xCA03AD4B */
-1.83669607474888380239e+02, /* 0xC066F56D, 0x6CA7B9B0 */
-1.37319376065508163265e+03, /* 0xC09574C6, 0x6931734F */
-2.61244440453215656817e+03, /* 0xC0A468E3, 0x88FDA79D */
};
#ifdef __STDC__
static const double qs5[6] = {
#else
static double qs5[6] = {
#endif
8.12765501384335777857e+01, /* 0x405451B2, 0xFF5A11B2 */
1.99179873460485964642e+03, /* 0x409F1F31, 0xE77BF839 */
1.74684851924908907677e+04, /* 0x40D10F1F, 0x0D64CE29 */
4.98514270910352279316e+04, /* 0x40E8576D, 0xAABAD197 */
2.79480751638918118260e+04, /* 0x40DB4B04, 0xCF7C364B */
-4.71918354795128470869e+03, /* 0xC0B26F2E, 0xFCFFA004 */
};
#ifdef __STDC__
static const double qr3[6] = {
#else
static double qr3[6] = {/* for x in [4.547,2.8571]=1/[0.2199,0.35001] */
#endif
-5.07831226461766561369e-09, /* 0xBE35CFA9, 0xD38FC84F */
-1.02537829820837089745e-01, /* 0xBFBA3FEB, 0x51AEED54 */
-4.61011581139473403113e+00, /* 0xC01270C2, 0x3302D9FF */
-5.78472216562783643212e+01, /* 0xC04CEC71, 0xC25D16DA */
-2.28244540737631695038e+02, /* 0xC06C87D3, 0x4718D55F */
-2.19210128478909325622e+02, /* 0xC06B66B9, 0x5F5C1BF6 */
};
#ifdef __STDC__
static const double qs3[6] = {
#else
static double qs3[6] = {
#endif
4.76651550323729509273e+01, /* 0x4047D523, 0xCCD367E4 */
6.73865112676699709482e+02, /* 0x40850EEB, 0xC031EE3E */
3.38015286679526343505e+03, /* 0x40AA684E, 0x448E7C9A */
5.54772909720722782367e+03, /* 0x40B5ABBA, 0xA61D54A6 */
1.90311919338810798763e+03, /* 0x409DBC7A, 0x0DD4DF4B */
-1.35201191444307340817e+02, /* 0xC060E670, 0x290A311F */
};
#ifdef __STDC__
static const double qr2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */
#else
static double qr2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */
#endif
-1.78381727510958865572e-07, /* 0xBE87F126, 0x44C626D2 */
-1.02517042607985553460e-01, /* 0xBFBA3E8E, 0x9148B010 */
-2.75220568278187460720e+00, /* 0xC0060484, 0x69BB4EDA */
-1.96636162643703720221e+01, /* 0xC033A9E2, 0xC168907F */
-4.23253133372830490089e+01, /* 0xC04529A3, 0xDE104AAA */
-2.13719211703704061733e+01, /* 0xC0355F36, 0x39CF6E52 */
};
#ifdef __STDC__
static const double qs2[6] = {
#else
static double qs2[6] = {
#endif
2.95333629060523854548e+01, /* 0x403D888A, 0x78AE64FF */
2.52981549982190529136e+02, /* 0x406F9F68, 0xDB821CBA */
7.57502834868645436472e+02, /* 0x4087AC05, 0xCE49A0F7 */
7.39393205320467245656e+02, /* 0x40871B25, 0x48D4C029 */
1.55949003336666123687e+02, /* 0x40637E5E, 0x3C3ED8D4 */
-4.95949898822628210127e+00, /* 0xC013D686, 0xE71BE86B */
};
#ifdef __STDC__
static double qone(double x)
#else
static double qone(x)
double x;
#endif
{
#ifdef __STDC__
const double *p,*q;
#else
double *p,*q;
#endif
double s,r,z;
__int32_t ix;
GET_HIGH_WORD(ix,x);
ix &= 0x7fffffff;
if(ix>=0x40200000) {p = qr8; q= qs8;}
else if(ix>=0x40122E8B){p = qr5; q= qs5;}
else if(ix>=0x4006DB6D){p = qr3; q= qs3;}
else {p = qr2; q= qs2;}
z = one/(x*x);
r = p[0]+z*(p[1]+z*(p[2]+z*(p[3]+z*(p[4]+z*p[5]))));
s = one+z*(q[0]+z*(q[1]+z*(q[2]+z*(q[3]+z*(q[4]+z*q[5])))));
return (.375 + r/s)/x;
}
#endif /* defined(_DOUBLE_IS_32BITS) */

View File

@ -0,0 +1,281 @@
/* @(#)e_jn.c 5.1 93/09/24 */
/*
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunPro, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
/*
* __ieee754_jn(n, x), __ieee754_yn(n, x)
* floating point Bessel's function of the 1st and 2nd kind
* of order n
*
* Special cases:
* y0(0)=y1(0)=yn(n,0) = -inf with division by zero signal;
* y0(-ve)=y1(-ve)=yn(n,-ve) are NaN with invalid signal.
* Note 2. About jn(n,x), yn(n,x)
* For n=0, j0(x) is called,
* for n=1, j1(x) is called,
* for n<x, forward recursion us used starting
* from values of j0(x) and j1(x).
* for n>x, a continued fraction approximation to
* j(n,x)/j(n-1,x) is evaluated and then backward
* recursion is used starting from a supposed value
* for j(n,x). The resulting value of j(0,x) is
* compared with the actual value to correct the
* supposed value of j(n,x).
*
* yn(n,x) is similar in all respects, except
* that forward recursion is used for all
* values of n>1.
*
*/
#include "fdlibm.h"
#ifndef _DOUBLE_IS_32BITS
#ifdef __STDC__
static const double
#else
static double
#endif
invsqrtpi= 5.64189583547756279280e-01, /* 0x3FE20DD7, 0x50429B6D */
two = 2.00000000000000000000e+00, /* 0x40000000, 0x00000000 */
one = 1.00000000000000000000e+00; /* 0x3FF00000, 0x00000000 */
#ifdef __STDC__
static const double zero = 0.00000000000000000000e+00;
#else
static double zero = 0.00000000000000000000e+00;
#endif
#ifdef __STDC__
double __ieee754_jn(int n, double x)
#else
double __ieee754_jn(n,x)
int n; double x;
#endif
{
__int32_t i,hx,ix,lx, sgn;
double a, b, temp, di;
double z, w;
/* J(-n,x) = (-1)^n * J(n, x), J(n, -x) = (-1)^n * J(n, x)
* Thus, J(-n,x) = J(n,-x)
*/
EXTRACT_WORDS(hx,lx,x);
ix = 0x7fffffff&hx;
/* if J(n,NaN) is NaN */
if((ix|((__uint32_t)(lx|-lx))>>31)>0x7ff00000) return x+x;
if(n<0){
n = -n;
x = -x;
hx ^= 0x80000000;
}
if(n==0) return(__ieee754_j0(x));
if(n==1) return(__ieee754_j1(x));
sgn = (n&1)&(hx>>31); /* even n -- 0, odd n -- sign(x) */
x = fabs(x);
if((ix|lx)==0||ix>=0x7ff00000) /* if x is 0 or inf */
b = zero;
else if((double)n<=x) {
/* Safe to use J(n+1,x)=2n/x *J(n,x)-J(n-1,x) */
if(ix>=0x52D00000) { /* x > 2**302 */
/* (x >> n**2)
* Jn(x) = cos(x-(2n+1)*pi/4)*sqrt(2/x*pi)
* Yn(x) = sin(x-(2n+1)*pi/4)*sqrt(2/x*pi)
* Let s=sin(x), c=cos(x),
* xn=x-(2n+1)*pi/4, sqt2 = sqrt(2),then
*
* n sin(xn)*sqt2 cos(xn)*sqt2
* ----------------------------------
* 0 s-c c+s
* 1 -s-c -c+s
* 2 -s+c -c-s
* 3 s+c c-s
*/
switch(n&3) {
case 0: temp = cos(x)+sin(x); break;
case 1: temp = -cos(x)+sin(x); break;
case 2: temp = -cos(x)-sin(x); break;
case 3: temp = cos(x)-sin(x); break;
}
b = invsqrtpi*temp/__ieee754_sqrt(x);
} else {
a = __ieee754_j0(x);
b = __ieee754_j1(x);
for(i=1;i<n;i++){
temp = b;
b = b*((double)(i+i)/x) - a; /* avoid underflow */
a = temp;
}
}
} else {
if(ix<0x3e100000) { /* x < 2**-29 */
/* x is tiny, return the first Taylor expansion of J(n,x)
* J(n,x) = 1/n!*(x/2)^n - ...
*/
if(n>33) /* underflow */
b = zero;
else {
temp = x*0.5; b = temp;
for (a=one,i=2;i<=n;i++) {
a *= (double)i; /* a = n! */
b *= temp; /* b = (x/2)^n */
}
b = b/a;
}
} else {
/* use backward recurrence */
/* x x^2 x^2
* J(n,x)/J(n-1,x) = ---- ------ ------ .....
* 2n - 2(n+1) - 2(n+2)
*
* 1 1 1
* (for large x) = ---- ------ ------ .....
* 2n 2(n+1) 2(n+2)
* -- - ------ - ------ -
* x x x
*
* Let w = 2n/x and h=2/x, then the above quotient
* is equal to the continued fraction:
* 1
* = -----------------------
* 1
* w - -----------------
* 1
* w+h - ---------
* w+2h - ...
*
* To determine how many terms needed, let
* Q(0) = w, Q(1) = w(w+h) - 1,
* Q(k) = (w+k*h)*Q(k-1) - Q(k-2),
* When Q(k) > 1e4 good for single
* When Q(k) > 1e9 good for double
* When Q(k) > 1e17 good for quadruple
*/
/* determine k */
double t,v;
double q0,q1,h,tmp; __int32_t k,m;
w = (n+n)/(double)x; h = 2.0/(double)x;
q0 = w; z = w+h; q1 = w*z - 1.0; k=1;
while(q1<1.0e9) {
k += 1; z += h;
tmp = z*q1 - q0;
q0 = q1;
q1 = tmp;
}
m = n+n;
for(t=zero, i = 2*(n+k); i>=m; i -= 2) t = one/(i/x-t);
a = t;
b = one;
/* estimate log((2/x)^n*n!) = n*log(2/x)+n*ln(n)
* Hence, if n*(log(2n/x)) > ...
* single 8.8722839355e+01
* double 7.09782712893383973096e+02
* long double 1.1356523406294143949491931077970765006170e+04
* then recurrent value may overflow and the result is
* likely underflow to zero
*/
tmp = n;
v = two/x;
tmp = tmp*__ieee754_log(fabs(v*tmp));
if(tmp<7.09782712893383973096e+02) {
for(i=n-1,di=(double)(i+i);i>0;i--){
temp = b;
b *= di;
b = b/x - a;
a = temp;
di -= two;
}
} else {
for(i=n-1,di=(double)(i+i);i>0;i--){
temp = b;
b *= di;
b = b/x - a;
a = temp;
di -= two;
/* scale b to avoid spurious overflow */
if(b>1e100) {
a /= b;
t /= b;
b = one;
}
}
}
b = (t*__ieee754_j0(x)/b);
}
}
if(sgn==1) return -b; else return b;
}
#ifdef __STDC__
double __ieee754_yn(int n, double x)
#else
double __ieee754_yn(n,x)
int n; double x;
#endif
{
__int32_t i,hx,ix,lx;
__int32_t sign;
double a, b, temp;
EXTRACT_WORDS(hx,lx,x);
ix = 0x7fffffff&hx;
/* if Y(n,NaN) is NaN */
if((ix|((__uint32_t)(lx|-lx))>>31)>0x7ff00000) return x+x;
if((ix|lx)==0) return -one/zero;
if(hx<0) return zero/zero;
sign = 1;
if(n<0){
n = -n;
sign = 1 - ((n&1)<<1);
}
if(n==0) return(__ieee754_y0(x));
if(n==1) return(sign*__ieee754_y1(x));
if(ix==0x7ff00000) return zero;
if(ix>=0x52D00000) { /* x > 2**302 */
/* (x >> n**2)
* Jn(x) = cos(x-(2n+1)*pi/4)*sqrt(2/x*pi)
* Yn(x) = sin(x-(2n+1)*pi/4)*sqrt(2/x*pi)
* Let s=sin(x), c=cos(x),
* xn=x-(2n+1)*pi/4, sqt2 = sqrt(2),then
*
* n sin(xn)*sqt2 cos(xn)*sqt2
* ----------------------------------
* 0 s-c c+s
* 1 -s-c -c+s
* 2 -s+c -c-s
* 3 s+c c-s
*/
switch(n&3) {
case 0: temp = sin(x)-cos(x); break;
case 1: temp = -sin(x)-cos(x); break;
case 2: temp = -sin(x)+cos(x); break;
case 3: temp = sin(x)+cos(x); break;
}
b = invsqrtpi*temp/__ieee754_sqrt(x);
} else {
__uint32_t high;
a = __ieee754_y0(x);
b = __ieee754_y1(x);
/* quit if b is -inf */
GET_HIGH_WORD(high,b);
for(i=1;i<n&&high!=0xfff00000;i++){
temp = b;
b = ((double)(i+i)/x)*b - a;
GET_HIGH_WORD(high,b);
a = temp;
}
}
if(sign>0) return b; else return -b;
}
#endif /* defined(_DOUBLE_IS_32BITS) */

View File

@ -0,0 +1,146 @@
/* @(#)e_log.c 5.1 93/09/24 */
/*
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunPro, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
/* __ieee754_log(x)
* Return the logrithm of x
*
* Method :
* 1. Argument Reduction: find k and f such that
* x = 2^k * (1+f),
* where sqrt(2)/2 < 1+f < sqrt(2) .
*
* 2. Approximation of log(1+f).
* Let s = f/(2+f) ; based on log(1+f) = log(1+s) - log(1-s)
* = 2s + 2/3 s**3 + 2/5 s**5 + .....,
* = 2s + s*R
* We use a special Reme algorithm on [0,0.1716] to generate
* a polynomial of degree 14 to approximate R The maximum error
* of this polynomial approximation is bounded by 2**-58.45. In
* other words,
* 2 4 6 8 10 12 14
* R(z) ~ Lg1*s +Lg2*s +Lg3*s +Lg4*s +Lg5*s +Lg6*s +Lg7*s
* (the values of Lg1 to Lg7 are listed in the program)
* and
* | 2 14 | -58.45
* | Lg1*s +...+Lg7*s - R(z) | <= 2
* | |
* Note that 2s = f - s*f = f - hfsq + s*hfsq, where hfsq = f*f/2.
* In order to guarantee error in log below 1ulp, we compute log
* by
* log(1+f) = f - s*(f - R) (if f is not too large)
* log(1+f) = f - (hfsq - s*(hfsq+R)). (better accuracy)
*
* 3. Finally, log(x) = k*ln2 + log(1+f).
* = k*ln2_hi+(f-(hfsq-(s*(hfsq+R)+k*ln2_lo)))
* Here ln2 is split into two floating point number:
* ln2_hi + ln2_lo,
* where n*ln2_hi is always exact for |n| < 2000.
*
* Special cases:
* log(x) is NaN with signal if x < 0 (including -INF) ;
* log(+INF) is +INF; log(0) is -INF with signal;
* log(NaN) is that NaN with no signal.
*
* Accuracy:
* according to an error analysis, the error is always less than
* 1 ulp (unit in the last place).
*
* Constants:
* The hexadecimal values are the intended ones for the following
* constants. The decimal values may be used, provided that the
* compiler will convert from decimal to binary accurately enough
* to produce the hexadecimal values shown.
*/
#include "fdlibm.h"
#ifndef _DOUBLE_IS_32BITS
#ifdef __STDC__
static const double
#else
static double
#endif
ln2_hi = 6.93147180369123816490e-01, /* 3fe62e42 fee00000 */
ln2_lo = 1.90821492927058770002e-10, /* 3dea39ef 35793c76 */
two54 = 1.80143985094819840000e+16, /* 43500000 00000000 */
Lg1 = 6.666666666666735130e-01, /* 3FE55555 55555593 */
Lg2 = 3.999999999940941908e-01, /* 3FD99999 9997FA04 */
Lg3 = 2.857142874366239149e-01, /* 3FD24924 94229359 */
Lg4 = 2.222219843214978396e-01, /* 3FCC71C5 1D8E78AF */
Lg5 = 1.818357216161805012e-01, /* 3FC74664 96CB03DE */
Lg6 = 1.531383769920937332e-01, /* 3FC39A09 D078C69F */
Lg7 = 1.479819860511658591e-01; /* 3FC2F112 DF3E5244 */
#ifdef __STDC__
static const double zero = 0.0;
#else
static double zero = 0.0;
#endif
#ifdef __STDC__
double __ieee754_log(double x)
#else
double __ieee754_log(x)
double x;
#endif
{
double hfsq,f,s,z,R,w,t1,t2,dk;
__int32_t k,hx,i,j;
__uint32_t lx;
EXTRACT_WORDS(hx,lx,x);
k=0;
if (hx < 0x00100000) { /* x < 2**-1022 */
if (((hx&0x7fffffff)|lx)==0)
return -two54/zero; /* log(+-0)=-inf */
if (hx<0) return (x-x)/zero; /* log(-#) = NaN */
k -= 54; x *= two54; /* subnormal number, scale up x */
GET_HIGH_WORD(hx,x);
}
if (hx >= 0x7ff00000) return x+x;
k += (hx>>20)-1023;
hx &= 0x000fffff;
i = (hx+0x95f64)&0x100000;
SET_HIGH_WORD(x,hx|(i^0x3ff00000)); /* normalize x or x/2 */
k += (i>>20);
f = x-1.0;
if((0x000fffff&(2+hx))<3) { /* |f| < 2**-20 */
if(f==zero) { if(k==0) return zero; else {dk=(double)k;
return dk*ln2_hi+dk*ln2_lo;}}
R = f*f*(0.5-0.33333333333333333*f);
if(k==0) return f-R; else {dk=(double)k;
return dk*ln2_hi-((R-dk*ln2_lo)-f);}
}
s = f/(2.0+f);
dk = (double)k;
z = s*s;
i = hx-0x6147a;
w = z*z;
j = 0x6b851-hx;
t1= w*(Lg2+w*(Lg4+w*Lg6));
t2= z*(Lg1+w*(Lg3+w*(Lg5+w*Lg7)));
i |= j;
R = t2+t1;
if(i>0) {
hfsq=0.5*f*f;
if(k==0) return f-(hfsq-s*(hfsq+R)); else
return dk*ln2_hi-((hfsq-(s*(hfsq+R)+dk*ln2_lo))-f);
} else {
if(k==0) return f-s*(f-R); else
return dk*ln2_hi-((s*(f-R)-dk*ln2_lo)-f);
}
}
#endif /* defined(_DOUBLE_IS_32BITS) */

View File

@ -0,0 +1,98 @@
/* @(#)e_log10.c 5.1 93/09/24 */
/*
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunPro, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
/* __ieee754_log10(x)
* Return the base 10 logarithm of x
*
* Method :
* Let log10_2hi = leading 40 bits of log10(2) and
* log10_2lo = log10(2) - log10_2hi,
* ivln10 = 1/log(10) rounded.
* Then
* n = ilogb(x),
* if(n<0) n = n+1;
* x = scalbn(x,-n);
* log10(x) := n*log10_2hi + (n*log10_2lo + ivln10*log(x))
*
* Note 1:
* To guarantee log10(10**n)=n, where 10**n is normal, the rounding
* mode must set to Round-to-Nearest.
* Note 2:
* [1/log(10)] rounded to 53 bits has error .198 ulps;
* log10 is monotonic at all binary break points.
*
* Special cases:
* log10(x) is NaN with signal if x < 0;
* log10(+INF) is +INF with no signal; log10(0) is -INF with signal;
* log10(NaN) is that NaN with no signal;
* log10(10**N) = N for N=0,1,...,22.
*
* Constants:
* The hexadecimal values are the intended ones for the following constants.
* The decimal values may be used, provided that the compiler will convert
* from decimal to binary accurately enough to produce the hexadecimal values
* shown.
*/
#include "fdlibm.h"
#ifndef _DOUBLE_IS_32BITS
#ifdef __STDC__
static const double
#else
static double
#endif
two54 = 1.80143985094819840000e+16, /* 0x43500000, 0x00000000 */
ivln10 = 4.34294481903251816668e-01, /* 0x3FDBCB7B, 0x1526E50E */
log10_2hi = 3.01029995663611771306e-01, /* 0x3FD34413, 0x509F6000 */
log10_2lo = 3.69423907715893078616e-13; /* 0x3D59FEF3, 0x11F12B36 */
#ifdef __STDC__
static const double zero = 0.0;
#else
static double zero = 0.0;
#endif
#ifdef __STDC__
double __ieee754_log10(double x)
#else
double __ieee754_log10(x)
double x;
#endif
{
double y,z;
__int32_t i,k,hx;
__uint32_t lx;
EXTRACT_WORDS(hx,lx,x);
k=0;
if (hx < 0x00100000) { /* x < 2**-1022 */
if (((hx&0x7fffffff)|lx)==0)
return -two54/zero; /* log(+-0)=-inf */
if (hx<0) return (x-x)/zero; /* log(-#) = NaN */
k -= 54; x *= two54; /* subnormal number, scale up x */
GET_HIGH_WORD(hx,x);
}
if (hx >= 0x7ff00000) return x+x;
k += (hx>>20)-1023;
i = ((__uint32_t)k&0x80000000)>>31;
hx = (hx&0x000fffff)|((0x3ff-i)<<20);
y = (double)(k+i);
SET_HIGH_WORD(x,hx);
z = y*log10_2lo + ivln10*__ieee754_log(x);
return z+y*log10_2hi;
}
#endif /* defined(_DOUBLE_IS_32BITS) */

View File

@ -0,0 +1,315 @@
/* @(#)e_pow.c 5.1 93/09/24 */
/*
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunPro, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
/* __ieee754_pow(x,y) return x**y
*
* n
* Method: Let x = 2 * (1+f)
* 1. Compute and return log2(x) in two pieces:
* log2(x) = w1 + w2,
* where w1 has 53-24 = 29 bit trailing zeros.
* 2. Perform y*log2(x) = n+y' by simulating multi-precision
* arithmetic, where |y'|<=0.5.
* 3. Return x**y = 2**n*exp(y'*log2)
*
* Special cases:
* 1. (anything) ** 0 is 1
* 2. (anything) ** 1 is itself
* 3a. (anything) ** NAN is NAN except
* 3b. +1 ** NAN is 1
* 4. NAN ** (anything except 0) is NAN
* 5. +-(|x| > 1) ** +INF is +INF
* 6. +-(|x| > 1) ** -INF is +0
* 7. +-(|x| < 1) ** +INF is +0
* 8. +-(|x| < 1) ** -INF is +INF
* 9. +-1 ** +-INF is 1
* 10. +0 ** (+anything except 0, NAN) is +0
* 11. -0 ** (+anything except 0, NAN, odd integer) is +0
* 12. +0 ** (-anything except 0, NAN) is +INF
* 13. -0 ** (-anything except 0, NAN, odd integer) is +INF
* 14. -0 ** (odd integer) = -( +0 ** (odd integer) )
* 15. +INF ** (+anything except 0,NAN) is +INF
* 16. +INF ** (-anything except 0,NAN) is +0
* 17. -INF ** (anything) = -0 ** (-anything)
* 18. (-anything) ** (integer) is (-1)**(integer)*(+anything**integer)
* 19. (-anything except 0 and inf) ** (non-integer) is NAN
*
* Accuracy:
* pow(x,y) returns x**y nearly rounded. In particular
* pow(integer,integer)
* always returns the correct integer provided it is
* representable.
*
* Constants :
* The hexadecimal values are the intended ones for the following
* constants. The decimal values may be used, provided that the
* compiler will convert from decimal to binary accurately enough
* to produce the hexadecimal values shown.
*/
#include "fdlibm.h"
#ifndef _DOUBLE_IS_32BITS
#ifdef __STDC__
static const double
#else
static double
#endif
bp[] = {1.0, 1.5,},
dp_h[] = { 0.0, 5.84962487220764160156e-01,}, /* 0x3FE2B803, 0x40000000 */
dp_l[] = { 0.0, 1.35003920212974897128e-08,}, /* 0x3E4CFDEB, 0x43CFD006 */
zero = 0.0,
one = 1.0,
two = 2.0,
two53 = 9007199254740992.0, /* 0x43400000, 0x00000000 */
huge = 1.0e300,
tiny = 1.0e-300,
/* poly coefs for (3/2)*(log(x)-2s-2/3*s**3 */
L1 = 5.99999999999994648725e-01, /* 0x3FE33333, 0x33333303 */
L2 = 4.28571428578550184252e-01, /* 0x3FDB6DB6, 0xDB6FABFF */
L3 = 3.33333329818377432918e-01, /* 0x3FD55555, 0x518F264D */
L4 = 2.72728123808534006489e-01, /* 0x3FD17460, 0xA91D4101 */
L5 = 2.30660745775561754067e-01, /* 0x3FCD864A, 0x93C9DB65 */
L6 = 2.06975017800338417784e-01, /* 0x3FCA7E28, 0x4A454EEF */
P1 = 1.66666666666666019037e-01, /* 0x3FC55555, 0x5555553E */
P2 = -2.77777777770155933842e-03, /* 0xBF66C16C, 0x16BEBD93 */
P3 = 6.61375632143793436117e-05, /* 0x3F11566A, 0xAF25DE2C */
P4 = -1.65339022054652515390e-06, /* 0xBEBBBD41, 0xC5D26BF1 */
P5 = 4.13813679705723846039e-08, /* 0x3E663769, 0x72BEA4D0 */
lg2 = 6.93147180559945286227e-01, /* 0x3FE62E42, 0xFEFA39EF */
lg2_h = 6.93147182464599609375e-01, /* 0x3FE62E43, 0x00000000 */
lg2_l = -1.90465429995776804525e-09, /* 0xBE205C61, 0x0CA86C39 */
ovt = 8.0085662595372944372e-0017, /* -(1024-log2(ovfl+.5ulp)) */
cp = 9.61796693925975554329e-01, /* 0x3FEEC709, 0xDC3A03FD =2/(3ln2) */
cp_h = 9.61796700954437255859e-01, /* 0x3FEEC709, 0xE0000000 =(float)cp */
cp_l = -7.02846165095275826516e-09, /* 0xBE3E2FE0, 0x145B01F5 =tail of cp_h*/
ivln2 = 1.44269504088896338700e+00, /* 0x3FF71547, 0x652B82FE =1/ln2 */
ivln2_h = 1.44269502162933349609e+00, /* 0x3FF71547, 0x60000000 =24b 1/ln2*/
ivln2_l = 1.92596299112661746887e-08; /* 0x3E54AE0B, 0xF85DDF44 =1/ln2 tail*/
#ifdef __STDC__
double __ieee754_pow(double x, double y)
#else
double __ieee754_pow(x,y)
double x, y;
#endif
{
double z,ax,z_h,z_l,p_h,p_l;
double y1,t1,t2,r,s,t,u,v,w;
__int32_t i,j,k,yisint,n;
__int32_t hx,hy,ix,iy;
__uint32_t lx,ly;
EXTRACT_WORDS(hx,lx,x);
EXTRACT_WORDS(hy,ly,y);
ix = hx&0x7fffffff; iy = hy&0x7fffffff;
/* y==zero: x**0 = 1 */
if((iy|ly)==0) return one;
/* x|y==NaN return NaN unless x==1 then return 1 */
if(ix > 0x7ff00000 || ((ix==0x7ff00000)&&(lx!=0)) ||
iy > 0x7ff00000 || ((iy==0x7ff00000)&&(ly!=0))) {
if(((ix-0x3ff00000)|lx)==0) return one;
else return nan("");
}
/* determine if y is an odd int when x < 0
* yisint = 0 ... y is not an integer
* yisint = 1 ... y is an odd int
* yisint = 2 ... y is an even int
*/
yisint = 0;
if(hx<0) {
if(iy>=0x43400000) yisint = 2; /* even integer y */
else if(iy>=0x3ff00000) {
k = (iy>>20)-0x3ff; /* exponent */
if(k>20) {
j = ly>>(52-k);
if((j<<(52-k))==ly) yisint = 2-(j&1);
} else if(ly==0) {
j = iy>>(20-k);
if((j<<(20-k))==iy) yisint = 2-(j&1);
}
}
}
/* special value of y */
if(ly==0) {
if (iy==0x7ff00000) { /* y is +-inf */
if(((ix-0x3ff00000)|lx)==0)
return one; /* +-1**+-inf = 1 */
else if (ix >= 0x3ff00000)/* (|x|>1)**+-inf = inf,0 */
return (hy>=0)? y: zero;
else /* (|x|<1)**-,+inf = inf,0 */
return (hy<0)?-y: zero;
}
if(iy==0x3ff00000) { /* y is +-1 */
if(hy<0) return one/x; else return x;
}
if(hy==0x40000000) return x*x; /* y is 2 */
if(hy==0x3fe00000) { /* y is 0.5 */
if(hx>=0) /* x >= +0 */
return __ieee754_sqrt(x);
}
}
ax = fabs(x);
/* special value of x */
if(lx==0) {
if(ix==0x7ff00000||ix==0||ix==0x3ff00000){
z = ax; /*x is +-0,+-inf,+-1*/
if(hy<0) z = one/z; /* z = (1/|x|) */
if(hx<0) {
if(((ix-0x3ff00000)|yisint)==0) {
z = (z-z)/(z-z); /* (-1)**non-int is NaN */
} else if(yisint==1)
z = -z; /* (x<0)**odd = -(|x|**odd) */
}
return z;
}
}
/* (x<0)**(non-int) is NaN */
/* REDHAT LOCAL: This used to be
if((((hx>>31)+1)|yisint)==0) return (x-x)/(x-x);
but ANSI C says a right shift of a signed negative quantity is
implementation defined. */
if(((((__uint32_t)hx>>31)-1)|yisint)==0) return (x-x)/(x-x);
/* |y| is huge */
if(iy>0x41e00000) { /* if |y| > 2**31 */
if(iy>0x43f00000){ /* if |y| > 2**64, must o/uflow */
if(ix<=0x3fefffff) return (hy<0)? huge*huge:tiny*tiny;
if(ix>=0x3ff00000) return (hy>0)? huge*huge:tiny*tiny;
}
/* over/underflow if x is not close to one */
if(ix<0x3fefffff) return (hy<0)? huge*huge:tiny*tiny;
if(ix>0x3ff00000) return (hy>0)? huge*huge:tiny*tiny;
/* now |1-x| is tiny <= 2**-20, suffice to compute
log(x) by x-x^2/2+x^3/3-x^4/4 */
t = ax-1; /* t has 20 trailing zeros */
w = (t*t)*(0.5-t*(0.3333333333333333333333-t*0.25));
u = ivln2_h*t; /* ivln2_h has 21 sig. bits */
v = t*ivln2_l-w*ivln2;
t1 = u+v;
SET_LOW_WORD(t1,0);
t2 = v-(t1-u);
} else {
double s2,s_h,s_l,t_h,t_l;
n = 0;
/* take care subnormal number */
if(ix<0x00100000)
{ax *= two53; n -= 53; GET_HIGH_WORD(ix,ax); }
n += ((ix)>>20)-0x3ff;
j = ix&0x000fffff;
/* determine interval */
ix = j|0x3ff00000; /* normalize ix */
if(j<=0x3988E) k=0; /* |x|<sqrt(3/2) */
else if(j<0xBB67A) k=1; /* |x|<sqrt(3) */
else {k=0;n+=1;ix -= 0x00100000;}
SET_HIGH_WORD(ax,ix);
/* compute s = s_h+s_l = (x-1)/(x+1) or (x-1.5)/(x+1.5) */
u = ax-bp[k]; /* bp[0]=1.0, bp[1]=1.5 */
v = one/(ax+bp[k]);
s = u*v;
s_h = s;
SET_LOW_WORD(s_h,0);
/* t_h=ax+bp[k] High */
t_h = zero;
SET_HIGH_WORD(t_h,((ix>>1)|0x20000000)+0x00080000+(k<<18));
t_l = ax - (t_h-bp[k]);
s_l = v*((u-s_h*t_h)-s_h*t_l);
/* compute log(ax) */
s2 = s*s;
r = s2*s2*(L1+s2*(L2+s2*(L3+s2*(L4+s2*(L5+s2*L6)))));
r += s_l*(s_h+s);
s2 = s_h*s_h;
t_h = 3.0+s2+r;
SET_LOW_WORD(t_h,0);
t_l = r-((t_h-3.0)-s2);
/* u+v = s*(1+...) */
u = s_h*t_h;
v = s_l*t_h+t_l*s;
/* 2/(3log2)*(s+...) */
p_h = u+v;
SET_LOW_WORD(p_h,0);
p_l = v-(p_h-u);
z_h = cp_h*p_h; /* cp_h+cp_l = 2/(3*log2) */
z_l = cp_l*p_h+p_l*cp+dp_l[k];
/* log2(ax) = (s+..)*2/(3*log2) = n + dp_h + z_h + z_l */
t = (double)n;
t1 = (((z_h+z_l)+dp_h[k])+t);
SET_LOW_WORD(t1,0);
t2 = z_l-(((t1-t)-dp_h[k])-z_h);
}
s = one; /* s (sign of result -ve**odd) = -1 else = 1 */
if(((((__uint32_t)hx>>31)-1)|(yisint-1))==0)
s = -one;/* (-ve)**(odd int) */
/* split up y into y1+y2 and compute (y1+y2)*(t1+t2) */
y1 = y;
SET_LOW_WORD(y1,0);
p_l = (y-y1)*t1+y*t2;
p_h = y1*t1;
z = p_l+p_h;
EXTRACT_WORDS(j,i,z);
if (j>=0x40900000) { /* z >= 1024 */
if(((j-0x40900000)|i)!=0) /* if z > 1024 */
return s*huge*huge; /* overflow */
else {
if(p_l+ovt>z-p_h) return s*huge*huge; /* overflow */
}
} else if((j&0x7fffffff)>=0x4090cc00 ) { /* z <= -1075 */
if(((j-0xc090cc00)|i)!=0) /* z < -1075 */
return s*tiny*tiny; /* underflow */
else {
if(p_l<=z-p_h) return s*tiny*tiny; /* underflow */
}
}
/*
* compute 2**(p_h+p_l)
*/
i = j&0x7fffffff;
k = (i>>20)-0x3ff;
n = 0;
if(i>0x3fe00000) { /* if |z| > 0.5, set n = [z+0.5] */
n = j+(0x00100000>>(k+1));
k = ((n&0x7fffffff)>>20)-0x3ff; /* new k for n */
t = zero;
SET_HIGH_WORD(t,n&~(0x000fffff>>k));
n = ((n&0x000fffff)|0x00100000)>>(20-k);
if(j<0) n = -n;
p_h -= t;
}
t = p_l+p_h;
SET_LOW_WORD(t,0);
u = t*lg2_h;
v = (p_l-(t-p_h))*lg2+t*lg2_l;
z = u+v;
w = v-(z-u);
t = z*z;
t1 = z - t*(P1+t*(P2+t*(P3+t*(P4+t*P5))));
r = (z*t1)/(t1-two)-(w+z*w);
z = one-(r-z);
GET_HIGH_WORD(j,z);
j += (n<<20);
if((j>>20)<=0) z = scalbn(z,(int)n); /* subnormal output */
else SET_HIGH_WORD(z,j);
return s*z;
}
#endif /* defined(_DOUBLE_IS_32BITS) */

View File

@ -0,0 +1,185 @@
/* @(#)e_rem_pio2.c 5.1 93/09/24 */
/*
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunPro, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*
*/
/* __ieee754_rem_pio2(x,y)
*
* return the remainder of x rem pi/2 in y[0]+y[1]
* use __kernel_rem_pio2()
*/
#include "fdlibm.h"
#ifndef _DOUBLE_IS_32BITS
/*
* Table of constants for 2/pi, 396 Hex digits (476 decimal) of 2/pi
*/
#ifdef __STDC__
static const __int32_t two_over_pi[] = {
#else
static __int32_t two_over_pi[] = {
#endif
0xA2F983, 0x6E4E44, 0x1529FC, 0x2757D1, 0xF534DD, 0xC0DB62,
0x95993C, 0x439041, 0xFE5163, 0xABDEBB, 0xC561B7, 0x246E3A,
0x424DD2, 0xE00649, 0x2EEA09, 0xD1921C, 0xFE1DEB, 0x1CB129,
0xA73EE8, 0x8235F5, 0x2EBB44, 0x84E99C, 0x7026B4, 0x5F7E41,
0x3991D6, 0x398353, 0x39F49C, 0x845F8B, 0xBDF928, 0x3B1FF8,
0x97FFDE, 0x05980F, 0xEF2F11, 0x8B5A0A, 0x6D1F6D, 0x367ECF,
0x27CB09, 0xB74F46, 0x3F669E, 0x5FEA2D, 0x7527BA, 0xC7EBE5,
0xF17B3D, 0x0739F7, 0x8A5292, 0xEA6BFB, 0x5FB11F, 0x8D5D08,
0x560330, 0x46FC7B, 0x6BABF0, 0xCFBC20, 0x9AF436, 0x1DA9E3,
0x91615E, 0xE61B08, 0x659985, 0x5F14A0, 0x68408D, 0xFFD880,
0x4D7327, 0x310606, 0x1556CA, 0x73A8C9, 0x60E27B, 0xC08C6B,
};
#ifdef __STDC__
static const __int32_t npio2_hw[] = {
#else
static __int32_t npio2_hw[] = {
#endif
0x3FF921FB, 0x400921FB, 0x4012D97C, 0x401921FB, 0x401F6A7A, 0x4022D97C,
0x4025FDBB, 0x402921FB, 0x402C463A, 0x402F6A7A, 0x4031475C, 0x4032D97C,
0x40346B9C, 0x4035FDBB, 0x40378FDB, 0x403921FB, 0x403AB41B, 0x403C463A,
0x403DD85A, 0x403F6A7A, 0x40407E4C, 0x4041475C, 0x4042106C, 0x4042D97C,
0x4043A28C, 0x40446B9C, 0x404534AC, 0x4045FDBB, 0x4046C6CB, 0x40478FDB,
0x404858EB, 0x404921FB,
};
/*
* invpio2: 53 bits of 2/pi
* pio2_1: first 33 bit of pi/2
* pio2_1t: pi/2 - pio2_1
* pio2_2: second 33 bit of pi/2
* pio2_2t: pi/2 - (pio2_1+pio2_2)
* pio2_3: third 33 bit of pi/2
* pio2_3t: pi/2 - (pio2_1+pio2_2+pio2_3)
*/
#ifdef __STDC__
static const double
#else
static double
#endif
zero = 0.00000000000000000000e+00, /* 0x00000000, 0x00000000 */
half = 5.00000000000000000000e-01, /* 0x3FE00000, 0x00000000 */
two24 = 1.67772160000000000000e+07, /* 0x41700000, 0x00000000 */
invpio2 = 6.36619772367581382433e-01, /* 0x3FE45F30, 0x6DC9C883 */
pio2_1 = 1.57079632673412561417e+00, /* 0x3FF921FB, 0x54400000 */
pio2_1t = 6.07710050650619224932e-11, /* 0x3DD0B461, 0x1A626331 */
pio2_2 = 6.07710050630396597660e-11, /* 0x3DD0B461, 0x1A600000 */
pio2_2t = 2.02226624879595063154e-21, /* 0x3BA3198A, 0x2E037073 */
pio2_3 = 2.02226624871116645580e-21, /* 0x3BA3198A, 0x2E000000 */
pio2_3t = 8.47842766036889956997e-32; /* 0x397B839A, 0x252049C1 */
#ifdef __STDC__
__int32_t __ieee754_rem_pio2(double x, double *y)
#else
__int32_t __ieee754_rem_pio2(x,y)
double x,y[];
#endif
{
double z = 0.0,w,t,r,fn;
double tx[3];
__int32_t i,j,n,ix,hx;
int e0,nx;
__uint32_t low;
GET_HIGH_WORD(hx,x); /* high word of x */
ix = hx&0x7fffffff;
if(ix<=0x3fe921fb) /* |x| ~<= pi/4 , no need for reduction */
{y[0] = x; y[1] = 0; return 0;}
if(ix<0x4002d97c) { /* |x| < 3pi/4, special case with n=+-1 */
if(hx>0) {
z = x - pio2_1;
if(ix!=0x3ff921fb) { /* 33+53 bit pi is good enough */
y[0] = z - pio2_1t;
y[1] = (z-y[0])-pio2_1t;
} else { /* near pi/2, use 33+33+53 bit pi */
z -= pio2_2;
y[0] = z - pio2_2t;
y[1] = (z-y[0])-pio2_2t;
}
return 1;
} else { /* negative x */
z = x + pio2_1;
if(ix!=0x3ff921fb) { /* 33+53 bit pi is good enough */
y[0] = z + pio2_1t;
y[1] = (z-y[0])+pio2_1t;
} else { /* near pi/2, use 33+33+53 bit pi */
z += pio2_2;
y[0] = z + pio2_2t;
y[1] = (z-y[0])+pio2_2t;
}
return -1;
}
}
if(ix<=0x413921fb) { /* |x| ~<= 2^19*(pi/2), medium size */
t = fabs(x);
n = (__int32_t) (t*invpio2+half);
fn = (double)n;
r = t-fn*pio2_1;
w = fn*pio2_1t; /* 1st round good to 85 bit */
if(n<32&&ix!=npio2_hw[n-1]) {
y[0] = r-w; /* quick check no cancellation */
} else {
__uint32_t high;
j = ix>>20;
y[0] = r-w;
GET_HIGH_WORD(high,y[0]);
i = j-((high>>20)&0x7ff);
if(i>16) { /* 2nd iteration needed, good to 118 */
t = r;
w = fn*pio2_2;
r = t-w;
w = fn*pio2_2t-((t-r)-w);
y[0] = r-w;
GET_HIGH_WORD(high,y[0]);
i = j-((high>>20)&0x7ff);
if(i>49) { /* 3rd iteration need, 151 bits acc */
t = r; /* will cover all possible cases */
w = fn*pio2_3;
r = t-w;
w = fn*pio2_3t-((t-r)-w);
y[0] = r-w;
}
}
}
y[1] = (r-y[0])-w;
if(hx<0) {y[0] = -y[0]; y[1] = -y[1]; return -n;}
else return n;
}
/*
* all other (large) arguments
*/
if(ix>=0x7ff00000) { /* x is inf or NaN */
y[0]=y[1]=x-x; return 0;
}
/* set z = scalbn(|x|,ilogb(x)-23) */
GET_LOW_WORD(low,x);
SET_LOW_WORD(z,low);
e0 = (int)((ix>>20)-1046); /* e0 = ilogb(z)-23; */
SET_HIGH_WORD(z, ix - ((__int32_t)e0<<20));
for(i=0;i<2;i++) {
tx[i] = (double)((__int32_t)(z));
z = (z-tx[i])*two24;
}
tx[2] = z;
nx = 3;
while(tx[nx-1]==zero) nx--; /* skip zero term */
n = __kernel_rem_pio2(tx,y,e0,nx,2,two_over_pi);
if(hx<0) {y[0] = -y[0]; y[1] = -y[1]; return -n;}
return n;
}
#endif /* defined(_DOUBLE_IS_32BITS) */

View File

@ -0,0 +1,80 @@
/* @(#)e_remainder.c 5.1 93/09/24 */
/*
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunPro, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
/* __ieee754_remainder(x,p)
* Return :
* returns x REM p = x - [x/p]*p as if in infinite
* precise arithmetic, where [x/p] is the (infinite bit)
* integer nearest x/p (in half way case choose the even one).
* Method :
* Based on fmod() return x-[x/p]chopped*p exactlp.
*/
#include "fdlibm.h"
#ifndef _DOUBLE_IS_32BITS
#ifdef __STDC__
static const double zero = 0.0;
#else
static double zero = 0.0;
#endif
#ifdef __STDC__
double __ieee754_remainder(double x, double p)
#else
double __ieee754_remainder(x,p)
double x,p;
#endif
{
__int32_t hx,hp;
__uint32_t sx,lx,lp;
double p_half;
EXTRACT_WORDS(hx,lx,x);
EXTRACT_WORDS(hp,lp,p);
sx = hx&0x80000000;
hp &= 0x7fffffff;
hx &= 0x7fffffff;
/* purge off exception values */
if((hp|lp)==0) return (x*p)/(x*p); /* p = 0 */
if((hx>=0x7ff00000)|| /* x not finite */
((hp>=0x7ff00000)&& /* p is NaN */
(((hp-0x7ff00000)|lp)!=0)))
return (x*p)/(x*p);
if (hp<=0x7fdfffff) x = __ieee754_fmod(x,p+p); /* now x < 2p */
if (((hx-hp)|(lx-lp))==0) return zero*x;
x = fabs(x);
p = fabs(p);
if (hp<0x00200000) {
if(x+x>p) {
x-=p;
if(x+x>=p) x -= p;
}
} else {
p_half = 0.5*p;
if(x>p_half) {
x-=p;
if(x>=p_half) x -= p;
}
}
GET_HIGH_WORD(hx,x);
SET_HIGH_WORD(x,hx^sx);
return x;
}
#endif /* defined(_DOUBLE_IS_32BITS) */

View File

@ -0,0 +1,55 @@
/* @(#)e_scalb.c 5.1 93/09/24 */
/*
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunPro, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
/*
* __ieee754_scalb(x, fn) is provide for
* passing various standard test suite. One
* should use scalbn() instead.
*/
#include "fdlibm.h"
#ifndef _DOUBLE_IS_32BITS
#ifdef _SCALB_INT
#ifdef __STDC__
double __ieee754_scalb(double x, int fn)
#else
double __ieee754_scalb(x,fn)
double x; int fn;
#endif
#else
#ifdef __STDC__
double __ieee754_scalb(double x, double fn)
#else
double __ieee754_scalb(x,fn)
double x, fn;
#endif
#endif
{
#ifdef _SCALB_INT
return scalbn(x,fn);
#else
if (isnan(x)||isnan(fn)) return x*fn;
if (!finite(fn)) {
if(fn>0.0) return x*fn;
else return x/(-fn);
}
if (rint(fn)!=fn) return (fn-fn)/(fn-fn);
if ( fn > 65000.0) return scalbn(x, 65000);
if (-fn > 65000.0) return scalbn(x,-65000);
return scalbn(x,(int)fn);
#endif
}
#endif /* defined(_DOUBLE_IS_32BITS) */

View File

@ -1,83 +1,86 @@
/* @(#)e_sinh.c 5.1 93/09/24 */
/*
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunPro, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
/* __ieee754_sinh(x)
* Method :
* mathematically sinh(x) if defined to be (exp(x)-exp(-x))/2
* 1. Replace x by |x| (sinh(-x) = -sinh(x)).
* 2.
* E + E/(E+1)
* 0 <= x <= 22 : sinh(x) := --------------, E=expm1(x)
* 2
*
* 22 <= x <= lnovft : sinh(x) := exp(x)/2
* lnovft <= x <= ln2ovft: sinh(x) := exp(x/2)/2 * exp(x/2)
* ln2ovft < x : sinh(x) := x*shuge (overflow)
*
* Special cases:
* sinh(x) is |x| if x is +INF, -INF, or NaN.
* only sinh(0)=0 is exact for finite x.
*/
#include "fdlibm.h"
#ifdef __STDC__
static const double one = 1.0, shuge = 1.0e307;
#else
static double one = 1.0, shuge = 1.0e307;
#endif
#ifdef __STDC__
double sinh(double x)
#else
double sinh(x)
double x;
#endif
{
double t,w,h;
__int32_t ix,jx;
__uint32_t lx;
/* High word of |x|. */
GET_HIGH_WORD(jx,x);
ix = jx&0x7fffffff;
/* x is INF or NaN */
if(ix>=0x7ff00000) return x+x;
h = 0.5;
if (jx<0) h = -h;
/* |x| in [0,22], return sign(x)*0.5*(E+E/(E+1))) */
if (ix < 0x40360000) { /* |x|<22 */
if (ix<0x3e300000) /* |x|<2**-28 */
if(shuge+x>one) return x;/* sinh(tiny) = tiny with inexact */
t = expm1(fabs(x));
if(ix<0x3ff00000) return h*(2.0*t-t*t/(t+one));
return h*(t+t/(t+one));
}
/* |x| in [22, log(maxdouble)] return 0.5*exp(|x|) */
if (ix < 0x40862E42) return h * exp(fabs(x));
/* |x| in [log(maxdouble), overflowthresold] */
GET_LOW_WORD(lx,x);
if (ix<0x408633CE || (ix==0x408633ce && lx<=(__uint32_t)0x8fb9f87d)) {
w = exp(0.5*fabs(x));
t = h*w;
return t*w;
}
/* |x| > overflowthresold, sinh(x) overflow */
return x*shuge;
}
/* @(#)e_sinh.c 5.1 93/09/24 */
/*
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunPro, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
/* __ieee754_sinh(x)
* Method :
* mathematically sinh(x) if defined to be (exp(x)-exp(-x))/2
* 1. Replace x by |x| (sinh(-x) = -sinh(x)).
* 2.
* E + E/(E+1)
* 0 <= x <= 22 : sinh(x) := --------------, E=expm1(x)
* 2
*
* 22 <= x <= lnovft : sinh(x) := exp(x)/2
* lnovft <= x <= ln2ovft: sinh(x) := exp(x/2)/2 * exp(x/2)
* ln2ovft < x : sinh(x) := x*shuge (overflow)
*
* Special cases:
* sinh(x) is |x| if x is +INF, -INF, or NaN.
* only sinh(0)=0 is exact for finite x.
*/
#include "fdlibm.h"
#ifndef _DOUBLE_IS_32BITS
#ifdef __STDC__
static const double one = 1.0, shuge = 1.0e307;
#else
static double one = 1.0, shuge = 1.0e307;
#endif
#ifdef __STDC__
double __ieee754_sinh(double x)
#else
double __ieee754_sinh(x)
double x;
#endif
{
double t,w,h;
__int32_t ix,jx;
__uint32_t lx;
/* High word of |x|. */
GET_HIGH_WORD(jx,x);
ix = jx&0x7fffffff;
/* x is INF or NaN */
if(ix>=0x7ff00000) return x+x;
h = 0.5;
if (jx<0) h = -h;
/* |x| in [0,22], return sign(x)*0.5*(E+E/(E+1))) */
if (ix < 0x40360000) { /* |x|<22 */
if (ix<0x3e300000) /* |x|<2**-28 */
if(shuge+x>one) return x;/* sinh(tiny) = tiny with inexact */
t = expm1(fabs(x));
if(ix<0x3ff00000) return h*(2.0*t-t*t/(t+one));
return h*(t+t/(t+one));
}
/* |x| in [22, log(maxdouble)] return 0.5*exp(|x|) */
if (ix < 0x40862E42) return h*__ieee754_exp(fabs(x));
/* |x| in [log(maxdouble), overflowthresold] */
GET_LOW_WORD(lx,x);
if (ix<0x408633CE || (ix==0x408633ce && lx<=(__uint32_t)0x8fb9f87d)) {
w = __ieee754_exp(0.5*fabs(x));
t = h*w;
return t*w;
}
/* |x| > overflowthresold, sinh(x) overflow */
return x*shuge;
}
#endif /* defined(_DOUBLE_IS_32BITS) */

View File

@ -1,452 +1,452 @@
/* @(#)e_sqrt.c 5.1 93/09/24 */
/*
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunPro, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
/* __ieee754_sqrt(x)
* Return correctly rounded sqrt.
* ------------------------------------------
* | Use the hardware sqrt if you have one |
* ------------------------------------------
* Method:
* Bit by bit method using integer arithmetic. (Slow, but portable)
* 1. Normalization
* Scale x to y in [1,4) with even powers of 2:
* find an integer k such that 1 <= (y=x*2^(2k)) < 4, then
* sqrt(x) = 2^k * sqrt(y)
* 2. Bit by bit computation
* Let q = sqrt(y) truncated to i bit after binary point (q = 1),
* i 0
* i+1 2
* s = 2*q , and y = 2 * ( y - q ). (1)
* i i i i
*
* To compute q from q , one checks whether
* i+1 i
*
* -(i+1) 2
* (q + 2 ) <= y. (2)
* i
* -(i+1)
* If (2) is false, then q = q ; otherwise q = q + 2 .
* i+1 i i+1 i
*
* With some algebric manipulation, it is not difficult to see
* that (2) is equivalent to
* -(i+1)
* s + 2 <= y (3)
* i i
*
* The advantage of (3) is that s and y can be computed by
* i i
* the following recurrence formula:
* if (3) is false
*
* s = s , y = y ; (4)
* i+1 i i+1 i
*
* otherwise,
* -i -(i+1)
* s = s + 2 , y = y - s - 2 (5)
* i+1 i i+1 i i
*
* One may easily use induction to prove (4) and (5).
* Note. Since the left hand side of (3) contain only i+2 bits,
* it does not necessary to do a full (53-bit) comparison
* in (3).
* 3. Final rounding
* After generating the 53 bits result, we compute one more bit.
* Together with the remainder, we can decide whether the
* result is exact, bigger than 1/2ulp, or less than 1/2ulp
* (it will never equal to 1/2ulp).
* The rounding mode can be detected by checking whether
* huge + tiny is equal to huge, and whether huge - tiny is
* equal to huge for some floating point number "huge" and "tiny".
*
* Special cases:
* sqrt(+-0) = +-0 ... exact
* sqrt(inf) = inf
* sqrt(-ve) = NaN ... with invalid signal
* sqrt(NaN) = NaN ... with invalid signal for signaling NaN
*
* Other methods : see the appended file at the end of the program below.
*---------------
*/
#include "fdlibm.h"
#ifndef _DOUBLE_IS_32BITS
#ifdef __STDC__
static const double one = 1.0, tiny=1.0e-300;
#else
static double one = 1.0, tiny=1.0e-300;
#endif
#ifdef __STDC__
double __ieee754_sqrt(double x)
#else
double __ieee754_sqrt(x)
double x;
#endif
{
double z;
__int32_t sign = (int)0x80000000;
__uint32_t r,t1,s1,ix1,q1;
__int32_t ix0,s0,q,m,t,i;
EXTRACT_WORDS(ix0,ix1,x);
/* take care of Inf and NaN */
if((ix0&0x7ff00000)==0x7ff00000) {
return x*x+x; /* sqrt(NaN)=NaN, sqrt(+inf)=+inf
sqrt(-inf)=sNaN */
}
/* take care of zero */
if(ix0<=0) {
if(((ix0&(~sign))|ix1)==0) return x;/* sqrt(+-0) = +-0 */
else if(ix0<0)
return (x-x)/(x-x); /* sqrt(-ve) = sNaN */
}
/* normalize x */
m = (ix0>>20);
if(m==0) { /* subnormal x */
while(ix0==0) {
m -= 21;
ix0 |= (ix1>>11); ix1 <<= 21;
}
for(i=0;(ix0&0x00100000)==0;i++) ix0<<=1;
m -= i-1;
ix0 |= (ix1>>(32-i));
ix1 <<= i;
}
m -= 1023; /* unbias exponent */
ix0 = (ix0&0x000fffff)|0x00100000;
if(m&1){ /* odd m, double x to make it even */
ix0 += ix0 + ((ix1&sign)>>31);
ix1 += ix1;
}
m >>= 1; /* m = [m/2] */
/* generate sqrt(x) bit by bit */
ix0 += ix0 + ((ix1&sign)>>31);
ix1 += ix1;
q = q1 = s0 = s1 = 0; /* [q,q1] = sqrt(x) */
r = 0x00200000; /* r = moving bit from right to left */
while(r!=0) {
t = s0+r;
if(t<=ix0) {
s0 = t+r;
ix0 -= t;
q += r;
}
ix0 += ix0 + ((ix1&sign)>>31);
ix1 += ix1;
r>>=1;
}
r = sign;
while(r!=0) {
t1 = s1+r;
t = s0;
if((t<ix0)||((t==ix0)&&(t1<=ix1))) {
s1 = t1+r;
if(((t1&sign)==sign)&&(s1&sign)==0) s0 += 1;
ix0 -= t;
if (ix1 < t1) ix0 -= 1;
ix1 -= t1;
q1 += r;
}
ix0 += ix0 + ((ix1&sign)>>31);
ix1 += ix1;
r>>=1;
}
/* use floating add to find out rounding direction */
if((ix0|ix1)!=0) {
z = one-tiny; /* trigger inexact flag */
if (z>=one) {
z = one+tiny;
if (q1==(__uint32_t)0xffffffff) { q1=0; q += 1;}
else if (z>one) {
if (q1==(__uint32_t)0xfffffffe) q+=1;
q1+=2;
} else
q1 += (q1&1);
}
}
ix0 = (q>>1)+0x3fe00000;
ix1 = q1>>1;
if ((q&1)==1) ix1 |= sign;
ix0 += (m <<20);
INSERT_WORDS(z,ix0,ix1);
return z;
}
#endif /* defined(_DOUBLE_IS_32BITS) */
/*
Other methods (use floating-point arithmetic)
-------------
(This is a copy of a drafted paper by Prof W. Kahan
and K.C. Ng, written in May, 1986)
Two algorithms are given here to implement sqrt(x)
(IEEE double precision arithmetic) in software.
Both supply sqrt(x) correctly rounded. The first algorithm (in
Section A) uses newton iterations and involves four divisions.
The second one uses reciproot iterations to avoid division, but
requires more multiplications. Both algorithms need the ability
to chop results of arithmetic operations instead of round them,
and the INEXACT flag to indicate when an arithmetic operation
is executed exactly with no roundoff error, all part of the
standard (IEEE 754-1985). The ability to perform shift, add,
subtract and logical AND operations upon 32-bit words is needed
too, though not part of the standard.
A. sqrt(x) by Newton Iteration
(1) Initial approximation
Let x0 and x1 be the leading and the trailing 32-bit words of
a floating point number x (in IEEE double format) respectively
1 11 52 ...widths
------------------------------------------------------
x: |s| e | f |
------------------------------------------------------
msb lsb msb lsb ...order
------------------------ ------------------------
x0: |s| e | f1 | x1: | f2 |
------------------------ ------------------------
By performing shifts and subtracts on x0 and x1 (both regarded
as integers), we obtain an 8-bit approximation of sqrt(x) as
follows.
k := (x0>>1) + 0x1ff80000;
y0 := k - T1[31&(k>>15)]. ... y ~ sqrt(x) to 8 bits
Here k is a 32-bit integer and T1[] is an integer array containing
correction terms. Now magically the floating value of y (y's
leading 32-bit word is y0, the value of its trailing word is 0)
approximates sqrt(x) to almost 8-bit.
Value of T1:
static int T1[32]= {
0, 1024, 3062, 5746, 9193, 13348, 18162, 23592,
29598, 36145, 43202, 50740, 58733, 67158, 75992, 85215,
83599, 71378, 60428, 50647, 41945, 34246, 27478, 21581,
16499, 12183, 8588, 5674, 3403, 1742, 661, 130,};
(2) Iterative refinement
Apply Heron's rule three times to y, we have y approximates
sqrt(x) to within 1 ulp (Unit in the Last Place):
y := (y+x/y)/2 ... almost 17 sig. bits
y := (y+x/y)/2 ... almost 35 sig. bits
y := y-(y-x/y)/2 ... within 1 ulp
Remark 1.
Another way to improve y to within 1 ulp is:
y := (y+x/y) ... almost 17 sig. bits to 2*sqrt(x)
y := y - 0x00100006 ... almost 18 sig. bits to sqrt(x)
2
(x-y )*y
y := y + 2* ---------- ...within 1 ulp
2
3y + x
This formula has one division fewer than the one above; however,
it requires more multiplications and additions. Also x must be
scaled in advance to avoid spurious overflow in evaluating the
expression 3y*y+x. Hence it is not recommended uless division
is slow. If division is very slow, then one should use the
reciproot algorithm given in section B.
(3) Final adjustment
By twiddling y's last bit it is possible to force y to be
correctly rounded according to the prevailing rounding mode
as follows. Let r and i be copies of the rounding mode and
inexact flag before entering the square root program. Also we
use the expression y+-ulp for the next representable floating
numbers (up and down) of y. Note that y+-ulp = either fixed
point y+-1, or multiply y by nextafter(1,+-inf) in chopped
mode.
I := FALSE; ... reset INEXACT flag I
R := RZ; ... set rounding mode to round-toward-zero
z := x/y; ... chopped quotient, possibly inexact
If(not I) then { ... if the quotient is exact
if(z=y) {
I := i; ... restore inexact flag
R := r; ... restore rounded mode
return sqrt(x):=y.
} else {
z := z - ulp; ... special rounding
}
}
i := TRUE; ... sqrt(x) is inexact
If (r=RN) then z=z+ulp ... rounded-to-nearest
If (r=RP) then { ... round-toward-+inf
y = y+ulp; z=z+ulp;
}
y := y+z; ... chopped sum
y0:=y0-0x00100000; ... y := y/2 is correctly rounded.
I := i; ... restore inexact flag
R := r; ... restore rounded mode
return sqrt(x):=y.
(4) Special cases
Square root of +inf, +-0, or NaN is itself;
Square root of a negative number is NaN with invalid signal.
B. sqrt(x) by Reciproot Iteration
(1) Initial approximation
Let x0 and x1 be the leading and the trailing 32-bit words of
a floating point number x (in IEEE double format) respectively
(see section A). By performing shifs and subtracts on x0 and y0,
we obtain a 7.8-bit approximation of 1/sqrt(x) as follows.
k := 0x5fe80000 - (x0>>1);
y0:= k - T2[63&(k>>14)]. ... y ~ 1/sqrt(x) to 7.8 bits
Here k is a 32-bit integer and T2[] is an integer array
containing correction terms. Now magically the floating
value of y (y's leading 32-bit word is y0, the value of
its trailing word y1 is set to zero) approximates 1/sqrt(x)
to almost 7.8-bit.
Value of T2:
static int T2[64]= {
0x1500, 0x2ef8, 0x4d67, 0x6b02, 0x87be, 0xa395, 0xbe7a, 0xd866,
0xf14a, 0x1091b,0x11fcd,0x13552,0x14999,0x15c98,0x16e34,0x17e5f,
0x18d03,0x19a01,0x1a545,0x1ae8a,0x1b5c4,0x1bb01,0x1bfde,0x1c28d,
0x1c2de,0x1c0db,0x1ba73,0x1b11c,0x1a4b5,0x1953d,0x18266,0x16be0,
0x1683e,0x179d8,0x18a4d,0x19992,0x1a789,0x1b445,0x1bf61,0x1c989,
0x1d16d,0x1d77b,0x1dddf,0x1e2ad,0x1e5bf,0x1e6e8,0x1e654,0x1e3cd,
0x1df2a,0x1d635,0x1cb16,0x1be2c,0x1ae4e,0x19bde,0x1868e,0x16e2e,
0x1527f,0x1334a,0x11051,0xe951, 0xbe01, 0x8e0d, 0x5924, 0x1edd,};
(2) Iterative refinement
Apply Reciproot iteration three times to y and multiply the
result by x to get an approximation z that matches sqrt(x)
to about 1 ulp. To be exact, we will have
-1ulp < sqrt(x)-z<1.0625ulp.
... set rounding mode to Round-to-nearest
y := y*(1.5-0.5*x*y*y) ... almost 15 sig. bits to 1/sqrt(x)
y := y*((1.5-2^-30)+0.5*x*y*y)... about 29 sig. bits to 1/sqrt(x)
... special arrangement for better accuracy
z := x*y ... 29 bits to sqrt(x), with z*y<1
z := z + 0.5*z*(1-z*y) ... about 1 ulp to sqrt(x)
Remark 2. The constant 1.5-2^-30 is chosen to bias the error so that
(a) the term z*y in the final iteration is always less than 1;
(b) the error in the final result is biased upward so that
-1 ulp < sqrt(x) - z < 1.0625 ulp
instead of |sqrt(x)-z|<1.03125ulp.
(3) Final adjustment
By twiddling y's last bit it is possible to force y to be
correctly rounded according to the prevailing rounding mode
as follows. Let r and i be copies of the rounding mode and
inexact flag before entering the square root program. Also we
use the expression y+-ulp for the next representable floating
numbers (up and down) of y. Note that y+-ulp = either fixed
point y+-1, or multiply y by nextafter(1,+-inf) in chopped
mode.
R := RZ; ... set rounding mode to round-toward-zero
switch(r) {
case RN: ... round-to-nearest
if(x<= z*(z-ulp)...chopped) z = z - ulp; else
if(x<= z*(z+ulp)...chopped) z = z; else z = z+ulp;
break;
case RZ:case RM: ... round-to-zero or round-to--inf
R:=RP; ... reset rounding mod to round-to-+inf
if(x<z*z ... rounded up) z = z - ulp; else
if(x>=(z+ulp)*(z+ulp) ...rounded up) z = z+ulp;
break;
case RP: ... round-to-+inf
if(x>(z+ulp)*(z+ulp)...chopped) z = z+2*ulp; else
if(x>z*z ...chopped) z = z+ulp;
break;
}
Remark 3. The above comparisons can be done in fixed point. For
example, to compare x and w=z*z chopped, it suffices to compare
x1 and w1 (the trailing parts of x and w), regarding them as
two's complement integers.
...Is z an exact square root?
To determine whether z is an exact square root of x, let z1 be the
trailing part of z, and also let x0 and x1 be the leading and
trailing parts of x.
If ((z1&0x03ffffff)!=0) ... not exact if trailing 26 bits of z!=0
I := 1; ... Raise Inexact flag: z is not exact
else {
j := 1 - [(x0>>20)&1] ... j = logb(x) mod 2
k := z1 >> 26; ... get z's 25-th and 26-th
fraction bits
I := i or (k&j) or ((k&(j+j+1))!=(x1&3));
}
R:= r ... restore rounded mode
return sqrt(x):=z.
If multiplication is cheaper then the foregoing red tape, the
Inexact flag can be evaluated by
I := i;
I := (z*z!=x) or I.
Note that z*z can overwrite I; this value must be sensed if it is
True.
Remark 4. If z*z = x exactly, then bit 25 to bit 0 of z1 must be
zero.
--------------------
z1: | f2 |
--------------------
bit 31 bit 0
Further more, bit 27 and 26 of z1, bit 0 and 1 of x1, and the odd
or even of logb(x) have the following relations:
-------------------------------------------------
bit 27,26 of z1 bit 1,0 of x1 logb(x)
-------------------------------------------------
00 00 odd and even
01 01 even
10 10 odd
10 00 even
11 01 even
-------------------------------------------------
(4) Special cases (see (4) of Section A).
*/
/* @(#)e_sqrt.c 5.1 93/09/24 */
/*
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunPro, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
/* __ieee754_sqrt(x)
* Return correctly rounded sqrt.
* ------------------------------------------
* | Use the hardware sqrt if you have one |
* ------------------------------------------
* Method:
* Bit by bit method using integer arithmetic. (Slow, but portable)
* 1. Normalization
* Scale x to y in [1,4) with even powers of 2:
* find an integer k such that 1 <= (y=x*2^(2k)) < 4, then
* sqrt(x) = 2^k * sqrt(y)
* 2. Bit by bit computation
* Let q = sqrt(y) truncated to i bit after binary point (q = 1),
* i 0
* i+1 2
* s = 2*q , and y = 2 * ( y - q ). (1)
* i i i i
*
* To compute q from q , one checks whether
* i+1 i
*
* -(i+1) 2
* (q + 2 ) <= y. (2)
* i
* -(i+1)
* If (2) is false, then q = q ; otherwise q = q + 2 .
* i+1 i i+1 i
*
* With some algebric manipulation, it is not difficult to see
* that (2) is equivalent to
* -(i+1)
* s + 2 <= y (3)
* i i
*
* The advantage of (3) is that s and y can be computed by
* i i
* the following recurrence formula:
* if (3) is false
*
* s = s , y = y ; (4)
* i+1 i i+1 i
*
* otherwise,
* -i -(i+1)
* s = s + 2 , y = y - s - 2 (5)
* i+1 i i+1 i i
*
* One may easily use induction to prove (4) and (5).
* Note. Since the left hand side of (3) contain only i+2 bits,
* it does not necessary to do a full (53-bit) comparison
* in (3).
* 3. Final rounding
* After generating the 53 bits result, we compute one more bit.
* Together with the remainder, we can decide whether the
* result is exact, bigger than 1/2ulp, or less than 1/2ulp
* (it will never equal to 1/2ulp).
* The rounding mode can be detected by checking whether
* huge + tiny is equal to huge, and whether huge - tiny is
* equal to huge for some floating point number "huge" and "tiny".
*
* Special cases:
* sqrt(+-0) = +-0 ... exact
* sqrt(inf) = inf
* sqrt(-ve) = NaN ... with invalid signal
* sqrt(NaN) = NaN ... with invalid signal for signaling NaN
*
* Other methods : see the appended file at the end of the program below.
*---------------
*/
#include "fdlibm.h"
#ifndef _DOUBLE_IS_32BITS
#ifdef __STDC__
static const double one = 1.0, tiny=1.0e-300;
#else
static double one = 1.0, tiny=1.0e-300;
#endif
#ifdef __STDC__
double __ieee754_sqrt(double x)
#else
double __ieee754_sqrt(x)
double x;
#endif
{
double z;
__int32_t sign = (int)0x80000000;
__uint32_t r,t1,s1,ix1,q1;
__int32_t ix0,s0,q,m,t,i;
EXTRACT_WORDS(ix0,ix1,x);
/* take care of Inf and NaN */
if((ix0&0x7ff00000)==0x7ff00000) {
return x*x+x; /* sqrt(NaN)=NaN, sqrt(+inf)=+inf
sqrt(-inf)=sNaN */
}
/* take care of zero */
if(ix0<=0) {
if(((ix0&(~sign))|ix1)==0) return x;/* sqrt(+-0) = +-0 */
else if(ix0<0)
return (x-x)/(x-x); /* sqrt(-ve) = sNaN */
}
/* normalize x */
m = (ix0>>20);
if(m==0) { /* subnormal x */
while(ix0==0) {
m -= 21;
ix0 |= (ix1>>11); ix1 <<= 21;
}
for(i=0;(ix0&0x00100000)==0;i++) ix0<<=1;
m -= i-1;
ix0 |= (ix1>>(32-i));
ix1 <<= i;
}
m -= 1023; /* unbias exponent */
ix0 = (ix0&0x000fffff)|0x00100000;
if(m&1){ /* odd m, double x to make it even */
ix0 += ix0 + ((ix1&sign)>>31);
ix1 += ix1;
}
m >>= 1; /* m = [m/2] */
/* generate sqrt(x) bit by bit */
ix0 += ix0 + ((ix1&sign)>>31);
ix1 += ix1;
q = q1 = s0 = s1 = 0; /* [q,q1] = sqrt(x) */
r = 0x00200000; /* r = moving bit from right to left */
while(r!=0) {
t = s0+r;
if(t<=ix0) {
s0 = t+r;
ix0 -= t;
q += r;
}
ix0 += ix0 + ((ix1&sign)>>31);
ix1 += ix1;
r>>=1;
}
r = sign;
while(r!=0) {
t1 = s1+r;
t = s0;
if((t<ix0)||((t==ix0)&&(t1<=ix1))) {
s1 = t1+r;
if(((t1&sign)==sign)&&(s1&sign)==0) s0 += 1;
ix0 -= t;
if (ix1 < t1) ix0 -= 1;
ix1 -= t1;
q1 += r;
}
ix0 += ix0 + ((ix1&sign)>>31);
ix1 += ix1;
r>>=1;
}
/* use floating add to find out rounding direction */
if((ix0|ix1)!=0) {
z = one-tiny; /* trigger inexact flag */
if (z>=one) {
z = one+tiny;
if (q1==(__uint32_t)0xffffffff) { q1=0; q += 1;}
else if (z>one) {
if (q1==(__uint32_t)0xfffffffe) q+=1;
q1+=2;
} else
q1 += (q1&1);
}
}
ix0 = (q>>1)+0x3fe00000;
ix1 = q1>>1;
if ((q&1)==1) ix1 |= sign;
ix0 += (m <<20);
INSERT_WORDS(z,ix0,ix1);
return z;
}
#endif /* defined(_DOUBLE_IS_32BITS) */
/*
Other methods (use floating-point arithmetic)
-------------
(This is a copy of a drafted paper by Prof W. Kahan
and K.C. Ng, written in May, 1986)
Two algorithms are given here to implement sqrt(x)
(IEEE double precision arithmetic) in software.
Both supply sqrt(x) correctly rounded. The first algorithm (in
Section A) uses newton iterations and involves four divisions.
The second one uses reciproot iterations to avoid division, but
requires more multiplications. Both algorithms need the ability
to chop results of arithmetic operations instead of round them,
and the INEXACT flag to indicate when an arithmetic operation
is executed exactly with no roundoff error, all part of the
standard (IEEE 754-1985). The ability to perform shift, add,
subtract and logical AND operations upon 32-bit words is needed
too, though not part of the standard.
A. sqrt(x) by Newton Iteration
(1) Initial approximation
Let x0 and x1 be the leading and the trailing 32-bit words of
a floating point number x (in IEEE double format) respectively
1 11 52 ...widths
------------------------------------------------------
x: |s| e | f |
------------------------------------------------------
msb lsb msb lsb ...order
------------------------ ------------------------
x0: |s| e | f1 | x1: | f2 |
------------------------ ------------------------
By performing shifts and subtracts on x0 and x1 (both regarded
as integers), we obtain an 8-bit approximation of sqrt(x) as
follows.
k := (x0>>1) + 0x1ff80000;
y0 := k - T1[31&(k>>15)]. ... y ~ sqrt(x) to 8 bits
Here k is a 32-bit integer and T1[] is an integer array containing
correction terms. Now magically the floating value of y (y's
leading 32-bit word is y0, the value of its trailing word is 0)
approximates sqrt(x) to almost 8-bit.
Value of T1:
static int T1[32]= {
0, 1024, 3062, 5746, 9193, 13348, 18162, 23592,
29598, 36145, 43202, 50740, 58733, 67158, 75992, 85215,
83599, 71378, 60428, 50647, 41945, 34246, 27478, 21581,
16499, 12183, 8588, 5674, 3403, 1742, 661, 130,};
(2) Iterative refinement
Apply Heron's rule three times to y, we have y approximates
sqrt(x) to within 1 ulp (Unit in the Last Place):
y := (y+x/y)/2 ... almost 17 sig. bits
y := (y+x/y)/2 ... almost 35 sig. bits
y := y-(y-x/y)/2 ... within 1 ulp
Remark 1.
Another way to improve y to within 1 ulp is:
y := (y+x/y) ... almost 17 sig. bits to 2*sqrt(x)
y := y - 0x00100006 ... almost 18 sig. bits to sqrt(x)
2
(x-y )*y
y := y + 2* ---------- ...within 1 ulp
2
3y + x
This formula has one division fewer than the one above; however,
it requires more multiplications and additions. Also x must be
scaled in advance to avoid spurious overflow in evaluating the
expression 3y*y+x. Hence it is not recommended uless division
is slow. If division is very slow, then one should use the
reciproot algorithm given in section B.
(3) Final adjustment
By twiddling y's last bit it is possible to force y to be
correctly rounded according to the prevailing rounding mode
as follows. Let r and i be copies of the rounding mode and
inexact flag before entering the square root program. Also we
use the expression y+-ulp for the next representable floating
numbers (up and down) of y. Note that y+-ulp = either fixed
point y+-1, or multiply y by nextafter(1,+-inf) in chopped
mode.
I := FALSE; ... reset INEXACT flag I
R := RZ; ... set rounding mode to round-toward-zero
z := x/y; ... chopped quotient, possibly inexact
If(not I) then { ... if the quotient is exact
if(z=y) {
I := i; ... restore inexact flag
R := r; ... restore rounded mode
return sqrt(x):=y.
} else {
z := z - ulp; ... special rounding
}
}
i := TRUE; ... sqrt(x) is inexact
If (r=RN) then z=z+ulp ... rounded-to-nearest
If (r=RP) then { ... round-toward-+inf
y = y+ulp; z=z+ulp;
}
y := y+z; ... chopped sum
y0:=y0-0x00100000; ... y := y/2 is correctly rounded.
I := i; ... restore inexact flag
R := r; ... restore rounded mode
return sqrt(x):=y.
(4) Special cases
Square root of +inf, +-0, or NaN is itself;
Square root of a negative number is NaN with invalid signal.
B. sqrt(x) by Reciproot Iteration
(1) Initial approximation
Let x0 and x1 be the leading and the trailing 32-bit words of
a floating point number x (in IEEE double format) respectively
(see section A). By performing shifs and subtracts on x0 and y0,
we obtain a 7.8-bit approximation of 1/sqrt(x) as follows.
k := 0x5fe80000 - (x0>>1);
y0:= k - T2[63&(k>>14)]. ... y ~ 1/sqrt(x) to 7.8 bits
Here k is a 32-bit integer and T2[] is an integer array
containing correction terms. Now magically the floating
value of y (y's leading 32-bit word is y0, the value of
its trailing word y1 is set to zero) approximates 1/sqrt(x)
to almost 7.8-bit.
Value of T2:
static int T2[64]= {
0x1500, 0x2ef8, 0x4d67, 0x6b02, 0x87be, 0xa395, 0xbe7a, 0xd866,
0xf14a, 0x1091b,0x11fcd,0x13552,0x14999,0x15c98,0x16e34,0x17e5f,
0x18d03,0x19a01,0x1a545,0x1ae8a,0x1b5c4,0x1bb01,0x1bfde,0x1c28d,
0x1c2de,0x1c0db,0x1ba73,0x1b11c,0x1a4b5,0x1953d,0x18266,0x16be0,
0x1683e,0x179d8,0x18a4d,0x19992,0x1a789,0x1b445,0x1bf61,0x1c989,
0x1d16d,0x1d77b,0x1dddf,0x1e2ad,0x1e5bf,0x1e6e8,0x1e654,0x1e3cd,
0x1df2a,0x1d635,0x1cb16,0x1be2c,0x1ae4e,0x19bde,0x1868e,0x16e2e,
0x1527f,0x1334a,0x11051,0xe951, 0xbe01, 0x8e0d, 0x5924, 0x1edd,};
(2) Iterative refinement
Apply Reciproot iteration three times to y and multiply the
result by x to get an approximation z that matches sqrt(x)
to about 1 ulp. To be exact, we will have
-1ulp < sqrt(x)-z<1.0625ulp.
... set rounding mode to Round-to-nearest
y := y*(1.5-0.5*x*y*y) ... almost 15 sig. bits to 1/sqrt(x)
y := y*((1.5-2^-30)+0.5*x*y*y)... about 29 sig. bits to 1/sqrt(x)
... special arrangement for better accuracy
z := x*y ... 29 bits to sqrt(x), with z*y<1
z := z + 0.5*z*(1-z*y) ... about 1 ulp to sqrt(x)
Remark 2. The constant 1.5-2^-30 is chosen to bias the error so that
(a) the term z*y in the final iteration is always less than 1;
(b) the error in the final result is biased upward so that
-1 ulp < sqrt(x) - z < 1.0625 ulp
instead of |sqrt(x)-z|<1.03125ulp.
(3) Final adjustment
By twiddling y's last bit it is possible to force y to be
correctly rounded according to the prevailing rounding mode
as follows. Let r and i be copies of the rounding mode and
inexact flag before entering the square root program. Also we
use the expression y+-ulp for the next representable floating
numbers (up and down) of y. Note that y+-ulp = either fixed
point y+-1, or multiply y by nextafter(1,+-inf) in chopped
mode.
R := RZ; ... set rounding mode to round-toward-zero
switch(r) {
case RN: ... round-to-nearest
if(x<= z*(z-ulp)...chopped) z = z - ulp; else
if(x<= z*(z+ulp)...chopped) z = z; else z = z+ulp;
break;
case RZ:case RM: ... round-to-zero or round-to--inf
R:=RP; ... reset rounding mod to round-to-+inf
if(x<z*z ... rounded up) z = z - ulp; else
if(x>=(z+ulp)*(z+ulp) ...rounded up) z = z+ulp;
break;
case RP: ... round-to-+inf
if(x>(z+ulp)*(z+ulp)...chopped) z = z+2*ulp; else
if(x>z*z ...chopped) z = z+ulp;
break;
}
Remark 3. The above comparisons can be done in fixed point. For
example, to compare x and w=z*z chopped, it suffices to compare
x1 and w1 (the trailing parts of x and w), regarding them as
two's complement integers.
...Is z an exact square root?
To determine whether z is an exact square root of x, let z1 be the
trailing part of z, and also let x0 and x1 be the leading and
trailing parts of x.
If ((z1&0x03ffffff)!=0) ... not exact if trailing 26 bits of z!=0
I := 1; ... Raise Inexact flag: z is not exact
else {
j := 1 - [(x0>>20)&1] ... j = logb(x) mod 2
k := z1 >> 26; ... get z's 25-th and 26-th
fraction bits
I := i or (k&j) or ((k&(j+j+1))!=(x1&3));
}
R:= r ... restore rounded mode
return sqrt(x):=z.
If multiplication is cheaper then the foregoing red tape, the
Inexact flag can be evaluated by
I := i;
I := (z*z!=x) or I.
Note that z*z can overwrite I; this value must be sensed if it is
True.
Remark 4. If z*z = x exactly, then bit 25 to bit 0 of z1 must be
zero.
--------------------
z1: | f2 |
--------------------
bit 31 bit 0
Further more, bit 27 and 26 of z1, bit 0 and 1 of x1, and the odd
or even of logb(x) have the following relations:
-------------------------------------------------
bit 27,26 of z1 bit 1,0 of x1 logb(x)
-------------------------------------------------
00 00 odd and even
01 01 even
10 10 odd
10 00 even
11 01 even
-------------------------------------------------
(4) Special cases (see (4) of Section A).
*/

View File

@ -0,0 +1,84 @@
/* ef_acos.c -- float version of e_acos.c.
* Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
*/
/*
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunPro, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
#include "fdlibm.h"
#ifdef __STDC__
static const float
#else
static float
#endif
one = 1.0000000000e+00, /* 0x3F800000 */
pi = 3.1415925026e+00, /* 0x40490fda */
pio2_hi = 1.5707962513e+00, /* 0x3fc90fda */
pio2_lo = 7.5497894159e-08, /* 0x33a22168 */
pS0 = 1.6666667163e-01, /* 0x3e2aaaab */
pS1 = -3.2556581497e-01, /* 0xbea6b090 */
pS2 = 2.0121252537e-01, /* 0x3e4e0aa8 */
pS3 = -4.0055535734e-02, /* 0xbd241146 */
pS4 = 7.9153501429e-04, /* 0x3a4f7f04 */
pS5 = 3.4793309169e-05, /* 0x3811ef08 */
qS1 = -2.4033949375e+00, /* 0xc019d139 */
qS2 = 2.0209457874e+00, /* 0x4001572d */
qS3 = -6.8828397989e-01, /* 0xbf303361 */
qS4 = 7.7038154006e-02; /* 0x3d9dc62e */
#ifdef __STDC__
float __ieee754_acosf(float x)
#else
float __ieee754_acosf(x)
float x;
#endif
{
float z,p,q,r,w,s,c,df;
__int32_t hx,ix;
GET_FLOAT_WORD(hx,x);
ix = hx&0x7fffffff;
if(ix==0x3f800000) { /* |x|==1 */
if(hx>0) return 0.0; /* acos(1) = 0 */
else return pi+(float)2.0*pio2_lo; /* acos(-1)= pi */
} else if(ix>0x3f800000) { /* |x| >= 1 */
return (x-x)/(x-x); /* acos(|x|>1) is NaN */
}
if(ix<0x3f000000) { /* |x| < 0.5 */
if(ix<=0x23000000) return pio2_hi+pio2_lo;/*if|x|<2**-57*/
z = x*x;
p = z*(pS0+z*(pS1+z*(pS2+z*(pS3+z*(pS4+z*pS5)))));
q = one+z*(qS1+z*(qS2+z*(qS3+z*qS4)));
r = p/q;
return pio2_hi - (x - (pio2_lo-x*r));
} else if (hx<0) { /* x < -0.5 */
z = (one+x)*(float)0.5;
p = z*(pS0+z*(pS1+z*(pS2+z*(pS3+z*(pS4+z*pS5)))));
q = one+z*(qS1+z*(qS2+z*(qS3+z*qS4)));
s = __ieee754_sqrtf(z);
r = p/q;
w = r*s-pio2_lo;
return pi - (float)2.0*(s+w);
} else { /* x > 0.5 */
__int32_t idf;
z = (one-x)*(float)0.5;
s = __ieee754_sqrtf(z);
df = s;
GET_FLOAT_WORD(idf,df);
SET_FLOAT_WORD(df,idf&0xfffff000);
c = (z-df*df)/(s+df);
p = z*(pS0+z*(pS1+z*(pS2+z*(pS3+z*(pS4+z*pS5)))));
q = one+z*(qS1+z*(qS2+z*(qS3+z*qS4)));
r = p/q;
w = r*s+c;
return (float)2.0*(df+w);
}
}

View File

@ -0,0 +1,53 @@
/* ef_acosh.c -- float version of e_acosh.c.
* Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
*/
/*
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunPro, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*
*/
#include "fdlibm.h"
#ifdef __STDC__
static const float
#else
static float
#endif
one = 1.0,
ln2 = 6.9314718246e-01; /* 0x3f317218 */
#ifdef __STDC__
float __ieee754_acoshf(float x)
#else
float __ieee754_acoshf(x)
float x;
#endif
{
float t;
__int32_t hx;
GET_FLOAT_WORD(hx,x);
if(hx<0x3f800000) { /* x < 1 */
return (x-x)/(x-x);
} else if(hx >=0x4d800000) { /* x > 2**28 */
if(!FLT_UWORD_IS_FINITE(hx)) { /* x is inf of NaN */
return x+x;
} else
return __ieee754_logf(x)+ln2; /* acosh(huge)=log(2x) */
} else if (hx==0x3f800000) {
return 0.0; /* acosh(1) = 0 */
} else if (hx > 0x40000000) { /* 2**28 > x > 2 */
t=x*x;
return __ieee754_logf((float)2.0*x-one/(x+__ieee754_sqrtf(t-one)));
} else { /* 1<x<2 */
t = x-one;
return log1pf(t+__ieee754_sqrtf((float)2.0*t+t*t));
}
}

View File

@ -0,0 +1,88 @@
/* ef_asin.c -- float version of e_asin.c.
* Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
*/
/*
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunPro, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
#include "fdlibm.h"
#ifdef __STDC__
static const float
#else
static float
#endif
one = 1.0000000000e+00, /* 0x3F800000 */
huge = 1.000e+30,
pio2_hi = 1.57079637050628662109375f,
pio2_lo = -4.37113900018624283e-8f,
pio4_hi = 0.785398185253143310546875f,
/* coefficient for R(x^2) */
pS0 = 1.6666667163e-01, /* 0x3e2aaaab */
pS1 = -3.2556581497e-01, /* 0xbea6b090 */
pS2 = 2.0121252537e-01, /* 0x3e4e0aa8 */
pS3 = -4.0055535734e-02, /* 0xbd241146 */
pS4 = 7.9153501429e-04, /* 0x3a4f7f04 */
pS5 = 3.4793309169e-05, /* 0x3811ef08 */
qS1 = -2.4033949375e+00, /* 0xc019d139 */
qS2 = 2.0209457874e+00, /* 0x4001572d */
qS3 = -6.8828397989e-01, /* 0xbf303361 */
qS4 = 7.7038154006e-02; /* 0x3d9dc62e */
#ifdef __STDC__
float __ieee754_asinf(float x)
#else
float __ieee754_asinf(x)
float x;
#endif
{
float t,w,p,q,c,r,s;
__int32_t hx,ix;
GET_FLOAT_WORD(hx,x);
ix = hx&0x7fffffff;
if(ix==0x3f800000) {
/* asin(1)=+-pi/2 with inexact */
return x*pio2_hi+x*pio2_lo;
} else if(ix> 0x3f800000) { /* |x|>= 1 */
return (x-x)/(x-x); /* asin(|x|>1) is NaN */
} else if (ix<0x3f000000) { /* |x|<0.5 */
if(ix<0x32000000) { /* if |x| < 2**-27 */
if(huge+x>one) return x;/* return x with inexact if x!=0*/
} else {
t = x*x;
p = t*(pS0+t*(pS1+t*(pS2+t*(pS3+t*(pS4+t*pS5)))));
q = one+t*(qS1+t*(qS2+t*(qS3+t*qS4)));
w = p/q;
return x+x*w;
}
}
/* 1> |x|>= 0.5 */
w = one-fabsf(x);
t = w*(float)0.5;
p = t*(pS0+t*(pS1+t*(pS2+t*(pS3+t*(pS4+t*pS5)))));
q = one+t*(qS1+t*(qS2+t*(qS3+t*qS4)));
s = __ieee754_sqrtf(t);
if(ix>=0x3F79999A) { /* if |x| > 0.975 */
w = p/q;
t = pio2_hi-((float)2.0*(s+s*w)-pio2_lo);
} else {
__int32_t iw;
w = s;
GET_FLOAT_WORD(iw,w);
SET_FLOAT_WORD(w,iw&0xfffff000);
c = (t-w*w)/(s+w);
r = p/q;
p = (float)2.0*s*r-(pio2_lo-(float)2.0*c);
q = pio4_hi-(float)2.0*w;
t = pio4_hi-(p-q);
}
if(hx>0) return t; else return -t;
}

View File

@ -0,0 +1,101 @@
/* ef_atan2.c -- float version of e_atan2.c.
* Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
*/
/*
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunPro, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*
*/
#include "fdlibm.h"
#ifdef __STDC__
static const float
#else
static float
#endif
tiny = 1.0e-30,
zero = 0.0,
pi_o_4 = 7.8539818525e-01, /* 0x3f490fdb */
pi_o_2 = 1.5707963705e+00, /* 0x3fc90fdb */
pi = 3.1415927410e+00, /* 0x40490fdb */
pi_lo = -8.7422776573e-08; /* 0xb3bbbd2e */
#ifdef __STDC__
float __ieee754_atan2f(float y, float x)
#else
float __ieee754_atan2f(y,x)
float y,x;
#endif
{
float z;
__int32_t k,m,hx,hy,ix,iy;
GET_FLOAT_WORD(hx,x);
ix = hx&0x7fffffff;
GET_FLOAT_WORD(hy,y);
iy = hy&0x7fffffff;
if(FLT_UWORD_IS_NAN(ix)||
FLT_UWORD_IS_NAN(iy)) /* x or y is NaN */
return x+y;
if(hx==0x3f800000) return atanf(y); /* x=1.0 */
m = ((hy>>31)&1)|((hx>>30)&2); /* 2*sign(x)+sign(y) */
/* when y = 0 */
if(FLT_UWORD_IS_ZERO(iy)) {
switch(m) {
case 0:
case 1: return y; /* atan(+-0,+anything)=+-0 */
case 2: return pi+tiny;/* atan(+0,-anything) = pi */
case 3: return -pi-tiny;/* atan(-0,-anything) =-pi */
}
}
/* when x = 0 */
if(FLT_UWORD_IS_ZERO(ix)) return (hy<0)? -pi_o_2-tiny: pi_o_2+tiny;
/* when x is INF */
if(FLT_UWORD_IS_INFINITE(ix)) {
if(FLT_UWORD_IS_INFINITE(iy)) {
switch(m) {
case 0: return pi_o_4+tiny;/* atan(+INF,+INF) */
case 1: return -pi_o_4-tiny;/* atan(-INF,+INF) */
case 2: return (float)3.0*pi_o_4+tiny;/*atan(+INF,-INF)*/
case 3: return (float)-3.0*pi_o_4-tiny;/*atan(-INF,-INF)*/
}
} else {
switch(m) {
case 0: return zero ; /* atan(+...,+INF) */
case 1: return -zero ; /* atan(-...,+INF) */
case 2: return pi+tiny ; /* atan(+...,-INF) */
case 3: return -pi-tiny ; /* atan(-...,-INF) */
}
}
}
/* when y is INF */
if(FLT_UWORD_IS_INFINITE(iy)) return (hy<0)? -pi_o_2-tiny: pi_o_2+tiny;
/* compute y/x */
k = (iy-ix)>>23;
if(k > 60) z=pi_o_2+(float)0.5*pi_lo; /* |y/x| > 2**60 */
else if(hx<0&&k<-60) z=0.0; /* |y|/x < -2**60 */
else z=atanf(fabsf(y/x)); /* safe to do y/x */
switch (m) {
case 0: return z ; /* atan(+,+) */
case 1: {
__uint32_t zh;
GET_FLOAT_WORD(zh,z);
SET_FLOAT_WORD(z,zh ^ 0x80000000);
}
return z ; /* atan(-,+) */
case 2: return pi-(z-pi_lo);/* atan(+,-) */
default: /* case 3 */
return (z-pi_lo)-pi;/* atan(-,-) */
}
}

View File

@ -0,0 +1,54 @@
/* ef_atanh.c -- float version of e_atanh.c.
* Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
*/
/*
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunPro, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*
*/
#include "fdlibm.h"
#ifdef __STDC__
static const float one = 1.0, huge = 1e30;
#else
static float one = 1.0, huge = 1e30;
#endif
#ifdef __STDC__
static const float zero = 0.0;
#else
static float zero = 0.0;
#endif
#ifdef __STDC__
float __ieee754_atanhf(float x)
#else
float __ieee754_atanhf(x)
float x;
#endif
{
float t;
__int32_t hx,ix;
GET_FLOAT_WORD(hx,x);
ix = hx&0x7fffffff;
if (ix>0x3f800000) /* |x|>1 */
return (x-x)/(x-x);
if(ix==0x3f800000)
return x/zero;
if(ix<0x31800000&&(huge+x)>zero) return x; /* x<2**-28 */
SET_FLOAT_WORD(x,ix);
if(ix<0x3f000000) { /* x < 0.5 */
t = x+x;
t = (float)0.5*log1pf(t+t*x/(one-x));
} else
t = (float)0.5*log1pf((x+x)/(one-x));
if(hx>=0) return t; else return -t;
}

View File

@ -0,0 +1,71 @@
/* ef_cosh.c -- float version of e_cosh.c.
* Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
*/
/*
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunPro, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
#include "fdlibm.h"
#ifdef __v810__
#define const
#endif
#ifdef __STDC__
static const float one = 1.0, half=0.5, huge = 1.0e30;
#else
static float one = 1.0, half=0.5, huge = 1.0e30;
#endif
#ifdef __STDC__
float __ieee754_coshf(float x)
#else
float __ieee754_coshf(x)
float x;
#endif
{
float t,w;
__int32_t ix;
GET_FLOAT_WORD(ix,x);
ix &= 0x7fffffff;
/* x is INF or NaN */
if(!FLT_UWORD_IS_FINITE(ix)) return x*x;
/* |x| in [0,0.5*ln2], return 1+expm1(|x|)^2/(2*exp(|x|)) */
if(ix<0x3eb17218) {
t = expm1f(fabsf(x));
w = one+t;
if (ix<0x24000000) return w; /* cosh(tiny) = 1 */
return one+(t*t)/(w+w);
}
/* |x| in [0.5*ln2,22], return (exp(|x|)+1/exp(|x|)/2; */
if (ix < 0x41b00000) {
t = __ieee754_expf(fabsf(x));
return half*t+half/t;
}
/* |x| in [22, log(maxdouble)] return half*exp(|x|) */
if (ix <= FLT_UWORD_LOG_MAX)
return half*__ieee754_expf(fabsf(x));
/* |x| in [log(maxdouble), overflowthresold] */
if (ix <= FLT_UWORD_LOG_2MAX) {
w = __ieee754_expf(half*fabsf(x));
t = half*w;
return t*w;
}
/* |x| > overflowthresold, cosh(x) overflow */
return huge*huge;
}

View File

@ -0,0 +1,99 @@
/* ef_exp.c -- float version of e_exp.c.
* Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
*/
/*
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunPro, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
#include "fdlibm.h"
#ifdef __v810__
#define const
#endif
#ifdef __STDC__
static const float
#else
static float
#endif
one = 1.0,
halF[2] = {0.5,-0.5,},
huge = 1.0e+30,
twom100 = 7.8886090522e-31, /* 2**-100=0x0d800000 */
ln2HI[2] ={ 6.9313812256e-01, /* 0x3f317180 */
-6.9313812256e-01,}, /* 0xbf317180 */
ln2LO[2] ={ 9.0580006145e-06, /* 0x3717f7d1 */
-9.0580006145e-06,}, /* 0xb717f7d1 */
invln2 = 1.4426950216e+00, /* 0x3fb8aa3b */
P1 = 1.6666667163e-01, /* 0x3e2aaaab */
P2 = -2.7777778450e-03, /* 0xbb360b61 */
P3 = 6.6137559770e-05, /* 0x388ab355 */
P4 = -1.6533901999e-06, /* 0xb5ddea0e */
P5 = 4.1381369442e-08; /* 0x3331bb4c */
#ifdef __STDC__
float __ieee754_expf(float x) /* default IEEE double exp */
#else
float __ieee754_expf(x) /* default IEEE double exp */
float x;
#endif
{
float y,hi,lo,c,t;
__int32_t k = 0,xsb,sx;
__uint32_t hx;
GET_FLOAT_WORD(sx,x);
xsb = (sx>>31)&1; /* sign bit of x */
hx = sx & 0x7fffffff; /* high word of |x| */
/* filter out non-finite argument */
if(FLT_UWORD_IS_NAN(hx))
return x+x; /* NaN */
if(FLT_UWORD_IS_INFINITE(hx))
return (xsb==0)? x:0.0; /* exp(+-inf)={inf,0} */
if(sx > FLT_UWORD_LOG_MAX)
return huge*huge; /* overflow */
if(sx < 0 && hx > FLT_UWORD_LOG_MIN)
return twom100*twom100; /* underflow */
/* argument reduction */
if(hx > 0x3eb17218) { /* if |x| > 0.5 ln2 */
if(hx < 0x3F851592) { /* and |x| < 1.5 ln2 */
hi = x-ln2HI[xsb]; lo=ln2LO[xsb]; k = 1-xsb-xsb;
} else {
k = invln2*x+halF[xsb];
t = k;
hi = x - t*ln2HI[0]; /* t*ln2HI is exact here */
lo = t*ln2LO[0];
}
x = hi - lo;
}
else if(hx < 0x31800000) { /* when |x|<2**-28 */
if(huge+x>one) return one+x;/* trigger inexact */
}
/* x is now in primary range */
t = x*x;
c = x - t*(P1+t*(P2+t*(P3+t*(P4+t*P5))));
if(k==0) return one-((x*c)/(c-(float)2.0)-x);
else y = one-((lo-(x*c)/((float)2.0-c))-hi);
if(k >= -125) {
__uint32_t hy;
GET_FLOAT_WORD(hy,y);
SET_FLOAT_WORD(y,hy+(k<<23)); /* add k to y's exponent */
return y;
} else {
__uint32_t hy;
GET_FLOAT_WORD(hy,y);
SET_FLOAT_WORD(y,hy+((k+100)<<23)); /* add k to y's exponent */
return y*twom100;
}
}

View File

@ -0,0 +1,113 @@
/* ef_fmod.c -- float version of e_fmod.c.
* Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
*/
/*
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunPro, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
/*
* __ieee754_fmodf(x,y)
* Return x mod y in exact arithmetic
* Method: shift and subtract
*/
#include "fdlibm.h"
#ifdef __STDC__
static const float one = 1.0, Zero[] = {0.0, -0.0,};
#else
static float one = 1.0, Zero[] = {0.0, -0.0,};
#endif
#ifdef __STDC__
float __ieee754_fmodf(float x, float y)
#else
float __ieee754_fmodf(x,y)
float x,y ;
#endif
{
__int32_t n,hx,hy,hz,ix,iy,sx,i;
GET_FLOAT_WORD(hx,x);
GET_FLOAT_WORD(hy,y);
sx = hx&0x80000000; /* sign of x */
hx ^=sx; /* |x| */
hy &= 0x7fffffff; /* |y| */
/* purge off exception values */
if(FLT_UWORD_IS_ZERO(hy)||
!FLT_UWORD_IS_FINITE(hx)||
FLT_UWORD_IS_NAN(hy))
return (x*y)/(x*y);
if(hx<hy) return x; /* |x|<|y| return x */
if(hx==hy)
return Zero[(__uint32_t)sx>>31]; /* |x|=|y| return x*0*/
/* Note: y cannot be zero if we reach here. */
/* determine ix = ilogb(x) */
if(FLT_UWORD_IS_SUBNORMAL(hx)) { /* subnormal x */
for (ix = -126,i=(hx<<8); i>0; i<<=1) ix -=1;
} else ix = (hx>>23)-127;
/* determine iy = ilogb(y) */
if(FLT_UWORD_IS_SUBNORMAL(hy)) { /* subnormal y */
for (iy = -126,i=(hy<<8); i>=0; i<<=1) iy -=1;
} else iy = (hy>>23)-127;
/* set up {hx,lx}, {hy,ly} and align y to x */
if(ix >= -126)
hx = 0x00800000|(0x007fffff&hx);
else { /* subnormal x, shift x to normal */
n = -126-ix;
hx = hx<<n;
}
if(iy >= -126)
hy = 0x00800000|(0x007fffff&hy);
else { /* subnormal y, shift y to normal */
n = -126-iy;
hy = hy<<n;
}
/* fix point fmod */
n = ix - iy;
while(n--) {
hz=hx-hy;
if(hz<0){hx = hx+hx;}
else {
if(hz==0) /* return sign(x)*0 */
return Zero[(__uint32_t)sx>>31];
hx = hz+hz;
}
}
hz=hx-hy;
if(hz>=0) {hx=hz;}
/* convert back to floating value and restore the sign */
if(hx==0) /* return sign(x)*0 */
return Zero[(__uint32_t)sx>>31];
while(hx<0x00800000) { /* normalize x */
hx = hx+hx;
iy -= 1;
}
if(iy>= -126) { /* normalize output */
hx = ((hx-0x00800000)|((iy+127)<<23));
SET_FLOAT_WORD(x,hx|sx);
} else { /* subnormal output */
/* If denormals are not supported, this code will generate a
zero representation. */
n = -126 - iy;
hx >>= n;
SET_FLOAT_WORD(x,hx|sx);
x *= one; /* create necessary signal */
}
return x; /* exact output */
}

View File

@ -0,0 +1,83 @@
/* ef_hypot.c -- float version of e_hypot.c.
* Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
*/
/*
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunPro, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
#include "fdlibm.h"
#ifdef __STDC__
float __ieee754_hypotf(float x, float y)
#else
float __ieee754_hypotf(x,y)
float x, y;
#endif
{
float a=x,b=y,t1,t2,y1,y2,w;
__int32_t j,k,ha,hb;
GET_FLOAT_WORD(ha,x);
ha &= 0x7fffffffL;
GET_FLOAT_WORD(hb,y);
hb &= 0x7fffffffL;
if(hb > ha) {a=y;b=x;j=ha; ha=hb;hb=j;} else {a=x;b=y;}
SET_FLOAT_WORD(a,ha); /* a <- |a| */
SET_FLOAT_WORD(b,hb); /* b <- |b| */
if((ha-hb)>0xf000000L) {return a+b;} /* x/y > 2**30 */
k=0;
if(ha > 0x58800000L) { /* a>2**50 */
if(!FLT_UWORD_IS_FINITE(ha)) { /* Inf or NaN */
w = a+b; /* for sNaN */
if(FLT_UWORD_IS_INFINITE(ha)) w = a;
if(FLT_UWORD_IS_INFINITE(hb)) w = b;
return w;
}
/* scale a and b by 2**-68 */
ha -= 0x22000000L; hb -= 0x22000000L; k += 68;
SET_FLOAT_WORD(a,ha);
SET_FLOAT_WORD(b,hb);
}
if(hb < 0x26800000L) { /* b < 2**-50 */
if(FLT_UWORD_IS_ZERO(hb)) {
return a;
} else if(FLT_UWORD_IS_SUBNORMAL(hb)) {
SET_FLOAT_WORD(t1,0x7e800000L); /* t1=2^126 */
b *= t1;
a *= t1;
k -= 126;
} else { /* scale a and b by 2^68 */
ha += 0x22000000; /* a *= 2^68 */
hb += 0x22000000; /* b *= 2^68 */
k -= 68;
SET_FLOAT_WORD(a,ha);
SET_FLOAT_WORD(b,hb);
}
}
/* medium size a and b */
w = a-b;
if (w>b) {
SET_FLOAT_WORD(t1,ha&0xfffff000L);
t2 = a-t1;
w = __ieee754_sqrtf(t1*t1-(b*(-b)-t2*(a+t1)));
} else {
a = a+a;
SET_FLOAT_WORD(y1,hb&0xfffff000L);
y2 = b - y1;
SET_FLOAT_WORD(t1,ha+0x00800000L);
t2 = a - t1;
w = __ieee754_sqrtf(t1*y1-(w*(-w)-(t1*y2+t2*b)));
}
if(k!=0) {
SET_FLOAT_WORD(t1,0x3f800000L+(k<<23));
return t1*w;
} else return w;
}

View File

@ -0,0 +1,439 @@
/* ef_j0.c -- float version of e_j0.c.
* Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
*/
/*
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunPro, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
#include "fdlibm.h"
#ifdef __STDC__
static float pzerof(float), qzerof(float);
#else
static float pzerof(), qzerof();
#endif
#ifdef __STDC__
static const float
#else
static float
#endif
huge = 1e30,
one = 1.0,
invsqrtpi= 5.6418961287e-01, /* 0x3f106ebb */
tpi = 6.3661974669e-01, /* 0x3f22f983 */
/* R0/S0 on [0, 2.00] */
R02 = 1.5625000000e-02, /* 0x3c800000 */
R03 = -1.8997929874e-04, /* 0xb947352e */
R04 = 1.8295404516e-06, /* 0x35f58e88 */
R05 = -4.6183270541e-09, /* 0xb19eaf3c */
S01 = 1.5619102865e-02, /* 0x3c7fe744 */
S02 = 1.1692678527e-04, /* 0x38f53697 */
S03 = 5.1354652442e-07, /* 0x3509daa6 */
S04 = 1.1661400734e-09; /* 0x30a045e8 */
#ifdef __STDC__
static const float zero = 0.0;
#else
static float zero = 0.0;
#endif
#ifdef __STDC__
float __ieee754_j0f(float x)
#else
float __ieee754_j0f(x)
float x;
#endif
{
float z, s,c,ss,cc,r,u,v;
__int32_t hx,ix;
GET_FLOAT_WORD(hx,x);
ix = hx&0x7fffffff;
if(!FLT_UWORD_IS_FINITE(ix)) return one/(x*x);
x = fabsf(x);
if(ix >= 0x40000000) { /* |x| >= 2.0 */
s = sinf(x);
c = cosf(x);
ss = s-c;
cc = s+c;
if(ix<=FLT_UWORD_HALF_MAX) { /* make sure x+x not overflow */
z = -cosf(x+x);
if ((s*c)<zero) cc = z/ss;
else ss = z/cc;
}
/*
* j0(x) = 1/sqrt(pi) * (P(0,x)*cc - Q(0,x)*ss) / sqrt(x)
* y0(x) = 1/sqrt(pi) * (P(0,x)*ss + Q(0,x)*cc) / sqrt(x)
*/
if(ix>0x80000000) z = (invsqrtpi*cc)/__ieee754_sqrtf(x);
else {
u = pzerof(x); v = qzerof(x);
z = invsqrtpi*(u*cc-v*ss)/__ieee754_sqrtf(x);
}
return z;
}
if(ix<0x39000000) { /* |x| < 2**-13 */
if(huge+x>one) { /* raise inexact if x != 0 */
if(ix<0x32000000) return one; /* |x|<2**-27 */
else return one - (float)0.25*x*x;
}
}
z = x*x;
r = z*(R02+z*(R03+z*(R04+z*R05)));
s = one+z*(S01+z*(S02+z*(S03+z*S04)));
if(ix < 0x3F800000) { /* |x| < 1.00 */
return one + z*((float)-0.25+(r/s));
} else {
u = (float)0.5*x;
return((one+u)*(one-u)+z*(r/s));
}
}
#ifdef __STDC__
static const float
#else
static float
#endif
u00 = -7.3804296553e-02, /* 0xbd9726b5 */
u01 = 1.7666645348e-01, /* 0x3e34e80d */
u02 = -1.3818567619e-02, /* 0xbc626746 */
u03 = 3.4745343146e-04, /* 0x39b62a69 */
u04 = -3.8140706238e-06, /* 0xb67ff53c */
u05 = 1.9559013964e-08, /* 0x32a802ba */
u06 = -3.9820518410e-11, /* 0xae2f21eb */
v01 = 1.2730483897e-02, /* 0x3c509385 */
v02 = 7.6006865129e-05, /* 0x389f65e0 */
v03 = 2.5915085189e-07, /* 0x348b216c */
v04 = 4.4111031494e-10; /* 0x2ff280c2 */
#ifdef __STDC__
float __ieee754_y0f(float x)
#else
float __ieee754_y0f(x)
float x;
#endif
{
float z, s,c,ss,cc,u,v;
__int32_t hx,ix;
GET_FLOAT_WORD(hx,x);
ix = 0x7fffffff&hx;
/* Y0(NaN) is NaN, y0(-inf) is Nan, y0(inf) is 0 */
if(!FLT_UWORD_IS_FINITE(ix)) return one/(x+x*x);
if(FLT_UWORD_IS_ZERO(ix)) return -one/zero;
if(hx<0) return zero/zero;
if(ix >= 0x40000000) { /* |x| >= 2.0 */
/* y0(x) = sqrt(2/(pi*x))*(p0(x)*sin(x0)+q0(x)*cos(x0))
* where x0 = x-pi/4
* Better formula:
* cos(x0) = cos(x)cos(pi/4)+sin(x)sin(pi/4)
* = 1/sqrt(2) * (sin(x) + cos(x))
* sin(x0) = sin(x)cos(3pi/4)-cos(x)sin(3pi/4)
* = 1/sqrt(2) * (sin(x) - cos(x))
* To avoid cancellation, use
* sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x))
* to compute the worse one.
*/
s = sinf(x);
c = cosf(x);
ss = s-c;
cc = s+c;
/*
* j0(x) = 1/sqrt(pi) * (P(0,x)*cc - Q(0,x)*ss) / sqrt(x)
* y0(x) = 1/sqrt(pi) * (P(0,x)*ss + Q(0,x)*cc) / sqrt(x)
*/
if(ix<=FLT_UWORD_HALF_MAX) { /* make sure x+x not overflow */
z = -cosf(x+x);
if ((s*c)<zero) cc = z/ss;
else ss = z/cc;
}
if(ix>0x80000000) z = (invsqrtpi*ss)/__ieee754_sqrtf(x);
else {
u = pzerof(x); v = qzerof(x);
z = invsqrtpi*(u*ss+v*cc)/__ieee754_sqrtf(x);
}
return z;
}
if(ix<=0x32000000) { /* x < 2**-27 */
return(u00 + tpi*__ieee754_logf(x));
}
z = x*x;
u = u00+z*(u01+z*(u02+z*(u03+z*(u04+z*(u05+z*u06)))));
v = one+z*(v01+z*(v02+z*(v03+z*v04)));
return(u/v + tpi*(__ieee754_j0f(x)*__ieee754_logf(x)));
}
/* The asymptotic expansions of pzero is
* 1 - 9/128 s^2 + 11025/98304 s^4 - ..., where s = 1/x.
* For x >= 2, We approximate pzero by
* pzero(x) = 1 + (R/S)
* where R = pR0 + pR1*s^2 + pR2*s^4 + ... + pR5*s^10
* S = 1 + pS0*s^2 + ... + pS4*s^10
* and
* | pzero(x)-1-R/S | <= 2 ** ( -60.26)
*/
#ifdef __STDC__
static const float pR8[6] = { /* for x in [inf, 8]=1/[0,0.125] */
#else
static float pR8[6] = { /* for x in [inf, 8]=1/[0,0.125] */
#endif
0.0000000000e+00, /* 0x00000000 */
-7.0312500000e-02, /* 0xbd900000 */
-8.0816707611e+00, /* 0xc1014e86 */
-2.5706311035e+02, /* 0xc3808814 */
-2.4852163086e+03, /* 0xc51b5376 */
-5.2530439453e+03, /* 0xc5a4285a */
};
#ifdef __STDC__
static const float pS8[5] = {
#else
static float pS8[5] = {
#endif
1.1653436279e+02, /* 0x42e91198 */
3.8337448730e+03, /* 0x456f9beb */
4.0597855469e+04, /* 0x471e95db */
1.1675296875e+05, /* 0x47e4087c */
4.7627726562e+04, /* 0x473a0bba */
};
#ifdef __STDC__
static const float pR5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */
#else
static float pR5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */
#endif
-1.1412546255e-11, /* 0xad48c58a */
-7.0312492549e-02, /* 0xbd8fffff */
-4.1596107483e+00, /* 0xc0851b88 */
-6.7674766541e+01, /* 0xc287597b */
-3.3123129272e+02, /* 0xc3a59d9b */
-3.4643338013e+02, /* 0xc3ad3779 */
};
#ifdef __STDC__
static const float pS5[5] = {
#else
static float pS5[5] = {
#endif
6.0753936768e+01, /* 0x42730408 */
1.0512523193e+03, /* 0x44836813 */
5.9789707031e+03, /* 0x45bad7c4 */
9.6254453125e+03, /* 0x461665c8 */
2.4060581055e+03, /* 0x451660ee */
};
#ifdef __STDC__
static const float pR3[6] = {/* for x in [4.547,2.8571]=1/[0.2199,0.35001] */
#else
static float pR3[6] = {/* for x in [4.547,2.8571]=1/[0.2199,0.35001] */
#endif
-2.5470459075e-09, /* 0xb12f081b */
-7.0311963558e-02, /* 0xbd8fffb8 */
-2.4090321064e+00, /* 0xc01a2d95 */
-2.1965976715e+01, /* 0xc1afba52 */
-5.8079170227e+01, /* 0xc2685112 */
-3.1447946548e+01, /* 0xc1fb9565 */
};
#ifdef __STDC__
static const float pS3[5] = {
#else
static float pS3[5] = {
#endif
3.5856033325e+01, /* 0x420f6c94 */
3.6151397705e+02, /* 0x43b4c1ca */
1.1936077881e+03, /* 0x44953373 */
1.1279968262e+03, /* 0x448cffe6 */
1.7358093262e+02, /* 0x432d94b8 */
};
#ifdef __STDC__
static const float pR2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */
#else
static float pR2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */
#endif
-8.8753431271e-08, /* 0xb3be98b7 */
-7.0303097367e-02, /* 0xbd8ffb12 */
-1.4507384300e+00, /* 0xbfb9b1cc */
-7.6356959343e+00, /* 0xc0f4579f */
-1.1193166733e+01, /* 0xc1331736 */
-3.2336456776e+00, /* 0xc04ef40d */
};
#ifdef __STDC__
static const float pS2[5] = {
#else
static float pS2[5] = {
#endif
2.2220300674e+01, /* 0x41b1c32d */
1.3620678711e+02, /* 0x430834f0 */
2.7047027588e+02, /* 0x43873c32 */
1.5387539673e+02, /* 0x4319e01a */
1.4657617569e+01, /* 0x416a859a */
};
#ifdef __STDC__
static float pzerof(float x)
#else
static float pzerof(x)
float x;
#endif
{
#ifdef __STDC__
const float *p,*q;
#else
float *p,*q;
#endif
float z,r,s;
__int32_t ix;
GET_FLOAT_WORD(ix,x);
ix &= 0x7fffffff;
if(ix>=0x41000000) {p = pR8; q= pS8;}
else if(ix>=0x40f71c58){p = pR5; q= pS5;}
else if(ix>=0x4036db68){p = pR3; q= pS3;}
else {p = pR2; q= pS2;}
z = one/(x*x);
r = p[0]+z*(p[1]+z*(p[2]+z*(p[3]+z*(p[4]+z*p[5]))));
s = one+z*(q[0]+z*(q[1]+z*(q[2]+z*(q[3]+z*q[4]))));
return one+ r/s;
}
/* For x >= 8, the asymptotic expansions of qzero is
* -1/8 s + 75/1024 s^3 - ..., where s = 1/x.
* We approximate qzero by
* qzero(x) = s*(-1.25 + (R/S))
* where R = qR0 + qR1*s^2 + qR2*s^4 + ... + qR5*s^10
* S = 1 + qS0*s^2 + ... + qS5*s^12
* and
* | qzero(x)/s +1.25-R/S | <= 2 ** ( -61.22)
*/
#ifdef __STDC__
static const float qR8[6] = { /* for x in [inf, 8]=1/[0,0.125] */
#else
static float qR8[6] = { /* for x in [inf, 8]=1/[0,0.125] */
#endif
0.0000000000e+00, /* 0x00000000 */
7.3242187500e-02, /* 0x3d960000 */
1.1768206596e+01, /* 0x413c4a93 */
5.5767340088e+02, /* 0x440b6b19 */
8.8591972656e+03, /* 0x460a6cca */
3.7014625000e+04, /* 0x471096a0 */
};
#ifdef __STDC__
static const float qS8[6] = {
#else
static float qS8[6] = {
#endif
1.6377603149e+02, /* 0x4323c6aa */
8.0983447266e+03, /* 0x45fd12c2 */
1.4253829688e+05, /* 0x480b3293 */
8.0330925000e+05, /* 0x49441ed4 */
8.4050156250e+05, /* 0x494d3359 */
-3.4389928125e+05, /* 0xc8a7eb69 */
};
#ifdef __STDC__
static const float qR5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */
#else
static float qR5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */
#endif
1.8408595828e-11, /* 0x2da1ec79 */
7.3242180049e-02, /* 0x3d95ffff */
5.8356351852e+00, /* 0x40babd86 */
1.3511157227e+02, /* 0x43071c90 */
1.0272437744e+03, /* 0x448067cd */
1.9899779053e+03, /* 0x44f8bf4b */
};
#ifdef __STDC__
static const float qS5[6] = {
#else
static float qS5[6] = {
#endif
8.2776611328e+01, /* 0x42a58da0 */
2.0778142090e+03, /* 0x4501dd07 */
1.8847289062e+04, /* 0x46933e94 */
5.6751113281e+04, /* 0x475daf1d */
3.5976753906e+04, /* 0x470c88c1 */
-5.3543427734e+03, /* 0xc5a752be */
};
#ifdef __STDC__
static const float qR3[6] = {/* for x in [4.547,2.8571]=1/[0.2199,0.35001] */
#else
static float qR3[6] = {/* for x in [4.547,2.8571]=1/[0.2199,0.35001] */
#endif
4.3774099900e-09, /* 0x3196681b */
7.3241114616e-02, /* 0x3d95ff70 */
3.3442313671e+00, /* 0x405607e3 */
4.2621845245e+01, /* 0x422a7cc5 */
1.7080809021e+02, /* 0x432acedf */
1.6673394775e+02, /* 0x4326bbe4 */
};
#ifdef __STDC__
static const float qS3[6] = {
#else
static float qS3[6] = {
#endif
4.8758872986e+01, /* 0x42430916 */
7.0968920898e+02, /* 0x44316c1c */
3.7041481934e+03, /* 0x4567825f */
6.4604252930e+03, /* 0x45c9e367 */
2.5163337402e+03, /* 0x451d4557 */
-1.4924745178e+02, /* 0xc3153f59 */
};
#ifdef __STDC__
static const float qR2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */
#else
static float qR2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */
#endif
1.5044444979e-07, /* 0x342189db */
7.3223426938e-02, /* 0x3d95f62a */
1.9981917143e+00, /* 0x3fffc4bf */
1.4495602608e+01, /* 0x4167edfd */
3.1666231155e+01, /* 0x41fd5471 */
1.6252708435e+01, /* 0x4182058c */
};
#ifdef __STDC__
static const float qS2[6] = {
#else
static float qS2[6] = {
#endif
3.0365585327e+01, /* 0x41f2ecb8 */
2.6934811401e+02, /* 0x4386ac8f */
8.4478375244e+02, /* 0x44533229 */
8.8293585205e+02, /* 0x445cbbe5 */
2.1266638184e+02, /* 0x4354aa98 */
-5.3109550476e+00, /* 0xc0a9f358 */
};
#ifdef __STDC__
static float qzerof(float x)
#else
static float qzerof(x)
float x;
#endif
{
#ifdef __STDC__
const float *p,*q;
#else
float *p,*q;
#endif
float s,r,z;
__int32_t ix;
GET_FLOAT_WORD(ix,x);
ix &= 0x7fffffff;
if(ix>=0x41000000) {p = qR8; q= qS8;}
else if(ix>=0x40f71c58){p = qR5; q= qS5;}
else if(ix>=0x4036db68){p = qR3; q= qS3;}
else {p = qR2; q= qS2;}
z = one/(x*x);
r = p[0]+z*(p[1]+z*(p[2]+z*(p[3]+z*(p[4]+z*p[5]))));
s = one+z*(q[0]+z*(q[1]+z*(q[2]+z*(q[3]+z*(q[4]+z*q[5])))));
return (-(float).125 + r/s)/x;
}

View File

@ -0,0 +1,439 @@
/* ef_j1.c -- float version of e_j1.c.
* Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
*/
/*
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunPro, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
#include "fdlibm.h"
#ifdef __STDC__
static float ponef(float), qonef(float);
#else
static float ponef(), qonef();
#endif
#ifdef __STDC__
static const float
#else
static float
#endif
huge = 1e30,
one = 1.0,
invsqrtpi= 5.6418961287e-01, /* 0x3f106ebb */
tpi = 6.3661974669e-01, /* 0x3f22f983 */
/* R0/S0 on [0,2] */
r00 = -6.2500000000e-02, /* 0xbd800000 */
r01 = 1.4070566976e-03, /* 0x3ab86cfd */
r02 = -1.5995563444e-05, /* 0xb7862e36 */
r03 = 4.9672799207e-08, /* 0x335557d2 */
s01 = 1.9153760746e-02, /* 0x3c9ce859 */
s02 = 1.8594678841e-04, /* 0x3942fab6 */
s03 = 1.1771846857e-06, /* 0x359dffc2 */
s04 = 5.0463624390e-09, /* 0x31ad6446 */
s05 = 1.2354227016e-11; /* 0x2d59567e */
#ifdef __STDC__
static const float zero = 0.0;
#else
static float zero = 0.0;
#endif
#ifdef __STDC__
float __ieee754_j1f(float x)
#else
float __ieee754_j1f(x)
float x;
#endif
{
float z, s,c,ss,cc,r,u,v,y;
__int32_t hx,ix;
GET_FLOAT_WORD(hx,x);
ix = hx&0x7fffffff;
if(!FLT_UWORD_IS_FINITE(ix)) return one/x;
y = fabsf(x);
if(ix >= 0x40000000) { /* |x| >= 2.0 */
s = sinf(y);
c = cosf(y);
ss = -s-c;
cc = s-c;
if(ix<=FLT_UWORD_HALF_MAX) { /* make sure y+y not overflow */
z = cosf(y+y);
if ((s*c)>zero) cc = z/ss;
else ss = z/cc;
}
/*
* j1(x) = 1/sqrt(pi) * (P(1,x)*cc - Q(1,x)*ss) / sqrt(x)
* y1(x) = 1/sqrt(pi) * (P(1,x)*ss + Q(1,x)*cc) / sqrt(x)
*/
if(ix>0x80000000) z = (invsqrtpi*cc)/__ieee754_sqrtf(y);
else {
u = ponef(y); v = qonef(y);
z = invsqrtpi*(u*cc-v*ss)/__ieee754_sqrtf(y);
}
if(hx<0) return -z;
else return z;
}
if(ix<0x32000000) { /* |x|<2**-27 */
if(huge+x>one) return (float)0.5*x;/* inexact if x!=0 necessary */
}
z = x*x;
r = z*(r00+z*(r01+z*(r02+z*r03)));
s = one+z*(s01+z*(s02+z*(s03+z*(s04+z*s05))));
r *= x;
return(x*(float)0.5+r/s);
}
#ifdef __STDC__
static const float U0[5] = {
#else
static float U0[5] = {
#endif
-1.9605709612e-01, /* 0xbe48c331 */
5.0443872809e-02, /* 0x3d4e9e3c */
-1.9125689287e-03, /* 0xbafaaf2a */
2.3525259166e-05, /* 0x37c5581c */
-9.1909917899e-08, /* 0xb3c56003 */
};
#ifdef __STDC__
static const float V0[5] = {
#else
static float V0[5] = {
#endif
1.9916731864e-02, /* 0x3ca3286a */
2.0255257550e-04, /* 0x3954644b */
1.3560879779e-06, /* 0x35b602d4 */
6.2274145840e-09, /* 0x31d5f8eb */
1.6655924903e-11, /* 0x2d9281cf */
};
#ifdef __STDC__
float __ieee754_y1f(float x)
#else
float __ieee754_y1f(x)
float x;
#endif
{
float z, s,c,ss,cc,u,v;
__int32_t hx,ix;
GET_FLOAT_WORD(hx,x);
ix = 0x7fffffff&hx;
/* if Y1(NaN) is NaN, Y1(-inf) is NaN, Y1(inf) is 0 */
if(!FLT_UWORD_IS_FINITE(ix)) return one/(x+x*x);
if(FLT_UWORD_IS_ZERO(ix)) return -one/zero;
if(hx<0) return zero/zero;
if(ix >= 0x40000000) { /* |x| >= 2.0 */
s = sinf(x);
c = cosf(x);
ss = -s-c;
cc = s-c;
if(ix<=FLT_UWORD_HALF_MAX) { /* make sure x+x not overflow */
z = cosf(x+x);
if ((s*c)>zero) cc = z/ss;
else ss = z/cc;
}
/* y1(x) = sqrt(2/(pi*x))*(p1(x)*sin(x0)+q1(x)*cos(x0))
* where x0 = x-3pi/4
* Better formula:
* cos(x0) = cos(x)cos(3pi/4)+sin(x)sin(3pi/4)
* = 1/sqrt(2) * (sin(x) - cos(x))
* sin(x0) = sin(x)cos(3pi/4)-cos(x)sin(3pi/4)
* = -1/sqrt(2) * (cos(x) + sin(x))
* To avoid cancellation, use
* sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x))
* to compute the worse one.
*/
if(ix>0x48000000) z = (invsqrtpi*ss)/__ieee754_sqrtf(x);
else {
u = ponef(x); v = qonef(x);
z = invsqrtpi*(u*ss+v*cc)/__ieee754_sqrtf(x);
}
return z;
}
if(ix<=0x24800000) { /* x < 2**-54 */
return(-tpi/x);
}
z = x*x;
u = U0[0]+z*(U0[1]+z*(U0[2]+z*(U0[3]+z*U0[4])));
v = one+z*(V0[0]+z*(V0[1]+z*(V0[2]+z*(V0[3]+z*V0[4]))));
return(x*(u/v) + tpi*(__ieee754_j1f(x)*__ieee754_logf(x)-one/x));
}
/* For x >= 8, the asymptotic expansions of pone is
* 1 + 15/128 s^2 - 4725/2^15 s^4 - ..., where s = 1/x.
* We approximate pone by
* pone(x) = 1 + (R/S)
* where R = pr0 + pr1*s^2 + pr2*s^4 + ... + pr5*s^10
* S = 1 + ps0*s^2 + ... + ps4*s^10
* and
* | pone(x)-1-R/S | <= 2 ** ( -60.06)
*/
#ifdef __STDC__
static const float pr8[6] = { /* for x in [inf, 8]=1/[0,0.125] */
#else
static float pr8[6] = { /* for x in [inf, 8]=1/[0,0.125] */
#endif
0.0000000000e+00, /* 0x00000000 */
1.1718750000e-01, /* 0x3df00000 */
1.3239480972e+01, /* 0x4153d4ea */
4.1205184937e+02, /* 0x43ce06a3 */
3.8747453613e+03, /* 0x45722bed */
7.9144794922e+03, /* 0x45f753d6 */
};
#ifdef __STDC__
static const float ps8[5] = {
#else
static float ps8[5] = {
#endif
1.1420736694e+02, /* 0x42e46a2c */
3.6509309082e+03, /* 0x45642ee5 */
3.6956207031e+04, /* 0x47105c35 */
9.7602796875e+04, /* 0x47bea166 */
3.0804271484e+04, /* 0x46f0a88b */
};
#ifdef __STDC__
static const float pr5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */
#else
static float pr5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */
#endif
1.3199052094e-11, /* 0x2d68333f */
1.1718749255e-01, /* 0x3defffff */
6.8027510643e+00, /* 0x40d9b023 */
1.0830818176e+02, /* 0x42d89dca */
5.1763616943e+02, /* 0x440168b7 */
5.2871520996e+02, /* 0x44042dc6 */
};
#ifdef __STDC__
static const float ps5[5] = {
#else
static float ps5[5] = {
#endif
5.9280597687e+01, /* 0x426d1f55 */
9.9140142822e+02, /* 0x4477d9b1 */
5.3532670898e+03, /* 0x45a74a23 */
7.8446904297e+03, /* 0x45f52586 */
1.5040468750e+03, /* 0x44bc0180 */
};
#ifdef __STDC__
static const float pr3[6] = {
#else
static float pr3[6] = {/* for x in [4.547,2.8571]=1/[0.2199,0.35001] */
#endif
3.0250391081e-09, /* 0x314fe10d */
1.1718686670e-01, /* 0x3defffab */
3.9329774380e+00, /* 0x407bb5e7 */
3.5119403839e+01, /* 0x420c7a45 */
9.1055007935e+01, /* 0x42b61c2a */
4.8559066772e+01, /* 0x42423c7c */
};
#ifdef __STDC__
static const float ps3[5] = {
#else
static float ps3[5] = {
#endif
3.4791309357e+01, /* 0x420b2a4d */
3.3676245117e+02, /* 0x43a86198 */
1.0468714600e+03, /* 0x4482dbe3 */
8.9081134033e+02, /* 0x445eb3ed */
1.0378793335e+02, /* 0x42cf936c */
};
#ifdef __STDC__
static const float pr2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */
#else
static float pr2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */
#endif
1.0771083225e-07, /* 0x33e74ea8 */
1.1717621982e-01, /* 0x3deffa16 */
2.3685150146e+00, /* 0x401795c0 */
1.2242610931e+01, /* 0x4143e1bc */
1.7693971634e+01, /* 0x418d8d41 */
5.0735230446e+00, /* 0x40a25a4d */
};
#ifdef __STDC__
static const float ps2[5] = {
#else
static float ps2[5] = {
#endif
2.1436485291e+01, /* 0x41ab7dec */
1.2529022980e+02, /* 0x42fa9499 */
2.3227647400e+02, /* 0x436846c7 */
1.1767937469e+02, /* 0x42eb5bd7 */
8.3646392822e+00, /* 0x4105d590 */
};
#ifdef __STDC__
static float ponef(float x)
#else
static float ponef(x)
float x;
#endif
{
#ifdef __STDC__
const float *p,*q;
#else
float *p,*q;
#endif
float z,r,s;
__int32_t ix;
GET_FLOAT_WORD(ix,x);
ix &= 0x7fffffff;
if(ix>=0x41000000) {p = pr8; q= ps8;}
else if(ix>=0x40f71c58){p = pr5; q= ps5;}
else if(ix>=0x4036db68){p = pr3; q= ps3;}
else {p = pr2; q= ps2;}
z = one/(x*x);
r = p[0]+z*(p[1]+z*(p[2]+z*(p[3]+z*(p[4]+z*p[5]))));
s = one+z*(q[0]+z*(q[1]+z*(q[2]+z*(q[3]+z*q[4]))));
return one+ r/s;
}
/* For x >= 8, the asymptotic expansions of qone is
* 3/8 s - 105/1024 s^3 - ..., where s = 1/x.
* We approximate qone by
* qone(x) = s*(0.375 + (R/S))
* where R = qr1*s^2 + qr2*s^4 + ... + qr5*s^10
* S = 1 + qs1*s^2 + ... + qs6*s^12
* and
* | qone(x)/s -0.375-R/S | <= 2 ** ( -61.13)
*/
#ifdef __STDC__
static const float qr8[6] = { /* for x in [inf, 8]=1/[0,0.125] */
#else
static float qr8[6] = { /* for x in [inf, 8]=1/[0,0.125] */
#endif
0.0000000000e+00, /* 0x00000000 */
-1.0253906250e-01, /* 0xbdd20000 */
-1.6271753311e+01, /* 0xc1822c8d */
-7.5960174561e+02, /* 0xc43de683 */
-1.1849806641e+04, /* 0xc639273a */
-4.8438511719e+04, /* 0xc73d3683 */
};
#ifdef __STDC__
static const float qs8[6] = {
#else
static float qs8[6] = {
#endif
1.6139537048e+02, /* 0x43216537 */
7.8253862305e+03, /* 0x45f48b17 */
1.3387534375e+05, /* 0x4802bcd6 */
7.1965775000e+05, /* 0x492fb29c */
6.6660125000e+05, /* 0x4922be94 */
-2.9449025000e+05, /* 0xc88fcb48 */
};
#ifdef __STDC__
static const float qr5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */
#else
static float qr5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */
#endif
-2.0897993405e-11, /* 0xadb7d219 */
-1.0253904760e-01, /* 0xbdd1fffe */
-8.0564479828e+00, /* 0xc100e736 */
-1.8366960144e+02, /* 0xc337ab6b */
-1.3731937256e+03, /* 0xc4aba633 */
-2.6124443359e+03, /* 0xc523471c */
};
#ifdef __STDC__
static const float qs5[6] = {
#else
static float qs5[6] = {
#endif
8.1276550293e+01, /* 0x42a28d98 */
1.9917987061e+03, /* 0x44f8f98f */
1.7468484375e+04, /* 0x468878f8 */
4.9851425781e+04, /* 0x4742bb6d */
2.7948074219e+04, /* 0x46da5826 */
-4.7191835938e+03, /* 0xc5937978 */
};
#ifdef __STDC__
static const float qr3[6] = {
#else
static float qr3[6] = {/* for x in [4.547,2.8571]=1/[0.2199,0.35001] */
#endif
-5.0783124372e-09, /* 0xb1ae7d4f */
-1.0253783315e-01, /* 0xbdd1ff5b */
-4.6101160049e+00, /* 0xc0938612 */
-5.7847221375e+01, /* 0xc267638e */
-2.2824453735e+02, /* 0xc3643e9a */
-2.1921012878e+02, /* 0xc35b35cb */
};
#ifdef __STDC__
static const float qs3[6] = {
#else
static float qs3[6] = {
#endif
4.7665153503e+01, /* 0x423ea91e */
6.7386511230e+02, /* 0x4428775e */
3.3801528320e+03, /* 0x45534272 */
5.5477290039e+03, /* 0x45ad5dd5 */
1.9031191406e+03, /* 0x44ede3d0 */
-1.3520118713e+02, /* 0xc3073381 */
};
#ifdef __STDC__
static const float qr2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */
#else
static float qr2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */
#endif
-1.7838172539e-07, /* 0xb43f8932 */
-1.0251704603e-01, /* 0xbdd1f475 */
-2.7522056103e+00, /* 0xc0302423 */
-1.9663616180e+01, /* 0xc19d4f16 */
-4.2325313568e+01, /* 0xc2294d1f */
-2.1371921539e+01, /* 0xc1aaf9b2 */
};
#ifdef __STDC__
static const float qs2[6] = {
#else
static float qs2[6] = {
#endif
2.9533363342e+01, /* 0x41ec4454 */
2.5298155212e+02, /* 0x437cfb47 */
7.5750280762e+02, /* 0x443d602e */
7.3939318848e+02, /* 0x4438d92a */
1.5594900513e+02, /* 0x431bf2f2 */
-4.9594988823e+00, /* 0xc09eb437 */
};
#ifdef __STDC__
static float qonef(float x)
#else
static float qonef(x)
float x;
#endif
{
#ifdef __STDC__
const float *p,*q;
#else
float *p,*q;
#endif
float s,r,z;
__int32_t ix;
GET_FLOAT_WORD(ix,x);
ix &= 0x7fffffff;
if(ix>=0x40200000) {p = qr8; q= qs8;}
else if(ix>=0x40f71c58){p = qr5; q= qs5;}
else if(ix>=0x4036db68){p = qr3; q= qs3;}
else {p = qr2; q= qs2;}
z = one/(x*x);
r = p[0]+z*(p[1]+z*(p[2]+z*(p[3]+z*(p[4]+z*p[5]))));
s = one+z*(q[0]+z*(q[1]+z*(q[2]+z*(q[3]+z*(q[4]+z*q[5])))));
return ((float).375 + r/s)/x;
}

View File

@ -0,0 +1,207 @@
/* ef_jn.c -- float version of e_jn.c.
* Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
*/
/*
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunPro, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
#include "fdlibm.h"
#ifdef __STDC__
static const float
#else
static float
#endif
invsqrtpi= 5.6418961287e-01, /* 0x3f106ebb */
two = 2.0000000000e+00, /* 0x40000000 */
one = 1.0000000000e+00; /* 0x3F800000 */
#ifdef __STDC__
static const float zero = 0.0000000000e+00;
#else
static float zero = 0.0000000000e+00;
#endif
#ifdef __STDC__
float __ieee754_jnf(int n, float x)
#else
float __ieee754_jnf(n,x)
int n; float x;
#endif
{
__int32_t i,hx,ix, sgn;
float a, b, temp, di;
float z, w;
/* J(-n,x) = (-1)^n * J(n, x), J(n, -x) = (-1)^n * J(n, x)
* Thus, J(-n,x) = J(n,-x)
*/
GET_FLOAT_WORD(hx,x);
ix = 0x7fffffff&hx;
/* if J(n,NaN) is NaN */
if(FLT_UWORD_IS_NAN(ix)) return x+x;
if(n<0){
n = -n;
x = -x;
hx ^= 0x80000000;
}
if(n==0) return(__ieee754_j0f(x));
if(n==1) return(__ieee754_j1f(x));
sgn = (n&1)&(hx>>31); /* even n -- 0, odd n -- sign(x) */
x = fabsf(x);
if(FLT_UWORD_IS_ZERO(ix)||FLT_UWORD_IS_INFINITE(ix))
b = zero;
else if((float)n<=x) {
/* Safe to use J(n+1,x)=2n/x *J(n,x)-J(n-1,x) */
a = __ieee754_j0f(x);
b = __ieee754_j1f(x);
for(i=1;i<n;i++){
temp = b;
b = b*((float)(i+i)/x) - a; /* avoid underflow */
a = temp;
}
} else {
if(ix<0x30800000) { /* x < 2**-29 */
/* x is tiny, return the first Taylor expansion of J(n,x)
* J(n,x) = 1/n!*(x/2)^n - ...
*/
if(n>33) /* underflow */
b = zero;
else {
temp = x*(float)0.5; b = temp;
for (a=one,i=2;i<=n;i++) {
a *= (float)i; /* a = n! */
b *= temp; /* b = (x/2)^n */
}
b = b/a;
}
} else {
/* use backward recurrence */
/* x x^2 x^2
* J(n,x)/J(n-1,x) = ---- ------ ------ .....
* 2n - 2(n+1) - 2(n+2)
*
* 1 1 1
* (for large x) = ---- ------ ------ .....
* 2n 2(n+1) 2(n+2)
* -- - ------ - ------ -
* x x x
*
* Let w = 2n/x and h=2/x, then the above quotient
* is equal to the continued fraction:
* 1
* = -----------------------
* 1
* w - -----------------
* 1
* w+h - ---------
* w+2h - ...
*
* To determine how many terms needed, let
* Q(0) = w, Q(1) = w(w+h) - 1,
* Q(k) = (w+k*h)*Q(k-1) - Q(k-2),
* When Q(k) > 1e4 good for single
* When Q(k) > 1e9 good for double
* When Q(k) > 1e17 good for quadruple
*/
/* determine k */
float t,v;
float q0,q1,h,tmp; __int32_t k,m;
w = (n+n)/(float)x; h = (float)2.0/(float)x;
q0 = w; z = w+h; q1 = w*z - (float)1.0; k=1;
while(q1<(float)1.0e9) {
k += 1; z += h;
tmp = z*q1 - q0;
q0 = q1;
q1 = tmp;
}
m = n+n;
for(t=zero, i = 2*(n+k); i>=m; i -= 2) t = one/(i/x-t);
a = t;
b = one;
/* estimate log((2/x)^n*n!) = n*log(2/x)+n*ln(n)
* Hence, if n*(log(2n/x)) > ...
* single 8.8722839355e+01
* double 7.09782712893383973096e+02
* long double 1.1356523406294143949491931077970765006170e+04
* then recurrent value may overflow and the result is
* likely underflow to zero
*/
tmp = n;
v = two/x;
tmp = tmp*__ieee754_logf(fabsf(v*tmp));
if(tmp<(float)8.8721679688e+01) {
for(i=n-1,di=(float)(i+i);i>0;i--){
temp = b;
b *= di;
b = b/x - a;
a = temp;
di -= two;
}
} else {
for(i=n-1,di=(float)(i+i);i>0;i--){
temp = b;
b *= di;
b = b/x - a;
a = temp;
di -= two;
/* scale b to avoid spurious overflow */
if(b>(float)1e10) {
a /= b;
t /= b;
b = one;
}
}
}
b = (t*__ieee754_j0f(x)/b);
}
}
if(sgn==1) return -b; else return b;
}
#ifdef __STDC__
float __ieee754_ynf(int n, float x)
#else
float __ieee754_ynf(n,x)
int n; float x;
#endif
{
__int32_t i,hx,ix,ib;
__int32_t sign;
float a, b, temp;
GET_FLOAT_WORD(hx,x);
ix = 0x7fffffff&hx;
/* if Y(n,NaN) is NaN */
if(FLT_UWORD_IS_NAN(ix)) return x+x;
if(FLT_UWORD_IS_ZERO(ix)) return -one/zero;
if(hx<0) return zero/zero;
sign = 1;
if(n<0){
n = -n;
sign = 1 - ((n&1)<<1);
}
if(n==0) return(__ieee754_y0f(x));
if(n==1) return(sign*__ieee754_y1f(x));
if(FLT_UWORD_IS_INFINITE(ix)) return zero;
a = __ieee754_y0f(x);
b = __ieee754_y1f(x);
/* quit if b is -inf */
GET_FLOAT_WORD(ib,b);
for(i=1;i<n&&ib!=0xff800000;i++){
temp = b;
b = ((float)(i+i)/x)*b - a;
GET_FLOAT_WORD(ib,b);
a = temp;
}
if(sign>0) return b; else return -b;
}

View File

@ -0,0 +1,92 @@
/* ef_log.c -- float version of e_log.c.
* Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
*/
/*
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunPro, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
#include "fdlibm.h"
#ifdef __STDC__
static const float
#else
static float
#endif
ln2_hi = 6.9313812256e-01, /* 0x3f317180 */
ln2_lo = 9.0580006145e-06, /* 0x3717f7d1 */
two25 = 3.355443200e+07, /* 0x4c000000 */
Lg1 = 6.6666668653e-01, /* 3F2AAAAB */
Lg2 = 4.0000000596e-01, /* 3ECCCCCD */
Lg3 = 2.8571429849e-01, /* 3E924925 */
Lg4 = 2.2222198546e-01, /* 3E638E29 */
Lg5 = 1.8183572590e-01, /* 3E3A3325 */
Lg6 = 1.5313838422e-01, /* 3E1CD04F */
Lg7 = 1.4798198640e-01; /* 3E178897 */
#ifdef __STDC__
static const float zero = 0.0;
#else
static float zero = 0.0;
#endif
#ifdef __STDC__
float __ieee754_logf(float x)
#else
float __ieee754_logf(x)
float x;
#endif
{
float hfsq,f,s,z,R,w,t1,t2,dk;
__int32_t k,ix,i,j;
GET_FLOAT_WORD(ix,x);
k=0;
if (FLT_UWORD_IS_ZERO(ix&0x7fffffff))
return -two25/zero; /* log(+-0)=-inf */
if (ix<0) return (x-x)/zero; /* log(-#) = NaN */
if (!FLT_UWORD_IS_FINITE(ix)) return x+x;
if (FLT_UWORD_IS_SUBNORMAL(ix)) {
k -= 25; x *= two25; /* subnormal number, scale up x */
GET_FLOAT_WORD(ix,x);
}
k += (ix>>23)-127;
ix &= 0x007fffff;
i = (ix+(0x95f64<<3))&0x800000;
SET_FLOAT_WORD(x,ix|(i^0x3f800000)); /* normalize x or x/2 */
k += (i>>23);
f = x-(float)1.0;
if((0x007fffff&(15+ix))<16) { /* |f| < 2**-20 */
if(f==zero) { if(k==0) return zero; else {dk=(float)k;
return dk*ln2_hi+dk*ln2_lo;}}
R = f*f*((float)0.5-(float)0.33333333333333333*f);
if(k==0) return f-R; else {dk=(float)k;
return dk*ln2_hi-((R-dk*ln2_lo)-f);}
}
s = f/((float)2.0+f);
dk = (float)k;
z = s*s;
i = ix-(0x6147a<<3);
w = z*z;
j = (0x6b851<<3)-ix;
t1= w*(Lg2+w*(Lg4+w*Lg6));
t2= z*(Lg1+w*(Lg3+w*(Lg5+w*Lg7)));
i |= j;
R = t2+t1;
if(i>0) {
hfsq=(float)0.5*f*f;
if(k==0) return f-(hfsq-s*(hfsq+R)); else
return dk*ln2_hi-((hfsq-(s*(hfsq+R)+dk*ln2_lo))-f);
} else {
if(k==0) return f-s*(f-R); else
return dk*ln2_hi-((s*(f-R)-dk*ln2_lo)-f);
}
}

View File

@ -0,0 +1,62 @@
/* ef_log10.c -- float version of e_log10.c.
* Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
*/
/*
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunPro, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
#include "fdlibm.h"
#ifdef __STDC__
static const float
#else
static float
#endif
two25 = 3.3554432000e+07, /* 0x4c000000 */
ivln10 = 4.3429449201e-01, /* 0x3ede5bd9 */
log10_2hi = 3.0102920532e-01, /* 0x3e9a2080 */
log10_2lo = 7.9034151668e-07; /* 0x355427db */
#ifdef __STDC__
static const float zero = 0.0;
#else
static float zero = 0.0;
#endif
#ifdef __STDC__
float __ieee754_log10f(float x)
#else
float __ieee754_log10f(x)
float x;
#endif
{
float y,z;
__int32_t i,k,hx;
GET_FLOAT_WORD(hx,x);
k=0;
if (FLT_UWORD_IS_ZERO(hx&0x7fffffff))
return -two25/zero; /* log(+-0)=-inf */
if (hx<0) return (x-x)/zero; /* log(-#) = NaN */
if (!FLT_UWORD_IS_FINITE(hx)) return x+x;
if (FLT_UWORD_IS_SUBNORMAL(hx)) {
k -= 25; x *= two25; /* subnormal number, scale up x */
GET_FLOAT_WORD(hx,x);
}
k += (hx>>23)-127;
i = ((__uint32_t)k&0x80000000)>>31;
hx = (hx&0x007fffff)|((0x7f-i)<<23);
y = (float)(k+i);
SET_FLOAT_WORD(x,hx);
z = y*log10_2lo + ivln10*__ieee754_logf(x);
return z+y*log10_2hi;
}

View File

@ -0,0 +1,255 @@
/* ef_pow.c -- float version of e_pow.c.
* Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
*/
/*
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunPro, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
#include "fdlibm.h"
#ifdef __v810__
#define const
#endif
#ifdef __STDC__
static const float
#else
static float
#endif
bp[] = {1.0, 1.5,},
dp_h[] = { 0.0, 5.84960938e-01,}, /* 0x3f15c000 */
dp_l[] = { 0.0, 1.56322085e-06,}, /* 0x35d1cfdc */
zero = 0.0,
one = 1.0,
two = 2.0,
two24 = 16777216.0, /* 0x4b800000 */
huge = 1.0e30,
tiny = 1.0e-30,
/* poly coefs for (3/2)*(log(x)-2s-2/3*s**3 */
L1 = 6.0000002384e-01, /* 0x3f19999a */
L2 = 4.2857143283e-01, /* 0x3edb6db7 */
L3 = 3.3333334327e-01, /* 0x3eaaaaab */
L4 = 2.7272811532e-01, /* 0x3e8ba305 */
L5 = 2.3066075146e-01, /* 0x3e6c3255 */
L6 = 2.0697501302e-01, /* 0x3e53f142 */
P1 = 1.6666667163e-01, /* 0x3e2aaaab */
P2 = -2.7777778450e-03, /* 0xbb360b61 */
P3 = 6.6137559770e-05, /* 0x388ab355 */
P4 = -1.6533901999e-06, /* 0xb5ddea0e */
P5 = 4.1381369442e-08, /* 0x3331bb4c */
lg2 = 6.9314718246e-01, /* 0x3f317218 */
lg2_h = 6.93145752e-01, /* 0x3f317200 */
lg2_l = 1.42860654e-06, /* 0x35bfbe8c */
ovt = 4.2995665694e-08, /* -(128-log2(ovfl+.5ulp)) */
cp = 9.6179670095e-01, /* 0x3f76384f =2/(3ln2) */
cp_h = 9.6179199219e-01, /* 0x3f763800 =head of cp */
cp_l = 4.7017383622e-06, /* 0x369dc3a0 =tail of cp_h */
ivln2 = 1.4426950216e+00, /* 0x3fb8aa3b =1/ln2 */
ivln2_h = 1.4426879883e+00, /* 0x3fb8aa00 =16b 1/ln2*/
ivln2_l = 7.0526075433e-06; /* 0x36eca570 =1/ln2 tail*/
#ifdef __STDC__
float __ieee754_powf(float x, float y)
#else
float __ieee754_powf(x,y)
float x, y;
#endif
{
float z,ax,z_h,z_l,p_h,p_l;
float y1,t1,t2,r,s,t,u,v,w;
__int32_t i,j,k,yisint,n;
__int32_t hx,hy,ix,iy,is;
GET_FLOAT_WORD(hx,x);
GET_FLOAT_WORD(hy,y);
ix = hx&0x7fffffff; iy = hy&0x7fffffff;
/* y==zero: x**0 = 1 */
if(FLT_UWORD_IS_ZERO(iy)) return one;
/* x|y==NaN return NaN unless x==1 then return 1 */
if(FLT_UWORD_IS_NAN(ix) ||
FLT_UWORD_IS_NAN(iy)) {
if(ix==0x3f800000) return one;
else return nanf("");
}
/* determine if y is an odd int when x < 0
* yisint = 0 ... y is not an integer
* yisint = 1 ... y is an odd int
* yisint = 2 ... y is an even int
*/
yisint = 0;
if(hx<0) {
if(iy>=0x4b800000) yisint = 2; /* even integer y */
else if(iy>=0x3f800000) {
k = (iy>>23)-0x7f; /* exponent */
j = iy>>(23-k);
if((j<<(23-k))==iy) yisint = 2-(j&1);
}
}
/* special value of y */
if (FLT_UWORD_IS_INFINITE(iy)) { /* y is +-inf */
if (ix==0x3f800000)
return one; /* +-1**+-inf = 1 */
else if (ix > 0x3f800000)/* (|x|>1)**+-inf = inf,0 */
return (hy>=0)? y: zero;
else /* (|x|<1)**-,+inf = inf,0 */
return (hy<0)?-y: zero;
}
if(iy==0x3f800000) { /* y is +-1 */
if(hy<0) return one/x; else return x;
}
if(hy==0x40000000) return x*x; /* y is 2 */
if(hy==0x3f000000) { /* y is 0.5 */
if(hx>=0) /* x >= +0 */
return __ieee754_sqrtf(x);
}
ax = fabsf(x);
/* special value of x */
if(FLT_UWORD_IS_INFINITE(ix)||FLT_UWORD_IS_ZERO(ix)||ix==0x3f800000){
z = ax; /*x is +-0,+-inf,+-1*/
if(hy<0) z = one/z; /* z = (1/|x|) */
if(hx<0) {
if(((ix-0x3f800000)|yisint)==0) {
z = (z-z)/(z-z); /* (-1)**non-int is NaN */
} else if(yisint==1)
z = -z; /* (x<0)**odd = -(|x|**odd) */
}
return z;
}
/* (x<0)**(non-int) is NaN */
if(((((__uint32_t)hx>>31)-1)|yisint)==0) return (x-x)/(x-x);
/* |y| is huge */
if(iy>0x4d000000) { /* if |y| > 2**27 */
/* over/underflow if x is not close to one */
if(ix<0x3f7ffff8) return (hy<0)? huge*huge:tiny*tiny;
if(ix>0x3f800007) return (hy>0)? huge*huge:tiny*tiny;
/* now |1-x| is tiny <= 2**-20, suffice to compute
log(x) by x-x^2/2+x^3/3-x^4/4 */
t = ax-1; /* t has 20 trailing zeros */
w = (t*t)*((float)0.5-t*((float)0.333333333333-t*(float)0.25));
u = ivln2_h*t; /* ivln2_h has 16 sig. bits */
v = t*ivln2_l-w*ivln2;
t1 = u+v;
GET_FLOAT_WORD(is,t1);
SET_FLOAT_WORD(t1,is&0xfffff000);
t2 = v-(t1-u);
} else {
float s2,s_h,s_l,t_h,t_l;
n = 0;
/* take care subnormal number */
if(FLT_UWORD_IS_SUBNORMAL(ix))
{ax *= two24; n -= 24; GET_FLOAT_WORD(ix,ax); }
n += ((ix)>>23)-0x7f;
j = ix&0x007fffff;
/* determine interval */
ix = j|0x3f800000; /* normalize ix */
if(j<=0x1cc471) k=0; /* |x|<sqrt(3/2) */
else if(j<0x5db3d7) k=1; /* |x|<sqrt(3) */
else {k=0;n+=1;ix -= 0x00800000;}
SET_FLOAT_WORD(ax,ix);
/* compute s = s_h+s_l = (x-1)/(x+1) or (x-1.5)/(x+1.5) */
u = ax-bp[k]; /* bp[0]=1.0, bp[1]=1.5 */
v = one/(ax+bp[k]);
s = u*v;
s_h = s;
GET_FLOAT_WORD(is,s_h);
SET_FLOAT_WORD(s_h,is&0xfffff000);
/* t_h=ax+bp[k] High */
SET_FLOAT_WORD(t_h,((ix>>1)|0x20000000)+0x0040000+(k<<21));
t_l = ax - (t_h-bp[k]);
s_l = v*((u-s_h*t_h)-s_h*t_l);
/* compute log(ax) */
s2 = s*s;
r = s2*s2*(L1+s2*(L2+s2*(L3+s2*(L4+s2*(L5+s2*L6)))));
r += s_l*(s_h+s);
s2 = s_h*s_h;
t_h = (float)3.0+s2+r;
GET_FLOAT_WORD(is,t_h);
SET_FLOAT_WORD(t_h,is&0xfffff000);
t_l = r-((t_h-(float)3.0)-s2);
/* u+v = s*(1+...) */
u = s_h*t_h;
v = s_l*t_h+t_l*s;
/* 2/(3log2)*(s+...) */
p_h = u+v;
GET_FLOAT_WORD(is,p_h);
SET_FLOAT_WORD(p_h,is&0xfffff000);
p_l = v-(p_h-u);
z_h = cp_h*p_h; /* cp_h+cp_l = 2/(3*log2) */
z_l = cp_l*p_h+p_l*cp+dp_l[k];
/* log2(ax) = (s+..)*2/(3*log2) = n + dp_h + z_h + z_l */
t = (float)n;
t1 = (((z_h+z_l)+dp_h[k])+t);
GET_FLOAT_WORD(is,t1);
SET_FLOAT_WORD(t1,is&0xfffff000);
t2 = z_l-(((t1-t)-dp_h[k])-z_h);
}
s = one; /* s (sign of result -ve**odd) = -1 else = 1 */
if(((((__uint32_t)hx>>31)-1)|(yisint-1))==0)
s = -one; /* (-ve)**(odd int) */
/* split up y into y1+y2 and compute (y1+y2)*(t1+t2) */
GET_FLOAT_WORD(is,y);
SET_FLOAT_WORD(y1,is&0xfffff000);
p_l = (y-y1)*t1+y*t2;
p_h = y1*t1;
z = p_l+p_h;
GET_FLOAT_WORD(j,z);
i = j&0x7fffffff;
if (j>0) {
if (i>FLT_UWORD_EXP_MAX)
return s*huge*huge; /* overflow */
else if (i==FLT_UWORD_EXP_MAX)
if(p_l+ovt>z-p_h) return s*huge*huge; /* overflow */
} else {
if (i>FLT_UWORD_EXP_MIN)
return s*tiny*tiny; /* underflow */
else if (i==FLT_UWORD_EXP_MIN)
if(p_l<=z-p_h) return s*tiny*tiny; /* underflow */
}
/*
* compute 2**(p_h+p_l)
*/
k = (i>>23)-0x7f;
n = 0;
if(i>0x3f000000) { /* if |z| > 0.5, set n = [z+0.5] */
n = j+(0x00800000>>(k+1));
k = ((n&0x7fffffff)>>23)-0x7f; /* new k for n */
SET_FLOAT_WORD(t,n&~(0x007fffff>>k));
n = ((n&0x007fffff)|0x00800000)>>(23-k);
if(j<0) n = -n;
p_h -= t;
}
t = p_l+p_h;
GET_FLOAT_WORD(is,t);
SET_FLOAT_WORD(t,is&0xfffff000);
u = t*lg2_h;
v = (p_l-(t-p_h))*lg2+t*lg2_l;
z = u+v;
w = v-(z-u);
t = z*z;
t1 = z - t*(P1+t*(P2+t*(P3+t*(P4+t*P5))));
r = (z*t1)/(t1-two)-(w+z*w);
z = one-(r-z);
GET_FLOAT_WORD(j,z);
j += (n<<23);
if((j>>23)<=0) z = scalbnf(z,(int)n); /* subnormal output */
else SET_FLOAT_WORD(z,j);
return s*z;
}

View File

@ -0,0 +1,193 @@
/* ef_rem_pio2.c -- float version of e_rem_pio2.c
* Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
*/
/*
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunPro, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*
*/
/* __ieee754_rem_pio2f(x,y)
*
* return the remainder of x rem pi/2 in y[0]+y[1]
* use __kernel_rem_pio2f()
*/
#include "fdlibm.h"
/*
* Table of constants for 2/pi, 396 Hex digits (476 decimal) of 2/pi
*/
#ifdef __STDC__
static const __int32_t two_over_pi[] = {
#else
static __int32_t two_over_pi[] = {
#endif
0xA2, 0xF9, 0x83, 0x6E, 0x4E, 0x44, 0x15, 0x29, 0xFC,
0x27, 0x57, 0xD1, 0xF5, 0x34, 0xDD, 0xC0, 0xDB, 0x62,
0x95, 0x99, 0x3C, 0x43, 0x90, 0x41, 0xFE, 0x51, 0x63,
0xAB, 0xDE, 0xBB, 0xC5, 0x61, 0xB7, 0x24, 0x6E, 0x3A,
0x42, 0x4D, 0xD2, 0xE0, 0x06, 0x49, 0x2E, 0xEA, 0x09,
0xD1, 0x92, 0x1C, 0xFE, 0x1D, 0xEB, 0x1C, 0xB1, 0x29,
0xA7, 0x3E, 0xE8, 0x82, 0x35, 0xF5, 0x2E, 0xBB, 0x44,
0x84, 0xE9, 0x9C, 0x70, 0x26, 0xB4, 0x5F, 0x7E, 0x41,
0x39, 0x91, 0xD6, 0x39, 0x83, 0x53, 0x39, 0xF4, 0x9C,
0x84, 0x5F, 0x8B, 0xBD, 0xF9, 0x28, 0x3B, 0x1F, 0xF8,
0x97, 0xFF, 0xDE, 0x05, 0x98, 0x0F, 0xEF, 0x2F, 0x11,
0x8B, 0x5A, 0x0A, 0x6D, 0x1F, 0x6D, 0x36, 0x7E, 0xCF,
0x27, 0xCB, 0x09, 0xB7, 0x4F, 0x46, 0x3F, 0x66, 0x9E,
0x5F, 0xEA, 0x2D, 0x75, 0x27, 0xBA, 0xC7, 0xEB, 0xE5,
0xF1, 0x7B, 0x3D, 0x07, 0x39, 0xF7, 0x8A, 0x52, 0x92,
0xEA, 0x6B, 0xFB, 0x5F, 0xB1, 0x1F, 0x8D, 0x5D, 0x08,
0x56, 0x03, 0x30, 0x46, 0xFC, 0x7B, 0x6B, 0xAB, 0xF0,
0xCF, 0xBC, 0x20, 0x9A, 0xF4, 0x36, 0x1D, 0xA9, 0xE3,
0x91, 0x61, 0x5E, 0xE6, 0x1B, 0x08, 0x65, 0x99, 0x85,
0x5F, 0x14, 0xA0, 0x68, 0x40, 0x8D, 0xFF, 0xD8, 0x80,
0x4D, 0x73, 0x27, 0x31, 0x06, 0x06, 0x15, 0x56, 0xCA,
0x73, 0xA8, 0xC9, 0x60, 0xE2, 0x7B, 0xC0, 0x8C, 0x6B,
};
/* This array is like the one in e_rem_pio2.c, but the numbers are
single precision and the last 8 bits are forced to 0. */
#ifdef __STDC__
static const __int32_t npio2_hw[] = {
#else
static __int32_t npio2_hw[] = {
#endif
0x3fc90f00, 0x40490f00, 0x4096cb00, 0x40c90f00, 0x40fb5300, 0x4116cb00,
0x412fed00, 0x41490f00, 0x41623100, 0x417b5300, 0x418a3a00, 0x4196cb00,
0x41a35c00, 0x41afed00, 0x41bc7e00, 0x41c90f00, 0x41d5a000, 0x41e23100,
0x41eec200, 0x41fb5300, 0x4203f200, 0x420a3a00, 0x42108300, 0x4216cb00,
0x421d1400, 0x42235c00, 0x4229a500, 0x422fed00, 0x42363600, 0x423c7e00,
0x4242c700, 0x42490f00
};
/*
* invpio2: 24 bits of 2/pi
* pio2_1: first 17 bit of pi/2
* pio2_1t: pi/2 - pio2_1
* pio2_2: second 17 bit of pi/2
* pio2_2t: pi/2 - (pio2_1+pio2_2)
* pio2_3: third 17 bit of pi/2
* pio2_3t: pi/2 - (pio2_1+pio2_2+pio2_3)
*/
#ifdef __STDC__
static const float
#else
static float
#endif
zero = 0.0000000000e+00, /* 0x00000000 */
half = 5.0000000000e-01, /* 0x3f000000 */
two8 = 2.5600000000e+02, /* 0x43800000 */
invpio2 = 6.3661980629e-01, /* 0x3f22f984 */
pio2_1 = 1.5707855225e+00, /* 0x3fc90f80 */
pio2_1t = 1.0804334124e-05, /* 0x37354443 */
pio2_2 = 1.0804273188e-05, /* 0x37354400 */
pio2_2t = 6.0770999344e-11, /* 0x2e85a308 */
pio2_3 = 6.0770943833e-11, /* 0x2e85a300 */
pio2_3t = 6.1232342629e-17; /* 0x248d3132 */
#ifdef __STDC__
__int32_t __ieee754_rem_pio2f(float x, float *y)
#else
__int32_t __ieee754_rem_pio2f(x,y)
float x,y[];
#endif
{
float z,w,t,r,fn;
float tx[3];
__int32_t i,j,n,ix,hx;
int e0,nx;
GET_FLOAT_WORD(hx,x);
ix = hx&0x7fffffff;
if(ix<=0x3f490fd8) /* |x| ~<= pi/4 , no need for reduction */
{y[0] = x; y[1] = 0; return 0;}
if(ix<0x4016cbe4) { /* |x| < 3pi/4, special case with n=+-1 */
if(hx>0) {
z = x - pio2_1;
if((ix&0xfffffff0)!=0x3fc90fd0) { /* 24+24 bit pi OK */
y[0] = z - pio2_1t;
y[1] = (z-y[0])-pio2_1t;
} else { /* near pi/2, use 24+24+24 bit pi */
z -= pio2_2;
y[0] = z - pio2_2t;
y[1] = (z-y[0])-pio2_2t;
}
return 1;
} else { /* negative x */
z = x + pio2_1;
if((ix&0xfffffff0)!=0x3fc90fd0) { /* 24+24 bit pi OK */
y[0] = z + pio2_1t;
y[1] = (z-y[0])+pio2_1t;
} else { /* near pi/2, use 24+24+24 bit pi */
z += pio2_2;
y[0] = z + pio2_2t;
y[1] = (z-y[0])+pio2_2t;
}
return -1;
}
}
if(ix<=0x43490f80) { /* |x| ~<= 2^7*(pi/2), medium size */
t = fabsf(x);
n = (__int32_t) (t*invpio2+half);
fn = (float)n;
r = t-fn*pio2_1;
w = fn*pio2_1t; /* 1st round good to 40 bit */
if(n<32&&(ix&0xffffff00)!=npio2_hw[n-1]) {
y[0] = r-w; /* quick check no cancellation */
} else {
__uint32_t high;
j = ix>>23;
y[0] = r-w;
GET_FLOAT_WORD(high,y[0]);
i = j-((high>>23)&0xff);
if(i>8) { /* 2nd iteration needed, good to 57 */
t = r;
w = fn*pio2_2;
r = t-w;
w = fn*pio2_2t-((t-r)-w);
y[0] = r-w;
GET_FLOAT_WORD(high,y[0]);
i = j-((high>>23)&0xff);
if(i>25) { /* 3rd iteration need, 74 bits acc */
t = r; /* will cover all possible cases */
w = fn*pio2_3;
r = t-w;
w = fn*pio2_3t-((t-r)-w);
y[0] = r-w;
}
}
}
y[1] = (r-y[0])-w;
if(hx<0) {y[0] = -y[0]; y[1] = -y[1]; return -n;}
else return n;
}
/*
* all other (large) arguments
*/
if(!FLT_UWORD_IS_FINITE(ix)) {
y[0]=y[1]=x-x; return 0;
}
/* set z = scalbn(|x|,ilogb(x)-7) */
e0 = (int)((ix>>23)-134); /* e0 = ilogb(z)-7; */
SET_FLOAT_WORD(z, ix - ((__int32_t)e0<<23));
for(i=0;i<2;i++) {
tx[i] = (float)((__int32_t)(z));
z = (z-tx[i])*two8;
}
tx[2] = z;
nx = 3;
while(tx[nx-1]==zero) nx--; /* skip zero term */
n = __kernel_rem_pio2f(tx,y,e0,nx,2,two_over_pi);
if(hx<0) {y[0] = -y[0]; y[1] = -y[1]; return -n;}
return n;
}

View File

@ -0,0 +1,68 @@
/* ef_remainder.c -- float version of e_remainder.c.
* Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
*/
/*
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunPro, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
#include "fdlibm.h"
#ifdef __STDC__
static const float zero = 0.0;
#else
static float zero = 0.0;
#endif
#ifdef __STDC__
float __ieee754_remainderf(float x, float p)
#else
float __ieee754_remainderf(x,p)
float x,p;
#endif
{
__int32_t hx,hp;
__uint32_t sx;
float p_half;
GET_FLOAT_WORD(hx,x);
GET_FLOAT_WORD(hp,p);
sx = hx&0x80000000;
hp &= 0x7fffffff;
hx &= 0x7fffffff;
/* purge off exception values */
if(FLT_UWORD_IS_ZERO(hp)||
!FLT_UWORD_IS_FINITE(hx)||
FLT_UWORD_IS_NAN(hp))
return (x*p)/(x*p);
if (hp<=FLT_UWORD_HALF_MAX) x = __ieee754_fmodf(x,p+p); /* now x < 2p */
if ((hx-hp)==0) return zero*x;
x = fabsf(x);
p = fabsf(p);
if (hp<0x01000000) {
if(x+x>p) {
x-=p;
if(x+x>=p) x -= p;
}
} else {
p_half = (float)0.5*p;
if(x>p_half) {
x-=p;
if(x>=p_half) x -= p;
}
}
GET_FLOAT_WORD(hx,x);
SET_FLOAT_WORD(x,hx^sx);
return x;
}

View File

@ -0,0 +1,53 @@
/* ef_scalb.c -- float version of e_scalb.c.
* Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
*/
/*
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunPro, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
#include "fdlibm.h"
#include <limits.h>
#ifdef _SCALB_INT
#ifdef __STDC__
float __ieee754_scalbf(float x, int fn)
#else
float __ieee754_scalbf(x,fn)
float x; int fn;
#endif
#else
#ifdef __STDC__
float __ieee754_scalbf(float x, float fn)
#else
float __ieee754_scalbf(x,fn)
float x, fn;
#endif
#endif
{
#ifdef _SCALB_INT
return scalbnf(x,fn);
#else
if (isnan(x)||isnan(fn)) return x*fn;
if (!finitef(fn)) {
if(fn>(float)0.0) return x*fn;
else return x/(-fn);
}
if (rintf(fn)!=fn) return (fn-fn)/(fn-fn);
#if INT_MAX > 65000
if ( fn > (float)65000.0) return scalbnf(x, 65000);
if (-fn > (float)65000.0) return scalbnf(x,-65000);
#else
if ( fn > (float)32000.0) return scalbnf(x, 32000);
if (-fn > (float)32000.0) return scalbnf(x,-32000);
#endif
return scalbnf(x,(int)fn);
#endif
}

View File

@ -0,0 +1,63 @@
/* ef_sinh.c -- float version of e_sinh.c.
* Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
*/
/*
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunPro, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
#include "fdlibm.h"
#ifdef __STDC__
static const float one = 1.0, shuge = 1.0e37;
#else
static float one = 1.0, shuge = 1.0e37;
#endif
#ifdef __STDC__
float __ieee754_sinhf(float x)
#else
float __ieee754_sinhf(x)
float x;
#endif
{
float t,w,h;
__int32_t ix,jx;
GET_FLOAT_WORD(jx,x);
ix = jx&0x7fffffff;
/* x is INF or NaN */
if(!FLT_UWORD_IS_FINITE(ix)) return x+x;
h = 0.5;
if (jx<0) h = -h;
/* |x| in [0,22], return sign(x)*0.5*(E+E/(E+1))) */
if (ix < 0x41b00000) { /* |x|<22 */
if (ix<0x31800000) /* |x|<2**-28 */
if(shuge+x>one) return x;/* sinh(tiny) = tiny with inexact */
t = expm1f(fabsf(x));
if(ix<0x3f800000) return h*((float)2.0*t-t*t/(t+one));
return h*(t+t/(t+one));
}
/* |x| in [22, log(maxdouble)] return 0.5*exp(|x|) */
if (ix<=FLT_UWORD_LOG_MAX) return h*__ieee754_expf(fabsf(x));
/* |x| in [log(maxdouble), overflowthresold] */
if (ix<=FLT_UWORD_LOG_2MAX) {
w = __ieee754_expf((float)0.5*fabsf(x));
t = h*w;
return t*w;
}
/* |x| > overflowthresold, sinh(x) overflow */
return x*shuge;
}

View File

@ -0,0 +1,89 @@
/* ef_sqrtf.c -- float version of e_sqrt.c.
* Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
*/
/*
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunPro, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
#include "fdlibm.h"
#ifdef __STDC__
static const float one = 1.0, tiny=1.0e-30;
#else
static float one = 1.0, tiny=1.0e-30;
#endif
#ifdef __STDC__
float __ieee754_sqrtf(float x)
#else
float __ieee754_sqrtf(x)
float x;
#endif
{
float z;
__uint32_t r,hx;
__int32_t ix,s,q,m,t,i;
GET_FLOAT_WORD(ix,x);
hx = ix&0x7fffffff;
/* take care of Inf and NaN */
if(!FLT_UWORD_IS_FINITE(hx))
return x*x+x; /* sqrt(NaN)=NaN, sqrt(+inf)=+inf
sqrt(-inf)=sNaN */
/* take care of zero and -ves */
if(FLT_UWORD_IS_ZERO(hx)) return x;/* sqrt(+-0) = +-0 */
if(ix<0) return (x-x)/(x-x); /* sqrt(-ve) = sNaN */
/* normalize x */
m = (ix>>23);
if(FLT_UWORD_IS_SUBNORMAL(hx)) { /* subnormal x */
for(i=0;(ix&0x00800000L)==0;i++) ix<<=1;
m -= i-1;
}
m -= 127; /* unbias exponent */
ix = (ix&0x007fffffL)|0x00800000L;
if(m&1) /* odd m, double x to make it even */
ix += ix;
m >>= 1; /* m = [m/2] */
/* generate sqrt(x) bit by bit */
ix += ix;
q = s = 0; /* q = sqrt(x) */
r = 0x01000000L; /* r = moving bit from right to left */
while(r!=0) {
t = s+r;
if(t<=ix) {
s = t+r;
ix -= t;
q += r;
}
ix += ix;
r>>=1;
}
/* use floating add to find out rounding direction */
if(ix!=0) {
z = one-tiny; /* trigger inexact flag */
if (z>=one) {
z = one+tiny;
if (z>one)
q += 2;
else
q += (q&1);
}
}
ix = (q>>1)+0x3f000000L;
ix += (m <<23);
SET_FLOAT_WORD(z,ix);
return z;
}

View File

@ -0,0 +1,32 @@
/* @(#)er_gamma.c 5.1 93/09/24 */
/*
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunPro, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*
*/
/* __ieee754_gamma_r(x, signgamp)
* Reentrant version of the logarithm of the Gamma function
* with user provide pointer for the sign of Gamma(x).
*
* Method: See __ieee754_lgamma_r
*/
#include "fdlibm.h"
#ifdef __STDC__
double __ieee754_gamma_r(double x, int *signgamp)
#else
double __ieee754_gamma_r(x,signgamp)
double x; int *signgamp;
#endif
{
return __ieee754_exp (__ieee754_lgamma_r(x,signgamp));
}

View File

@ -0,0 +1,309 @@
/* @(#)er_lgamma.c 5.1 93/09/24 */
/*
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunPro, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*
*/
/* __ieee754_lgamma_r(x, signgamp)
* Reentrant version of the logarithm of the Gamma function
* with user provide pointer for the sign of Gamma(x).
*
* Method:
* 1. Argument Reduction for 0 < x <= 8
* Since gamma(1+s)=s*gamma(s), for x in [0,8], we may
* reduce x to a number in [1.5,2.5] by
* lgamma(1+s) = log(s) + lgamma(s)
* for example,
* lgamma(7.3) = log(6.3) + lgamma(6.3)
* = log(6.3*5.3) + lgamma(5.3)
* = log(6.3*5.3*4.3*3.3*2.3) + lgamma(2.3)
* 2. Polynomial approximation of lgamma around its
* minimun ymin=1.461632144968362245 to maintain monotonicity.
* On [ymin-0.23, ymin+0.27] (i.e., [1.23164,1.73163]), use
* Let z = x-ymin;
* lgamma(x) = -1.214862905358496078218 + z^2*poly(z)
* where
* poly(z) is a 14 degree polynomial.
* 2. Rational approximation in the primary interval [2,3]
* We use the following approximation:
* s = x-2.0;
* lgamma(x) = 0.5*s + s*P(s)/Q(s)
* with accuracy
* |P/Q - (lgamma(x)-0.5s)| < 2**-61.71
* Our algorithms are based on the following observation
*
* zeta(2)-1 2 zeta(3)-1 3
* lgamma(2+s) = s*(1-Euler) + --------- * s - --------- * s + ...
* 2 3
*
* where Euler = 0.5771... is the Euler constant, which is very
* close to 0.5.
*
* 3. For x>=8, we have
* lgamma(x)~(x-0.5)log(x)-x+0.5*log(2pi)+1/(12x)-1/(360x**3)+....
* (better formula:
* lgamma(x)~(x-0.5)*(log(x)-1)-.5*(log(2pi)-1) + ...)
* Let z = 1/x, then we approximation
* f(z) = lgamma(x) - (x-0.5)(log(x)-1)
* by
* 3 5 11
* w = w0 + w1*z + w2*z + w3*z + ... + w6*z
* where
* |w - f(z)| < 2**-58.74
*
* 4. For negative x, since (G is gamma function)
* -x*G(-x)*G(x) = pi/sin(pi*x),
* we have
* G(x) = pi/(sin(pi*x)*(-x)*G(-x))
* since G(-x) is positive, sign(G(x)) = sign(sin(pi*x)) for x<0
* Hence, for x<0, signgam = sign(sin(pi*x)) and
* lgamma(x) = log(|Gamma(x)|)
* = log(pi/(|x*sin(pi*x)|)) - lgamma(-x);
* Note: one should avoid compute pi*(-x) directly in the
* computation of sin(pi*(-x)).
*
* 5. Special Cases
* lgamma(2+s) ~ s*(1-Euler) for tiny s
* lgamma(1)=lgamma(2)=0
* lgamma(x) ~ -log(x) for tiny x
* lgamma(0) = lgamma(inf) = inf
* lgamma(-integer) = +-inf
*
*/
#include "fdlibm.h"
#ifdef __STDC__
static const double
#else
static double
#endif
two52= 4.50359962737049600000e+15, /* 0x43300000, 0x00000000 */
half= 5.00000000000000000000e-01, /* 0x3FE00000, 0x00000000 */
one = 1.00000000000000000000e+00, /* 0x3FF00000, 0x00000000 */
pi = 3.14159265358979311600e+00, /* 0x400921FB, 0x54442D18 */
a0 = 7.72156649015328655494e-02, /* 0x3FB3C467, 0xE37DB0C8 */
a1 = 3.22467033424113591611e-01, /* 0x3FD4A34C, 0xC4A60FAD */
a2 = 6.73523010531292681824e-02, /* 0x3FB13E00, 0x1A5562A7 */
a3 = 2.05808084325167332806e-02, /* 0x3F951322, 0xAC92547B */
a4 = 7.38555086081402883957e-03, /* 0x3F7E404F, 0xB68FEFE8 */
a5 = 2.89051383673415629091e-03, /* 0x3F67ADD8, 0xCCB7926B */
a6 = 1.19270763183362067845e-03, /* 0x3F538A94, 0x116F3F5D */
a7 = 5.10069792153511336608e-04, /* 0x3F40B6C6, 0x89B99C00 */
a8 = 2.20862790713908385557e-04, /* 0x3F2CF2EC, 0xED10E54D */
a9 = 1.08011567247583939954e-04, /* 0x3F1C5088, 0x987DFB07 */
a10 = 2.52144565451257326939e-05, /* 0x3EFA7074, 0x428CFA52 */
a11 = 4.48640949618915160150e-05, /* 0x3F07858E, 0x90A45837 */
tc = 1.46163214496836224576e+00, /* 0x3FF762D8, 0x6356BE3F */
tf = -1.21486290535849611461e-01, /* 0xBFBF19B9, 0xBCC38A42 */
/* tt = -(tail of tf) */
tt = -3.63867699703950536541e-18, /* 0xBC50C7CA, 0xA48A971F */
t0 = 4.83836122723810047042e-01, /* 0x3FDEF72B, 0xC8EE38A2 */
t1 = -1.47587722994593911752e-01, /* 0xBFC2E427, 0x8DC6C509 */
t2 = 6.46249402391333854778e-02, /* 0x3FB08B42, 0x94D5419B */
t3 = -3.27885410759859649565e-02, /* 0xBFA0C9A8, 0xDF35B713 */
t4 = 1.79706750811820387126e-02, /* 0x3F9266E7, 0x970AF9EC */
t5 = -1.03142241298341437450e-02, /* 0xBF851F9F, 0xBA91EC6A */
t6 = 6.10053870246291332635e-03, /* 0x3F78FCE0, 0xE370E344 */
t7 = -3.68452016781138256760e-03, /* 0xBF6E2EFF, 0xB3E914D7 */
t8 = 2.25964780900612472250e-03, /* 0x3F6282D3, 0x2E15C915 */
t9 = -1.40346469989232843813e-03, /* 0xBF56FE8E, 0xBF2D1AF1 */
t10 = 8.81081882437654011382e-04, /* 0x3F4CDF0C, 0xEF61A8E9 */
t11 = -5.38595305356740546715e-04, /* 0xBF41A610, 0x9C73E0EC */
t12 = 3.15632070903625950361e-04, /* 0x3F34AF6D, 0x6C0EBBF7 */
t13 = -3.12754168375120860518e-04, /* 0xBF347F24, 0xECC38C38 */
t14 = 3.35529192635519073543e-04, /* 0x3F35FD3E, 0xE8C2D3F4 */
u0 = -7.72156649015328655494e-02, /* 0xBFB3C467, 0xE37DB0C8 */
u1 = 6.32827064025093366517e-01, /* 0x3FE4401E, 0x8B005DFF */
u2 = 1.45492250137234768737e+00, /* 0x3FF7475C, 0xD119BD6F */
u3 = 9.77717527963372745603e-01, /* 0x3FEF4976, 0x44EA8450 */
u4 = 2.28963728064692451092e-01, /* 0x3FCD4EAE, 0xF6010924 */
u5 = 1.33810918536787660377e-02, /* 0x3F8B678B, 0xBF2BAB09 */
v1 = 2.45597793713041134822e+00, /* 0x4003A5D7, 0xC2BD619C */
v2 = 2.12848976379893395361e+00, /* 0x40010725, 0xA42B18F5 */
v3 = 7.69285150456672783825e-01, /* 0x3FE89DFB, 0xE45050AF */
v4 = 1.04222645593369134254e-01, /* 0x3FBAAE55, 0xD6537C88 */
v5 = 3.21709242282423911810e-03, /* 0x3F6A5ABB, 0x57D0CF61 */
s0 = -7.72156649015328655494e-02, /* 0xBFB3C467, 0xE37DB0C8 */
s1 = 2.14982415960608852501e-01, /* 0x3FCB848B, 0x36E20878 */
s2 = 3.25778796408930981787e-01, /* 0x3FD4D98F, 0x4F139F59 */
s3 = 1.46350472652464452805e-01, /* 0x3FC2BB9C, 0xBEE5F2F7 */
s4 = 2.66422703033638609560e-02, /* 0x3F9B481C, 0x7E939961 */
s5 = 1.84028451407337715652e-03, /* 0x3F5E26B6, 0x7368F239 */
s6 = 3.19475326584100867617e-05, /* 0x3F00BFEC, 0xDD17E945 */
r1 = 1.39200533467621045958e+00, /* 0x3FF645A7, 0x62C4AB74 */
r2 = 7.21935547567138069525e-01, /* 0x3FE71A18, 0x93D3DCDC */
r3 = 1.71933865632803078993e-01, /* 0x3FC601ED, 0xCCFBDF27 */
r4 = 1.86459191715652901344e-02, /* 0x3F9317EA, 0x742ED475 */
r5 = 7.77942496381893596434e-04, /* 0x3F497DDA, 0xCA41A95B */
r6 = 7.32668430744625636189e-06, /* 0x3EDEBAF7, 0xA5B38140 */
w0 = 4.18938533204672725052e-01, /* 0x3FDACFE3, 0x90C97D69 */
w1 = 8.33333333333329678849e-02, /* 0x3FB55555, 0x5555553B */
w2 = -2.77777777728775536470e-03, /* 0xBF66C16C, 0x16B02E5C */
w3 = 7.93650558643019558500e-04, /* 0x3F4A019F, 0x98CF38B6 */
w4 = -5.95187557450339963135e-04, /* 0xBF4380CB, 0x8C0FE741 */
w5 = 8.36339918996282139126e-04, /* 0x3F4B67BA, 0x4CDAD5D1 */
w6 = -1.63092934096575273989e-03; /* 0xBF5AB89D, 0x0B9E43E4 */
#ifdef __STDC__
static const double zero= 0.00000000000000000000e+00;
#else
static double zero= 0.00000000000000000000e+00;
#endif
#ifdef __STDC__
static double sin_pi(double x)
#else
static double sin_pi(x)
double x;
#endif
{
double y,z;
__int32_t n,ix;
GET_HIGH_WORD(ix,x);
ix &= 0x7fffffff;
if(ix<0x3fd00000) return __kernel_sin(pi*x,zero,0);
y = -x; /* x is assume negative */
/*
* argument reduction, make sure inexact flag not raised if input
* is an integer
*/
z = floor(y);
if(z!=y) { /* inexact anyway */
y *= 0.5;
y = 2.0*(y - floor(y)); /* y = |x| mod 2.0 */
n = (__int32_t) (y*4.0);
} else {
if(ix>=0x43400000) {
y = zero; n = 0; /* y must be even */
} else {
if(ix<0x43300000) z = y+two52; /* exact */
GET_LOW_WORD(n,z);
n &= 1;
y = n;
n<<= 2;
}
}
switch (n) {
case 0: y = __kernel_sin(pi*y,zero,0); break;
case 1:
case 2: y = __kernel_cos(pi*(0.5-y),zero); break;
case 3:
case 4: y = __kernel_sin(pi*(one-y),zero,0); break;
case 5:
case 6: y = -__kernel_cos(pi*(y-1.5),zero); break;
default: y = __kernel_sin(pi*(y-2.0),zero,0); break;
}
return -y;
}
#ifdef __STDC__
double __ieee754_lgamma_r(double x, int *signgamp)
#else
double __ieee754_lgamma_r(x,signgamp)
double x; int *signgamp;
#endif
{
double t,y,z,nadj = 0.0,p,p1,p2,p3,q,r,w;
__int32_t i,hx,lx,ix;
EXTRACT_WORDS(hx,lx,x);
/* purge off +-inf, NaN, +-0, and negative arguments */
*signgamp = 1;
ix = hx&0x7fffffff;
if(ix>=0x7ff00000) return x*x;
if((ix|lx)==0) return one/zero;
if(ix<0x3b900000) { /* |x|<2**-70, return -log(|x|) */
if(hx<0) {
*signgamp = -1;
return -__ieee754_log(-x);
} else return -__ieee754_log(x);
}
if(hx<0) {
if(ix>=0x43300000) /* |x|>=2**52, must be -integer */
return one/zero;
t = sin_pi(x);
if(t==zero) return one/zero; /* -integer */
nadj = __ieee754_log(pi/fabs(t*x));
if(t<zero) *signgamp = -1;
x = -x;
}
/* purge off 1 and 2 */
if((((ix-0x3ff00000)|lx)==0)||(((ix-0x40000000)|lx)==0)) r = 0;
/* for x < 2.0 */
else if(ix<0x40000000) {
if(ix<=0x3feccccc) { /* lgamma(x) = lgamma(x+1)-log(x) */
r = -__ieee754_log(x);
if(ix>=0x3FE76944) {y = one-x; i= 0;}
else if(ix>=0x3FCDA661) {y= x-(tc-one); i=1;}
else {y = x; i=2;}
} else {
r = zero;
if(ix>=0x3FFBB4C3) {y=2.0-x;i=0;} /* [1.7316,2] */
else if(ix>=0x3FF3B4C4) {y=x-tc;i=1;} /* [1.23,1.73] */
else {y=x-one;i=2;}
}
switch(i) {
case 0:
z = y*y;
p1 = a0+z*(a2+z*(a4+z*(a6+z*(a8+z*a10))));
p2 = z*(a1+z*(a3+z*(a5+z*(a7+z*(a9+z*a11)))));
p = y*p1+p2;
r += (p-0.5*y); break;
case 1:
z = y*y;
w = z*y;
p1 = t0+w*(t3+w*(t6+w*(t9 +w*t12))); /* parallel comp */
p2 = t1+w*(t4+w*(t7+w*(t10+w*t13)));
p3 = t2+w*(t5+w*(t8+w*(t11+w*t14)));
p = z*p1-(tt-w*(p2+y*p3));
r += (tf + p); break;
case 2:
p1 = y*(u0+y*(u1+y*(u2+y*(u3+y*(u4+y*u5)))));
p2 = one+y*(v1+y*(v2+y*(v3+y*(v4+y*v5))));
r += (-0.5*y + p1/p2);
}
}
else if(ix<0x40200000) { /* x < 8.0 */
i = (__int32_t)x;
t = zero;
y = x-(double)i;
p = y*(s0+y*(s1+y*(s2+y*(s3+y*(s4+y*(s5+y*s6))))));
q = one+y*(r1+y*(r2+y*(r3+y*(r4+y*(r5+y*r6)))));
r = half*y+p/q;
z = one; /* lgamma(1+s) = log(s) + lgamma(s) */
switch(i) {
case 7: z *= (y+6.0); /* FALLTHRU */
case 6: z *= (y+5.0); /* FALLTHRU */
case 5: z *= (y+4.0); /* FALLTHRU */
case 4: z *= (y+3.0); /* FALLTHRU */
case 3: z *= (y+2.0); /* FALLTHRU */
r += __ieee754_log(z); break;
}
/* 8.0 <= x < 2**58 */
} else if (ix < 0x43900000) {
t = __ieee754_log(x);
z = one/x;
y = z*z;
w = w0+z*(w1+y*(w2+y*(w3+y*(w4+y*(w5+y*w6)))));
r = (x-half)*(t-one)+w;
} else
/* 2**58 <= x <= inf */
r = x*(__ieee754_log(x)-one);
if(hx<0) r = nadj - r;
return r;
}

View File

@ -0,0 +1,34 @@
/* erf_gamma.c -- float version of er_gamma.c.
* Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
*/
/*
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunPro, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*
*/
/* __ieee754_gammaf_r(x, signgamp)
* Reentrant version of the logarithm of the Gamma function
* with user provide pointer for the sign of Gamma(x).
*
* Method: See __ieee754_lgammaf_r
*/
#include "fdlibm.h"
#ifdef __STDC__
float __ieee754_gammaf_r(float x, int *signgamp)
#else
float __ieee754_gammaf_r(x,signgamp)
float x; int *signgamp;
#endif
{
return __ieee754_expf (__ieee754_lgammaf_r(x,signgamp));
}

View File

@ -0,0 +1,244 @@
/* erf_lgamma.c -- float version of er_lgamma.c.
* Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
*/
/*
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunPro, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*
*/
#include "fdlibm.h"
#ifdef __STDC__
static const float
#else
static float
#endif
two23= 8.3886080000e+06, /* 0x4b000000 */
half= 5.0000000000e-01, /* 0x3f000000 */
one = 1.0000000000e+00, /* 0x3f800000 */
pi = 3.1415927410e+00, /* 0x40490fdb */
a0 = 7.7215664089e-02, /* 0x3d9e233f */
a1 = 3.2246702909e-01, /* 0x3ea51a66 */
a2 = 6.7352302372e-02, /* 0x3d89f001 */
a3 = 2.0580807701e-02, /* 0x3ca89915 */
a4 = 7.3855509982e-03, /* 0x3bf2027e */
a5 = 2.8905137442e-03, /* 0x3b3d6ec6 */
a6 = 1.1927076848e-03, /* 0x3a9c54a1 */
a7 = 5.1006977446e-04, /* 0x3a05b634 */
a8 = 2.2086278477e-04, /* 0x39679767 */
a9 = 1.0801156895e-04, /* 0x38e28445 */
a10 = 2.5214456400e-05, /* 0x37d383a2 */
a11 = 4.4864096708e-05, /* 0x383c2c75 */
tc = 1.4616321325e+00, /* 0x3fbb16c3 */
tf = -1.2148628384e-01, /* 0xbdf8cdcd */
/* tt = -(tail of tf) */
tt = 6.6971006518e-09, /* 0x31e61c52 */
t0 = 4.8383611441e-01, /* 0x3ef7b95e */
t1 = -1.4758771658e-01, /* 0xbe17213c */
t2 = 6.4624942839e-02, /* 0x3d845a15 */
t3 = -3.2788541168e-02, /* 0xbd064d47 */
t4 = 1.7970675603e-02, /* 0x3c93373d */
t5 = -1.0314224288e-02, /* 0xbc28fcfe */
t6 = 6.1005386524e-03, /* 0x3bc7e707 */
t7 = -3.6845202558e-03, /* 0xbb7177fe */
t8 = 2.2596477065e-03, /* 0x3b141699 */
t9 = -1.4034647029e-03, /* 0xbab7f476 */
t10 = 8.8108185446e-04, /* 0x3a66f867 */
t11 = -5.3859531181e-04, /* 0xba0d3085 */
t12 = 3.1563205994e-04, /* 0x39a57b6b */
t13 = -3.1275415677e-04, /* 0xb9a3f927 */
t14 = 3.3552918467e-04, /* 0x39afe9f7 */
u0 = -7.7215664089e-02, /* 0xbd9e233f */
u1 = 6.3282704353e-01, /* 0x3f2200f4 */
u2 = 1.4549225569e+00, /* 0x3fba3ae7 */
u3 = 9.7771751881e-01, /* 0x3f7a4bb2 */
u4 = 2.2896373272e-01, /* 0x3e6a7578 */
u5 = 1.3381091878e-02, /* 0x3c5b3c5e */
v1 = 2.4559779167e+00, /* 0x401d2ebe */
v2 = 2.1284897327e+00, /* 0x4008392d */
v3 = 7.6928514242e-01, /* 0x3f44efdf */
v4 = 1.0422264785e-01, /* 0x3dd572af */
v5 = 3.2170924824e-03, /* 0x3b52d5db */
s0 = -7.7215664089e-02, /* 0xbd9e233f */
s1 = 2.1498242021e-01, /* 0x3e5c245a */
s2 = 3.2577878237e-01, /* 0x3ea6cc7a */
s3 = 1.4635047317e-01, /* 0x3e15dce6 */
s4 = 2.6642270386e-02, /* 0x3cda40e4 */
s5 = 1.8402845599e-03, /* 0x3af135b4 */
s6 = 3.1947532989e-05, /* 0x3805ff67 */
r1 = 1.3920053244e+00, /* 0x3fb22d3b */
r2 = 7.2193557024e-01, /* 0x3f38d0c5 */
r3 = 1.7193385959e-01, /* 0x3e300f6e */
r4 = 1.8645919859e-02, /* 0x3c98bf54 */
r5 = 7.7794247773e-04, /* 0x3a4beed6 */
r6 = 7.3266842264e-06, /* 0x36f5d7bd */
w0 = 4.1893854737e-01, /* 0x3ed67f1d */
w1 = 8.3333335817e-02, /* 0x3daaaaab */
w2 = -2.7777778450e-03, /* 0xbb360b61 */
w3 = 7.9365057172e-04, /* 0x3a500cfd */
w4 = -5.9518753551e-04, /* 0xba1c065c */
w5 = 8.3633989561e-04, /* 0x3a5b3dd2 */
w6 = -1.6309292987e-03; /* 0xbad5c4e8 */
#ifdef __STDC__
static const float zero= 0.0000000000e+00;
#else
static float zero= 0.0000000000e+00;
#endif
#ifdef __STDC__
static float sin_pif(float x)
#else
static float sin_pif(x)
float x;
#endif
{
float y,z;
__int32_t n,ix;
GET_FLOAT_WORD(ix,x);
ix &= 0x7fffffff;
if(ix<0x3e800000) return __kernel_sinf(pi*x,zero,0);
y = -x; /* x is assume negative */
/*
* argument reduction, make sure inexact flag not raised if input
* is an integer
*/
z = floorf(y);
if(z!=y) { /* inexact anyway */
y *= (float)0.5;
y = (float)2.0*(y - floorf(y)); /* y = |x| mod 2.0 */
n = (__int32_t) (y*(float)4.0);
} else {
if(ix>=0x4b800000) {
y = zero; n = 0; /* y must be even */
} else {
if(ix<0x4b000000) z = y+two23; /* exact */
GET_FLOAT_WORD(n,z);
n &= 1;
y = n;
n<<= 2;
}
}
switch (n) {
case 0: y = __kernel_sinf(pi*y,zero,0); break;
case 1:
case 2: y = __kernel_cosf(pi*((float)0.5-y),zero); break;
case 3:
case 4: y = __kernel_sinf(pi*(one-y),zero,0); break;
case 5:
case 6: y = -__kernel_cosf(pi*(y-(float)1.5),zero); break;
default: y = __kernel_sinf(pi*(y-(float)2.0),zero,0); break;
}
return -y;
}
#ifdef __STDC__
float __ieee754_lgammaf_r(float x, int *signgamp)
#else
float __ieee754_lgammaf_r(x,signgamp)
float x; int *signgamp;
#endif
{
float t,y,z,nadj = 0.0,p,p1,p2,p3,q,r,w;
__int32_t i,hx,ix;
GET_FLOAT_WORD(hx,x);
/* purge off +-inf, NaN, +-0, and negative arguments */
*signgamp = 1;
ix = hx&0x7fffffff;
if(ix>=0x7f800000) return x*x;
if(ix==0) return one/zero;
if(ix<0x1c800000) { /* |x|<2**-70, return -log(|x|) */
if(hx<0) {
*signgamp = -1;
return -__ieee754_logf(-x);
} else return -__ieee754_logf(x);
}
if(hx<0) {
if(ix>=0x4b000000) /* |x|>=2**23, must be -integer */
return one/zero;
t = sin_pif(x);
if(t==zero) return one/zero; /* -integer */
nadj = __ieee754_logf(pi/fabsf(t*x));
if(t<zero) *signgamp = -1;
x = -x;
}
/* purge off 1 and 2 */
if (ix==0x3f800000||ix==0x40000000) r = 0;
/* for x < 2.0 */
else if(ix<0x40000000) {
if(ix<=0x3f666666) { /* lgamma(x) = lgamma(x+1)-log(x) */
r = -__ieee754_logf(x);
if(ix>=0x3f3b4a20) {y = one-x; i= 0;}
else if(ix>=0x3e6d3308) {y= x-(tc-one); i=1;}
else {y = x; i=2;}
} else {
r = zero;
if(ix>=0x3fdda618) {y=(float)2.0-x;i=0;} /* [1.7316,2] */
else if(ix>=0x3F9da620) {y=x-tc;i=1;} /* [1.23,1.73] */
else {y=x-one;i=2;}
}
switch(i) {
case 0:
z = y*y;
p1 = a0+z*(a2+z*(a4+z*(a6+z*(a8+z*a10))));
p2 = z*(a1+z*(a3+z*(a5+z*(a7+z*(a9+z*a11)))));
p = y*p1+p2;
r += (p-(float)0.5*y); break;
case 1:
z = y*y;
w = z*y;
p1 = t0+w*(t3+w*(t6+w*(t9 +w*t12))); /* parallel comp */
p2 = t1+w*(t4+w*(t7+w*(t10+w*t13)));
p3 = t2+w*(t5+w*(t8+w*(t11+w*t14)));
p = z*p1-(tt-w*(p2+y*p3));
r += (tf + p); break;
case 2:
p1 = y*(u0+y*(u1+y*(u2+y*(u3+y*(u4+y*u5)))));
p2 = one+y*(v1+y*(v2+y*(v3+y*(v4+y*v5))));
r += (-(float)0.5*y + p1/p2);
}
}
else if(ix<0x41000000) { /* x < 8.0 */
i = (__int32_t)x;
t = zero;
y = x-(float)i;
p = y*(s0+y*(s1+y*(s2+y*(s3+y*(s4+y*(s5+y*s6))))));
q = one+y*(r1+y*(r2+y*(r3+y*(r4+y*(r5+y*r6)))));
r = half*y+p/q;
z = one; /* lgamma(1+s) = log(s) + lgamma(s) */
switch(i) {
case 7: z *= (y+(float)6.0); /* FALLTHRU */
case 6: z *= (y+(float)5.0); /* FALLTHRU */
case 5: z *= (y+(float)4.0); /* FALLTHRU */
case 4: z *= (y+(float)3.0); /* FALLTHRU */
case 3: z *= (y+(float)2.0); /* FALLTHRU */
r += __ieee754_logf(z); break;
}
/* 8.0 <= x < 2**58 */
} else if (ix < 0x5c800000) {
t = __ieee754_logf(x);
z = one/x;
y = z*z;
w = w0+z*(w1+y*(w2+y*(w3+y*(w4+y*(w5+y*w6)))));
r = (x-half)*(t-one)+w;
} else
/* 2**58 <= x <= inf */
r = x*(__ieee754_logf(x)-one);
if(hx<0) r = nadj - r;
return r;
}

View File

@ -1,299 +0,0 @@
/* erfl.c
*
* Error function
*
*
*
* SYNOPSIS:
*
* long double x, y, erfl();
*
* y = erfl( x );
*
*
*
* DESCRIPTION:
*
* The integral is
*
* x
* -
* 2 | | 2
* erf(x) = -------- | exp( - t ) dt.
* sqrt(pi) | |
* -
* 0
*
* The magnitude of x is limited to about 106.56 for IEEE
* arithmetic; 1 or -1 is returned outside this range.
*
* For 0 <= |x| < 1, erf(x) = x * P6(x^2)/Q6(x^2);
* Otherwise: erf(x) = 1 - erfc(x).
*
*
*
* ACCURACY:
*
* Relative error:
* arithmetic domain # trials peak rms
* IEEE 0,1 50000 2.0e-19 5.7e-20
*
*/
/* erfcl.c
*
* Complementary error function
*
*
*
* SYNOPSIS:
*
* long double x, y, erfcl();
*
* y = erfcl( x );
*
*
*
* DESCRIPTION:
*
*
* 1 - erf(x) =
*
* inf.
* -
* 2 | | 2
* erfc(x) = -------- | exp( - t ) dt
* sqrt(pi) | |
* -
* x
*
*
* For small x, erfc(x) = 1 - erf(x); otherwise rational
* approximations are computed.
*
* A special function expx2l.c is used to suppress error amplification
* in computing exp(-x^2).
*
*
* ACCURACY:
*
* Relative error:
* arithmetic domain # trials peak rms
* IEEE 0,13 50000 8.4e-19 9.7e-20
* IEEE 6,106.56 20000 2.9e-19 7.1e-20
*
*
* ERROR MESSAGES:
*
* message condition value returned
* erfcl underflow x^2 > MAXLOGL 0.0
*
*
*/
/*
Modified from file ndtrl.c
Cephes Math Library Release 2.3: January, 1995
Copyright 1984, 1995 by Stephen L. Moshier
*/
#include <math.h>
#include "cephes_mconf.h"
/* erfc(x) = exp(-x^2) P(1/x)/Q(1/x)
1/8 <= 1/x <= 1
Peak relative error 5.8e-21 */
static const unsigned short P[] = {
0x4bf0,0x9ad8,0x7a03,0x86c7,0x401d, XPD
0xdf23,0xd843,0x4032,0x8881,0x401e, XPD
0xd025,0xcfd5,0x8494,0x88d3,0x401e, XPD
0xb6d0,0xc92b,0x5417,0xacb1,0x401d, XPD
0xada8,0x356a,0x4982,0x94a6,0x401c, XPD
0x4e13,0xcaee,0x9e31,0xb258,0x401a, XPD
0x5840,0x554d,0x37a3,0x9239,0x4018, XPD
0x3b58,0x3da2,0xaf02,0x9780,0x4015, XPD
0x0144,0x489e,0xbe68,0x9c31,0x4011, XPD
0x333b,0xd9e6,0xd404,0x986f,0xbfee, XPD
};
static const unsigned short Q[] = {
/* 0x0000,0x0000,0x0000,0x8000,0x3fff, XPD */
0x0e43,0x302d,0x79ed,0x86c7,0x401d, XPD
0xf817,0x9128,0xc0f8,0xd48b,0x401e, XPD
0x8eae,0x8dad,0x6eb4,0x9aa2,0x401f, XPD
0x00e7,0x7595,0xcd06,0x88bb,0x401f, XPD
0x4991,0xcfda,0x52f1,0xa2a9,0x401e, XPD
0xc39d,0xe415,0xc43d,0x87c0,0x401d, XPD
0xa75d,0x436f,0x30dd,0xa027,0x401b, XPD
0xc4cb,0x305a,0xbf78,0x8220,0x4019, XPD
0x3708,0x33b1,0x07fa,0x8644,0x4016, XPD
0x24fa,0x96f6,0x7153,0x8a6c,0x4012, XPD
};
/* erfc(x) = exp(-x^2) 1/x R(1/x^2) / S(1/x^2)
1/128 <= 1/x < 1/8
Peak relative error 1.9e-21 */
static const unsigned short R[] = {
0x260a,0xab95,0x2fc7,0xe7c4,0x4000, XPD
0x4761,0x613e,0xdf6d,0xe58e,0x4001, XPD
0x0615,0x4b00,0x575f,0xdc7b,0x4000, XPD
0x521d,0x8527,0x3435,0x8dc2,0x3ffe, XPD
0x22cf,0xc711,0x6c5b,0xdcfb,0x3ff9, XPD
};
static const unsigned short S[] = {
/* 0x0000,0x0000,0x0000,0x8000,0x3fff, XPD */
0x5de6,0x17d7,0x54d6,0xaba9,0x4002, XPD
0x55d5,0xd300,0xe71e,0xf564,0x4002, XPD
0xb611,0x8f76,0xf020,0xd255,0x4001, XPD
0x3684,0x3798,0xb793,0x80b0,0x3fff, XPD
0xf5af,0x2fb2,0x1e57,0xc3d7,0x3ffa, XPD
};
/* erf(x) = x T(x^2)/U(x^2)
0 <= x <= 1
Peak relative error 7.6e-23 */
static const unsigned short T[] = {
0xfd7a,0x3a1a,0x705b,0xe0c4,0x3ffb, XPD
0x3128,0xc337,0x3716,0xace5,0x4001, XPD
0x9517,0x4e93,0x540e,0x8f97,0x4007, XPD
0x6118,0x6059,0x9093,0xa757,0x400a, XPD
0xb954,0xa987,0xc60c,0xbc83,0x400e, XPD
0x7a56,0xe45a,0xa4bd,0x975b,0x4010, XPD
0xc446,0x6bab,0x0b2a,0x86d0,0x4013, XPD
};
static const unsigned short U[] = {
/* 0x0000,0x0000,0x0000,0x8000,0x3fff, XPD */
0x3453,0x1f8e,0xf688,0xb507,0x4004, XPD
0x71ac,0xb12f,0x21ca,0xf2e2,0x4008, XPD
0xffe8,0x9cac,0x3b84,0xc2ac,0x400c, XPD
0x481d,0x445b,0xc807,0xc232,0x400f, XPD
0x9ad5,0x1aef,0x45b1,0xe25e,0x4011, XPD
0x71a7,0x1cad,0x012e,0xeef3,0x4012, XPD
};
/* expx2l.c
*
* Exponential of squared argument
*
*
*
* SYNOPSIS:
*
* long double x, y, expmx2l();
* int sign;
*
* y = expx2l( x );
*
*
*
* DESCRIPTION:
*
* Computes y = exp(x*x) while suppressing error amplification
* that would ordinarily arise from the inexactness of the
* exponential argument x*x.
*
*
*
* ACCURACY:
*
* Relative error:
* arithmetic domain # trials peak rms
* IEEE -106.566, 106.566 10^5 1.6e-19 4.4e-20
*
*/
#define M 32768.0L
#define MINV 3.0517578125e-5L
static long double expx2l (long double x)
{
long double u, u1, m, f;
x = fabsl (x);
/* Represent x as an exact multiple of M plus a residual.
M is a power of 2 chosen so that exp(m * m) does not overflow
or underflow and so that |x - m| is small. */
m = MINV * floorl(M * x + 0.5L);
f = x - m;
/* x^2 = m^2 + 2mf + f^2 */
u = m * m;
u1 = 2 * m * f + f * f;
if ((u+u1) > MAXLOGL)
return (INFINITYL);
/* u is exact, u1 is small. */
u = expl(u) * expl(u1);
return(u);
}
long double erfcl(long double a)
{
long double p,q,x,y,z;
if (isinf (a))
return (signbit (a) ? 2.0 : 0.0);
x = fabsl (a);
if (x < 1.0L)
return (1.0L - erfl(a));
z = a * a;
if( z > MAXLOGL )
{
under:
mtherr( "erfcl", UNDERFLOW );
errno = ERANGE;
return (signbit (a) ? 2.0 : 0.0);
}
/* Compute z = expl(a * a). */
z = expx2l (a);
y = 1.0L/x;
if (x < 8.0L)
{
p = polevll (y, P, 9);
q = p1evll (y, Q, 10);
}
else
{
q = y * y;
p = y * polevll (q, R, 4);
q = p1evll (q, S, 5);
}
y = p/(q * z);
if (a < 0.0L)
y = 2.0L - y;
if (y == 0.0L)
goto under;
return (y);
}
long double erfl(long double x)
{
long double y, z;
if( x == 0.0L )
return (x);
if (isinf (x))
return (signbit (x) ? -1.0L : 1.0L);
if (fabsl(x) > 1.0L)
return (1.0L - erfcl (x));
z = x * x;
y = x * polevll( z, T, 6 ) / p1evll( z, U, 6 );
return( y );
}

View File

@ -1,49 +0,0 @@
/*
* Written by J.T. Conklin <jtc@netbsd.org>.
* Public domain.
*/
/* e^x = 2^(x * log2(e)) */
.file "exp.s"
.text
.p2align 4,,15
.globl _exp
.def _exp; .scl 2; .type 32; .endef
_exp:
fldl 4(%esp)
/* I added the following ugly construct because exp(+-Inf) resulted
in NaN. The ugliness results from the bright minds at Intel.
For the i686 the code can be written better.
-- drepper@cygnus.com. */
fxam /* Is NaN or +-Inf? */
fstsw %ax
movb $0x45, %dh
andb %ah, %dh
cmpb $0x05, %dh
je 1f /* Is +-Inf, jump. */
fldl2e
fmulp /* x * log2(e) */
fld %st
frndint /* int(x * log2(e)) */
fsubr %st,%st(1) /* fract(x * log2(e)) */
fxch
f2xm1 /* 2^(fract(x * log2(e))) - 1 */
fld1
faddp /* 2^(fract(x * log2(e))) */
fscale /* e^x */
fstp %st(1)
ret
1:
testl $0x200, %eax /* Test sign. */
jz 2f /* If positive, jump. */
fstp %st
fldz /* Set result to 0. */
2:
ret

View File

@ -1,39 +0,0 @@
/*
* Written by J.T. Conklin <jtc@netbsd.org>.
* Adapted for exp2 by Ulrich Drepper <drepper@cygnus.com>.
* Public domain.
*/
.file "exp2.S"
.text
.align 4
.globl _exp2
.def _exp2; .scl 2; .type 32; .endef
_exp2:
fldl 4(%esp)
/* I added the following ugly construct because exp(+-Inf) resulted
in NaN. The ugliness results from the bright minds at Intel.
For the i686 the code can be written better.
-- drepper@cygnus.com. */
fxam /* Is NaN or +-Inf? */
fstsw %ax
movb $0x45, %dh
andb %ah, %dh
cmpb $0x05, %dh
je 1f /* Is +-Inf, jump. */
fld %st
frndint /* int(x) */
fsubr %st,%st(1) /* fract(x) */
fxch
f2xm1 /* 2^(fract(x)) - 1 */
fld1
faddp /* 2^(fract(x)) */
fscale /* e^x */
fstp %st(1)
ret
1: testl $0x200, %eax /* Test sign. */
jz 2f /* If positive, jump. */
fstp %st
fldz /* Set result to 0. */
2: ret

View File

@ -1,39 +0,0 @@
/*
* Written by J.T. Conklin <jtc@netbsd.org>.
* Adapted for exp2 by Ulrich Drepper <drepper@cygnus.com>.
* Public domain.
*/
.file "exp2f.S"
.text
.align 4
.globl _exp2f
.def _exp2f; .scl 2; .type 32; .endef
_exp2f:
flds 4(%esp)
/* I added the following ugly construct because exp(+-Inf) resulted
in NaN. The ugliness results from the bright minds at Intel.
For the i686 the code can be written better.
-- drepper@cygnus.com. */
fxam /* Is NaN or +-Inf? */
fstsw %ax
movb $0x45, %dh
andb %ah, %dh
cmpb $0x05, %dh
je 1f /* Is +-Inf, jump. */
fld %st
frndint /* int(x) */
fsubr %st,%st(1) /* fract(x) */
fxch
f2xm1 /* 2^(fract(x)) - 1 */
fld1
faddp /* 2^(fract(x)) */
fscale /* e^x */
fstp %st(1)
ret
1: testl $0x200, %eax /* Test sign. */
jz 2f /* If positive, jump. */
fstp %st
fldz /* Set result to 0. */
2: ret

View File

@ -1,39 +0,0 @@
/*
* Written by J.T. Conklin <jtc@netbsd.org>.
* Adapted for exp2 by Ulrich Drepper <drepper@cygnus.com>.
* Public domain.
*/
.file "exp2l.S"
.text
.align 4
.globl _exp2l
.def _exp2l; .scl 2; .type 32; .endef
_exp2l:
fldt 4(%esp)
/* I added the following ugly construct because exp(+-Inf) resulted
in NaN. The ugliness results from the bright minds at Intel.
For the i686 the code can be written better.
-- drepper@cygnus.com. */
fxam /* Is NaN or +-Inf? */
fstsw %ax
movb $0x45, %dh
andb %ah, %dh
cmpb $0x05, %dh
je 1f /* Is +-Inf, jump. */
fld %st
frndint /* int(x) */
fsubr %st,%st(1) /* fract(x) */
fxch
f2xm1 /* 2^(fract(x)) - 1 */
fld1
faddp /* 2^(fract(x)) */
fscale /* e^x */
fstp %st(1)
ret
1: testl $0x200, %eax /* Test sign. */
jz 2f /* If positive, jump. */
fstp %st
fldz /* Set result to 0. */
2: ret

View File

@ -1,3 +0,0 @@
#include <math.h>
float expf (float x)
{return (float) exp (x);}

View File

@ -1,71 +0,0 @@
/*
* Written by J.T. Conklin <jtc@netbsd.org>.
* Public domain.
*
* Adapted for `long double' by Ulrich Drepper <drepper@cygnus.com>.
*/
/*
* The 8087 method for the exponential function is to calculate
* exp(x) = 2^(x log2(e))
* after separating integer and fractional parts
* x log2(e) = i + f, |f| <= .5
* 2^i is immediate but f needs to be precise for long double accuracy.
* Suppress range reduction error in computing f by the following.
* Separate x into integer and fractional parts
* x = xi + xf, |xf| <= .5
* Separate log2(e) into the sum of an exact number c0 and small part c1.
* c0 + c1 = log2(e) to extra precision
* Then
* f = (c0 xi - i) + c0 xf + c1 x
* where c0 xi is exact and so also is (c0 xi - i).
* -- moshier@na-net.ornl.gov
*/
#include <math.h>
#include "cephes_mconf.h" /* for max and min log thresholds */
static long double c0 = 1.44268798828125L;
static long double c1 = 7.05260771340735992468e-6L;
static long double
__expl (long double x)
{
long double res;
asm ("fldl2e\n\t" /* 1 log2(e) */
"fmul %%st(1),%%st\n\t" /* 1 x log2(e) */
"frndint\n\t" /* 1 i */
"fld %%st(1)\n\t" /* 2 x */
"frndint\n\t" /* 2 xi */
"fld %%st(1)\n\t" /* 3 i */
"fldt %2\n\t" /* 4 c0 */
"fld %%st(2)\n\t" /* 5 xi */
"fmul %%st(1),%%st\n\t" /* 5 c0 xi */
"fsubp %%st,%%st(2)\n\t" /* 4 f = c0 xi - i */
"fld %%st(4)\n\t" /* 5 x */
"fsub %%st(3),%%st\n\t" /* 5 xf = x - xi */
"fmulp %%st,%%st(1)\n\t" /* 4 c0 xf */
"faddp %%st,%%st(1)\n\t" /* 3 f = f + c0 xf */
"fldt %3\n\t" /* 4 */
"fmul %%st(4),%%st\n\t" /* 4 c1 * x */
"faddp %%st,%%st(1)\n\t" /* 3 f = f + c1 * x */
"f2xm1\n\t" /* 3 2^(fract(x * log2(e))) - 1 */
"fld1\n\t" /* 4 1.0 */
"faddp\n\t" /* 3 2^(fract(x * log2(e))) */
"fstp %%st(1)\n\t" /* 2 */
"fscale\n\t" /* 2 scale factor is st(1); e^x */
"fstp %%st(1)\n\t" /* 1 */
"fstp %%st(1)\n\t" /* 0 */
: "=t" (res) : "0" (x), "m" (c0), "m" (c1) : "ax", "dx");
return res;
}
long double expl (long double x)
{
if (x > MAXLOGL)
return INFINITY;
else if (x < MINLOGL)
return 0.0L;
else
return __expl (x);
}

View File

@ -1,28 +0,0 @@
/*
* Written 2005 by Gregory W. Chicares <chicares@cox.net>.
* Adapted to double by Danny Smith <dannysmith@users.sourceforge.net>.
* Public domain.
*
* F2XM1's input is constrained to (-1, +1), so the domain of
* 'x * LOG2EL' is (-LOGE2L, +LOGE2L). Outside that domain,
* delegating to exp() handles C99 7.12.6.3/2 range errors.
*
* Constants from moshier.net, file cephes/ldouble/constl.c,
* are used instead of M_LN2 and M_LOG2E, which would not be
* visible with 'gcc std=c99'. The use of these extended precision
* constants also allows gcc to replace them with x87 opcodes.
*/
#include <math.h> /* expl() */
#include "cephes_mconf.h"
double expm1 (double x)
{
if (fabs(x) < LOGE2L)
{
x *= LOG2EL;
__asm__("f2xm1" : "=t" (x) : "0" (x));
return x;
}
else
return exp(x) - 1.0;
}

View File

@ -1,29 +0,0 @@
/*
* Written 2005 by Gregory W. Chicares <chicares@cox.net>.
* Adapted to float by Danny Smith <dannysmith@users.sourceforge.net>.
* Public domain.
*
* F2XM1's input is constrained to (-1, +1), so the domain of
* 'x * LOG2EL' is (-LOGE2L, +LOGE2L). Outside that domain,
* delegating to exp() handles C99 7.12.6.3/2 range errors.
*
* Constants from moshier.net, file cephes/ldouble/constl.c,
* are used instead of M_LN2 and M_LOG2E, which would not be
* visible with 'gcc std=c99'. The use of these extended precision
* constants also allows gcc to replace them with x87 opcodes.
*/
#include <math.h> /* expl() */
#include "cephes_mconf.h"
float expm1f (float x)
{
if (fabsf(x) < LOGE2L)
{
x *= LOG2EL;
__asm__("f2xm1" : "=t" (x) : "0" (x));
return x;
}
else
return expf(x) - 1.0F;
}

View File

@ -1,29 +0,0 @@
/*
* Written 2005 by Gregory W. Chicares <chicares@cox.net> with
* help from Danny Smith. dannysmith@users.sourceforge.net>.
* Public domain.
*
* F2XM1's input is constrained to (-1, +1), so the domain of
* 'x * LOG2EL' is (-LOGE2L, +LOGE2L). Outside that domain,
* delegating to expl() handles C99 7.12.6.3/2 range errors.
*
* Constants from moshier.net, file cephes/ldouble/constl.c,
* are used instead of M_LN2 and M_LOG2E, which would not be
* visible with 'gcc std=c99'. The use of these extended precision
* constants also allows gcc to replace them with x87 opcodes.
*/
#include <math.h> /* expl() */
#include "cephes_mconf.h"
long double expm1l (long double x)
{
if (fabsl(x) < LOGE2L)
{
x *= LOG2EL;
__asm__("f2xm1" : "=t" (x) : "0" (x));
return x;
}
else
return expl(x) - 1.0L;
}

View File

@ -0,0 +1,37 @@
/*
* ====================================================
* Copyright (C) 1998, 2002 by Red Hat Inc. All rights reserved.
*
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
#if !defined(_SOFT_FLOAT)
/*
Fast version of atan2 using Intel float instructions.
double _f_atan2 (double y, double x);
Function computes arctan ( y / x ).
There is no error checking or setting of errno.
*/
#include "i386mach.h"
.global SYM (_f_atan2)
SOTYPE_FUNCTION(_f_atan2)
SYM (_f_atan2):
pushl ebp
movl esp,ebp
fldl 8(ebp)
fldl 16(ebp)
fpatan
leave
ret
#endif

View File

@ -0,0 +1,37 @@
/*
* ====================================================
* Copyright (C) 1998, 2002 by Red Hat Inc. All rights reserved.
*
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
#if !defined(_SOFT_FLOAT)
/*
Fast version of atan2f using Intel float instructions.
float _f_atan2f (float y, float x);
Function computes arctan ( y / x ).
There is no error checking or setting of errno.
*/
#include "i386mach.h"
.global SYM (_f_atan2f)
SOTYPE_FUNCTION(_f_atan2f)
SYM (_f_atan2f):
pushl ebp
movl esp,ebp
flds 8(ebp)
flds 12(ebp)
fpatan
leave
ret
#endif

View File

@ -0,0 +1,47 @@
/*
* ====================================================
* Copyright (C) 1998,2002 by Red Hat Inc. All rights reserved.
*
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
#if !defined(_SOFT_FLOAT)
/*
Fast version of exp using Intel float instructions.
double _f_exp (double x);
Function computes e ** x. The following special cases exist:
1. if x is 0.0 ==> return 1.0
2. if x is infinity ==> return infinity
3. if x is -infinity ==> return 0.0
4. if x is NaN ==> return x
There is no error checking or setting of errno.
*/
#include <math.h>
#include <ieeefp.h>
#include "f_math.h"
double _f_exp (double x)
{
if (check_finite(x))
{
double result;
asm ("fldl2e; fmulp; fld %%st; frndint; fsub %%st,%%st(1); fxch;" \
"fchs; f2xm1; fld1; faddp; fxch; fld1; fscale; fstp %%st(1); fmulp" :
"=t"(result) : "0"(x));
return result;
}
else if (x == -infinity())
return 0.0;
return x;
}
#endif

View File

@ -0,0 +1,47 @@
/*
* ====================================================
* Copyright (C) 1998, 2002 by Red Hat Inc. All rights reserved.
*
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
#if !defined(_SOFT_FLOAT)
/*
Fast version of exp using Intel float instructions.
float _f_expf (float x);
Function computes e ** x. The following special cases exist:
1. if x is 0.0 ==> return 1.0
2. if x is infinity ==> return infinity
3. if x is -infinity ==> return 0.0
4. if x is NaN ==> return x
There is no error checking or setting of errno.
*/
#include <math.h>
#include <ieeefp.h>
#include "f_math.h"
float _f_expf (float x)
{
if (check_finitef(x))
{
float result;
asm ("fldl2e; fmulp; fld %%st; frndint; fsub %%st,%%st(1); fxch;" \
"fchs; f2xm1; fld1; faddp; fxch; fld1; fscale; fstp %%st(1); fmulp" :
"=t"(result) : "0"(x));
return result;
}
else if (x == -infinityf())
return 0.0;
return x;
}
#endif

View File

@ -1,48 +1,48 @@
/*
* ====================================================
* Copyright (C) 1998, 2002 by Red Hat Inc. All rights reserved.
*
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
#if !defined(_SOFT_FLOAT)
/*
Fast version of frexp using Intel float instructions.
double _f_frexp (double x, int *exp);
Function splits x into y * 2 ** z. It then
returns the value of y and updates *exp with z.
There is no error checking or setting of errno.
*/
#include "i386mach.h"
.global SYM (_f_frexp)
SOTYPE_FUNCTION(_f_frexp)
SYM (_f_frexp):
pushl ebp
movl esp,ebp
fldl 8(ebp)
movl 16(ebp),eax
fxtract
fld1
fchs
fxch
fscale
fstp st1
fxch
fld1
faddp
fistpl 0(eax)
leave
ret
#endif
/*
* ====================================================
* Copyright (C) 1998, 2002 by Red Hat Inc. All rights reserved.
*
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
#if !defined(_SOFT_FLOAT)
/*
Fast version of frexp using Intel float instructions.
double _f_frexp (double x, int *exp);
Function splits x into y * 2 ** z. It then
returns the value of y and updates *exp with z.
There is no error checking or setting of errno.
*/
#include "i386mach.h"
.global SYM (_f_frexp)
SOTYPE_FUNCTION(_f_frexp)
SYM (_f_frexp):
pushl ebp
movl esp,ebp
fldl 8(ebp)
movl 16(ebp),eax
fxtract
fld1
fchs
fxch
fscale
fstp st1
fxch
fld1
faddp
fistpl 0(eax)
leave
ret
#endif

View File

@ -0,0 +1,48 @@
/*
* ====================================================
* Copyright (C) 1998, 2002 by Red Hat Inc. All rights reserved.
*
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
#if !defined(_SOFT_FLOAT)
/*
Fast version of frexpf using Intel float instructions.
float _f_frexpf (float x, int *exp);
Function splits x into y * 2 ** z. It then
returns the value of y and updates *exp with z.
There is no error checking or setting of errno.
*/
#include "i386mach.h"
.global SYM (_f_frexpf)
SOTYPE_FUNCTION(_f_frexpf)
SYM (_f_frexpf):
pushl ebp
movl esp,ebp
flds 8(ebp)
movl 12(ebp),eax
fxtract
fld1
fchs
fxch
fscale
fstp st1
fxch
fld1
faddp
fistpl 0(eax)
leave
ret
#endif

View File

@ -0,0 +1,38 @@
/*
* ====================================================
* Copyright (C) 1998, 2002 by Red Hat Inc. All rights reserved.
*
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
#if !defined(_SOFT_FLOAT)
/*
Fast version of ldexp using Intel float instructions.
double _f_ldexp (double x, int exp);
Function calculates x * 2 ** exp.
There is no error checking or setting of errno.
*/
#include "i386mach.h"
.global SYM (_f_ldexp)
SOTYPE_FUNCTION(_f_ldexp)
SYM (_f_ldexp):
pushl ebp
movl esp,ebp
fild 16(ebp)
fldl 8(ebp)
fscale
fstp st1
leave
ret
#endif

View File

@ -0,0 +1,38 @@
/*
* ====================================================
* Copyright (C) 1998, 2002 by Red Hat Inc. All rights reserved.
*
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
#if !defined(_SOFT_FLOAT)
/*
Fast version of ldexpf using Intel float instructions.
float _f_ldexpf (float x, int exp);
Function calculates x * 2 ** exp.
There is no error checking or setting of errno.
*/
#include "i386mach.h"
.global SYM (_f_ldexpf)
SOTYPE_FUNCTION(_f_ldexpf)
SYM (_f_ldexpf):
pushl ebp
movl esp,ebp
fild 12(ebp)
flds 8(ebp)
fscale
fstp st1
leave
ret
#endif

View File

@ -0,0 +1,70 @@
/*
* ====================================================
* x87 FP implementation contributed to Newlib by
* Dave Korn, November 2007. This file is placed in the
* public domain. Permission to use, copy, modify, and
* distribute this software is freely granted.
* ====================================================
*/
#ifdef __GNUC__
#if !defined(_SOFT_FLOAT)
#include <math.h>
/*
FUNCTION
<<llrint>>, <<llrintf>>, <<llrintl>>---round and convert to long long integer
INDEX
llrint
INDEX
llrintf
INDEX
llrintl
ANSI_SYNOPSIS
#include <math.h>
long long int llrint(double x);
long long int llrintf(float x);
long long int llrintl(long double x);
TRAD_SYNOPSIS
ANSI-only.
DESCRIPTION
The <<llrint>>, <<llrintf>> and <<llrintl>> functions round <[x]> to the nearest integer value,
according to the current rounding direction. If the rounded value is outside the
range of the return type, the numeric result is unspecified. A range error may
occur if the magnitude of <[x]> is too large.
RETURNS
These functions return the rounded integer value of <[x]>.
<<llrint>>, <<llrintf>> and <<llrintl>> return the result as a long long integer.
PORTABILITY
<<llrint>>, <<llrintf>> and <<llrintl>> are ANSI.
The fast math versions of <<llrint>>, <<llrintf>> and <<llrintl>> are only
available on i386 platforms when hardware floating point support is available
and when compiling with GCC.
*/
/*
* Fast math version of llrint(x)
* Return x rounded to integral value according to the prevailing
* rounding mode.
* Method:
* Using inline x87 asms.
* Exception:
* Governed by x87 FPCR.
*/
long long int _f_llrint (double x)
{
long long int _result;
asm ("fistpll %0" : "=m" (_result) : "t" (x) : "st");
return _result;
}
#endif /* !_SOFT_FLOAT */
#endif /* __GNUC__ */

View File

@ -0,0 +1,33 @@
/*
* ====================================================
* x87 FP implementation contributed to Newlib by
* Dave Korn, November 2007. This file is placed in the
* public domain. Permission to use, copy, modify, and
* distribute this software is freely granted.
* ====================================================
*/
#ifdef __GNUC__
#if !defined(_SOFT_FLOAT)
#include <math.h>
/*
* Fast math version of llrintf(x)
* Return x rounded to integral value according to the prevailing
* rounding mode.
* Method:
* Using inline x87 asms.
* Exception:
* Governed by x87 FPCR.
*/
long long int _f_llrintf (float x)
{
long long int _result;
asm ("fistpll %0" : "=m" (_result) : "t" (x) : "st");
return _result;
}
#endif /* !_SOFT_FLOAT */
#endif /* __GNUC__ */

View File

@ -0,0 +1,38 @@
/*
* ====================================================
* x87 FP implementation contributed to Newlib by
* Dave Korn, November 2007. This file is placed in the
* public domain. Permission to use, copy, modify, and
* distribute this software is freely granted.
* ====================================================
*/
#ifdef __GNUC__
#if !defined(_SOFT_FLOAT)
#include <math.h>
/*
* Fast math version of llrintl(x)
* Return x rounded to integral value according to the prevailing
* rounding mode.
* Method:
* Using inline x87 asms.
* Exception:
* Governed by x87 FPCR.
*/
long long int _f_llrintl (long double x)
{
long long int _result;
asm ("fistpll %0" : "=m" (_result) : "t" (x) : "st");
return _result;
}
/* For now, we only have the fast math version. */
long long int llrintl (long double x) {
return _f_llrintl(x);
}
#endif /* !_SOFT_FLOAT */
#endif /* __GNUC__ */

View File

@ -0,0 +1,40 @@
/*
* ====================================================
* Copyright (C) 1998, 2002 by Red Hat Inc. All rights reserved.
*
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
#if !defined(_SOFT_FLOAT)
/*
Fast version of log using Intel float instructions.
double _f_log (double x);
Function calculates the log base e of x.
There is no error checking or setting of errno.
*/
#include "i386mach.h"
.global SYM (_f_log)
SOTYPE_FUNCTION(_f_log)
SYM (_f_log):
pushl ebp
movl esp,ebp
fld1
fldl2e
fdivrp
fldl 8(ebp)
fyl2x
leave
ret
#endif

Some files were not shown because too many files have changed in this diff Show More